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In this article, we initially present a hybrid spin-CMOS polymorphic logic gate (HPLG) using a novel 5-terminal magnetic domain
wall motion device. The proposed HPLG is able to perform a full set of 1- and 2-input Boolean logic functions (i.e., NOT, AND/NAND,
OR/NOR, and XOR/XNOR) by configuring the applied keys. We further show that our proposed HPLG could become a promising
hardware security primitive to address IC counterfeiting or reverse engineering by logic locking and polymorphic transformation.
The experimental results on a set of ISCAS-89, ITC-99, and Ecole Polytechnique Fédérale de Lausanne (EPFL) benchmarks show
that HPLG obtains up to 51.4% and 10% average performance improvements on the power-delay product (PDP) compared with
recent non-volatile logic and CMOS-based designs, respectively. We then leverage this gate to realize a novel processing-in-memory
architecture (HPLG-PIM) for highly flexible, efficient, and secure logic computation. Instead of integrating complex logic units in
cost-sensitive memory, this architecture exploits a hardware-friendly approach to implement the complex logic functions between
multiple operands combining a reconfigurable sense amplifier and an HPLG unit to reduce the latency and the power-hungry data
movement further. The device-to-architecture co-simulation results for widely used graph processing tasks running on three social
network data sets indicate roughly 3.6 x higher energy efficiency and 5.3x speedup over recent resistive RAM (ReRAM) accelerators.
In addition, an HPLG-PIM achieves ~4x higher energy efficiency and 5.1x speedup over recent processing-in-DRAM acceleration

methods.

Index Terms— Domain wall motion (DWM), in-memory computing, polymorphic gate, spintronics.

I. INTRODUCTION

ECENTLY, polymorphic logic has become a promising

hardware security primitive in logic locking or poly-
morphic transformation to address security issues, such
as integrated circuit counterfeiting and reverse engineering
[1]-[4]. Polymorphic logic was first introduced in 2004 [5],
by embedding multiple functionalities within the same cell
using some controllable factors to determine the input—output
correlation. For instance, voltage or temperature can be used
as the controlling factor to configure the cell’s functionality in
a variety of applications [6].

Typically, polymorphic logic is implemented through recon-
figurable hardware designs with conventional CMOS-based
circuits [7], [8]. However, the need for reconfiguration gives
rise to issues like large-area overhead and power consumption,
increased complexity, and so on. To counter these issues,
exploitation of emerging devices for implementing polymor-
phic functions is being investigated, such as polymorphic
designs with SINW FET and FinFETs [6], [9]. However, these
polymorphic gates could only morph between two preset logic
functions (not all functions), leading to high relative complex-
ity (i.e., ratio of the number of transistors with respect to the
number of implementable logic functions) and limited effi-
ciency in logic obfuscation/encryption applications. With this
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in mind, a power-efficient and compact polymorphic logic gate
that could morph between all logic functions is yet to come.

From a different perspective, recently, processing-in-
memory (PIM) architectures, as a potentially viable way to
solve the memory wall challenge in the conventional Von
Neumann computer system (e.g., long memory access latency,
significant congestion at I/Os, limited memory bandwidth, and
huge leakage power), have been well explored [10]-[12]. The
key concept behind the PIM is to embed logic units (not
necessarily polymorphic) within memory to exploit the exter-
nal and internal memory bandwidths better. This can lead to
remarkable savings in data communication energy and latency
besides providing an inherent in-memory parallelism for data
processing. The proposals for exploiting DRAM- [11] and
SRAM-based [12] PIM architectures can be found in the recent
literatures. However, they encounter inevitable drawbacks,
such as high leakage power or initial data overwritten, that
hinder their further processing. This topic has become even
more intriguing by emerging non-volatile memory (NVM)
technologies, such as phase-change memory (PCM) [13],
resistive RAM (ReRAM) [10], and magnetic RAM (MRAM)
[14]. In particular, MRAM technology has recently become
a promising high-performance NVM candidate for both last
level cache and main memory, owing to its fast read/write
characteristics. Hence, PIM in the context of different NVMs,
specially using MRAM [15], [16], without sacrificing mem-
ory capacity can open a new way to efficient computing
paradigm.

Representative works of such PIM architectures include
Pinatubo [17] as a general architecture capable of doing
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bulk bitwise operations, multi-purpose in-memory processing
(MPIM) [18] as a multi-purpose ReRAM-based PIM, PRIME
[10], and ISAAC [19] as dot product engines for neural
network acceleration based on ReRAM, RIMPA [20] as
a threshold logic PIM architecture based on domain wall-
RAM (DW-RAM), and spin-transfer torque (STT)-MRAM-
based PIM in [15] and [16]. All these architectures can be
reconfigured to memory and computing modes where the
modified sense amplifiers (SAs) typically play a major role
in performing rowwise or columnwise in-memory logic.

Nonetheless, recent PIM designs have several limitations.
Although they are well optimized for two-operand bulk bitwise
operations, they still unavoidably rely on the external process-
ing unit in order to perform more complex in-memory logics;
otherwise, the performance degradation of the PIM could
be significant due to multi-cycle operations and unnecessary
write-backs. For example, performing AND2 function between
A and B (row vectors) can be made in a single cycle in most
NVM- and SRAM-based PIMs [12], [17], [20]-[22]; however,
when it comes to (A-B)@ (C+D), such platforms require at
least six cycles (if support in-memory XOR2) to make it. As a
result, current platforms cannot properly use their in-memory
computation capacity in such operations. To compensate this
issue, two solutions have been put forward, either sacrificing
the PIM speed by keeping data inside memory and handling
multi-cycle overloads [17], [21] or transmitting data to a digital
processing unit [23], [24] and imposing power hungry long-
distance data communication.

For clarification, this article is an extension of our previ-
ously published work in [25], where we proposed a hybrid
spin-CMOS polymorphic logic gate (HPLG) based on a
new composite 5-terminal multi-layer magnetic DW motion
(DWM) device. HPLG is able to implement a full set of 1-
and 2-input Boolean logic functions (i.e., NOT, AND/NAND,
OR/NOR, and XOR/XNOR) by configuring the applied keys
without any structural alteration. In this article, we show that
HPLG can be a prospective candidate in hardware security
applications, in addition to offering low power consumption,
low relative complexity, high compactness, and polymorphism
in logic circuits. In addition, we leverage this design to realize
an efficient PIM platform. Our main contributions in this
article can be briefly listed as follows.

1) We further investigate and show the performance
improvement of HPLG utilization in three different logic
benchmarks compared with CMOS and recent spin-
CMOS non-volatile logic designs.

2) We design a reconfigurable PIM architecture based
on spin-orbit torque (SOT)-MRAM, called HPLG-PIM,
based on a set of novel micro-architectural and circuit-
level schemes. It positions the HPLG-PIM as a mas-
sive data-parallel computational unit, which owns three
distinct operating modes (i.e., memory, computing, and
boosted computing).

3) We pave a new way to push the boundaries of PIM using
HPLG further, so that complex bitwise computations can
be performed between the operands within memory. This
further reduces the latency and the energy-concerning
state-of-the-art PIM hardware.
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Fig. 1.
two read paths and total magnetoresistances of each path for different DW
positions. (c) Micromagnetic simulation for writing current from W+ to W—.

(a) Proposed 5ST-DWM device structure. (b) Resistive model of

4) We demonstrate how HPLG-PIM can handle and accel-
erate graph processing workloads by developing new
mapping and partitioning methods. Moreover, the pro-
posed scheme is evaluated using a variety of real-world
social network graph data compared with other state-of-
the-art acceleration solutions, i.e., DRAM, ReRAM, and
STT-MRAM.

