A Model Predictive Control Framework for
Hybrid Dynamical Systems*

Berk Altin* Pegah Ojaghi* Ricardo G. Sanfelice *

* Department of Computer Engineering, University of California,
Santa Cruz, CA 95064, USA (e-mail: berkaltin, pojaghi,
ricardo@ucsc.edu)

Abstract: This paper presents a model predictive control (MPC) algorithm that asymptotically
stabilizes a compact set of interest for a given hybrid dynamical system. The considered class of
systems are described by a general model, which identifies the dynamics by the combination of
constrained differential and difference equations. The model allows for trajectories that exhibit
multiple jumps at the same time instant, or portray Zeno behavior. At every optimization time,
the proposed algorithm minimizes a cost functional weighting the state and the input during
both the continuous and discrete phases, and at the terminal time via a terminal cost, without
discretizing the continuous dynamics. To account for the structure of time domains defining
solution pairs, the minimization is performed in a manner akin to free end-time optimal control.
When the terminal cost is a control Lyapunov function on the terminal constraint set, recursive
feasibility and asymptotic stability of the proposed algorithm can be guaranteed. A sample-and-
hold control system and a bouncing ball model are two examples reported to demonstrate the
applicability and effectiveness of the proposed approach.
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1. INTRODUCTION

The term “hybrid” has generally been used in the model
predictive control (MPC) literature to refer to systems
possessing both continuous-valued and discrete-valued
states and inputs, as well as discontinuities in the con-
trol algorithm or right-hand side of the dynamic equa-
tions (Mayne, 2014; Camacho et al., 2010; Borrelli et al.,
2017). Of note, works falling into the former category
often partition the state such that continuous states evolve
according to a difference equation derived from the dis-
cretization of the differential dynamics, while the discrete
states correspond to logical variables (Mayne, 2014, Sec-
tion 2.2.5). On the other hand, development of MPC
strategies for systems with continuously evolving states
which are subject to discrete transitions (jumps) at times
has been fairly limited, with the most relevant publica-
tions being the impulsive and measure-driven frameworks
in Sopasakis et al. (2015); Pereira et al. (2015). See Sanfe-
lice (2019) for a recent survey.

This paper presents a stabilizing MPC strategy for hy-
brid dynamical systems (referred to as the hybrid MPC
algorithm, or in short, hybrid MPC) characterized by
the interaction of continuous and discrete dynamics. The
modeling framework that we rely on (Section 2), iden-
tifies a hybrid system by a combination of constrained
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differential and difference equations (Goebel et al., 2012),
thereby encapsulating numerous models of a hybrid na-
ture, as highlighted in (Mayne, 2014, Section 2.2.5). These
include sample-and-hold control (Magni and Scattolini,
2004), event/self-triggered control, and switching sys-
tems (Cassandras and Mookherjee, 2003), in addition to
systems where continuous variables can undergo jumps,
such as hybrid automata and the aforementioned impulsive
systems—see Goebel et al. (2009, 2012) for further details.
The primary objective of this work is to introduce the
MPC community to the recent developments in predictive
control of such systems. Rather than a full technical treat-
ment and a thorough discussion of numerics, emphasis is
placed on the illustration of the key ideas of the hybrid
MPC algorithm through various examples.

As an example to a hybrid system in the constrained dif-
ferential /difference equations framework, throughout the
paper, we will consider the vertical motion of a ball
bouncing on a horizontal flat surface, modeled as a point-
mass with height x; and velocity x2. When x1 > 0, the
state * = (x1,22) evolves according to the differential
equation

fbl = 1'2,$.2 == (1)
where v > 0 is the gravitational constant. Impacts occur
when the ball reaches the surface with nonpositive veloc-
ity; i.e., when 21 = 0 and x5 < 0. At this point, the state
is reset according to the difference equation

vl =0,25 = — o + u, (2)
where A > 0 is the coefficient of restitution and wu is

a scalar control input affecting the post-impact velocity.
The superscripts + in (2) indicate that z; and x5 change



instantaneously. Aside from the presence of constraints
describing when the state x evolves according to (1) or (2),
an interesting feature of this prototypical system is the
existence of Zeno trajectories (Goebel et al., 2009).

