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In the last twenty years, the theory of hyperfine splitting in muonium developed without any 
experimental input. Finally, this situation is changing and a new experiment on measuring hyperfine 
splitting in muonium is now in progress at J-PARC. The goal of the MuSEUM experiment is to improve by 
an order of magnitude experimental accuracy of the hyperfine splitting and muon-electron mass ratio. 
Uncertainty of the theoretical prediction for hyperfine splitting will be crucial for comparison between 
the forthcoming experimental data and the theory in search of a possible new physics. In the current 
literature estimates of the error bars of the theoretical prediction differ roughly by a factor of two. We 
explain the origin of this discrepancy and obtain the theoretical prediction for the muonium hyperfine 
splitting �νth

H F S(Mu) = 4 463 302 872 (515) Hz, δ = 1.2 × 10−7.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Calculations of hyperfine splitting (HFS) in one-electron atoms 
have a long and distinguished history starting with the classic 
works by Fermi [1] and Breit [2]. The modern state of the HFS 
theory in muonium was reviewed in every detail in [3,4]. Small 
corrections to HFS calculated after publication of these reviews are 
collected in [5]. High precision measurements of HFS in muonium 
for a long time were considered as a test of the high precision QED 
and a source for precise values of the fine structure constant α and 
the muon-electron mass ratio mμ/me . While the role of muonium 
HFS in determining the fine structure constant was made obsolete 
by the highly precise α obtained from the measurements of the 
electron anomalous magnetic moment ae [6] and the recoil fre-
quency of the 133C s atoms [7], it remains the best source for the 
precise value of the muon-electron mass ratio.

After a twenty years lull a new MuSEUM experiment on mea-
suring the muonium HFS and the muon-electron mass ratio is now 
in progress at J-PARC, see, e.g., [8]. The goal of the experiment is 
to reduce the experimental uncertainties of the muonium HFS and 
muon-electron mass ratio by an order of magnitude. As a byprod-
uct the experimental team hopes to obtain limits on possible new 
physics contributions to muonium HFS. A proper estimate of the 
uncertainty of the theoretical prediction is critical in comparison 
between theory and experiment and figuring out the limits on 
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new physics. Meanwhile it is now for almost twenty years two 
discrepant estimates of this uncertainty exist in the literature. The 
uncertainty in the CODATA adjustments of the fundamental physi-
cal constants [5,9–12] is roughly two times lower than this uncer-
tainty in [3,4] and some other theoretical papers on muonium. This 
discrepancy was on stark display at the recent Osaka workshop on 
Physics of Muonium and Related Topics, see e.g., [13]. The CODATA 
adjustments of the fundamental physical constants is a highly re-
spected and reliable source, and the two times lower error bars 
cited in [5,9–12] found their way in experimental and theoretical 
papers on muonium HFS, too numerous to cite them here.

Below we will derive the uncertainty of the current theoret-
ical prediction of the HFS in muonium and slightly improve its 
estimate in [3,4]. This improvement is made possible by the new 
theoretical contributions and more accurate values of the funda-
mental physical constants that were obtained after the reviews [3,
4] were published. We trace out the origin of the two times lower 
error bars in [5,9–12] and explain why they cannot be used for 
comparison between theory and experiment.

2. Zeeman splitting and experimental measurements of 
muonium HFS

Let us describe schematically how muonium HFS and the 
muon-electron mass ratio were measured in the up to the present 
moment most precise LAMPF experiments [14,15]. Measurements 
were done at nonzero magnetic field and two transition frequen-
cies ν12 and ν34 between the Zeeman energy levels were mea-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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sured. An elementary quantum mechanical calculation leads to the 
Breit-Rabi formulae for these frequencies (see, e.g., [15,16])

ν12 = −μμB

h
+ �ν

2

[
(1 + x) −

√
1 + x2

]
,

ν34 = μμB

h
+ �ν

2

[
(1 − x) +

√
1 + x2

]
,

(1)

where x = (μμ − μe)B/(h�ν)2 is proportional to the external 
magnetic field B . This field B is calibrated by measuring the Lar-
mor spin-flip frequency hνp = 2μp B , where μp is the proton mag-
netic moment. We represent all magnetic moments in terms of 
total magnetic moments and do not write them as products of 
the respective Bohr magnetons and g-factors as in [5,9–12,14,15]
to make the formulae more transparent. We can always restore 
the g-factors that we swallowed in magnetic moments later if we 
wish.