The rest of this article is organized as follows. We present
the novel spintronic device structure and HPLG design in
Sections II and III, respectively. Section I'V focuses on design-
ing the HPLG-PIM architecture. In Section V, the system-
atic performance evaluation of the HPLG and the proposed
PIM platform is provided. Section VI presents and evaluates
the HPLG-PIM’s acceleration method for a widely used
graph-processing task. Finally, Section VII concludes this
article.

IT. CoMPOSITE SPINTRONIC DEVICE STRUCTURE

The proposed five-terminal DWM (5T-DWM) device,
as shown in Fig. 1(a), is a composite multi-layer structure
consisting of a DW strip (DWS) and three sensing magnetic
tunnel junctions (MTJ). Note that a typical MTJ consists of
two ferromagnetic (FM) layers (e.g., CoFeB [26]) with a
tunnel barrier (e.g., MgO [27]) sandwiched between them.
One of the magnetic layers is a fixed layer, while the other
one is a free layer. Due to the tunneling magnetoresistance
(TMR) effect [27], the resistance of the MTJ is high (or low)
when the magnetization of two FM layers are anti-parallel
(AP) [or parallel (P)]. The free-layer magnetization could be
manipulated by applying an external magnetic field or through
the current-induced STT [14]. A DWS is typically a wire-like
magnetic nano-strip (e.g., CoFeB, Co, and Ni [28]), in which
multiple magnetic domains can be formed [29]. The transition
region between two opposite magnetic domains is called DW.
When electrons flow through the DWS from one end to the
opposite end, they continuously track the local magnetization
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profile through exchanging their angular momentum with
the local magnetic moment. As a result, the local magnetic
moment in the DWS experiences a spin-transfer torque if the
neighboring moments are not aligned in the same direction.
Hence, the spin-transfer torque is exerted on the magnetic
moments in and around the DW region when current flows
through the DWS. Such a current-induced spin-transfer torque
can displace the DW along the direction of electron flow,
which is then observed as DWM along the magnetic nano-
strip. Fukami ef al. [30] experimentally demonstrate steady
DWM with a current density above 6 x 10'"" A/m? and 60 m/s
DW velocity for 20 nm-wide magnetic nano-strips.

Fig. 1(a) shows the 5T-DWM device structure with the
five terminals as Write terminals, W+ and W—, and Read
(or Sense) terminals, R+, R1—, and R2—. Our proposed
device structure consists of a thin (90 nm x 20 nm x 2 nm)
magnetic DWS and three MTJs (m1, m2, and m3). The MTJs
are formed by placing a small fixed nano-magnet (20 nm
x 20 nm) as the sensing head on the top and bottom of
the DWS, with a thin MgO layer (1.5 nm) between the
nano-magnet and the DWS. Here, the nano-magnets work
as the “fixed” FM layers and the DWS works as the “free”
FM layer while forming the sense MTIJs. The free magnetic
layer DWS is laterally connected to two anti-parallel fixed
magnetic domains of larger thickness so-called stabilizer.
This larger thickness at the edges of the free layer (DWS) is
used to stabilize the DW at an intermediate position within
the free layer, which has been experimentally proven in [30].
In order to have a better controllability and thermal stability
of DWS, three artificial trapping sites located in the W+ end,
middle, and W— end could be manufactured [31].

In the proposed design, the three sensing terminals (i.e., R+,
R1—, and R2—) lead to two read paths [see Fig. 1(b)], and
thus to two different resistance behaviors corresponding to DW
locations: 1) resistance from R+ to R1—, which is the series
resistance of m1 and m2, represented as R(R+, R1—) and 2)
resistance from R+ to R2—, which is the series resistance of
m1 and m3, represented as R(R+, R2—). Such a design leads
to unique sensing resistance response based on the DW posi-
tions within the nano-strip, as plotted in Fig. 1(b). The fixed
magnetic layers of m1 and m2 have the same magnetization
direction as the stabilizer at the W+ terminal, while the fixed
magnetic layer of m3 has the same magnetization direction as
the stabilizer at the W— terminal. Due to the tunneling TMR
effect, the resistance of the MTJ depends on the magnetization
directions of the two FM layers on both sides of the insulator
layer. The resistances of the sensing MTJs depend on the
magnetization of DWS underneath, i.e., the DW positions.
In this design, the resistance of m1 and m2 will be high,
Rap (or low, Rp), if the DW is at the W+ (or W—) side
of the DWS due to anti-parallel (or parallel) magnetization.
The resistance of m1 and m2 will be different if the DW is in
the middle. In addition, due to different fixed magnetic layers
of m2 and m3, they have differential resistance states with the
same DW positions. In summary, the three MTJ resistances
are determined by the DW positions within the DWS, which
will be leveraged to design our polymorphic logic gate circuit
in Section IIL.
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TABLE I
PARAMETERS USED IN MICRO-MAGNETIC DEVICE SIMULATION

Symbol Quantity Values
o Damping coefficient 0.02
Ky Uniaxial anisotropy constant 3.5 x 10%.J/m3
M, Saturation magnetization 6.8 x 105A/m
Aex Exchange stiffness 1.1 x 107117 /m
P Polarization 0.6
tago MgO thickness 1.5 nm
(LW)mTs MTJ area 20 x 20nm?
(L.W.t)pws DWS dimension 90 x 20 x 2nm?

In order to simulate the proposed 5ST-DWM device precisely
with the CMOS interface circuits in SPICE, the device is
modeled as two MTIJs with variable resistance depending on
DW positions in each read path. The resistive models for both
read paths are shown in Fig. 1(b). Considering the resistivity of
the DWS, an equivalent resistive network for read path-1 can
be written as

R = Rm1 + RFL + Rm2
2RAap/AmT + REL, DW at left end
= {1 2RAp/AmTI + RpL, DW at right end (1)
(RAap + RAp)/AmTy + RpL, DW at middle

where R,,1 and R, represent the resistances of two read
MT]Js, which are shown by m1 and m2, respectively, RgL is
the lateral free-layer resistance between the two read MTIs,
RAAp and RAp denote the MT]J resistance—area (RA) prod-
uct for anti-parallel and parallel configurations, respectively,
obtained in non-equilibrium Green’s function (NEGF)-based
MTIJ model [32], and Amy is the read MTJ area. Therefore,
the output resistance of read path-1 can have three different
values based on the DW positions.

The output resistance (from R+ to R2—) of the 5ST-DWM
device can be expressed as follows:

R = le +RFL+Rm3
(RAp+RAap)/Amts+ Rrr, DW at left/right end
| 2RAp/AmTy + REL, DW at middle

Thus, the read path-2 has only two distinct resistance levels
based on its DW positions and the output resistances are
identical when the DW is positioned in the left or right end.

The magnetic device dynamics in write path is simulated
in the object-oriented micro-magnetic framework (OOMMF
[33]) based on the well-known Landau—Lifshitz—Gilbert (LLG)
[14] equation with the device parameters listed in Table I.
Fig. 1(c) shows the transient micromagnetic simulation of the
DWS with the lateral currents of ~48 and ~24 pA from
W— to W+ (electron flow is from W+ to W—). It can be
seen that the DW is moved from W+ to W— (or middle)
of the DWS within ~1 ns for ~48 pA (or ~24 puA)
current. We benchmarked the micro-magnetic simulation with
the experimental data in [30] (the same nano-stripe width
of 20 nm is fabricated) and it shows a good match as shown
in Fig. 2(a). Note that the simulated magnetic DWS has
perpendicular magnetic anisotropy (PMA), which is the same
as the fabricated device in [30]. The MTJ is modeled in
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Fig. 2. (a) Simulated DWM velocity versus lateral current density, showing

a good match with experimental data reported in [30]. (b) RA product versus
the thickness of tunneling oxide in AP and P state (with 50 mV constant

voltage).