We reiterate that unlike the majority of the existing work,
the hybrid MPC algorithm does not rely on the discretiza-
tion of the differential equation associated with the hybrid
system. Aside from laying the theoretical foundations of
a generalized hybrid MPC framework, one reason for this
approach is due to the nontriviality of discretization for
certain hybrid systems because of constraints, which can
lead to nonperiodic jumps. This issue is especially prob-
lematic for systems in which infinitely many jumps can
accumulate over a bounded time horizon, as in the bounc-
ing ball model in (1) and (2). In the nonactuated case with
inelastic collisions (i.e., when v = 0 and A < 1), the time
between consecutive impacts tends to zero as the number
of jumps tends to infinity, since the speed |z3| of the
ball decreases exponentially with each impact due to the
equation |23 | = |~ Az2| < |2a| when x5 is nonzero. For this
reason, the hybrid MPC algorithm presented in Section 3
relies on the minimization of a cost functional weighting
the state during both the continuous and discrete phases,
and imposes constraints on the terminal state and time.
Building from MPC results in the literature, in Section 4,
it is discussed how recursive feasibility and asymptotic
stability can be achieved if the terminal cost is a control
Lyapunov function (CLF) on the terminal constraint set.
The hybrid MPC algorithm is illustrated in Section 5
through the bouncing ball system, and concluding remarks
are given in Section 6.

2. PRELIMINARIES

We denote by R the real numbers and R>¢ its nonnegative
subset, and by N the set of nonnegative integers. The
distance of a vector z € R™ to a nonempty set A C R"
is expressed as |z| 4 := inf,c4 |2 — a|, where |.| indicates
the 2 norm. A continuous function o : R>o — R>( belongs
to class-Ko if it is strictly increasing and «(0) = 0.

2.1 Hybrid Control Systems

We consider hybrid control systems of the form
" &= f(x,u) (z,u) €C’' xUs=:C 3)
2t =g(x,u) (z,u) € D' xUp=:D,
where z € R™ and u € R™ denote the state and in-
put of the system, respectively. The flow set C' (respec-
tively, the jump set D) is a closed constraint set where
flows (respectively, jumps) are allowed. The continuous
mapping f : C — R" is called the flow map. Similarly, the
continuous mapping g : D — R"™ is called the jump map.
We assume that the set Uc is compact. In general, the
sets C' and D’ do not need to be disjoint, as is the case
with the bouncing ball model in Section 1.

Ezample 2.1. (Bouncing Ball). Consider the bouncing ball
with actuated jumps evolving according to (1) and (2).
The dynamics of the bouncing ball in Section 1 can be
represented in the form of (3) by incorporating the con-
straints therein. The jump map of this representation is
given by g(z,u) = (0, —Azo +u) on the jump set D, which
is defined according to D’ = {x € R? : z; = 0,75 < 0}

and Up = R. The flow map is given by f(z,u) = (z2,—7)
on the flow set. For the flow set C, the state constraints are
defined according to C’ = {z € R? : z; > 0}, while the in-
put constraints can be defined by any compact Uo C R™,
as f does not depend on u. Note that in this model, the
sets C’ and D’ overlap. In particular, C'N D’ = D’.

A solution pair (z,u) of H is given by the state trajec-
tory x : domx — R™ and input v : domu — R™ repre-
senting the input. The functions z and u are parametrized
by (t,7) € R>o x N, where ¢ indicates the ordinary time
elapsed during flows and j indicates the number of jumps
that have occurred. Both x and « are defined on a common
domain, in other words, domz = domu =: dom(z,u).
The set dom(z,u) C R>¢ x N has a hybrid time domain
structure, in the sense that there exist a real nonde-
creasing sequence {tj}}jzo with ¢t = 0, and when J is
finite, £741 € [ts,00] such that dom(x,u) = U/_I; x {j}.
Here, I; = [tj,tj41] for all j < J. If J is finite, Ij4q
can take the form [t;,t;11] (when t;4; < 00), or possi-
bly [ts,ts+1). Examples of hybrid time domains can be
seen in Figure 1. For the domain indicated in dashed
red, tg = t; = to = 0 and t3 = t4 = t; = 2. On each
interval I, x is absolutely continuous, and u is Lebesgue
measurable and locally essentially bounded.