Transition frequencies ν12 and ν34 and the spin-flip frequency 
νp were measured in the LAMPF experiments [14,15]. All other 
parameters in Eq. (1) except the hyperfine splitting at zero field 
�ν and the muon magnetic moment μμ are known with a high 
accuracy. Then Eq. (1) turns into a system of two equations with 
two unknowns. Solving these equations we obtain

�ν = ν12 + ν34,

μμ

μp
=

4ν12ν34 + νp
μe
μp

(ν34 − ν12)

νp

[
νp

μe
μp

− (ν34 − ν12)
] .

(2)

These �ν and μμ/μp are the experimental values of HFS at zero 
field and of the ratio of muon and proton magnetic moments ob-
tained in the LAMPF experiments [14,15] (we skip here all hard 
experimental problems).

The ratio of the electron and proton magnetic moments was 
measured with very high accuracy, see, e.g., [5]. One can use this 
ratio together with the LAMPF result for μμ/μp to obtain the ra-
tio of the electron and muon magnetic moments. This last ratio is 
in its turn a product of the ratios: ratio of the electron and muon 
g-factors and ratio of their masses. The electron and muon in the 
muonium atom are not free, and one should remember that in this 
case additional quantum electrodynamic (QED) binding corrections 
to the g-factors arise (see, e.g., [17] and references therein). These 
corrections do not exist in the case of free electron and muon, and 
to calculate the electron-muon mass ratio we need to take them 
into account on par with the QED corrections to the free electron 
and muon g-factors. Both the binding corrections and QED correc-
tions to the free g-factors depend on the mass ratio, see collection 
of all corrections e.g., in [5]. This dependence is accompanied by so 
high powers of the fine structure constant that transition from the 
magnetic moments to mass ratio does not introduce an additional 
uncertainty in the mass ratio we obtain in this way. Combining 
the full QED theory of electron and muon g-factors, known with 
high precision μe/μp , and μμ/μp measured in the LAMPF exper-
iment one obtains an experimental value of electron-muon mass 
ratio [15]. The results of the two LAMPF experiments were sum-
marized in [14,15]

�νex
H F S(Mu) = 4 463 302 776 (51) Hz, δ = 1.1 × 10−8, (3)(

mμ

me

)
ex

= 206.768 277 (24), δ = 1.2 × 10−7. (4)

2 The minus sign in the definition of x, unlike the plus in [14,15], arises because 
we assume that μe is negative.
3. Theoretical prediction of muonium HFS and its uncertainty

Theoretical QED formula for HFS in muonium has the form

�νH F S = νF

[
1 + F

(
α, Zα,

me

mμ

)]
+ �νweak + �νth, (5)

where the Fermi frequency is

νF = 16

3
Z 4α2 me

mμ

(
mr

me

)3

c R∞, (6)

R∞ is the Rydberg constant, c is the speed of light, Z = 1 is the 
muon charge in terms of the positron charge, mr = memμ/(me +
mμ) is the reduced mass, function F (α, Zα, me/mμ) is a sum of 
all known QED contributions, �νweak is the weak interaction con-
tribution, and �νth is the estimate of all yet uncalculated terms. 
Explicit expressions for all terms on the right hand side (RHS) in 
Eq. (5) are collected in [3–5].