Verilog-A, using the NEGF-LLG solution for spin-to-charge
interface [32]. The MTJ RA product versus tunneling oxide
thickness in anti-parallel (AP) and parallel (P) states is plotted
in Fig. 2(b). Note that the presented ST-DWM device supports
two pivotal operations: 1) DWM can be precisely controlled by
the magnitude and direction of the laterally applied current,
with the assistance of the notches on the DWS and 2) the
MT]Js mounted on the DWS can have configurable resistances
within the sensing path. The aforementioned design concepts
have been experimentally demonstrated in [34] and [35].

III. HYBRID POLYMORPHIC LOGIC GATE

A. Circuit Design

As shown in Fig. 3, the proposed HPLG circuit is designed
with three keys (K1, K2, and K3), which consists of a 5T-
DWM device and 13 transistors. Among these 13 transistors,
six transistors are used to control the direction of current flow
through the 5ST-DWM device and the other seven transistors
are used to form a differential latch to sense the logic output.
The differential latch compares the ST-DWM device resistance
in the read path with a reference MTJ (resistance value shown
and explained later).

The HPLG is able to perform the NOT, AND/NAND,
OR/NOR, and XOR/XNOR Boolean logic functions based on
different key configurations. Note that all the input transistors
are designed to work in the deep triode region by applying
AV (100 mV) across the drain and source (VDS~100 mV)
terminals. Hence, it will lead to ultra-small voltage drop
and, thus, ultra-small power consumption. For a complete
Boolean operation, the HPLG requires three subsequent stages,
i.e., Reset, Compute, and Sense. Based on our micromagnetic
simulation described in Section II, the threshold current to
move the DW from W— to W+ is ~48 puA within 1 ns.
Each input transistor (i.e., A, B, K1, and Ry), if turned on,
is designed to provide ~24 uA (or ~—24 uA) to DWS by
proper sizing. In the Reset stage (R = K1 = 1), the reset

and K1 transistors are turned on for 1 ns. Then, a current
of ~48 uA flows from W— to W+ terminal to initialize the
DW position at the W— side. In the compute stage, as shown
in Fig. 3, operands (A, B) and one particular key (K1) are
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Fig. 3. Proposed hybrid polymorphic logic gate (HPLG) circuit design based
on ST-DWM device.

applied to control the input transistors and further determine
the DW position within DWS for different logic functions.

Table II lists the detailed HPLG operations with respect
to the combination of different inputs and logic function
configured by specific keys. Note that Ipww is the total current
flowing from W+ to W—. We define that the positive current
is from W+ to W— and the negative current is from W—
to W+. For AND/NAND, OR/NOR, and NOT Boolean logic
functions, the summation of m1 and m2 resistances [i.e.,
R(R+, R1—) in Fig. 1(b)] represents the output state. Now,
it can be seen that, the output resistance (summation of m1 and
m2 resistances) is lower than the reference MTJ (located in the
Latch unit shown in Fig. 3), only when both m1 and m2 have
parallel configurations (Rp + Rp, DW at W— side). Note that
the reference MT]J resistance is 0.5 x [(Rp+ Rp)+(Rp+ Rap)],
where Rp and Rap are the parallel and anti-parallel MT] resis-
tances, respectively. For all the other DW positions, the output
resistance will be higher than the reference MTJ, since the
summation of m1 and m2 resistances is either Rp + Rap
(when DW is in the middle) or Rap + Rap (when DW is
at the W+ side). This can be leveraged for implementing
AND/NAND, OR/NOR, and NOT gate by configuring different
biasing conditions.

1) Implementation of AND/NAND Gate: For implement-
ing the AND/NAND gate, we set K1=1 (corresponding
transistor source voltage is VDD/2-AV). This causes
~—24 pA current flowing from W— to W+-. Note that
a ~24 pA will be injected into the DWS if the cor-
responding input (A or B) is high (corresponding tran-
sistor drain voltage is VDD/2+4-AV). Therefore, the net
current flowing into the DWS (i.e., W+ terminal) is
the summation current from A, B, and K1 transistors.
If K1=1 (~—24 pA), the net current flowing into the
DWS is either ~—24 pA or around zero when no input
is high or only one input is high, respectively. Thus,
the DW will remain at the initial W— side, which will
consequently make the output low. For the other case
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TABLE II

IMPLEMENTATION OF DIFFERENT LOGIC FUNCTIONS USING HPLG

A 0 0 1 1
Inputs B 0 1 0 1
AND/ Town —T6.2uA | 2.14pA T24uA 26.050A
NAND DW W- W- W- middle
R + Rz Rp + Rp Ry + Ry Ry + Rp Rar + Rar
Keys: oUT 0 0 0 1
Kil=1 (AND)
K2=1, oUT
P (NAND) 1 1 1 0
OR/ Town 38IA | 275TuA | 27.57TpA | G0.62uA
NOR DW W- middle middle W+
Rui+FRw» | Re+Rp | Rp+Rap | Rp+ Rar | Bar+ Rap
Keys: ouT 0 1 1 1
Ki1=0, (OR)
K2=1, ouT
K3=0 (NOR) ! 0 0 0
NOT(A) Tows 3.82nA 27 5TpA
B=0 DW W- middle
Keys: | Fmi + R Ry + Rp Ry + Rap
Ki1=0, p—
K2=1 our 1 0
' NOT)
K3=0 (
XOR Towst 3.82nA | 27.57uA | 27.57TpA | G50.62uA
/XNOR DW W- middle middle W
Bul + Ry | Rp+ Rar | Re + Bp | Re +Rr | Rp + Rar
Keys: ouT 1 0 0 1
K1=0, (XNOR)
K2=0, oUT
- GXOR) 0 1 1 0

Note: Ipwm= Total current flowing from W+ to W-, DW= DW position in
DWS, Ry + Ryp = Summation of resistances of m1 and m2, i.e. R(R+,
R1-), Ry + Rys = Summation of resistances of ml and m3, i.e. R(R+,

R2-)

2)

3)

, Rp is the resistance of MTJ with parallel configuration, Rap is the
resistance of MTJ with anti-parallel configuration.

(both A and B are high), the net current is around 24 uA,
which will move DW to the middle notch, resulting in
high output. Note that the actual simulated net current
under different logic inputs is shown in Table II, which
might be slightly different from the ideal case. However,
the logic functionality will not be disturbed. When the
computation is done, the differential latch working as
a sensing circuit (SE=1) is used to compare the read
path resistance (i.e., R(R+, R1—) by setting K2=1 and
K3=0 with a reference MTJ. Hence, after computation,
we can get the result of AND (or NAND) operation from
the OUT (or OUT) port of the differential latch.
Implementation of OR/NOR Gate: For implementing the
OR/NOR gate, we set K1=0. Now the DW will remain
at the W— side only if both A and B are low, which will
consequently make the output low. For the other cases,
when only one or both A and B are high, the DW will
be moved to the middle or to the W+ side, respectively,
thus leading to high output. Hence, after computation,
we can get the result of OR (or NOR) operation from the
OUT (or OUT) port of the differential latch.
Implementation of NOT Gate: For implementing the
NoT gate, we set K1=0, B=0, and A is the input
operand. Thus, the DW position will depend only on
A, ie., if A is high (or low), then DW will be in
the middle (or at W— side); thus, the output will be
high (or low). Hence, after computation, we can get
the result of NOT operation from the OUT port of the
differential latch. The detailed circuit operations could
be seen in Table II. Obviously, OUT port in this case
results buffer output.
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Fig. 4. Transient simulation results for different logic gates implemented by
HPLG. (a)—(c) Control signals. (d) and (e) Input signals. (f)~(h) AND/NAND
gate implementation with [K1,K2,K3] = [1,1,0]. (i)<(k) OR/NOR gate imple-
mentation with [K1,K2,K3]=[0,1,0]. (1) and (m) NOT gate implementation
with [K1,K2,K3]=[0,1,0] and B=0. (n)}~(p) XOR/XNOR gate implementation
with [K1,K2,K3]=[0,0,1].