A solution pair (x,u) has to satisfy the initial condition
constraint (x(0,0),u(0,0)) € C U D, along with the
dynamics of H. Namely, for each 7,

‘f(tvj) = f(x(taj)vu(tvj))

for almost all ¢t € (t;,t;41),
(x(t,5), ult, 4)) € € VEE (), t541),
and
w(tjr1,d +1) = g(@(tjpr, 5), ultj+,5)),
(x(tj+17j)7u<tj+1>j)) eD.
In other words, the ordinary times {tj}le correspond
to when jumps occur. Note that wu(t;y1,7) affects only

the jumps dynamics. Hence, even if u is continuous
on [tj,t;41), it might have a discontinuity at ¢;.

In addition, it should be noted that two solution pairs
to the same system may not have the same hybrid time
domain. The following example illustrates this.

Ezample 2.2. (Sample-and-Hold Control). The control of
a linear system via a sample-and-hold mechanism can be
described by a hybrid system with state z = (z,¢,7) and
dynamics
&= (Az+ B{(,0,1) (x,u) € {x:7€]0,7]} x {0}
{x+=(z,u,0) (x,u) e{x:7=7} xR,

During flows, while ¢ stays constant, the plant state z
evolves according to 2 = Az + B{. The state component /¢
represents a zero-order hold mechanism on the input u
and gets updated when jumps occur. Jumps of this system
correspond to sampling events and are determined strictly
by the timer variable 7, which increases with rate 1 during
flows and resets to 0 every 7 seconds. Hence, jump times of
solution pairs should be such that ¢;,1 —%; = 7 when j > 1
and t; — tg = t; < 7. More specifically, the domain of the
solution pair with initial condition (z(0, 0), £(0,0), 7(0,0))
is such that ¢t; = j7 — 7(0,0) for j > 1, save for possibly
the last ¢; when the domain is bounded. Due to this



dependency of the jump times on 7(0,0), solution pairs
of the system do not necessarily have the same domain.
Note also that by definition of solution pairs of (3), for
any (z,u), we have u(t,j) = 0 if ¢t # t;, while u(t;,))
determines the updated values of the zero-order hold state
for j > 1, save for possibly the last t;.

For the system H in (3), we assume uniqueness of tra-
jectories. For hybrid systems without inputs, uniqueness
is guaranteed when the continuous dynamics generate
unique trajectories, and flows are not possible on the
intersection of the flow and jump sets (Goebel et al.,
2012, Proposition 2.11). A slightly different result holds
in the case of hybrid systems with inputs: uniqueness
of trajectories of H is equivalent to the uniqueness of
trajectories of the differential equation & = f(z,u) with
the constraint (z,u) € C. This is due the fact that given
any two solution pairs (21, u) and (z2,u) with the initial
conditions x1(0,0) = x5(0,0), the domain of u of deter-
mines when jumps occur since domx; = domzy = domwu
by definition, and uniqueness of trajectories due to the
discrete dynamics follows from g being single valued.

2.2 Hybrid Control Systems under Static State-Feedback

Given a pair of continuous functions x := (¢, kp), called

a feedback pair, where kg : C' — Ug and kp : D' — Up,

we will also consider the autonomous hybrid system

. !

" { P2 hule) = fnmele) weC
" =gu(x) :=g(z,kp(x)) ze€D.

Under the effect of k, a solution pair (z,u) can be gener-

ated as demonstrated in the next example.

Ezample 2.3. (Bouncing Ball with Feedback). Given the

model in Example 2.1, consider the feedback pair &

with keo(z) =0 and kp(x) = Axg + /2vh, where h > 0.