To obtain a theoretical prediction for HFS and its uncertainty we 
plug the values of all constants known independently of this very 
theoretical formula on the RHS hand side of Eq. (5). Currently the 
relative uncertainty of the Rydberg constant δR∞ = 5.9 × 10−12

[5], and the relative uncertainty of the fine structure constant 
δα = 2.3 × 10−10 [5]. Nothing would change in the discussion be-
low if we would use the relative uncertainty of α obtained from 
measurements of ae [6] and/or recoil frequency of 133C s [7]. The 
least precisely known constant on the RHS in Eq. (5) is the exper-
imental electron-muon mass ratio from Eq. (4) that respectively 
introduces the largest contribution to the uncertainty of the theo-
retical prediction for HFS. We also need to take into account the 
uncertainty �νth that is due to the uncalculated contributions to 
the theoretical formula in Eq. (5). The estimate of this uncertainty 
is relatively subjective, we consider 70 Hz to be a fair estimate 
[18–20]. In [5] uncertainty due to the uncalculated terms is as-
sumed to be 85 Hz. We will use 70 Hz as an estimate of the 
uncalculated terms, but our conclusions below would not change 
if we would adopt the estimate from [5]. After simple calculations 
we obtain the theoretical prediction for the muonium HFS3

�νth
H F S(Mu) = 4 463 302 872 (511) (70) (2) Hz. (7)

The first uncertainty is due to the uncertainty of (mμ/me)ex , the 
second one is due to the uncalculated theoretical terms, and third 
is due to the uncertainty of α. This last uncertainty is too small for 
any practical purposes and can be safely omitted.

We see that the uncertainty of the theoretical prediction is 
dominated by the uncertainty of the experimental mass ratio 
me/mμ , and to reduce it one should measure the mass ratio with a 
higher accuracy. The second largest contribution to the uncertainty 
is due to the uncalculated terms in the theoretical formula for HFS. 
Combining uncertainties we obtain

�νth
H F S(Mu) = 4 463 302 872 (515) Hz, δ = 1.2 × 10−7. (8)

We can compare this theoretical prediction for HFS with the result 
of the experimental measurements [14,15] in Eq. (3). Theory and 
experiment are compatible but the theoretical error bars are too 
large due to relatively large experimental uncertainty of the mass 
ratio (mμ/me)ex .

In this situation it is reasonable to invert the problem and use 
the QED theoretical formula for muonium HFS in Eq. (5) and the 

3 All fundamental constants used in these calculations can be found in [5] and/or 
in [21].
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experimental result for HFS in Eq. (3) to find a more precise value 
of the mass ratio. We obtain

mμ

me
= 206.768 281 (2)(3), (9)

where the first uncertainty is due to the uncertainty of �νex
H F S and 

the second uncertainty is due to uncalculated terms in �νth
H F S(Mu)

in Eq. (5). Combining uncertainties we obtain

mμ

me
= 206.768 281 (4), δ = 2 × 10−8. (10)

This value of the mass ratio is compatible but an order of magni-
tude more accurate than the experimental mass ratio (mμ/me)ex

in Eq. (4). Hyperfine splitting in muonium is the best source for a 
precise value of the electron-muon mass ratio.

It is not by chance that the uncertainty in Eq. (10) practically 
coincides with the uncertainty of the mass ratio obtained as a re-
sult of the CODATA adjustment [5]. The QED formula in Eq. (5)
together with the experimentally measured HFS was used in the 
adjustment, and since the procedure described above produces by 
far the most precise value of the mass ratio, the result of the ad-
justment and its uncertainty should practically coincide with the 
value of the mass ratio in Eq. (10).

4. CODATA estimate of the theoretical uncertainty

The magnitude of the theoretical prediction for muonium HFS 
in Eq. (8) almost exactly coincides with the respective predic-
tion in [5], while the uncertainty of this theoretical prediction 
in Eq. (8) is roughly two times larger than the respective uncer-
tainty in 2014 CODATA adjustment of the fundamental physical 
constants (see eq. (216) in [5]). Identical uncertainty can be found 
in all 1998-2014 CODATA adjustments [9–12] and this discrepancy 
should be explained.

