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In this work, we propose a multiplication-less binarized depthwise-separable convolution neural network,

called BD-Net. BD-Net is designed to use binarized depthwise separable convolution block as the drop-in

replacement of conventional spatial-convolution in deep convolution neural network (DNN). In BD-Net, the

computation-expensive convolution operations (i.e., Multiplication and Accumulation) are converted into

energy-efficient Addition/Subtraction operations. For further compressing the model size while maintain-

ing the dominant computation in addition/subtraction, we propose a brand-new sparse binarization method

with a hardware-oriented structured sparsity pattern. To successfully train such sparse BD-Net, we propose

and leverage two techniques: (1) a modified group-lasso regularization whose group size is identical to the

capacity of basic computing core in accelerator and (2) a weight penalty clipping technique to solve the

disharmony issue between weight binarization and lasso regularization. The experiment results show that

the proposed sparse BD-Net can achieve comparable or even better inference accuracy, in comparison to the

full precision CNN baseline. Beyond that, a BD-Net customized process-in-memory accelerator is designed

using SOT-MRAM, which owns characteristics of high channel expansion flexibility and computation paral-

lelism. Through the detailed analysis from both software and hardware perspectives, we provide an intuitive

design guidance for software/hardware co-design of DNN acceleration on mobile embedded systems. Note

that this journal submission is the extended version of our previous published paper in ISVLSI 2018 [24].
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1 INTRODUCTION

Owing to the explosion of data, improvement of parallel computing ability resulting from GPU
and continuous breakthroughs in algorithms, Artificial Neural Network (ANN) has achieved great
success in recent years. Deep Neural Network (DNN), as one of the most popular state-of-the-art
ANN, has shown its leading performance in various domains, such as speech recognition, com-
puter vision, and data analysis [34]. Both theoretically and empirically, DNN has shown significant
performance improvement over its shallow counterparts [37, 50].

Recently, the state-of-the-art DNN could achieve surpassing human accuracy in object classi-
fication task for large-scale datasets (e.g., ImageNet) [20, 32]. However, from the perspective of
hardware deployment, DNNs still encounter the drawbacks in terms of computation and memory
cost [23]. Many recent works have been proposed to address such high computational complex-
ity and memory usage issues of existing DNN structures, including weight quantization [46] and
pruning [51], Hoffman weight encoding [17], and compact layer with reduced number of parame-
ters (e.g., depthwise-separable convolution [28]). For DNN deployment in hardware platforms with
energy-efficiency and throughput requirement, weight quantization has become one of the must-
have processing steps, where the quantization schemes can range from 8-bit resolution (high bit-
width) [17, 53] to 1-bit resolution (extremely low bit-width) [25, 26, 29, 46]. In past years, massive
research efforts have been invested in the direction of extremely low bit-width model quantiza-
tion (i.e., binary w ∈ {−1,+1}), however, the quantized models still normally suffer from accuracy
degradation, owing to the information loss caused by aggressive quantization scheme.

Using depthwise-separable convolution layer as the replacement of conventional 2-D spatial
convolution layer is originally proposed and discussed in famous compact DNN – MobileNet [28],
which further substitutes the conventional convolution in the state-of-the-art DNN architectures,
including Xception [12], NAS-Net [54], and PNAS-Net [39]. It is known that the sensitivity to
compression (i.e., quantization /pruning) varies for different layers. Thus, a straightforward coun-
termeasure adopted in Reference [41] is to directly increase the width of layers (i.e., number of
input/output channels). However, the drawback of width change in the aforementioned method is
that the widths of connected layers are modified as well. In this work, the advantage of using depth-
wise separable convolution is not only its outstanding performance with compact structure, but
also the representation capability can be changed through inner width expansion, which is decou-
pled with neighboring layers. With such characteristics—the combination of depthwise-separable
convolution with our proposed sparse binarization technique—it is easy to achieve negligible ac-
curacy drop with high model compression rate.

In this work, we discuss two binarization schemes to work along with the depthwise-separable
convolution. The difference between the two schemes is twofold: function and location. For bina-
rization function, scheme-1 adopts the identical function that is proposed in the original binary
weight network in Reference [40]; while scheme-2 leverages the sparse binarization function to-
gether with the structure weight penalty and weight penalty clipping techniques that are proposed
by us. For binarization location, scheme-1 performs the binarization on both the weight and output
feature maps of depthwise convolution layer. Different from that, scheme-2 performs structured
sparse binarization on the weights of depthwise and pointwise convolution layers. In general, we
investigate the binarization on depthwise-separable convolution [48] block as an alternative mod-
ule to conventional spatial convolution layer for maximizing the model size reduction and com-
putation simplification with negligible accuracy degradation. The advantage of using binarized
depthwise-separable convolution block is mainly threefold:

• Depthwise-separable convolution performs the same function of feature extraction and re-
combination as conventional convolution, but with less amount of parameters and compu-
tation workload.
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• Binarization on weights/activation not only further reduces the model size (represented
weight in binary-1 bit from original FP-32 bit), but also converts the dominant Multiplication
and Accumulation (MAC) into pure Accumulation (i.e., Add/Sub).

• Through increasing the channel multiplier (a.k.a. inner channel expansion), the information
loss caused by the aggressive binarization can be compensated, while the inner channel
expansion does not affect the structures (i.e., number of input/output channels) of other
externally connected layers.

With the advantages described above, there exist two binarization schemes that will be discussed
in the following sections. One binarization scheme is mixed weight and activation binarization,
while another scheme is weight binarization only. Both binarization schemes realize the same
computation complexity reduction (i.e., using Add/Sub) with varying model size reduction ratio.

This article is the extended version of our previous published paper in ISVLSI 2018 [24] (which
was also the best paper winner). We have extensively extended from the conference version with
main contributions summarized as follows:

(1) We propose to use binarized depthwise-separable convolution with inner channel expan-
sion as the drop-in replacement to conventional convolution layer, where we call neu-
ral networks constructed by such modules BD-Net. Two different binarization schemes
are proposed and investigated. Theoretic analysis is provided as well to examine that our
proposed binarized depthwise-separable convolution can effectively approximate the con-
ventional spatial convolution.

(2) We further explore to introduce structured sparsity into binarized weight, utilizing a
Lasso-based regularization method, which can further compress the model size and pro-
vide hardware-friendly sparse weight footprints for efficient computing. For solving the
disharmony issue between weight-sparse binarization and group-lasso regularization, an
effective weight penalty clipping technique is proposed. Intensive experiments are con-
ducted to show the sparse BD-Net can achieve significant model compression rate with
negligible accuracy degradation.

(3) From the hardware implementation perspective, we bring up a customized in-memory
computing DNN accelerator to fully leverage the performance boost resulting from our
proposed algorithm—BD-Net and its sparse variant. Our proposed accelerator is designed
based on Spin-Orbit Torque Magnetic-RAM (SOT-MRAM), which integrates memory and
logic functions upon a set of novel micro-architectural and circuit-level solutions. Accord-
ingly, we present detailed analysis in terms of hyper-parameter configuration of sparse
BD-Net, inference accuracy, and hardware resource utilization (e.g., throughputs, energy).
It provides intuitive design guidance for hardware engineers for Software/Hardware co-
design of DNN on mobile embedded systems.

For clarification, compared to our published conference paper [24], the contributions (2) and (3)
enumerated above are new.

2 BINARIZED DEPTHWISE SEPARABLE CONVOLUTION

In this section, we first introduce the depthwise separable convolution module as an alternative
to the conventional spatial convolution layer. Then, we propose and describe our binarization
schemes. Based on such binarization schemes, we construct a DNN, called BD-Net, as a benchmark
to examine the performance. In addition to normal BD-Net, we propose a sparse BD-Net variant,
which leverages a Lasso-based regularization technique for introducing hardware-friendly struc-
tured sparsity to binarized weight footprint. At last, a theoretic analysis is presented as well to
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Fig. 1. Data-flow for depthwise separable convolution layer. Normally, the channel expansionm is 1. Feature

maps (inter-layer tensors) are in white, while weight tensors are in grey.

demonstrate the proposed sparse binarized depthwise-separable convolution module can approx-
imate the conventional spatial convolution layer.