4) Implementation of XOR/XNOR Gate: For the
XOR/XNOR logic function, the read path-2 [i.e,
R(R+, R2—-)] in Fig. 1(b) will be used to represent
the output state. It can be seen from Table II that the
output (summation of m1 and m3 resistances) is low,
only when both m1 and m3 have parallel configurations
(Rp + Rp, DW in the middle notch). For other DW
positions (either at W+ or W— side), the output is high,
since the summation of m1 and m3 resistances will be
Rp + Rap. This can be leveraged for implementing the
XOR/XNOR gate by configuring the biasing conditions.
If we set K1=0, based on the simulated net current
flowing into DWS shown in Table II, the DW will
be in the middle notch when only one input A or B
is high. Then, the sensing resistance (m1 and m3) is
Rp + Rp and consequently generates low output. For
the other cases, when both A and B are high or low,
the DW will be at the W+ or W— side, respectively.
Then, the sensing resistance is Rp + Rap, and thus
generates high output. When the computation phase is
done, a differential latch working as a sensing circuit
(SE=1) is used to compare the summation of m1 and
m3 resistances (K2=0, K3=1) with the reference MTJ.
Hence, we can get the result of XNOR (/XOR) operation
from the OUT (or OUT) port of the differential
latch. The detailed circuit operation could be seen
in Table II.
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B. Device-/Circuit-Level Simulation

For device-level simulation, we benchmarked DWM dynam-
ics with experimental data [30] using OOMMF [33]. The
MT]J (consisted of DWS, tunneling oxide layer, and fixed FM
layer) is modeled in the Verilog-A using NEGF-LLG (non-
equilibrinm Green’s function and LLG equations) solution
for the spin-to-charge interface and calibrated with data in
[30] and [32]. For the circuit-level simulation, a Verilog-A
model of the ST-DWM device was developed to co-simulate
with the interface CMOS circuits in Cadence Specter and
SPICE. The 45 nm North Carolina State University (NCSU)
product development kit (PDK) library [36] is used in SPICE
to verify the proposed design and acquire the performance
of designs. The circuit is simulated with three consecutive
cycles—Reset, Compute, and Sense, where 1 ns pulsewidth is
used for each cycle. The transient simulation plots for different
logic functions implemented by HPLG are shown in Fig. 4.
It can be seen that a complete set of Boolean logic could be
achieved by setting different key values.

IV. HPLG-BASED PIM PLATFORM

In this section, we leverage the proposed HPLG to real-
ize a configurable PIM platform called the HPLG-PIM.
Fig. 5 depicts the HPLG-PIM’s sub-array architecture based
on SOT-MRAM and detailed modified peripheral circuitry.
The basic sub-array architecture mainly consists of a memory
row decoder (MRD), a memory column decoder (MCD),
a voltage driver (VD), an SA, and an HPLG. This architecture
can be adjusted by the Ctrl unit & to work in tri-mode
that performs memory read-write, in-memory computing, and
boosted computing operations.

Each SOT-MRAM cell [with the composite structure of spin
Hall metal (SHM) and MT]J [14], [37]] is associated with the
write word line (WWL), read word line (RWL), write bitline
(WBL), read bitline (RBL), and source line (SL) to perform the
memory operations. Here, in each memory cell, the resistance
of the MTJ with parallel magnetization in both magnetic layers
(data-““0”) is lower than that of MTJ with anti-parallel magne-
tization (data-“1"). To program the free-layer magnetization,
the flow of charge current through SHM (Tungsten, f — W
[38]) will cause the accumulation of opposite-directed spin on
both the surfaces of SHM due to the spin Hall effect [14].
Thus, a spin current is generated and further produces an
SOT on the adjacent free magnetic layer, causing switch of
magnetization. In this article, the magnetization dynamics of
the free FM layer is modeled by the LLG equation with the
STT term and the SHE term, as used in [39]. Note that the
ferromagnets in MTJ have in-plane magnetic anisotropy (IMA)
[14]. With the given thickness (1.2 nm) of the tunneling layer
(MgO), the TMR of the MTJ is ~168.5% [40].

The VD component B is modified such that can select
between data input coming from different sources (i.e.,
the inter- and intra-sub-arrays, SA, and HPLG). The peripheral
decoders (active-high output) control the activation of the
current path through the array. MRD © is modified based
on the buffering method such that two WLs can be simulta-
neously selected. A reconfigurable voltage mode SA © [41]
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is connected to the RBL for sensing the total resistance in
the selected current path during the read or computing mode.
Here, we elaborate the functionality of the proposed sub-array
architecture.

1) Memory Mode: To write a data bit in any of the SOT-
MRAM cells, write current should be injected through the
heavy metal substrate of the SOT-MRAM. To activate this
write current path (e.g., for M1), WWL1 should be activated
by MRD and SL1 is grounded, while all the other word lines
and SLs are kept deactivated (floating). Data (D) can come
from different sources, and accordingly when write enable
(We) is activated, write circuit can assign proper voltage
(positive/negative) on WBL in order to write “1” (or “0”).
This allows sufficient charge current (~120 pA) flows from
VD to ground (or ground to V1), leading to MT]J resistance
in High-Rap (or Low-Rp) encoded as data “1” (or “0”). For
a typical memory read operation, a single memory cell is
selected to compare its sense voltage (Vsense) With a reference
voltage (V) by injecting a small sense current (Isepse) through
the selected SOT-MRAM cell. To activate this read current
path, for example, for M1, RWL1 is activated, while SL1 is
grounded and all the other word lines and SLs are kept
deactivated. MCD activates the RBL1 line to be connected
to the SA. Hence, a read current flows from the selected
SOT-MRAM cell to ground, generating a sense voltage at the
input of SA ©), which is compared with the memory mode
reference voltage (Vsense.p <Vref<Vsense.aAp). This reference
voltage generation branch is selected by setting the Enable
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(b) Monte Carlo simulation result of Vsense distribution.

(a) Transient simulation of AND/OR operations in computing mode.

values (ENwm, ENanp, ENor) = (1,0,0). This selection is
performed by the command issued by the Ctrl unit.

2) Computing Mode: In this read-like computation, every
two bits stored in the identical column (i.e., local operand)
can be selected and sensed simultaneously. To activate the
computing current path (as shown in Fig. 5), two RWLs
(here RWLn and RWLm) are activated by MRD ©, while
SLn and SLm are grounded and all the other word/SLs
are kept floating. Then, the equivalent resistance of such
parallel-connected SOT-MRAM cells (Mn and Mm) and their
cascaded access transistors are compared with a specific
reference by SA @©. Through selecting different reference
resistances (ENm, ENanp, and ENgg), SA can perform basic
in-memory Boolean functions (i.e., AND/NAND and OR/NOR).
For the AND operation, Ry is set at the midpoint of Rap//Rp
(“1,70”) and Rap//Rap (“1," “17), and for OR operation, Ryef
is set at the midpoint of Rp//Rp and Rp//Rap.