The difference between the uncertainties of the theoretical pre-
diction for muonium HFS in the adjustments and in this work is 
due exclusively to the estimate of the experimental error of the 
mass ratio in Eq. (6). It looks as if the uncertainty of the mass ratio 
used in adjustments to calculate the muonium HFS and its uncer-
tainty according to Eq. (5) and Eq. (6) is roughly two times lower 
than the uncertainty of the experimental mass ratio in Eq. (4). Let 
us figure out how this could happen. It can be seen from eq. (223) 
in [5] and similar equations in [9–12]. This equation (223) in [5]
is just another form of Eq. (2) for the ratio of the muon and pro-
ton magnetic moments. Let us transform Eq. (2) to the form used 
in the adjustments. We notice that the product ν12ν34 in the nu-
merator of the RHS in Eq. (2) can be identically written as

4ν12ν34 = (ν12 + ν34)
2 − (ν34 − ν12)

2. (11)

Substituting this representation in Eq. (2) we obtain

μμ

μp
=

(ν12 + ν34)
2 − (ν34 − ν12)

2 + νp
μe
μp

(ν34 − ν12)

νp

[
νp

μe
μp

− (ν34 − ν12)
] . (12)

To comply with the notation in [5] we introduce f p = 2νp , ν( f p) =
ν34 − ν12 and �ν = ν12 + ν34. In this notation Eq. (12) has the 
form (unlike in [5] magnetic moments below include all relevant 
QED corrections, see the discussion after Eq. (1))

μμ

μp
=

�ν2 − ν2( f p) + 2 f p
μe
μp

ν( f p)

2 f p

[
2 f p

μe
μ − ν( f p)

] , (13)
p

and coincides with eq. (223) from the 2014 CODATA adjust-
ment [5].

Let us emphasize that Eq. (13), as well as the equivalent Eq. (2), 
contains only the experimentally measured frequencies on the 
RHS. We already used Eq. (2) to obtain the experimental value of 
the mass ratio in Eq. (4). The symbol �ν on the RHS in Eq. (13) is 
nothing but the sum of two measured frequencies and it coincides 
with the experimental HFS at zero field in Eq. (2). No QED theory 
for HFS is used in Eq. (13). As we already explained (see discussion 
after Eq. (2)) it is easy to convert the LHS of Eq. (13) into the mass 
ratio. We will assume below that such transformation is already 
made.

The authors of the CODATA adjustments rejected the idea of 
using the experimental ratio of magnetic moments (or what is ef-
fectively the same the ratio of masses) to calculate the theoretical 
value of HFS arguing that this ratio depends on the experimental 
value of HFS and one cannot use this experimental value to obtain 
the theoretical prediction (see [9], p. 481). This is a flawed argu-
ment, because the RHS’s of Eq. (2) and Eq. (12) contain only two 
experimentally measured frequencies and allow us to calculate (if 
we trust the theory of the Zeeman effect) HFS at zero field and 
the magnetic moments ratio measured in the LAMPF experiments. 
These HFS and the magnetic moments ratio arise as two different 
functions of two independent experimental frequencies. The possi-
bility to write the second of Eq. (2) in the form of Eq. (12) does 
not mean that it becomes a function of the experimental HFS at 
zero field, it remains a function of two measured frequencies. It 
would be a function of the experimental HFS at zero field only if 
it did not depend on any other combination of the measured fre-
quencies. This is not the case in Eq. (12), it depends both on the 
sum and difference of the measured frequencies and any function 
of two frequencies could be written in such form. Once again, nei-
ther of the LHS’s in Eq. (2) are functions of one another, they both 
are different functions of the frequencies ν12 and ν34, and we can 
and should use the magnetic moment ratio from Eq. (2) in the 
QED formula Eq. (5) to obtain a theoretical prediction for HFS in 
muonium.