2.1 Depthwise Separable Convolution

Recently, the depthwise-separable convolution [48] has been widely used in many state-of-the-
art deep neural networks, such as MobileNet [28], Xception [12], and NasNet [55] (basic block in
Google AutoML), which replaces the conventional spatial convolution layers to reduce DNN com-
putational cost and memory usage. As a factorized form of conventional spatial-convolution, the
depthwise separable convolution consists of two parts: depthwise convolution and pointwise con-
volution (i.e., 1 × 1 convolution). The conventional spatial-convolution mainly performs channel-
wise feature extraction, then combines those features to generate new representations. It is proven
that such two-step tasks could be handled by depthwise convolution and pointwise convolution
separately [48].

The operation of depthwise separable convolution is described in the form of data flow in
Figure 1. Consider the input tensor is in the dimension of h ×w × p, which denotes height, width,
and channel, respectively. Note that, in the depthwise convolution layer, each input channel per-
forms convolution withm kernels in the size of kh × kw (i.e., kernel-height and width) correspond-
ingly, which produces p ·m feature maps. m is defined as channel expansion in this work. We found
that largerm could effectively compensate for accuracy degradation in weight binarization at the
cost of model size, which will be explicitly investigated in the next section. Those generated feature
maps are concatenated along its depth dimension as a h ×w × (p ·m)1 tensor, then taken as the
input of the following pointwise convolution layer. The operation of such depthwise convolution
can be mathematically described as:

F j ·p+i = X i ∗W j ·p+i , i ∈ [1, p]; j ∈ [0,m − 1], (1)

where i is the channel index input feature map X ∈ Rh×w×p . (∗) denotes the convolution (i.e.,
dot-product) between input and kernelW . Contrary to the distinctive depthwise convolution, the
pointwise layer is just a normal spatial-convolution layer with 1 × 1 convolution kernel size. Thus,
it only linearly combines thep ·m input feature maps to generate new representations inq × h ×w .

From the perspective of computation, the cost of normal spatial-convolution layer is h ×w ×
kh × kw × p × q. As its approximating alternative, the cost of depthwise convolution is h ×w ×
kh × kw × p ×m, while the cost of pointwise convolution is h ×w × p ×m × q. Thus, the ratio of
computational cost between depthwise separable convolution and conventional convolution can

1The default hyper-parameter configurations in convolution layers are: kernel size=3 × 3, stride = 1, padding = 1, no bias.
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be calculated as:

h ·w · kh · kw · p ·m + h ·w · p ·m · q
h ·w · kh · kw · p · q =

m(kh · kw + q)

kh · kw · q
q>>kh ·kw
≈ m

kh · kw , (2)

where such ratio is approximated to m/(kh · kw ) when the number of output channels q >> kh ·
kw . Normally, when the channel expansion m is set to 1 (e.g., MobileNet [28]) and the kernel size
kh × kw is 3 × 3, the computational cost is only 1/9 of the normal spatial-convolution. Increasing
the kernel size will lead to higher computational cost reduction. Note that the accuracy degradation
can be minimized through choosing largerm, where its effect will be analyzed in Section 3.2.1.

2.2 Binarization Schemes

In this subsection, we discuss two binarization schemes where scheme-1 is a mixed binarization of
weights and output feature maps of depthwise convolution, while scheme-2 is to fully binarize the
weight of both depthwise and pointwise convolution layers with additional sparsity introduced.

2.2.1 Scheme-1: Mixed Binarization of Weight and Activation. For scheme-1, we directly apply
sign function sдn(·) as the deterministic binarization activation function, similar to Reference [29],
whose output is either +1 or−1. The non-differential problem of the sдn(·) is solved by well-known
Straight-Through Estimator (STE) [9] with gradient approximation, which is widely adopted by
many DNN quantization works. In the backward path, the input gradient of binarization activation
function clones the gradient at output if it is in the range from −1 to +1. Otherwise, the gradient
is canceled to preserve training performance. For quantization function without scaling, gradient
clipping is quite important to avoid the approximated gradient error, which is well explained in
literature [25]. In summary, such binarization activation function in forward and backward can be
described as:

Forward : r̂i = sдn(ri ) =

{
+1 if ri ≥ 0,
−1 otherwise;

(3)

Backward :
∂r̂i

∂ri
=

{
1 if |ri | ≤ 1
0 otherwise

; ∀ri ∈ R, r̂i ∈ R̂, (4)

where R and R̂ are tensors before and after binarization, respectively. In scheme-1, we only apply
Equation (4) and Equation (3) on the weight kernels and output feature maps of depthwise convo-
lution in Figure 1. Such binarization scheme ensures the dominant MAC operations are converted
in Add/Sub (i.e., pure accumulation). Note that the model size reduction results from scheme-1 is
quite small, since the weights of the depthwise convolution layer only take a small portion of the
entire model size. Note that the weight binarization process is conducted same as other famous
quantization works [17, 29], which keeps two weight systems: one weight copy in FP32-bit for
weight update using back-propagation, while another weight copy that binarized from FP32-bit
counterpart is used for inference and calculating the inference loss.

2.2.2 Scheme-2: Sparse Binarization of Weight. In contrast to scheme-1, we propose to fully
binarize the weights of both depthwise and pointwise convolution layers without activation bi-
narization. Such binarization methodology follows the design guideline of memory usage and
access (i.e., weight storage and loading from off-chip DRAM) that are currently the computa-
tional bottlenecks for DNN inference acceleration [17]. However, such combination may lead to
(kh · kw · 32)/m × compression ratio, where such aggressive binarization method normally leads
to significant accuracy degradation. Besides directly tuning channel multiplierm for model capac-
ity compensation, we propose to introduce weight sparsity as an additional countermeasure.
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Since introducing sparsity into binarized weight is mathematically equivalent to encode weights
in ternary representation (w ∈ {−1, 0,+1}), we follow the weight quantization function from Ref-
erence [26], thus the quantization on lth layers’ weightW l , which can be expressed as:

Forward: ŵi,l = αl · sbin(wi,l ) =
⎧⎪⎪⎨
⎪⎪
⎩

+αl wi,l > Δl

0 |wi,l | ≤ Δl

−αl wi,l < −Δl

; wi,l ∈W l (5)

αl = E( |{wi,l }|), ∀{i���|wi,l | > Δl } (6)

Backward:
∂ŵi,l

∂wi,l
= 1, (7)

where αl in Equation (6) and Δl = 0.05 ×max ( |W l |) are layer-wise scaling coefficient and thresh-
old, respectively, that calculated in the run-time during training. Contrary to the gradient approx-
imation described in Equation (4), we emit the gradient clipping operation in Equation (7) for
higher flexibility of trained weight scale, thanks to the incorporation of αl in Equation (5).2 The
advantages of introducing additional sparsity are as follows: (1) It adds extra quantization level,
which mitigates the information loss during model compression; (2) the dominant computation is
still completed through Add/Sub, which is identical as dense binarization counterpart (scheme-1).
However, directly applying scheme-2 still counters the drawback that the trained sparse weight
patterns are highly irregular, which is not hardware-friendly in terms of sparsity encoding and
computation efficiency. To generate a structured sparse pattern, we propose a regularization tech-
nique to achieve this goal as specified in Section 2.3.