This leads to an autonomous hybrid system of the form (4)

with fi(z) = f(x) and g.(x) = (0,+/27h), whose trajecto-

ries are periodic after the first jump. For instance, the

initial condition (0, /2vh) leads to the trajectory

z(t,j) = (t/27h — (t — t;)%7/2,/2vh — (t — t;)
with jump times t; = 254/2h/7. The correspondmg input
is such that w(tj;11,5) = (1 — A\)y/27vh, and u(t,j) = 0
it £t

3. HYBRID MODEL PREDICTIVE CONTROL

As in conventional continuous/discrete-time MPC, the
hybrid MPC algorithm relies on the solution of a finite
horizon hybrid optimal control problem at specific (hy-
brid) time instants, called optimization times. The optimal
control problem involves a cost functional 7, defined as?

J tj+1
Z/ Le(x(t, §),u(t, ) dt
j=0"ti
ZLD tiv1,] )7u(tj+1,j)) +V(z(T,J)) (5)

1 The second sum is to be interpreted as zero if J = 0.

for every solution pair (z,u) of H with compact hybrid
time domain (i.e., dom(z,u) is a compact set), not nec-
essarily maximally defined. Above, (T,J) is the terminal
(hybrid) time of the solution pair (z,u)and {t; }jiol is the
sequence defining dom(z,w), with t;4; = T. The flow
cost L¢ is a continuous function defined on the flow set C',
the jump cost Lp is a continuous function defined on
the jump set D, and the terminal cost V is a contin-
uous function defined on the closed terminal constraint
set X cC'UD.

Ezample 3.1. Consider the sampled-data control system
in Example 2.2 with state + = (2,4, 7). Since the timer
variable is uncontrollable and of no interest for the pur-
poses of stabilizing the plant state z, the costs can be cho-
sen to be independent of 7. For the flow cost, a quadratic
function of the form L¢(x,u) = 2T Qz + £T R¢ weighting
the plant state z and zero-order hold state ¢ can be selected
as in Magni and Scattolini (2004). Quadratic functions can
similarly be chosen for Lp and V.

3.1 Prediction Horizon

In comparison to finite-horizon optimal control problems
arising in continuous/discrete-time MPC, insisting on a
fixed end-time optimal control problem is restrictive for
hybrid dynamical systems. Indeed, for the case of the
bouncing ball in Example 2.1, any feedback controller or
open-loop input which steers the state x to the origin nec-
essarily leads to trajectories with the time between jumps
converging to zero, i.e., im;_,o tj41—t; = 0 (Goebel et al.,
2012, Example 2.12). To address this issue, similar to free
end-time optimal control, we allow the terminal times of
feasible solution pairs to belong to a set 7 C R>g x N,
called the prediction horizon. For simplicity, we assume

T ={(t,j) € Ryo x N: max{t/d,j} =71} (6)
for some 7 € {1,2,...} and & > 0, where § resembles a
sampling time parameter, so that the terminal time (7, J)

of any feasible solution pair satisfies max{T/d,J} = 7.
Figure 1 shows the hybrid time domains associated with

two generic prediction scenarios for the case of 7 = 4
and § = 1.
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Fig. 1. Hybrid time domains of two solution pairs with
terminal times in T for the case of 7 = 4 and § = 1.
The terminal time of the solid blue domain is (4, 3),
while the terminal time of the dashed red domain
is (2,4).



3.2 Hybrid Optimal Control Problem

Our hybrid MPC algorithm, introduced in the next sub-
section, solves the following minimization problem over
solution pairs with compact domains at every optimization
time. In addition to the explicit constraints described by 7
and X, which dictate that feasible trajectories have their
terminal times in 7 and their terminal point in X, the data
of H defines implicit state-input constraints since solution
pairs are allowed to flow only on C and to jump only on D.

Problem (x). Given zy € R™,

minimize  J(z,u)

subject to  (z,u) € Sy (z0)
z(T,J) e X
(T,J)eT,

where Sy(z0) is the set of solution pairs (z,u) of H
satisfying x(0,0) = =z, and (7, J) denotes the terminal
time of (z,u).

Existence of solutions to Problem () is easily addressed
using techniques similar to Theorem 5.2 of Goebel (2017).
However, computation of such solutions is a nontrivial
task. The development of numerical methods to solve
Problem (%) is the current object of research, and can
take the form of Hamilton-Jacobi-Bellman equations or
the maximum principle Sussmann (1999). See, for exam-
ple, Pakniyat and Caines (2017) and the references therein.