Fig. 6(a) shows the transient simulation results of the
sense circuit under the 2 ns period clock signal (CLK).
In the simulation, we take the data stored in MRAMI1 and
MRAM?2 as inputs. When CLK is high, SA is in the pre-
charging phase and the output is reset to “0.” When CLK
is low, the SA is in the sampling phase and generates logic
computation result depending on the reference voltage con-
figuration. Furthermore, to validate the variation tolerance of
the sense circuit, we have performed Monte Carlo simulation
with 100000 trials. A ¢ = 5% variation is added on the RA
product (RAp), and a ¢ = 10% process variation is added
on the TMR (typical MTJ conductance variation [42]). The
simulation result of the sense voltage (Vsense) distributions
in Fig. 6(b) shows the sense margin of such PIM architecture.
It will be reduced by increasing the logic fan-in (i.e., number
of parallel memory cells). Thus, to avoid the read failure
(overlapping of Viense distribution), only two fan-in rowwise
in-memory logics are used. Note that parallel computing/read
within a sub-array is implemented by using one SA per bitline
with the exactly same mechanism as Fig. 5.

3) Boosted Computing Mode: In-memory computing can
be even further boosted, leveraging HPLG as a low overhead
and highly efficient solution in the HPLG-PIM platform. The
key idea is to incorporate a reconfigurable HPLG per bitline
in the memory sub-array after SAs, as shown in Fig. 5 ®.
Combining the reconfigurability of SA and HPLG not only
boosts memory sub-array performance in a sense that it can
facile implementing complex in-memory logic functions but
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also can increase the protection against adversarial attacks
on memory outputs. The output of each SA is connected to
a Demultiplexer (DeMux). According to the mode selector,
output data can be routed to either output buffers or HPLGs.
To do the computation, a small modification is applied to
HPLG’s inputs. Rather than the one-time input injection shown
in Fig. 3, the inputs coming from SA are consecutively written
to the HPLG. The input transistor size of the HPLG is adjusted
in a way that, if the SA output is “1,” ~24 pA current will
flow from W+ to W— of the HPLG. As per the micromagnetic
simulations shown in Fig. 1(c), this will move DW to the
middle pinning site. On the other hand, if the SA output is “0,”
then no current will be injected to HPLG, and hence, the DW
position will not change. The Ctrl @ only needs to generate
four controlling signals to handle the HPLG unit based on
different functions tabulated in Table II. We show the boosted
computing mode can massively reduce power-hungry long-
distance data communication between the processor and the
memory by processing complex raw data, though it intrinsi-
cally imposes two memory cycles to implement in-memory
operations.

Fig. 7 shows how the HPLG-PIM’s boosted computing
mode can accelerate complex bulk logic functions as opposed
to the recent bitline computing platforms. Here, we chose
Pinatubo [17] as a promising PIM architecture supporting a
wide range of in-memory functions. We take a simple function
f =x-y-+z-w as an example. We observe that Pinatubo [see
Fig. 7(b)] needs at least five cycles to realize such bitwise
operation between x, y, z, and w rows. It first calculates
the in-memory x - y function in a single cycle (1); however,
it requires to write back the result to a temporary row of the
sub-array (1) (2). Then, the same procedure needs to be done
to implement the z - w function by saving the result in f»
(3) and (4). Now, f can be implemented by performing the
rowwise OR2 function on the temporary rows (5). However,
the HPLG unit in HPLG-PIM can be used as a computational
buffer to save the intermediate results of x - y and z - w in
two consecutive cycles [see Fig. 7(a)]. Now, OR2 operation is
already performed by setting the keys as (0,1,0) in the HPLG
unit. The HPLG-PIM’s boosted computing mode also offers a
multi-row computation method. In this method, exploiting the
intrinsic feature of the HPLG unit, multiple operands can be
individually read out and consecutively sent for computation.
This one-cycle/one-operand approach may lead to a higher
latency while working with a large number of operands though
it offers an alternative way to overcome the small Ron/Rore
ratio in most NVMs hindering multi-operand implementation.

V. PERFORMANCE EVALUATION
A. HPLG

In this section, we assess the performance of the proposed
HPLG from different perspectives to further demonstrate its
efficiency as a highly secured and standalone logic gate for
replacing conventional designs.

1) Relative Complexity Analysis: The comparison among
different polymorphic gate realizations is presented in Table III
in terms of number of transistors and number of imple-
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Fig. 7. Parallel computation with (a) HPLG-PIM’s boosted computing mode
versus (b) recent bitline computing platforms such as Pinatubo [17].

TABLE III
COMPARISON OF DIFFERENT POLYMORPHIC GATES

Design Morph method #TT  #F?  Rel. Comp. (ZT/#F)
[51 27/125°C Temperature 6 2 3
6] 3.3/0.0/1.5V External Signal 6 2 3
[6] 3.3/0.0 V External Signal 10 3 333
&1 0.0¢/0.9/1.1/1.8V External Signal 6 2 3
[e] [6]1.2/3.3V Vdd 11 4 2.75
[e] 3.3/1.8V Vdd ) 2 4
[ 0.0/3.3V External signal 9 2 4.5
[71 Vdd and Gnd interchange 4 2 2
HPLG 3 Keys 13 7 1.86

() Number of transistors, () Number of implementable functions

mentable functions. As can be seen, the HPLG is capable
of implementing seven Boolean logic functions (including
six 2-input functions as well as a NOT function) using
only 13 transistors. Whereas other polymorphic logic gate
designs could only morph between two to four functions
[11, [5]-[7]. In addition, the comparison is made in terms of
relative complexity as the ratio of number of transistors (or #T)
with respect to the number of implementable functions (or #F).
Visibly, the relative complexity of the HPLG is greatly reduced
due to the fact that a single 5ST-DWM device is used to perform
all the logic functions without any structural alteration. Our
proposed design shows ~38% lower relative complexity than
the polymorphic gate design that uses temperature [5] as the
controlling factor. Again, our proposed design shows up to
~58% lower relative complexity than the polymorphic gate
design that uses voltage [1] as the controlling factor.

2) Security Analysis: The proposed HPLG can be utilized
as a promising hardware security primitive. For example,
several proposed key gates can be “inserted” into a com-
binational or sequential circuit to hide the functionality of
the IC from the adversary, known as “Logic Locking” [2].
Another effective solution to the threat of reverse engineering
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is “Polymorphic Transformation” [1], where some of the
logic gates of the IC can be “replaced” by HPLG, so-called
partial replacement. Whereas a full replacement can provide
the strongest protection against reverse engineering. In both
cases, the keys for the proposed polymorphic logic gates can
be placed within an IC in a tamper proof memory for activating
IC after returning from the foundry [2].

Here, the un-trusted adversaries in the IC manufacturing and
fabrication chain may prompt for IC counterfeiting or overpro-
ducing. However, since keys are not provided to the foundry
due to the non-operational purpose, they cannot sell the
overproduced ICs in the market unless they know the keys
for activating the ICs. In case if they place an adversary as
the endpoint user, who has access to the activated IC for
operational use, a possible attack can be invoked based on
the following attack model. It is assumed that the adversary
has the following two things: 1) complete gate-level netlist
and 2) activated IC (can be purchased from the open market).
With this attack model, the adversary can know the correct
outputs for all the input combinations. For example, for an
M inputs IC, the adversary might know the outputs for all
the 2M input combinations. Now by applying “brute force
search” or “ATPG algorithm” [2], they can try to find out
keysets that can produce the appropriate input—output patterns.
However, Subramanyan ef al. [2] show that brute force and
ATPG algorithms cannot expose all the keys if key-gates are
inserted properly at certain critical positions within the circuit.
Again, McDonald et al. [1] indicate that full replacement of
logic gates by polymorphic gates can ensure strong protec-
tion against reverse engineering. Specially, the vulnerability
decreases with the increase in the number of inputs and the
length of the key-set. For our case, each of our logic gates
requires three keys to produce the desired output.