2.3 Structured Sparse Pattern Through Regularization

Previous studies of weight sparsity can be mainly divided into two categories: non-structured
sparsity [17, 18], and structured sparsity [33, 38, 51], where the main difference between these two
counterparts is the regularity of sparse weight pattern. The non-structured sparsity methods lead
to highly irregular sparse weight pattern, which makes it extremely difficult to encode the sparse
weight efficiently due to the sparse indexing. Even though the non-structured sparsity method
normally shows less accuracy degradation owing to the relatively higher flexibility in weight pat-
tern, its performance improvement on hardware deployment is not tempting. In contrast to that,
the structured weight pattern in a regular fashion (e.g., kernel-wise/channel-wise [51]) uses less
memory for sparsity indexing and easily skips the computation w.r.t weights in zero value.

2.3.1 Definition of Structured Sparse Weight Pattern. Different from other structured sparsity
methods [51], for maximizing the computation efficiency of DNN with sparse weight pattern on
designated accelerator, we define the structured sparse pattern in the same shape of capacity as ba-
sic computing core in that accelerator. Taking a conventional convolution layer with 4-dimensional
weight tensor W ∈ Rq×p×kh×kw as an example, the hardware accelerator normally reshapes the
4-D weight tensor into 2-D matrix in the shape of (q,p × kh × kw ) to perform matrix multiplica-
tion. Owing to the architecture difference between the depthwise convolution layer and pointwise
convolution layer in Figure 1, we design structured sparse weight pattern for them separately.

For the depthwise convolution, since its weights are in dimension of (p ×m,kh × kw ), we set
the sparse weight pattern as kh × kw , which means our structured sparsity method is supposed to
force 2D kernels in the shape of kh × kw to be zero during training. As we flatten the weight tensor
of pointwise convolution layer into a vector in dimension of q × p ·m × 1 × 1, the sparse pattern

2Please refer to the gradient correction theory described in Reference [25] for explanation.
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is designed as a vector whose length is a fixed value д. Note that д is configured as a universal
sparse pattern across different pointwise convolution layers throughout the entire DNN. In this
work, since д is not only the length of sparse pattern for pointwise convolution layer, but also
the capacity of basic computing core of designed accelerator, it is expected that the chosen д can
balance the DNN inference accuracy and computation parallelism of the designated accelerator. A
rough range of д is д = 2n and kh · kw < д < p ·m.

2.3.2 Group-Lasso Regularization with Hardware-friendly Sparse Pattern. To obtain structured
binarized weight pattern in the predefined pattern as described in Section 2.3.1, we propose an
accelerator-specific group-lasso regularization method originated from Reference [51]. Given the
vectorized input tensor x and target label t , the loss function used for training the targeted DNN
is reformatted as an ensemble loss function:

Lens = L
(
f
(
x ; {Ŵ l }Ll=1

)
, t
)
+ λ

L∑
l=1

Gl∑
i=1

P (W l,i ), (8)

where f (x ; {Ŵ l }Ll=1
) computes the outputs of DNN parameterized by the sparse binarized weight

tensors {Ŵ l }Ll=1
w.r.t. the input x . L (·, ·) is the objective function of DNN (i.e., cross-entropy loss

in this work). P (W l,i ) = | |W l,i | |2 is the L2-norm of the indexed weight group W l,i . The second
term in the R.H.S of Equation (8) is the L1-norm of P (W l,i ) (a.k.a. group lasso [51]), which acts
as the group-wise weight penalty for improving the group-wise sparsity during the optimization.
Gl is the number of groups in the lth layer, and λ is the hyper-parameter to be tuned based on the
dataset.

2.3.3 Weight Penalty Clipping with Self-adjustable Threshold. Since the structured regulariza-
tion term proposed in Equation (8) is designed to integrate with sparse weight binarization func-
tions (Equation (5) to Equation (7)) in scheme-2, it will encourage the intensity of spatially neigh-
boring weights to drop below thresholds Δl with defined sparse pattern. However, the preliminary
experiments conducted by us indicate the disharmony when naively combining two methods. As
the countermeasure, we make the further adjustment on the in-group L2-norm weight penalty,
which can be described as:

δl = a · 1

Gl

Gl∑
i=1

| |W l,i | |2,

s.t. P (W l,i ) = min( | |W l,i | |2,δl ),

(9)

where δl is the layer-wise threshold to clip the in-group L2-norm weight penalty, and a is coeffi-
cient to scale δl . Note that once the in-group L2-norm penalty ofW l,i is clipped, the cross-group
L1-norm penalty is clipped as well. We name such method as the weight penalty clipping. Consider
two cases:

• When | |W l,i | |2 ≥ δl , it indicates that weights in W l,i are relatively large (i.e., important),
which are not supposed to be pruned by the group-lasso term in Equation (9). Then, the
weight penalty clipping is performed that replaces the weight penalty ofW l,i in Lens with
δl . Here, we have to highlight that δl is treated as a constant, where its calculation is re-
moved from the backward computation graph.

• When | |W l,i | |2 < δl , we keep the weight penalty of W l,i in its original format, thus the
group-lasso term in Equation (8) can continuously affect onW l,i and prune the weights in
group-wise fashion.
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Fig. 2. Block diagram of the multiplication-less BD-Net. For binarization scheme-1, the binarized activation

function is inserted between depthwise (with binarized weight) and pointwise convolution layers. For the

sparse BD-Net using binarization scheme-2, there is no binarized activation function.

Our weight penalty clipping method is an optimized version of the method adopted by Lebedev
et al. in Reference [33]. The original work manually set the δl , which is fixed throughout the en-
tire training process. Instead of using fixed δl , we propose the self-adjustable δl as described in
Equation (9), which gives higher flexibility for the group-wise weight pruning. Based on our sim-
ulation results, the weight penalty clipping with self-adjustable threshold is helpful to mitigate the
disharmony between group-wise weight pruning (i.e., group lasso) and weight-sparse binarization.

2.4 BD-NET: DNN with Binarized Depthwise Separable Convolution

Taking depthwise-separable convolution module as a basic component with two proposed bina-
rization schemes introduced in Section 2.2 and additional structured sparsity regularization tech-
nique, we construct a DNN referring to the topology of ResNet [19], called BD-NET. Note that
ResNet architecture is only used as an example; other state-of-the-art network architecture could
be used as well. The block diagram of DNN analyzed in this work is presented in Figure 2. It sequen-
tially composes an inception block3 (3 × 3 spatial convolution, Batch-normalization and ReLU), N
depthwise separable convolution basic blocks, average pooling layer, and Multi-Layer Perceptron
(MLP, a.k.a. fully connected layer). As the key component in our proposed neural network, basic
block includes batch normalization, depthwise convolution with binarized weight, binarized ac-
tivation function, and pointwise convolution. It is worth noting that for the sparse binarization
method, there is no binarized activation function. Similar to BWN [46] and LBCNN [31], we place
the batch normalization in front of the convolution layer with binarized weight, since scheme-1
does not include an internal scaling coefficient, thus utilizing batch-norm layer to perform the
scaling function.

In summary, the output response of basic block for the two binarization schemes can be corre-
spondingly expressed as:

Scheme-1: x t
l+1 =

p ·m∑
s=1

Sдn(Sдn(W s
l ) ∗ BN (xs

l )) ·W t
l,s , (10)

Scheme-2: x t
l+1 =

p ·m∑
s=1

((αl · sbin(W s
l ) ∗ BN (xs

l ))) · (α l · sbin(W t
l,s )), (11)

where s ∈ [1 : p ·m] and t ∈ [1 : q] indexes the input channel and output channel, respectively. l
is the module index of basic block, while p is the number of input channels of lth basic block.Wl

3Similar to previous works of binarized/quantized neural network [29, 46, 53], we do not introduce binarization to the first

inception block.
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Table 1. Hardware Cost Analysis [28] of Standard Convolution in CNN and Binarized

Depthwise Separable Convolution in This Work

Computation Cost
Memory Cost

Mul–O (N 2) Add/Sub–O (N )
CNN h ·w · kh · kw · p · q h ·w · kh · kw · p · q kh · kw · p · q · 32

This work
Scheme-1

0
h ·w · kh · kw · p ·m
+ h ·w · p ·m · q

kh · kw · p ·m · 1
+ p ·m · q · 32

This work
Scheme-2

h ·w · p ·m + h ·w · q h ·w · kh · kw · p ·m
+ h ·w · p ·m · q

kh · kw · p ·m · 2
+ p ·m · q · 2

scheme-1

CNN
0

m

q
+

m

kh · kw
1

q · 32
+

m

kh · kw
scheme-2

CNN

m

q · kh · kw +
m

p · kh · kw
m

q
+

m

kh · kw
2

q · 32
+

m · 2
kh · kw · 32

Multiplications of Batch-norm are excluded.

is the learned depthwise convolution kernel in FP-32, whileW l denotes the weights of pointwise
convolution layer. αl and α l are the scaling coefficients in binarization scheme-2, corresponding
to depthwise convolution and pointwise convolution, respectively. BN () is the Affine function of
batch normalization layer [30].