In the adjustments the theoretical QED formula for the muo-
nium HFS from Eq. (5) is plugged in the numerator on the RHS of 
Eq. (13) [22] instead of �ν . Then the relationship in Eq. (13) turns 
into an equation for the mass ratio

me

mμ
= f

(
me

mμ

)
, (14)

where the function f is quadratic in the mass ratio and parametri-
cally depends on some other constants, see Eq. (13). One can solve 
this equation and obtain a theoretical prediction for the mass ra-
tio and its uncertainty based on the theoretical QED formula for 
HFS from Eq. (5), the Breit-Rabi formula for the Zeeman energy 
levels and the experimentally measured transition frequencies ν12
and ν34. This is what effectively was done in CODATA adjustments 
[5,9–12]. The theoretical prediction for the mass ratio one obtains 
in this way has roughly two times lower error bars than the ex-
perimental mass ratio in Eq. (4) and is compatible with it. One can 
consider this comparison as a test of the theoretical formula for 
HFS splitting that was used to obtain this prediction for the mass 
ratio. Obviously this is not the best way to obtain the prediction 
for the mass ratio and test the theoretical QED formula for HFS 
splitting. As we have already discussed, a much more precise value 
of the mass ratio may be obtained using the theoretical QED for-
mula for HFS from Eq. (5) and the experimental number for HFS 
from Eq. (3), as discussed in the end of the previous section.

Let us return to the discussion of the uncertainty of the the-
oretical prediction for muonium HFS in 1998-2014 adjustments 
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[5,9–12]. There the solution of Eq. (14) obtained with the help of 
the theoretical QED formula for HFS is plugged back in this very 
formula [22] and the obtained result together with its uncertainty 
is declared to be the theoretical prediction for the muonium HFS 
and its uncertainty. The problem with this approach is that the 
goal now is to compare the experimental data and QED theory for 
HFS, and one cannot use the value of the mass ratio obtained from 
Eq. (14) as an entry in the QED formula Eq. (5). Really, the uncer-
tainty ascribed to this mass ratio is based on the assumption that 
the QED formula Eq. (5) has the uncertainty that is determined 
by the QED theory used in its derivation, but this is exactly the 
assumption we want to test comparing the QED theory and the 
experimental data. This is clearly circular logic, one cannot use a 
value of a parameter obtained with the help of a theoretical for-
mula in this very formula with the goal to test it. To illustrate this 
point let us mention that using the same logic one could plug a 
more precise theoretical prediction for the mass ratio from Eq. (10)
obtained with the help of the theoretical QED formula in this very 
formula and claim that the uncertainty introduced by the mass ra-
tio in the theoretical prediction of HFS is effectively an order of 
magnitude lower. This obviously makes no sense.

5. Conclusions

We have shown above that the uncertainty of the current the-
oretical QED prediction for the muonium HFS is about 515 Hz 
(relative uncertainty is 1.2 × 10−7), see Eq. (8). By far the largest 
contribution to this uncertainty is due to the experimental uncer-
tainty of the muon-electron mass ratio in Eq. (4), it exceeds the 
uncertainty due to the uncalculated terms in the theoretical for-
mula by about a factor of seven. The uncertainty of the theoretical 
prediction for muonium HFS in Eq. (8) is roughly two times larger 
than in the 2014 adjustment (see eq. (216) in [5]) and in other 
1998-2014 adjustments [9–12]. All these years the underestima-
tion of the error bars of HFS was not practically important because 
there were no experimental activity on measuring muonium HFS 
and the muon-electron mass ratio, and the adjustments produced 
the value of the muon-electron mass ratio with the correct error 
bars. Now the situation is rapidly changing. The MuSEUM exper-
iment [8] at J-PARC is going on and its result will be obtained 
in a not so far future. It is expected that the muonium HFS and 
the electron-muon mass ratio will be measured with an order of 
magnitude higher accuracy than in the old experiments [14,15]. 
One of the goals of the MuSEUM experiment is to compare the 
theoretical prediction for the muonium HFS with the experimen-
tal results in search of new physics. A discrepancy between theory 
and experiment could be interpreted as a new physics effect. The 
proper magnitude of the error bars of the theoretical prediction for 
the muonium HFS is crucial for such comparison. An underestima-
tion of these error bars could lead to an erroneous claim of a new 
physics discovery. I hope that the discussion above convincingly 
resolves the discrepancy in the literature on the magnitude of the 
error bars in the theoretical prediction for the muonium HFS.
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