3.8 Hybrid MPC Algorithm

Using the definitions above, we are ready to introduce our
hybrid MPC algorithm, which features a control horizon
to regulate the optimization times. The control horizon
has the same structure as the prediction horizon 7 in (6),
parametrized by 7. € {1,2,...,7} and 6. € (0,4]. Using
this parameter, the moving horizon implementation is
summarized by the inner while loop of the hybrid MPC
algorithm, demonstrated later in Figures 2 and 3.

Algorithm Hybrid MPC

1: Set i =0.

2: Set initial prediction time (7o, Jo) = (0, 0).

3: Set 29 = x(0,0).

4: while true do

5: Solve Problem (x) to obtain the optimal solution
pair (z},uf).

6: while max{(t — T;)/d¢,j — J;} < 7. do

7 Apply u} to H to generate the trajectory x.

8: end while

9: =14 1.

10: (T3, Ji) = (t, )
11: xo =$(Ti,Ji).
12: end while

In the algorithm, the trajectory z results from the ap-
plication of a sequence of optimal control inputs {u}}52,
to H. The portion of the state trajectory x from hybrid
time (73,J;) to (Ti41,Jiy1) corresponds to the optimal
state trajectory x} associated with u} (Line 5), where the
optimization times {(T},J;)}2, € domz are regulated
online. The first optimization occurs at (7o, Jy) = (0,0)
with optimal control parameter o = x(0,0) (Lines 1-3)

and leads to the the optimal control input wf (Line 5).
The input u§ (Line 5) is applied until either 7./, units
of ordinary time elapses, or 7, jumps occur, whichever
comes first (Lines 6-8). More formally, u§ is applied until
a hybrid time (¢,7) € domax of the generated trajec-
tory satisfies max{t/d.,j} = 7.. At this point, (¢,j) is
recorded in (71,J1), and the parameter zo of the opti-
mal control problem is changed to x(T4,J;) (Lines 9-11).
Then, Problem (%) is re-solved with xg = z(Ty,J1) to
find the optimal control wj, which is again applied until
either 7./d. units of ordinary time elapses after hybrid
time (77, J1), or 7. jumps occur after hybrid time (77, Ji),
whichever comes first (Line 6). Note that due to the con-
dition in Line 6, (Tj11 — Tj, Jix1 — J;) is not necessarily
constant. However, when the jump set D is empty, the
algorithm simplifies to the typical periodic implementa-
tion of continuous-time MPC. Similar observations can
be made when C' is empty, with 7. = 1 recovering the
standard “one-step ahead” implementation in discrete-
time. We emphasize that the optimal control inputs uj}
are defined over hybrid time domains and therefore are
not discretized during flows.

The hybrid MPC algorithm is demonstrated in Figure 2
for the case of 7 = 4, § = 1 7. =2 and 6. = 1. The
optimal control uf, whose domain is shown by the dash-
dotted purple line, is applied until (7y,J1) = (2,1), 2
ordinary time units after (Tp, Jo) = (0,0). Problem (x)
is then re-solved to find the new optimal control uj.
The domain of u}, shifted forward in-time by (T}, J1),
is indicated by solid blue. The next optimization occurs
at (T, J2) = (2,3), 2 jumps after the prior optimization
time (77, J1). This leads to the optimal controls u} to be
applied until (T3,J3) = (4,4), exactly 2 ordinary time
units after (T3, Jz); the domain of u} shifted by (75, J2)
is depicted by the dashed red line. The domain of the
resulting trajectory until (75, J3) is shown in Figure 3.
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Fig. 2. Nlustration of the hybrid MPC algorithm for the
caseof T=4,0=1,7.=2,and 6. = 1.

Remark 3.2. In Pereira et al. (2015), the optimization
times are governed in real time in a similar fashion.
However, while the framework there forces an optimization
after every impulsive control input, the optimization times
of the hybrid MPC algorithm can be after jumps of
the optimal solution pairs. Furthermore, the algorithm
guarantees lim; .., T; + J; = oc.