The objective of BD-Net is to build an efficient hardware-friendly compact DNN while pre-
serving accuracy. To demonstrate the efficiency of BD-Net with/without sparsity, we analyze the
hardware cost of standard spatial convolution and binarized depthwise separable convolution in
terms of computation cost and parameter size. For the cost analysis, we adopt the similar method
adopted in Reference [28] to give a general idea about the computation and memory cost with
different configurations. As tabulated in Table 1, for computing complexity, it can be seen that
scheme-1 not only fully replaces the MAC to the hardware efficient Add/Sub, but also reduces the
number of operations by a factor of ∼m/(kh · kw ). Scheme-2 keeps the same number of Add/Sub
operations with scheme-1, but significantly reduces the memory cost by an extra 16×. Note that,
for estimating the memory cost of scheme-2, we consider the worst case that the introduced struc-
tured sparse weight pattern leads to no further memory reduction.

2.5 Theoretic Analysis

Theoretically, if the binarized depthwise separable convolution (both scheme-1 and scheme-2) can
effectively approximate the conventional spatial-convolution with its weights in full-precision,
such two types of binarized convolution layers are supposed to be capable of producing similar
output tensor w.r.t the same input tensor [31, 45]. The detailed analysis is performed below.

2.5.1 Scheme-1. First, for fair comparison, let us assume the input tensor and output tensor
of the conventional convolution and binarized depthwise separable convolution are in the identi-
cal dimension. We define the real value weight of standard convolution asW ′ ∈ Rp×q×kh×kw , and

the weight of depthwise convolution asW ∈ B(p ·m)×kh×kw , whereB = {−1,+1}. Note that we tem-
porarily ignore the dimension of mini-batch for simplicity. We definey as one element in the output
tensor of our proposed binarized depthwise separable convolution.y ′ is the corresponding element
(i.e., with identical dimension index) in the output tensor of conventional spatial-convolution. Both
of those two types of convolution are fed with same input tensor X ∈ Rp×h×w . For calculating y ′,
a subset of weights inW ′ is vectorized as w ′ ∈ R(p ·kh ·kw )×1. Meanwhile, in the input tensor X , a

vectorized patch x ∈ R(p ·kh ·kw )×1 is selected byw ′ to perform dot-product computation. Thus, the
microscopic output of convolution for two types of convolution can be mathematically described
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as:

y ′ = w ′Tx ∈ R, (12)

y = (Sдn(W � x ))T β = bT β , (13)

where β ∈ R(p ·m)×1 is a vectorized subset of pointwise convolution weightW ∈ R(p ·m)×q along its
first dimension. Here, we simply use� to denote the depthwise convolution operation described in
Equation (1) without specific notations in mathematic expression. Note that the result of W � x
is in the shape of R(p ·m)×1; thus, we can obtain that b = Sдn(W � x ) ∈ B(p ·m)×1. Therefore, we

can rewrite Equation (13) as y =
∑p ·m

i=1 ±βi = ±β1 ± β2 ± · · · ± βp ·m . Moreover, since β is a vector
with p ·m trainable real value parameters (i.e., pointwise weight), we could convert the problem
of approximating y with y ′ to the problem of optimizing β :

minimize
W ,β

L (y,y ′) = | |y − bT β | |. (14)

An obvious solution to this optimization problem is to choose βi · bi toy while setting all the other
elements in β to be zero. Thus, there always exists a vector β to make y ′ = y = bT β .

2.5.2 Scheme-2. In this sparse binarization scheme, the weight of depthwise convolution now

becomesW ∈ T (p ·m)×kh×kw , where T = {−1, 0,+1}. With the same notations and logical flow de-
scribed in Section 2.5.1, removing the binarized activation function reformats the Equation (13) as:

y = (W � x )T β = bT β, (15)

where β ∈ T (p ·m)×1, since the weights of the pointwise convolution layer are trained with sparse
binarization. To solve the same optimization problem in Equation (14), it is relatively more difficult
to find a solution β with minimized loss between y and y ′, exceptW is well trained.

3 EXPERIMENTS ANALYSIS

Our experiments mainly include two parts. First, we provide comprehensive comparisons with
other related works and analyze the effect of hyper-parameter (i.e., channel expansion and num-
ber of channels) by using binarization scheme-1. Second, we examine the effectiveness of sparse
binarization scheme-2 with structured weight sparsity.

3.1 Software Experiment Setup

The software experiments of this work are performed under the framework of pytorch, which
recently optimized its depthwise convolution backend CUDA library to accelerate the training
process. The depthwise convolution is a special case of grouped convolution, where the number of
groups should be set to the number of input channels. We employ the stochastic gradient descent
with momentum = 0.9 as the optimizer to minimize the cross-entropy loss. Owing to the large
variation of intermediate output caused by frequently adjusted binary weights and binarization
activation function, small learning rate is preferable. We set the initial learning rate as 0.001, which
is reduced to 0.0001 through scheduling. Learning rate larger than 0.01 will cause severe fluctuation
with no accuracy enhancement during the model training.

The experiments are performed on three common image datasets: MNIST, SVHN, and CIFAR-10.
MNIST is a 28×28 grayscale handwritten digit (0–9) image dataset with 60K samples in training
set and 10K samples in test set. The Street View House Number (SVHN) contains 32×32 RGB
real-world images with 73,257 samples in training set and 26,032 samples in test set. CIFAR-10
is a colorful 32×32 image dataset that contains 10 classes of real-world objects/animals with 50K
training samples and 10K test samples. The test accuracy of MNIST, SVHN, and CIFAR-10 are
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Table 2. Inference Accuracy (%) of MNIST, SVHN, and CIFAR-10

Baseline CNN BD-Net (this work) BinaryConnect [13] BNN [40] Dorefa-Net [53] BWN [46]

MNIST 99.46 99.41 98.99 98.60 - 98.69

SVHN 94.29 93.66 97.85 97.49 97.52 97.46

CIFAR-10 91.25 92.41 91.73 89.85 - 89.49

reported in Table 2 using the deep neural network structure (BD-Net) described in Section 2.4.
The model configurations for scheme-1 are:

• MNIST: 16 input channels, 5 basic blocks, 128 hidden neurons, 64 batch size, 3×3 kernel
size, 4 channel expansion.

• SVHN: 128 input channels, 5 basic blocks, 512 hidden neurons, 64 batch size, 3×3 kernel
size, 4 channel expansion.

• CIFAR-10: 512 input channels, 10 basic blocks, 512 hidden neurons, 20 batch size, 3×3 kernel
size, 4 channel expansion.

In addition, for the sparse binarization in scheme-2, we challenge it with more compact architec-
tures that are enumerated as:

• MNIST: 16 input channels, 3 basic blocks, 128 hidden neurons, 256 batch size, 3×3 kernel
size, 2 channel expansion.