Now, considering a full replacement for an M input and
N gate circuit, the reverse engineer will need to test 2M+3N
input-key combinations for getting the appropriate output. For
example, the simplest ISCAS-85 benchmark circuit C17 with
five inputs and six gates can have 25+3%6 = 223 — 8388 608
input-key combinations, whereas, C7552 with 207 inputs and
3512 gates can have 21978 ~ oo, Hence, if a circuit has very
large N and M, the adversary will need to test almost an
infinite number of input-key combinations, making the reverse
engineering process exhaustively difficult. Thus, the proposed
HPLG is promising to implement a secured computing plat-
form by providing logic locking and polymorphic transforma-
tion either in a full or partial replacement.

3) FA Design (A Case Study): To explore the efficiency
of the proposed HPLG in real combinational circuit designs
further, we consider it to realize a full adder (FA) cell. The
schematic representation of an FA based on XOR and majority
gate (MG) and an equivalent HPLG network is illustrated
in Fig. 8(a). As shown, a hybrid spin-CMOS FA is designed
employing three HPLGs with no additional circuit overhead
by integrating HPLGs into main FA blocks. The Sum logic
can be expressed as the three-input XOR of A, B, and Cj, as
input operands (A® B @ C;y). It can be seen that two cascaded
HPLGs with proper configuration readily generate Sum output.
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Fig. 8. (a) Schematic of an FA based on xOR and MG and equivalent HPLG
network. (b) N bit serial adder structure based on the proposed one-bit adder.
(c) Proposed modified HPLG for the implementation of MG logic.

TABLE IV
COMPARISON OF DIFFERENT FA DESIGNS

FA Design Dynamic Power  Static Power  #Transistors
CMOS [43] 494, W 1.5nW 42
GSHE [43] 15.6pW 0.3nW -
MTJ [44] 16.3uW 0.0nW 34
Proposed Design 12.73uW 0.0nW 39

The Cout logic can be simply implemented using a 3-input
MG [20] as MG (A, B, and Cj,) based on HPLG. For imple-
menting the MG functionality, we need to switch the K1 tran-
sistor’s source voltage from VDD/2-AV to VDD/2+AV [see
Fig. 8(c)]. This will reverse the current direction through the
transistor with K1. Hence, this K1 transistor will work as the
third input operand of a 3-input MG with inputs as A, B, and
K1. Now if at least two of the three inputs are high (majority
of A, B, and K1 is high), the total current flowing from W+
to W— will be at least ~48 pA. Such current will move
DW from W— side to W+ as simulated in the micromagnetic
simulation shown in Fig. 1(c), and the corresponding R(R+-,
R1—)is Rap+ Rap. For the other cases (majority of A, B, and
K1 is low), the DW will be either in the middle or at the W—
side, resulting in lower R(R+, R1—). Hence, using a reference
MT]J of 0.5 x [(Rp + Rap) + (Rap + Rap)l, the 3-input MG
can be readily implemented and Cout logic can be generated.

It is worth pointing out that due to the non-volatility of
the proposed 1 bit FA, an N bit serial adder connecting
the carry-out to carry-in can be readily designed, as shown
in Fig. 8(b) [43]. Such design does not sacrifice the operation
latency due to the fact that the higher bit should wait the
carry-out signal from low bit. Thus, an N bit adder can
be implemented by employing only one single non-volatile
FA without extra overheads, leading to greatly reduced area
and power consumption, while maintaining almost the same
throughput [43].

The power consumption (at 500 MHz) and transistor count
of the FA implemented using HPLG is compared with pre-
viously published CMOS, giant spin Hall effect (GSHE),
and MTJ-based FAs [43], [44]. The comparison is shown
in Table IV. It is being seen that FA design using HPLG
offers up to 74.23% lower power consumption with respect
to the conventional CMOS-based design [43]. It also shows
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TABLE V
BENCHMARK CHARACTERISTICS AND HPLG UTILIZATION IN THE FULL
REPLACEMENT SCENARIO

ISCAS-89 Circuit Function Inputs  Ouipuis #FFT  #HPLG?Y
527 Logic 4 1 3 10
5208 Traffic light controller 3 6 14 119
5349 4-bit add-shift multiplier 9 11 15 161
400 TLC 3 6 21 162
5420 Fractional multiplier 19 2 16 196
5526 TLC 3 6 21 193
5820 FLD 18 19 5 289
5838 Fractional multiplier 35 2 32 390

51196 Logic 14 14 18 529
51423 Logic 17 5 T4 657
515850 Logic 14 87 597 9772
538584 Logic 12 278 1452 19253
TTC-99
b02 FSM that recognizes BCD 1 1 4 22
b04 Compute min and max 11 8 66 597
bO5 Elaborate the Mem 1 36 34 935
b10 Voting system 11 6 17 189
bll Scramble string 7 6 31 481
bl2 Guess a sequence 5 6 121 1036
b13 Interface to meteo sensors 10 10 53 339
bl4 Viper processor (subset) 54 245 4775
EFFL
Curl. 1 ALU Control Unit 7 26 - 174
Cul. I Mem. Controller 1204 1231 46836
Arith. I Log2 32 32 32060
Arith. TT Square-root 64 128 - 18484
() Number of CMOS lip-flops used in different benchmark circuits, (T)

Number of utilized HPLGs in HPLG-100% implementation, where all the
logic gates are replaced with HPLG. Note that the number of HPLGs used
in HPLG-50% implementation is obtained by | #2FLG |

18.39% and 21.9% lower power consumption than other non-
volatile FA designs that use GSHE-based devices [43] and
MT]J-based FA [44]. Again, FA could be implemented using
7.14% lower transistor count with HPLG than the conventional
FA design [43]. Note that the DWM device will not increase
the chip size due to the hybrid spin-CMOS back end of line
fabrication technology [30].

4) Benchmark Analysis: In this section, we evaluate the per-
formance of the proposed HPLG compared with recent 2-input
spin-CMOS non-volatile logic gates referred to as NVLs and
the CMOS counterpart in different logic benchmarks with
respect to the power-delay product (PDP). Contrary to CMOS-
based implementations, NVLs typically enjoy the lower power
consumption; however, they impose an increased delay to
process the data [20], [45]. Thus, the PDP can be impartially
used to compare CMOS- and NVL-based implementations
[46]. Note that NVL1 [47] is a DW racetrack-based logic and
NVL2 [45] is an MTJ-based logic without polymorphism, but
capable of performing the basic logic functions. Accordingly,
we developed the HPLG library based on device-/circuit-
level evaluations, which contains a functionally complete set
of Boolean logic gates as discussed earlier to co-simulate
with CMOS circuits. The generated library is then used in
a commercial synthesis tool, i.e., Synopsys Design Compiler,
to map the produced optimized HDL code with an HPLG-
based design. It is noteworthy that in order to have a fair com-
parison between CMOS-, NVL-, and HPLG-based designs,
the same CMOS sequential logic circuit (flip-flop) is used for
all designs.

Table V lists a set of three different benchmark circuits
[i.e., ISCAS-89, ITC-99, and Ecole Polytechnique Fédérale
de Lausanne (EPFL)] with the number of inputs and used
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Fig. 9. Normalized PDP of different benchmark circuits for replacement with the proposed HPLG-, NVL1-, NVL2-, and CMOS-based circuit.