Remark 3.8. As in conventional MPC, when optimal con-
trols are nonunique, the hybrid MPC algorithm can gen-
erate nonunique state trajectories from the same initial
condition, which may have different hybrid time domains,
and consequently, different optimization times.
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Fig. 3. Hybrid time domain of the generated trajectory
corresponding to Figure 2.

4. ASYMPTOTIC STABILITY OF HYBRID MPC

The proposed MPC algorithm guarantees an asymptotic
stability property when the cost functions, the termi-
nal constraint, and the point (or set) to stabilize satisfy
conditions that are similar to those encountered in the
continuous/discrete-time MPC literature. Next, we outline
the basic conditions required in the hybrid dynamical
systems setting; in particular, the need for set stabiliza-
tion, and the properties of the cost functions and terminal
constraint relative to this set.

In general, the aforementioned stability properties are only
meaningful with respect to compact sets, denoted by A.
This generalization of stability notions from equilibrium
points to compact sets, which are in the usual Lyapunov
sense (see (Goebel et al., 2012, Definition 7.1)), is due to
the fact that hybrid systems can have state variables that
do not necessarily converge to an equilibrium point (e.g.,
timers and logic variables). For the sample-and-hold con-
trol system described in Example 2.2, since the timer
increases with rate 1 in the intersample period and gets
reset periodically, any set A to be stabilized for this system
must be such that its projection onto [0, 7] contains [0, 7].
In particular, if the control objective is to stabilize the
origin for the plant state z, and z € RP, the set 4 can
be taken as {0,} x {0} x [0, 7], where 0, C RP is the zero
vector.

In MPC regulation problems with no state constraints, the
terminal constraint set X is designed to contain the origin
in its interior. In our hybrid setting, this can be restrictive
when C'UD’ # R"™. Instead, we assume that A is contained
in the relative interior of X, in the sense that there exists
an open set S O A such that SN (C’UD’) C X. Indeed,
for the bouncing ball in Example 2.1, no X ¢ C'UD’ =’
contains the origin in its interior as it resides on the
boundary of C’; however, X can be chosen as the closure
of SN, for a neighborhood S of the origin.

As in conventional MPC, the cost functions defining the
functional J in (5) should be chosen to have basic pos-
itive definiteness properties, with respect to the set A of
interest. In particular, L and Lp should be designed such

that
Lo(z,u) > ac(|z] ) Y(z,u) € C,
Lp(z,u) > ap(|z|,) VY(z,u) €D,
for some class-K o, functions a¢c and ap,
Lo(z,u) =0 VY(z,u) € (ANC") x Ug,
Lp(x,u) =0 VY(z,u) € (AND") x Up,

and V should be designed such that V(z) =0forallz € A
and V(z) > 0 for all z € X\ A.

The basic stabilizing ingredient we impose on the cost
functions and terminal constraint extends the familiar
CLF-like assumption in the MPC literature (Mayne, 2014,
Section 2.2.1). Essentially, it requires V' to be a CLF on
the terminal constraint set X with respect to A, and the
existence of a feedback pair x (as in (4)) rendering X
forward invariant and 4 asymptotically stable. Specifi-
cally, it requires that V' is differentiable on a neighborhood
of XN,

(VV(2), fu(x)) < —Le(z,ke(x)) VYre XN, )
V(gu(z)) = V(2) < —Lp(z,kp(z)) YzeXND,

and solution pairs generated by the feedback k from the
set X should be such that the state trajectory remains
in X. These conditions are “necessary” in the context
of stability of autonomous hybrid systems, in the sense
that under mild conditions, asymptotic stability implies
the existence of a Lyapunov function with exponential
decrease during flows and jumps (Goebel et al., 2012, The-
orem 7.31). Similarly, also under mild conditions, existence
of a stabilizing feedback k and a CLF V satisfying (7) is
equivalent (Sanfelice, 2013). When solution pairs of H have
persistent jumps (respectively, flows), the right-hand side
of the second (respectively, first) inequality in (7) can be
replaced with zero to establish local asymptotic stability
under «, as shown in Proposition 3.24 (respectively, 3.27)
of Goebel et al. (2012), which could be extended for our
hybrid MPC algorithm.