• SVHN: 64 input channels, 3 basic blocks, 256 hidden neurons, 256 batch size, 3×3 kernel
size, 2 channel expansion.

• CIFAR-10: 256 input channels, 5 basic blocks, 512 hidden neurons, 256 batch size, 3×3 kernel
size, 2 channel expansion.

Note that, to ensure fair comparison between sparse BD-Net and its baseline CNN counterparts,
identical hyper-parameters are used for both CNN baseline and sparse BD-Net. As the results show
in Table 2, sparse BD-Net using binarization scheme-1 can obtain close or even better accuracy
with respect to its baseline counterpart. Furthermore, for the largest CIFAR-10 dataset, our work
can achieve the best accuracy in comparison with other works applied with weight binarization
techniques as tabulated in Table 2.

3.2 Effect of Hyper-parameters

In this subsection, we examine the effect of hyper-parameters on neural network performance.
Since the neural networks are trained from scratch instead of fine-tuning from the pretrained
model, we chose the CIFAR-10 as the representative experiment dataset to report the results.

3.2.1 Channel Expansion. As discussed in Section 2.1, increasing the channel expansionm en-
riches the intermediate feature sets, thus leading to more variant combinations as the output of
convolution layer. We run trails with small input/output channel (p = q = 64, much smaller than
that shown in Table 2) to investigate the effect of channel expansion on neural network accu-
racy. As the results show in Table 3, the precision denotes the number of bits used for weights of
convolution kernel. Note that, for depthwise separable convolution, precision only refers to the
depthwise part; the data type of pointwise weights are still real numbers. Moreover, for depth-
wise separable convolution with 1-bit convolution weight, the intermediate binarized activation
function is included. This experiment shows that directly using depthwise separable convolution
(m = 1) to replace spatial-convolution layer only results in slight accuracy degradation (<2%).
The binarization applied on depthwise separable convolution will lead to further accuracy drop.
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Table 3. The CIFAR-10 Test Accuracy with Various Configurations

(i.e., Precision and Channel Expansion)

Spatial Convolution Depthwise Separable Convolution

precision 32-bit 1-bit 32-bit 1-bit 1-bit 1-bit 1-bit 1-bit

m - - 1 1 2 4 8 16

Top-1 Test Accuracy 89.28% 86.9% 87.93 % 85.62% 86.39% 87.44% 87.8% 89.0%

Fig. 3. The accuracy evolution curve of (a) Baseline CNN using normal spatial-convolution with 32-bit and

1-bit weight. (b) BD-Net using binarized depthwise separable convolution with varying channel expansion

m.

Table 4. Test Accuracy with Varying Number of Intermediate Channels (i.e.,

Input and Output Channels)

number of channels (p,q) 64 128 256 384 512
Baseline CNN 89.28% 90.47% 91.44% 91.56% 91.25%

BD-Net 87.44% 90.65% 91.76% 92.26% 92.41%

m = 4 in this experiment.

However, increasingm can effectively narrow the the accuracy gap between BD-Net and its normal
convolution counterpart.

Beyond that, we include the accuracy evolution curves in Figure 3 to show that our binarized
depthwise separable convolution is helpful to prevent network from over-fitting. As shown in
Figure 3(a), the training curve of normal spatial convolution (black curve) shows overfitting due
to over-parameterization in the convolution layer. Directly applying the weight binarization tech-
niques on convolution weights as introduced in BinaryConnect [13] does weaken over-fitting, but
they lower the test accuracy as well. On the contrary, our proposed BD-Net can achieve almost
the same accuracy as baseline CNN, which avoids the over-fitting problem.

3.2.2 Number of Channels. Table 4 shows the CIFAR-10 test accuracy with various numbers
of intermediate channels, which denotes the input and output channels of basic blocks in BD-Net
(assuming p = q). It can be seen that increasing the number of intermediate channels improves
accuracy. As we discussed above, the baseline CNN with normal spatial-convolution easily suffers
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Fig. 4. Kernel visualization for the first depthwise layer on MNIST dataset. For (b) and (c), patterns in {white,

grey, black} denote {−1, 0, +1}, respectively.

Table 5. Weight-sparse Binarization and Structured Pruning Analysis (%) of MNIST, SVHN, and CIFAR-10

Full precision Full precision Structured Full precision Sparse BD-Net Sparse BD-Net + Lasso Structured

CNN CNN + Lasso [51] sparsity BD-Net (32-bit) (16-bit) (8-bit) (full precision) sparsity

MNIST 97.93 97.91 23% 98.68 98.63 98.68 98.69 98.75 18%

SVHN 90.99 90.63 35% 92.94 92.87 92.59 92.53 93.04 21%

CIFAR-10 89.35 89.45 56% 89.59 90.00 89.06 88.59 90.42 47%

D-Net denotes the depthwise-separable convolution without weight binarization. Note that we apply fixed-point activa-

tion quantization from Reference [8], with varying bit-width on sparse BD-Net. Such activation quantization is for the

accelerator compatibility purpose in the following sections.

from over-fitting if the network topology is not fine-tuned. When the number of intermediate
channels is larger than 128, the test accuracies of BD-Net are above the baseline CNN. In general,
our BD-Net is expected to achieve even higher accuracy with further fine-tuning on the model.

We notice that reducing the number of channels lowers the computational cost and model size
exponentially (referring to Table 1). Other methods, like further quantizing the intermediate tensor
to a lower number of bits, only reduce the hardware cost linearly, due to the convolution being per-
formed using Add/Sub instead of MAC. Moreover, the accuracy improvement using a large number
of channels is limited. Thus, we are inclined to scale the number of intermediate channels us-
ing channel expansion first, once the hardware deployment of BD-Net meets power or memory
bottleneck.

3.3 Effect of Weight Binarization with Structured Sparse Pattern

We first try to visualize the weights of first depthwise convolution in different training cases. As
shown in Figure 4(b), without assistance of the lasso regularization term, the sparse binarization
function in Equation (5) leads to not only small sparsity ration, but also highly irregular sparse
pattern. In contrast to that, leveraging lasso-based regularization with predefined sparse pattern,
Figure 4(c) shows the trained weights are in highly regular shape. It is also intriguing to notice
that the nonzero weights learned in Figure 4(b) and 4(c) are very similar.

Table 5 lists the accuracy of proposed sparse BD-Net by using the binarization scheme-2 with
group-lasso–based regularization and proposed weight penalty clipping techniques. Note that the
weight penalty clipping technique is considered to be included by default if we simultaneously
use sparse binarization and group-lasso regularization for structured sparsity pattern. It is
worthwhile to note that we compare our structured pruning sparse BD-Net with full precision
CNN using the pruning method in Reference [51]. The lower structured sparsity of our method is
because the base CNN owns redundant model comparing with the proposed BD-Net. In addition
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Fig. 5. The accuracy evolution curve of BD-Net on (a) SVHN and (b) CIFAR-10 datasets during training. Three

different training setups are considered, which are (1) full precision (FP32) baseline, (2) sparse binarization

without group-lasso regularization, and (3) sparse binarization with group-lasso regularization. The group-

lasso regularization includes the proposed weight penalty clipping technique by default. For configuration

(3), models are fine-tuned from FP32 baseline model on both SVHN and CIFAR10.

to the results reported in Table 5, the evolution curves of train-subset accuracy and test-set
accuracy are depicted in Figure 5 with different training configurations. We do observe the
training difficulties with the model compression enabled, which encourages us to fine-tune the
full-precision pretrained model for both training efficiency and final converged accuracy. As
listed in Table 5, after sparse binarization, the accuracy is maintained at the same level with full
precision counterparts on MNIST and SVHN datasets, which is even better than the full precision
baseline on CIFAR10 dataset. In addition, we further quantize the input activation from 8-bit to
32-bit by using the method proposed in Reference [8], where this step is done for the purpose of
accelerator compatibility. Furthermore, introducing structured sparse weight pattern (i.e., sparse
BD-Net + Lasso) achieves better accuracy in comparison to the full precision baselines with
0.18, 0.21, 0.47 structured sparsity on these three datasets, respectively. The structured sparsity
is defined as the ratio of the number of weight groups with all zero values. Figure 4 intuitively
shows the effectiveness of the sparse binarization with/without lasso techniques.