HPLGs. As discussed earlier, the larger these factors are,
the more secure the computing platform is provided. Fig. 9
shows the normalized PDP analysis of CMOS- and NVL-
based implementations compared with HPLG in different
benchmark circuits. While we consider a full replacement of
the benchmark circuits for CMOS- and NVL-based implemen-
tations, two distinct scenarios are considered to explore the
performance of HPLG implementation: 1) a full replacement
(100%) and 2) a partial replacement (50%), where half of the
logic gates in each benchmark are randomly selected to be
substituted with HPLG and the rest are CMOS-implemented.
As can be seen, the proposed HPLG-100% implementation
outperforms other NVLs in all the benchmark circuits. The
obtained PDP results for CMOS implementation are also
relatively lower than the other implementations owing to the
high-speed switching of CMOS. However, by increasing the
size of the benchmark, HPLG-100% circuits can show even
superior performance as compared with CMOS (see s15850,
s38584, b14, Ctrl. 1I, Arith. I, and Arith. II benchmark cir-
cuits). This PDP improvement compared with CMOS mainly
comes from almost the zero static power of HPLG compared
with the power-hungry CMOS, which compensates the long
delay of the magnetic gates. On the other hand, the well-
secured HPLG-50% implementation can show even more
promising performance with up to 39.3%, 51.4%, and 10%
average PDP improvements compared with NVL1, NVL2,
and CMOS-based design, respectively. From the area overhead
perspective, CMOS implementation shows the least footprint
as compared with NVLs and HPLG-based designs. As a
conclusion, the HPLG utilization rate can be precisely tailored
by circuit designers according to specific constraints to provide
a highly secured and efficient circuit. Note that the results
provided herein are obtained at the gate level and physical
design parameters are not considered within the document
space available.

B. HPLG-PIM

In this section, we evaluate the performance of the proposed
HPLG-PIM architecture from both memory and computation
capability perspectives.

1) Memory Mode: To achieve the overall memory perfor-
mance of the HPLG-PIM platform as an SOT-MRAM-based
architecture with a modified peripheral circuitry, we exten-
sively modified the system-level memory evaluation tool

TABLE VI
MEMORY MODEL COMPARISON

SRAM DRAM STT-MRAM HPLG-PIM
4MB 4MB AMB 4MB
Metri w R w R w R w R
Latency (ns) 1.07 0.9 27 24 102 1.08 1.29 1.15
Dynamic Energy (pJ) | 2974 | 3125 | 967 | 1483 | 368.5 | 232.2 | 3123 [ 2719
Leakage Power (mW) 5258 585.4 T44.2 7752
Area (mm?) 10.544 6.504 5.963 6.231

NVSim [48] to co-simulate with an in-house developed C++
code based on circuit-level results. Table VI tabulates and
compares the memory performance [Write (W)/Read (R)] of
the proposed design with three different memory candidates
for a sample 4 MB memory chip in the 45 nm process node.

In our simulations, we follow the iso-capacity constraint,
where similar memory capacity is used for all the candidates.
As expected, magnetic memories and DRAM show less area
overhead compared to SRAM. The proposed memory model
imposes ~40% less area compared with the SRAM with the
same memory configuration. In addition, the magnetic memory
models save a lot of leakage power compared with SRAM
due to their non-volatility nature. Our design also outperforms
other candidates in terms of dynamic energy owning to its
low write voltage (~400 mV for “1” and ~—320 mV for
“07). Albeit HPLG-PIM improves the write energy and latency
compared with the standard STI-MRAM and DRAM, all
magnetic candidates have shown longer write latency than
SRAM due to the longer write period of the magnetic memory
storage devices.

2) Computing Modes: While the HPLG-PIM is especially
designed to be a highly parallel and efficient PIM platform for
bulk bitwise operations in structured applications, as will be
discussed in Section VI, we first evaluate its performance in
unstructured and bulk logic benchmarks. To assess the perfor-
mance of HPLG-PIM as a new PIM platform, a comprehensive
device-to-architecture evaluation framework along with two
in-house simulators is developed. First, at the device level,
we jointly use the NEGF and the LLG with the spin Hall effect
equations to model the SOT-MRAM bit-cell [14], [49]. For the
circuit-level simulation, a Verilog-A model of the 2T1R SOT-
MRAM device is developed to co-simulate with the interface
CMOS circuits in Cadence Specter and SPICE. The 45 nm
North Carolina State University (NCSU) PDK library [36]
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Fig. 10. (a) Energy consumption and (b) delay of ISCAS-85 benchmarks
mapped to three different PIM architectures (¥ -axis in energy plot: log scale).

is used in SPICE to verify the proposed design and acquire
the performance. Second, an architectural-level simulator is
built based on NVSim [48]. Based on the device-/circuit-
level results, our simulator can alter the configuration files
(.cfg) corresponding to different array organization and report
performance metrics for PIM operations. The controllers and
add-on circuits are synthesized by the Design Compiler [50]
with an industry library. Third, a behavioral-level simulator is
developed in MATLAB, calculating the latency and energy
that HPLG-PIM spends on different applications. In addi-
tion, it has a mapping optimization framework to maximize
the performance according to the available resources. Here,
to evaluate logic performance in computing and boosted com-
puting modes, a logic netlist in the Berkeley Logic Interchange
Format (.blif) is fed into ABC [51] to obtain synthesized logic
networks. Meanwhile, parameters such as fan-in restriction are
set up during the synthesis. The synthesized networks are then
mapped to the proposed PIM architecture using the MATLAB
code to assess the performance.

Fig. 10 gives the ISCAS-85 combinational circuit bench-
marks implemented using the HPLG-PIM, RIMPA [20], and
Pinatubo [17]. To have an impartial comparison, Pinatubo, as a
general system architecture for NVMs, is implemented with
both standard STT-MRAM and identical SOT-MRAM cell as
used for our design. As shown, the proposed design offers the
lowest energy and delay compared with the counterparts in
different benchmarks. We observe that: 1) our proposed design
reduces the energy consumption by ~55%, 67%, and 74.4%
compared with Pinatubo-SOT, Pinatubo-STT, and RIMPA,
respectively. This considerable improvement mainly comes
from proposed logic efficiency and reduced-cycle operations
resulted from HPLG add-on and 2) it outperforms mentioned
PIM architectures with 31.3%, 40%, and 52% reduction in
delay on different benchmark circuits. It is worth pointing
out that for five more complex benchmark circuits (i.e.,
€2670, ¢3540, ¢5315, c6288, and c7552), as logic complexity
increases, HPLG-PIM can show much better performance than
the rest.

3) Area Overhead Estimation: Our experiments show that
HPLG-PIM imposes 2.8% area overhead to the original
memory die, and Pinatubo [17] and RIMPA [20] incur 0.9%
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and 17% area overhead, respectively. Fig. 11 shows the
breakdown of area overhead resulted from add-on hardware to
memory chip. It can be seen that the controller and modified
drivers contribute more than 50% of this area overhead in a
Bank where the HPLG unit takes up to 10%.

VI. APPLICATION: GRAPH PROCESSING

The HPLG-PIM’s parallel operations can be readily used to
accelerate a wide variety of real-world applications. Recently,
in-memory acceleration of graph processing tasks has attracted
much attention. From the graph processing algorithm perspec-
tive, network topology analysis can help us better understand
the intricate connectivity of complex networks in practical
problems [52], [53]. For instance, the matching index is a basic
topology parameter that characterizes the similarity between
two vertices in a network. It measures the ratio of common
neighbors for a pair of vertices. Evaluation of these network
properties plays an essential part in potential applications, such
as social network analysis, traffic flow control, and so on. For
the sake of limited space, we briefly explain one widely used
task so-called matching index.

The matching index M;; quantifies the “similarity”
between two vertices based on the number of common
neighbors shared by vertices as ((3_common neighbors)/
(3 total number of neighbors)). The main task here is to find
the common and total number of neighbors, which can be
carried out and accelerated by HPLG-PIM. Fig. 12 provides a
straightforward example to elucidate the mapping and accel-
eration method of HPLG-PIM. Initially, the sample the four-
vertex network is converted into adjacency matrix and stored
in four consecutive rows of a sub-array. To find the common
neighbors of two particular vertices (e.g., V1 and V2), HPLG-
PIM performs parallel AND2 on the rows and SA’s outputs
determine the matches (here, V4). In addition, the total number
of neighbors is found by performing the OR2 operation on the
same rows. Then, HPLG-PIM’s operations XOR2 (2-cycle)
operation can readily process the summation operation to
generate corresponding index matrix.