It can be shown that under the conditions we impose,
the proposed hybrid MPC is asymptotically stabilizing.
Asymptotic stability of A is certified by the value function,
which is continuous on A, has a continuous positive defi-
nite (with respect to the distance to A) lower bound, and
decreases along trajectories due to (7). Furthermore, these
conditions ensure that Problem (x) does not lose feasibil-
ity along feasible trajectories. The formal statements and
proofs corresponding to these properties will be published
elsewhere.

5. CASE STUDY: CONTROL OF THE BOUNCING
BALL

The aim of this section is to demonstrate the hybrid
MPC algorithm with the bouncing ball in Example 2.1.
Consider the total energy W (x) := yx1 + x3/2 of the ball
when z € C'"UD’ = C’. The control objective is to stabilize
the limit cycle of the system originating from (A, 0) under
the feedback x in Example 2.3, equivalently represented
by the compact set A = {x € C' : W(x) = vh}, where h
is the desired height. To achieve this objective, we assume
the terminal constraint X = C”, the prediction horizon
parameters 7 = 4 and § = 1, and the following cost
functions:

Lo(x,u) = y(W(x) — vh)* /(1 +2W (2))  ¥(z,u) € C,
Lp(z,u) = yh(zy — \/27h)?/2 Y(z,u) € D,

V(z) = (3 + arctanzo)(W(z) — vh)? Vz € X,
It can be verified that the cost functions and the terminal
constraint satisfy the stabilizing conditions in Section 4.
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Fig. 4. Simulation of the bouncing ball under hybrid MPC.

Simulation results? of the bouncing ball under hybrid
MPC with v =981, A =08, h =2, 7. = 2, 6. = 1, and
the data above are presented in Figure 4. Figures 4a and 4c
show the optimal position trajectories (blue) and in-
puts (red) associated with the optimization times (Tp, Jo)
and (T4, Ji1), respectively, projected onto ¢t. The projection
of the resulting position trajectory onto t is depicted in
Figures 4b and 4d. The optimization times are indicated
by the circles, and the terminal times are indicated by
the squares. Here, we note that optimal state trajectories
are none other than state trajectories of the system in
Example 2.3, and as such, the simulations are performed
with this autonomous model, using the Hybrid Equations
Toolbox (Sanfelice et al., 2013): since there are no input
constraints during jumps (Up = R) and the jump cost Lp
does not penalize u, the flow map f does not depend on u
and the set A is forward invariant under the flow map f,
and g, (D’) C A, optimal solution pairs must be generated
by the feedback k.

6. CLOSING REMARKS

In this paper, a new formulation of MPC for hybrid dy-
namical systems based on finite-horizon hybrid optimal
control is proposed. The optimal control problem corre-
sponding to the hybrid MPC algorithm is formulated with
a novel set-based notion of a terminal time to account
for hybrid time domains. Asymptotic stability of compact
sets under the proposed approach can be guaranteed by
designing the terminal cost to be a CLF on the terminal
constraint set. Simulation result for the bouncing ball with
actuated jumps show the effectiveness of the proposed
MPC approach. Potential applications of the algorithm
include bipedal robotic walking and power systems.

There are many open problems relevant to the work
we have presented here. On the near horizon, numerical
solutions to the optimal control problem, in addition to
extension of the proposed approach to the case where flows
are discretized is the focus of our current work. Another
problem of interest is the relaxation of the Lyapunov
conditions and structure of the prediction horizon for the

2 Files for this simulation can be found at the following adress:
https://github.com/HybridSystemsLab/HybridMP CBouncingBall

systems with persistent flows or jumps. Indeed, due to
persistent jumps, stability of the origin for the bouncing
ball can be verified by using the total energy function
as a Lyapunov certificate, which is constant during flows
since the flow map is not dissipative. Finally, although
robustness is a challenging problem, existing theory for
autonomous hybrid systems shows a promising way to
tackle this issue for certain classes of hybrid systems.
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