4 PROCESSING-IN-MEMORY ACCELERATION

In addition to the sparse binarization together with the depthwise-separable convolution, we pro-
pose a customized Processing-In-Memory (PIM)-based accelerator to further boost the inference
performance of proposed sparse BD-Net. Such a platform is expected to achieve four significant ob-
jectives exploiting the well-explored Spin-Orbit Torque Magnetic Random Access Memory (SOT-
MRAM) [3, 6, 7, 22, 27]: (1) Reducing the energy consumption of convolutional layers through
utilizing efficient add/sub-based computing after binarization/sparse-binarization (i.e., scheme-1
and scheme-2); (2) Reducing the memory (i.e., DNN parameter) storage and access required for
feature extraction; (3) Reducing the computation area overhead; and (4) Accelerating inference
task within memory. The architectural diagram of the presented CNN In-Memory Accelerator is
shown in Figure 6(a) consisting of Image and Kernel Banks, SOT-MRAM–based computational
sub-arrays, and a Digital Processing Unit (DPU) including three ancillary units (i.e., Quantizer,
Batch Normalization, and Activation Function). This architecture can be adjusted by the Control
(Ctrl) unit to process entire BD-Net implemented by both scheme-1 and scheme-2. Assume the
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Fig. 6. (a) Overview of the presented PIM architecture, (b) Block-level sub-array architecture, (c) 2-row and

3-column activation mechanisms and functional blocks.

Input fmaps (I ) and Kernels (W ) are initially stored in Image Bank and Kernel Bank of memory, re-
spectively. Except for the inception block, inputs/kernels need to be constantly quantized (to n-bit)
before mapping into computational sub-arrays that are designed to handle the computational load
employing in-memory computing. However, quantized shared kernels can be utilized for different
inputs in the pointwise convolutional layer. This operation is basically performed using DPU’s
Quantizer (see DPU in Figure 6(a)) and then results are mapped to the parallel sub-arrays.

4.1 PIM Sub-array

Figure 6(b) shows the presented PIM sub-array architecture that is accordingly implemented by

SOT-MRAM in Figure 6(c) . This architecture mainly consists of Write Driver (WD) , Memory

Row Decoder (MRD) , Memory Column Decoder (MCD), Sense Amplifier (SA) , multiplexers

(MDMUX, GMUX), and Full-Adder/Subtractor (FA/FS) unit and can be adjusted by Ctrl unit to
work in dual mode that performs both memory write/read and in-memory logic operations. The
SOT-MRAM cell adopted here is a composite structure of Spin Hall Metal (SHM) and Magnetic
Tunnel Junction (MTJ), which is known for its better energy efficiency and speed for memory
write in comparison to STT-MRAM. The resistance of MTJ with parallel magnetization in both
magnetic layers (data-‘0’) is lower than that of MTJ with anti-parallel magnetization (data-‘1’).
Each SOT-MRAM cell located in computational sub-arrays is associated with the Write Word Line
(WWL), Read Word Line (RWL), Write Bit Line (WBL), Read Bit Line (RBL), and Source Line (SL)
to perform the following operations:

(1) Memory Write/Read: To write a data bit in any of the SOT-MRAM cells (e.g., M1 in

Figure 6(c) ), write current should be injected through the SHM (Tungsten, β −W
[44]) of SOT-MRAM. Therefore, WWL1 should be activated by the MRD where SL1 is
grounded. Now, to write ‘1’(/‘0’), the voltage driver (V1) connected to WBL1 is set to
positive (/negative) write voltage. This allows sufficient charge current flows from V1 to
ground (/ground to V1) leading to change of MTJ resistance. For typical memory read,
a read current flows from the selected SOT-MRAM cell to ground, generating a sense

voltage at the input of SA , which is compared with memory mode reference voltage
(Vsense,P<Vref<Vsense,AP). This reference voltage generation branch is selected by setting
the Enable values (ENAN D ,ENM ,ENOR )= (0,1,0). If the path resistance is higher (/lower)
than RM (i.e., RAP (/RP )), then the output of the SA produces High (/Low) voltage indicat-
ing logic ‘1’(/‘0’).
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(2) Computing Mode: The computational sub-array performs the computation between in-
memory operands using two distinct mechanisms referred to as 2-row activation and
3-column activation. The main ideas behind developing 2-row and 3-column activation
mechanisms are to perform bulk bit-wise in-memory AND operation and in-memory ad-
dition/subtraction, respectively.

In the 2-row activation mechanism, every two bits stored in the same column can be selected

and sensed simultaneously employing modified MRD [36], as depicted in Figure 6(c) . Then, the
equivalent resistance of such parallel connected SOT-MRAMs and their cascaded access transistors
are compared with a programmable reference by SA. Through selecting different reference resis-
tances (ENAN D ,ENM ,ENOR ), the SA can perform basic in-memory Boolean functions (i.e., AND
and OR). For AND operation, Rr ef is set at the midpoint of RAP//RP (‘1’,‘0’) and RAP//RAP (‘1’,‘1’).
As an example, consider the data organization shown in Figure 6(b) where A and D operands

correspond to M1 and M4 memory cells in Figure 6(c) , respectively, 2-row activation mecha-
nism generatesAD after SA. To validate the variation tolerance of sense circuit, we have performed
Monte-Carlo simulation with 100K trials. Aσ = 5% variation is added on the Resistance-Area prod-
uct (RAP), and a σ = 10% process variation is added on the TMR. The simulation result of (Vsense)
distributions showed the sufficient sense margin of in-memory computing. In this work, to avoid
read failure, only two fan-in in-memory logic is used. Parallel computing/read is implemented by
using one SA per bit-line.

In the 3-column activation mechanism, we have devised a Mode demultiplexer (MDMUX) right
after SAs to switch between memory mode and this new computing mechanism. As can be seen
in block-level sub-array architecture (Figure 6(b)), the output of each SA is routed to MDMUX.
According to the mode selector, output data can be routed to either GMUX or FA/FS unit. The key
idea behind exploiting a CMOS FA/FS unit is to realize a fast in-memory full adder (/subtractor)
after SAs to efficiently process the data, avoiding inevitable operand write-back in conventional
in-memory adder designs as well as accelerating in-memory processing. For this computation
mechanism, MCD is modified (similar to that of MRD) such that it can activate more than one RBL
at the same time. As a result, more than one column can be sensed and routed from SAs to FA/FS
unit. Assume A, B, andC operands (in Figure 6(b)) correspond to M1, M2, and M3 memory cells in

Figure 6(c) , respectively, the 3-column activation yields Sum(/Difference) and Carry(/Borrow)
bits.

4.2 In-memory Binary-weight Convolver

The presented PIM accelerator offers in-memory binary-weight convolution with and without
sparsity, and in-memory Bit-Wise Convolver to handle main operations of the sparse BD-Net based
on the in-memory computing mechanisms. From a hardware-implementation perspective, there
are two types of convolution operations in sparse BD-Net that need to be taken into account.
The first one is binary and sparse binary convolution located in basic block with binarized, sparse
binarized kernels and quantized inputs. The second one is bit-wise convolution located in inception
layer and MLP in which convolution between different bit-width inputs and kernels requires bulk
bit-wise operations. While both types can be implemented with either convolution schemes of
the PIM accelerator, we still show two different convolution methods to boost the accelerator’s
performance with smaller area overhead. As depicted in Figure 6(a), two classes of sub-arrays (A
and B) are, respectively, allocated to in-memory binary-weight with and without sparsity and bit-
wise convolvers. Note that all the computational sub-arrays support both memory and computing
modes and only differ from required add-on hardware that will be discussed in the following.
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Fig. 7. Realization of n-bit in-memory addition in the presented PIM platform.