A. Data Partitioning and Allocation

The real-world graph consists of millions of vertices and
edges that need to be processed. To efficiently map such graphs
into the HPLG-PIM architecture, graph-partitioning methods
are needed. Here, we adopt the interval-block partitioning
method to balance the workloads of each HPLG-PIM’s chip
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TABLE VII
SOCIAL NETWORK DATA SETS
Dataset Nodes Edges Graph Information
cgo-Facebook 4,039 88,234 profiles & friends lists from Facebook [55]
dbIp-2010 | 326,186 | 1,615,400 ientific collal network
amazon-2008 | 735,323 | 5,158,388 | similarity among books reported by Amazon store

and maximize parallelism. We use the hash-based method [54]
to split the vertices into M intervals and then divide the edges
into M? blocks, as shown in Fig. 13. Now each block is
allocated a specific chip and accordingly mapped to its sub-
arrays. Considering an N-vertex sub-graph that needs to be
mapped to a HPLG-PIM chip with N, activated sub-arrays
with the size of x x y, each sub-array can process n vertices
(n < f|n € N, f = min(x, y)). Therefore, the number of sub-
arrays for processing an N-vertex sub-graph can be formulated
as Ny = r%y

B. Experiment Setup

To evaluate the performance of the accelerators, we take
three social network data sets as tabulated in Table VII.
Then, we map and run two graph-processing tasks, i.e., degree
centrality and matching index on them that seek most of the
HPLG-PIM’s operations.

C. Accelerators’ Setup

For impartial comparison, we reimplement other accelerator
designs under our performance evaluation framework, where
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Fig. 14. Normalized log-scaled (a) energy consumption and (b) execution
time of different PIM accelerators.

the detailed setup are introduced as follows. STT-MRAM:
We developed a Pinatubo-like [17] accelerator by modifying
memory SAs. Pinatubo is implemented by the standard
STT-MRAM cell (.cell file in NVSim [48]). ReRAM: An
MPIM-like [18] accelerator with 256 sub-arrays and one buffer
sub-array per bank is considered for evaluation. In the compu-
tational sub-arrays, for each mat, there are 256 x 256 ReRAM
cells. For evaluation, an NVSim simulator [48] was extensively
modified to work with the Design Compiler [50] to emulate
MPIM functionality. Note that the default NVSim’s ReRAM
cell file (.cell) was adopted for assessment. DRAM: We
developed an Ambit-like [56] accelerator for graph processing.
Ambit implements the logic function using capacitor-based
majority functions. We accordingly modified CACTI-3DD
[57] for the evaluation of DRAM'’s solution. The controllers
were synthesized in the Design Compiler [50]. GPU: We used
the NVIDIA GTX 1080Ti Pascal GPU. It has 3584 CUDA
cores running at 1.5 GHz (11TFLOPs peak performance). The
energy consumption was measured with the NVIDIA’s system
management interface. We scaled the achieved results by
50% to exclude the energy consumed by cooling, and so on.

D. Overall Performance Improvement

Fig. 14(a) shows the normalized energy consumption of the
under-test PIM accelerators on two graph processing tasks
(i.e., degree connectivity and matching index). As shown,
HPLG-PIM offers the highest energy efficiency compared with
others owing to its low-energy and fully parallel operations.
We observe that HPLG-PIM achieves on average 4x higher
energy efficiency than that of the Ambit accelerator. The main
reason here is the energy efficiency of the basic operations in
the HPLG-PIM; as discussed earlier, HPLG-PIM can finish
the operations (such as AND2) in one single cycle; however,
similar operation in Ambit imposes multi-cycle operations,
avoiding destructive data-overwritten. Fig. 14(a) shows that
HPLG-PIM solution saves 1.7x and 3.6x energy compared
with that of Pinatubo and MPIM solutions. It is worth pointing
out that Ambit is not capable of implementing parallel xor
in memory required for different tasks and, therefore, impose
excessive delay and energy consumption to memory chip.
To realize such operation in the Ambit platform, we con-
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sider multi-cycle MG-based implementation [46]. Meanwhile,
the Pinatubo and MPIM uses the multi-cycle XOR logic due to
their XOR-friendly architecture. Furthermore, HPLG-PIM does
not follow the conventional ReRAM-based crossbar designs to
realize the PIM, which brings significant energy efficiency due
to eliminating the digital-to-analog converter/analog-to-digital
converter (DAC/ADC) units. Note that MPIM and Pinatubo-
PCM (not implemented here) platforms support multi-row
operations (up to 256 rows), which can be useful in specific
vector processing tasks; however, HPLG-PIM can perform
such operation in multi-cycles using the multi-row compu-
tation method.

Fig. 14(b) shows the HPLG-PIM and other PIMs’ execution
time on different tasks. It shows that HPLG-PIM solution is
on average 5.1x faster than the DRAM solution (Ambit) and
2.5x faster than the STT-MRAM solution (Pinatubo). This
is mainly because of the ultra-fast and parallel in-memory
operations of the HPLG-PIM compared with the multi-cycle
DRAM/STT-MRAM operations. In addition, we see that
HPLG-PIM is 5.3x faster than the ReRAM solution. In
addition, we compared the energy saving and speed-up of
the matching index task running on HPLG-PIM and GPU
on the amazon-2008 data set. We observe that HPLG-PIM
can achieve about 19.1x higher energy efficiency and 11.2x
speed-up compared with GPU.

E. Memory Bottleneck

Fig. 15(a) depicts the memory bottleneck ratio, i.e., the time
fraction at which the computation has to wait for data and on-
/off-chip data transfer obstructs its performance (memory wall
happens) running matching index task on three data sets. The
evaluation is performed according to the peak performance and
experimentally extracted results for each platform considering
the number of memory access in each data set. We observe that
HPLG-PIM along with other PIM solutions (except MPIM)
spends less than ~25% time for memory access and data
transfer. Due to unbalanced computation and data movement
in MPIM and the limitation in the number of activated sub-
arrays, it shows higher ratio than other PIMs. However, GPU
spends more than 90% time waiting for the loading data.
The less memory wall ratio can be interpreted as the higher
resource utilization ratio for the accelerators, which is plotted
in Fig. 15(b). We observe that HPLG-PIM can efficiently use
up to 70% of its computation resources. Overall, PIM solutions
can demonstrate high ratio (more than 45%), which reconfirms
the results reported in Fig. 15(a).
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VII. CONCLUSION

In this article, we initially proposed an HPLG using a new 5-
terminal magnetic DWM device. The proposed HPLG is able
to perform a full set of 1- and 2-input Boolean logic functions
(i.e., NOT, AND/NAND, OR/NOR, and XOR/XNOR) by config-
uring the applied keys. The experimental results on a set of
ISCAS-89, ITC-99, and EPFL benchmarks show that a well-
secured HPLG implementation can obtain up to 51.4% and
10% average improvements on the PDP compared with recent
non-volatile logic and CMOS-based designs, respectively. We
then leveraged this gate to realize a novel PIM architecture for
highly flexible and efficient logic computation. The simulation
results for widely used graph processing tasks running on
three social network data sets indicate roughly 3.6x higher
energy efficiency and 5.3x speed-up over recent ReRAM
accelerators. In addition, HPLG-PIM achieves ~4x higher
energy efficiency and 5.1x speed-up over recent processing-
in-DRAM acceleration methods.
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