The ratio between A and B is specially determined considering the network specifications and
performance constraints.

As the main operations of the sparse BD-Net, depthwise and pointwise convolutions are the
most critical units of the accelerator, as they are responsible for the most iterative block that takes
up the vast majority of the run-time in the sparse BD-Net. These units must keep high throughput
and resource efficiency while handling different input widths at run-time. The main operation
in this block is add/sub. So, here we present an in-memory binary-weight convolver with and
without sparsity based on 3-column activation mechanism to handle multi-bit add/sub operations
of BD-Net scheme-1/scheme-2. While there are few designs for in-memory adder/subtractor in
the literature [4, 5], this work is the first showing a fast (2-cycle) and parallelable in-memory
add/sub operation. The 3-column activation mechanism can be utilized to perform one-bit in-
memory add/sub operation quite efficiently in one cycle (memory read). After the computation,
the results need to be stored in the sub-array to be prepared for the next computing round. This
can be fulfilled using the modified WD and MRD in one cycle (memory write).

We use the data organization depicted in Figure 7 as the main mapping method to perform an
n-bit add/sub operation within computational sub-arrays. As shown, operands (an−1...a1a0 and
bn−1...b1b0) are initially loaded and organized into different memory rows such that one compu-
tation can be performed per memory cycle. Here in Figure 7 L.H.S., LSBs of two operands along
with carry-in (ci) are selected and processed to generate Carry-out (c0) and Sum (s0). After the
computation, the results need to be stored in the sub-array to be prepared for the next computing
round. This can be fulfilled using the modified WD and MRD in one cycle (memory write). The
same process continues towards the MSBs computation (Figure 7 R.H.S.). Therefore, each compu-
tational sub-array implements an n-bit add/sub operation in 2 × n cycles (n read + n write). Finally,
cn−1sn−1...s1s0 is produced and stored in designated computational sub-array.

Leveraging the presented idea in multiple PIM sub-arrays can provide a parallel computation
scheme. Figure 8(a) shows the requisite data organization and computation of depthwise and point-
wise convolutional layers. Initially, c channels (here, 4) in the size of kh × kw (here, 3×3) are se-
lected from input batch and accordingly produce a combined batch w.r.t. the corresponding {−1,+1}
or {−1,0,+1} kernel batch. This combination is readily accomplished by changing the sign-bit of in-
put data corresponding to its kernel data. The combined batch is then mapped to the designated
computational sub-arrays (Class A). Considering 16-activated sub-arrays (within 4 memory matrix
(mat) structures as depicted in Figure 8(a)), each combined batch’s channel (Ch) can be processed
using four parallel sub-arrays. Here, Ch-1 to Ch-4 are mapped to mat-1 to mat-4, respectively. After
mapping, the parallel activated sub-arrays of PIM platform operate to produce the output feature
maps leveraging the same add/sub method shown in Figure 8(b).
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Fig. 8. (a) Combining step, where input batch is processed according to the binary or sparse binary kernel

batch to produce a combined batch, (b) Parallel computing step in the presented PIM platform to perform

in-memory addition in different mats.

Fig. 9. In-memory bit-wise convolver. The presented computation mechanism can be easily extended to

32-bit fixed-point operands.

4.3 In-memory Bit-wise Convolver

Besides depthwise and pointwise convolutional layers in the basic block, there are some other lay-
ers in the proposed CNN, such as inception layer (directly taking image as inputs, not replaced by
basic block), pooling layer, and MLP block. Note that MLP layers can be equivalently implemented
by convolution operations using 1 × 1 kernels [53]. Thus, the rest of the layers could be imple-
mented all by convolution computation by exploiting logic AND, bitcount, and bitshift as rapid and
parallelizable operations [6, 53]. The presented computation mechanism can be easily extended to
32-bit fixed-point operands. Assume I is a sequence of M-bit input integers (3-bit as an example in
Figure 9) located in input fmap covered by sliding kernel ofW , such that Ii ∈ I is an M-bit vector
representing a fixed-point integer.

We index the bits of each Ii element from LSB to MSB with m = [0,M − 1]. Accordingly, we
represent a second sequence denoted as Cm (I ) including the combination of mth bit of all Ii el-
ements (shown by colored elliptic). For instance, C0 (I ) vector consists of LSBs of all Ii elements
“0110.” ConsideringW as a sequence of N -bit weight integers (3-bit, herein) located in sliding ker-
nel with index of n = [0,N − 1], the second sequence can be similarly generated likeCn (W ). Now,
by considering the set of allmth value sequences, the I can be represented like I =

∑M−1
m=0 2mcm (I ).
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Likewise,W can be represented likeW =
∑N−1

n=0 2ncn (W ). In this way, the convolution between I
andW can be defined as follows:

I ∗W =
M−1∑
m=0

N−1∑
n=0

2m+nbitcount (and (Cn (W ),Cm (I ))). (16)

As shown in data mapping step in Figure 9, C2 (W )-C0 (W ) are consequently mapped to the
designated sub-array. Accordingly,C2 (I ) −C0 (I ) are mapped in the following memory rows in the
same way. Now, computational sub-array can perform bit-wise parallel AND operation of Cn (W )
andCm (I ) as depicted in Figure 9. The results of parallel AND operations stored within sub-array
will be accordingly processed using Bit-Counter. Bit-Counter readily counts the number of “1”s
within each resultant vector and passes it to the Shifter unit. As depicted in Figure 9, “0001,” as
a result of Bit-Counter, is left-shifted by 3-bit (×22+1) to “1000.” Eventually, Sum unit adds the
Shifter unit’s outputs to produce the output fmaps. While the computationally expensive bulk
AND operation can be readily performed leveraging 2-row activation method in entire memory
sub-arrays like the one in Reference [6], we still need to incorporate CMOS bit-counter and shifter
units in some of computational sub-arrays (Class B). The average pooling operation is performed
using Sum and Shifter units, respectively, by summing up the output fmap’s tensors and dividing
(shifting) into rectangular pooling region size.

4.4 Hardware Setup

In the following, we explain the hardware and network setups for the presented PIM platform
running BD-Net scheme-2 compared with state-of-the-art inference acceleration solutions, i.e.,
DRAM, ReRAM, ASIC, and GPU running a baseline CNN.

4.4.1 Accelerators’ Setup. MRAM
4
: We set up the presented PIM’s sub-array organization

with 256 rows and 512 columns in a 512 Mb total memory capacity. The ratio of computational
sub-array (class A: class B) is obtained: 7:2. A comprehensive device-to-architecture evaluation
framework along with two in-house simulators are developed to assess the performance of our
PIM platform. We first use the Non-Equilibrium Green’s Function (NEGF) jointly with Landau-
Lifshitz-Gilbert (LLG) with spin Hall effect equations to model SOT-MRAM bitcell [16, 21] at de-
vice level. Then, we develop a Verilog-A model of 2T1R SOT-MRAM bit cell at circuit level to
co-simulate with the interface CMOS circuits in Cadence Spectre and SPICE with 45 nm North
Carolina State University (NCSU) Product Development Kit (PDK) library [1]. We then develop an
architectural-level simulator on top of NVSim [14]. The controllers and add-on circuits are synthe-
sized by Design Compiler [49] with an industry library. In addition, a behavioral-level simulator
is developed in Matlab, calculating the latency and energy that the platform spends considering a
particular network configuration. DRAM: We developed a DRISA-like [35]-1T1C accelerator for
low bit-width CNNs. To do so, the DRAM cell configuration is extracted from Rambus simulator
[15] and applied in our circuit-level simulation. Accordingly, we modifed the Cacti [10] to obtain
system-level results. ReRAM: A Prime-like [11] accelerator with two full functional sub-arrays
and one buffer sub-array per bank (totally 64 sub-arrays) are considered for assessment. For simu-
lation, we jointly use NVSim [14] and MNSim [52] to achieve the memory-level and network-level
results. ASIC: We developed a YodaNN-like [2] ASIC accelerator with 64 tiles. We synthesized the
platform with Design Compiler [49] with 45 nm technology. The eDRAM and SRAM performances
were estimated with CACTI [42]. GPU: We used the NVIDIA GTX 1080Ti Pascal GPU. It has 3,584

4MRAM and processing-in-MRAM platform’s terms are used alternatively in the manuscript. This will also apply to other

PIM platforms, e.g., DRAM stands for processing-in-DRAM platform.
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Fig. 10. (a) Performance and (b) Energy-efficiency of different platforms normalized by area (Y-axis=Log

scale).

CUDA cores running at 1.5 GHz (11 TFLOPs peak performance). The energy consumption was
measured with NVIDIA’s system management interface. Similar to Reference [35], we scaled the
achieved results by 50% to exclude the energy consumed by cooling, and so on.

4.4.2 Modeling Setup. We consider BD-Net with distinct channel expansion configurations (m=
1, 4, and 16) for evaluation. To have a fair comparison, we use a particular bit-width for weight
and activation<W:A> (<1:32>) for DRAM-, ReRAM, ASIC-, and GPU-based acceleration methods.
The SVHN dataset [43] is selected for evaluation. The images are re-sized to 32×32 and fed to the
models. A CNN with 1 inception block, 3 basic blocks, 1 average layer, and 2 MLP layers is adopted
to be accelerated using DRAM, ReRAM, ASIC, and GPU platforms. MLP layers are equivalently
implemented by convolutions.

4.5 Experiment Results

In this subsection, we evaluate and report performance, energy-efficiency, and resource utilization
ratio for different platforms. To make a fair comparison with existing platforms, we normalized
the energy and performance results to area based on the DRISA [35] method.

4.5.1 Performance. Figure 10(a) compares the processing-in-MRAM throughput (frames per
second) results with three configurations with different accelerators. Based on the results, MRAM
with m = 1 shows the highest performance compared to other designs. As for m = 4, the MRAM
accelerator is 25.7× and 15.8× faster on average than GPU and ASIC-64 solutions, respectively. This
efficiency can be related to parallel and ultra-fast in-memory operations of MRAM compared to
multi-cycle ASIC and GPU operations as well as the potential mismatch between data movement
and computation in Von-Neumann computing methods. Additionally, the MRAM solution is 11.3×
faster than the ReRAM method. It is worth pointing out that ReRAM accelerators suffer matrix
splitting owing to intrinsically limited bit levels of ReRAM device, thus more sub-arrays need to
be occupied. This can further limit parallelism methods. Additionally, a ReRAM crossbar imposes
a large peripheral circuit overhead due to existing DAC/ADC and buffers occupying roughly 85%
of area [6, 11].

4.5.2 Energy Efficiency. Figure 10(b) shows the MRAM’s energy-efficiency results (frames per
joule) on BD-Net scheme-2 compared with different accelerators for performing a similar task
with a batch size of 1 and 8. As can be seen, the larger the m is, the lower energy-efficiency is
obtained, we nevertheless take m = 4 to compare with the other platforms. As shown, MRAM
solution offers the highest energy-efficiency normalized to area compared to others owing to its
energy-efficient and parallel operations. We observe that MRAM’s solution is 129× more energy-
efficient than the GPU solution. As compared with DRAM and ASIC platforms, MRAM achieves
1.8× and 1.3× energy saving, respectively. While the DRAM platform shows the least area (due to
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Fig. 11. Estimation of Resource Utilization Ratio

for different platforms, experimentally extracted

considering the number of memory access for

each platform.

Fig. 12. Area overhead of the presented

processing-in-memory platform in a memory

group.

DRISA’s 1T1C method [35] with unmodified memory SA), it suffers large refresh power of DRAM-
based PIM accelerators [47]. Besides, it is dealing with a destructive data-overwritten issue due to
the charge-sharing characteristic of capacitors. It means that the result of computation will ulti-
mately overwrite the operands. To solve this issue in the context of DRAM, multi-cycle operations

are set forth, which has further degraded PIM performance. Figure 10(b) also shows that MRAM
obtains ∼ 8.5× saving in energy compared with the ReRAM solution. Generally, this energy reduc-
tion mainly comes from two sources: (1) standard convolution is replaced with energy-efficient
depthwise separable convolution and (2) mul in convolution is converted to add/sub due to sparse
binarization.

4.5.3 Resource Utilization. We estimated the time fraction at which the computation has to
wait for data; and on-/off-chip data transfer limits the performance, referred to as memory bot-
tleneck ratio for different platforms, as depicted in Figure 11 considering batch sizes 1 and 8. This
evaluation is done through the peak performance and experimentally extracted results for each
platform considering number of memory access. We observe that processing-in-memory solutions,
i.e., MRAM (m = 1,4,16), DRAM, and ReRAM, spend less than 35% time for data transfer and mem-
ory access. But, ASIC and GPU, as Von-Neumann computing platforms, spend over 70% and 90%
of time, respectively, waiting for the loading data from the memory. In this way, we estimate the
resource utilization ratio for different platforms. We observe that SOT-MRAM platform with dif-
ferent BD-Net configuration achieves the highest ratio by efficiently utilizing one average 72% of
its computation resources. It can be seen that the smaller the m is, the higher resource utilization
to memory bottleneck ratio is obtained for the presented accelerator. It is worth pointing out that
the GPU has utilized only ∼5% of its resources to perform the similar task.

4.5.4 Area Overhead. To assess the area overhead of presented processing-MRAM platform
on top of MRAM chip, several hardware cost sources must be taken into consideration, as broken
down in Figure 12. This includes DPU, the add-on transistors to SAs; in our design, each SA requires
two additional transistors connected to each BL (Figure 6(c)) to enable in-memory computing; the
modified MRD overhead; we modify eachWL driver by adding two more transistors in the typical
buffer chain based on the method used in Reference [36]; the ctrl’s overhead to control enable
bits; ctrl generates the activation bits with MUX units with 6 transistors, where we observe that
the modified controller and drivers contribute more than 50% of this area overhead in a memory
group. To sum it up, our accelerator imposes 2.8% area overhead to the original memory die.
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5 SUMMARY AND FUTURE WORK

In this work, we have shown a multiplication-less deep convolution neural network that replaces
the normal spatial convolution layer with binarized depthwise separable convolution. Such a neu-
ral network compression technique significantly reduces the hardware utilization in terms of both
computation and memory.

Compared to the accuracy degradation caused by the binarization of normal spatial-convolution
using the techniques from BinaryConnect [13] and BWN [46], our method can compensate such
accuracy loss through tuning the internal hyper-parameters (i.e., channel expansion) effectively. In
this work, the convolution kernel (i.e., feature filter) and the generated feature maps are binarized.
According to the experiments performed in this work, a hypothesis can be drawn as guidance for
further experiment direction. For searching the correlation between local pixels and the captured
feature maps, high resolution is not essential. However, the new representation generated at the
output of convolution layer is expected to be higher in precision to avoid the information loss in
the forward path during the inference. Our future work will try to apply other neural network
compression techniques, such as quantization and pruning, on the pointwise convolution to fur-
ther compress the convolution layers. Moreover, we will try to alternate the normal convolution
layers of other famous network structures with our binarized depthwise separable convolution
and examine the model performance. Besides, we presented a processing-in-MRAM accelerator to
further accelerate BD-Net. Our simulation results showed that, with almost the same accuracy to
the baseline, our PIM design obtains 129× better energy-efficiency and ∼25.7× speedup compared
to the GPU platform.
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