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A B S T R A C T

In this work we introduce a new statistical methodology for empirically examining the validity of model-based
Likelihood Ratio (LR) systems by applying a general statistical inference approach called generalized fiducial inference.
LR systems are gaining widespread acceptance in many forensic disciplines, especially in the interpretation of DNA

evidence, in the form of probabilistic genotyping systems (PGS). These systems output a Bayes factor, commonly
referred to as a likelihood ratio in forensic science applications. Methods for examining the validity of such systems is a
topic of ongoing interest. In addition to summarizing existing approaches and developing our new approach, we
illustrate the methods using the PROVEDIt dataset by examining LR values calculated with two PG software packages.

1. Background

The Likelihood (LR) framework is commonly used for quantifying
the value of evidence in forensic DNA analysis. Advances in
Probabilistic Genotyping have resulted in our ability to interpret com-
plex DNA mixtures. Many probabilistic genotyping software systems,
some open-source and some proprietary, are currently available. As a
consequence, the same electropherogram information could result in
different LR assessments depending on the software system used. A
common attitude towards this multiplicity of LR values is that each LR
assessment is valid as long as the assumptions underlying the parent
models are reasonable approximations of reality. However, it is widely
accepted that continuous models have greater power to discriminate
between the so-called prosecution hypothesis,

HP. The person of interest is a contributor to the mixture, and the
defense hypothesis.

HD. The person of interest is NOT a contributor to the mixture.

Under the circumstances, one can ask the following questions: (a)
Are LR values from different systems close enough to each other to not
have an impact in casework? (b) In situations where the differences are
large enough to be impactful which LR should one use?

We propose to empirically assess an LR system, when an adequate
number of ground-truth known samples is available, using two key
metrics: (a) The power to discriminate between HP and HD, and (b) the
degree to which the LR system is well-calibrated.

Discrimination power can be empirically examined using receiver-

operating characteristic (ROC) plots and associated summary statistics
such as the area under the ROC curve (AUC). The property of being
well-calibrated is a bit more involved to assess and is the topic of this
work. Among all available LR systems we need to identify those that are
well-calibrated and have high discriminating power.

A model making probability assessments (such as probability of rain
on a given day) is said to be well-calibrated if it actually rains on 100p%
of the days that the model predicts p as the probability for rain. In
contrast, a model making LR assessments is said to be well-calibrated if
the value LR= r occurs r times as often under HP as it does than under
HD. This property is captured in the well-known statement that LR of LR
is LR (see, [1], Eq. 1.32, page 26, Section 1.8).

Many previous approaches for assessing LR calibration are based on
assessing the calibration of posterior probabilities in controlled,
ground-truth known conditions with varying prior probabilities using
familiar methods for assessing calibration of probabilities. This is based
on the property that LR is the multiplier that converts a prior prob-
ability into a posterior probability. See [2,3] in the references. Other
methods that have been proposed to assess overall performance of LR
systems involve the use of a single metric, e.g., empirical cross-entropy
(see [4,5]). Our approach is based on a direct assessment of how well
the property that LR of LR is LR is satisfied and does not require con-
sideration of prior or posterior probabilities.

2. Our approach

Estimation of the LR of LR is difficult. We use a novel approach
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based on the integrated version of the equation LR of LR= LR. To ac-
count for sampling uncertainty in the empirical data used to make this
assessment we use the ‘Fiducial Approach’ proposed by R. A. Fisher [6].
The method of Fiducial Inference was unpopular during the 20th cen-
tury but has been re-discovered and highly developed during the past
20 years. See [7,8].

3. Key mathematical details

*Let g r( ) denote the probability density function (pdf) and G r( )
denote the corresponding cumulative distribution function (cdf) of the
likelihood ratio LR under HP. Likewise, let f r( ) denote the pdf and F r( )
the cdf of LR under HD. We need to check whether or not

=g r r f r r( ) ( ), 0. By integrating this equation over the interval (a, b)
we observe that the following equation must hold

+

= < < <

G b G a bF b aF a F r dr

a b
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a

b

(1)

We estimateG r( ) and F r( ) with fiducial distributions obtained from
the ground-truth known empirical data. That is, we have a collection of
LR values known to have come from HP true cases and another col-
lection of LR values known to have come from HD true cases. We check
the condition in Eq. (1) for a sequence of intervals (a, b).

The fiducial distributions of G r( ) and F r( ) allow us to form con-
fidence intervals for the left-hand side of (1). The confidence interval
can provide statistical evidence for or against calibration, e.g., if it does
not include 0 everywhere in the interval (a, b), we conclude lack of
calibration in that interval.

4. Illustrative example

We considered ground-truth known 2-Person and 3-Person mixtures
and obtained LR values using two different Probgen systems (continuous
models), say Software A and Software B. We pooled both sets (2 P and 3 P)
for this illustration. Since ground truth is known, we can examine LR values
from HP True cases and HD True cases. The quantity of our interest is the
factor by which the stated LR value differs from what is supportable by
empirical data. Because of lack of data for the ‘right tail’ of the HD-true LR
distribution, extrapolation based on a Generalized Pareto Distribution
(GPD) is used. Fiducial confidence interval estimates are computed for
logarithm of the LR Calibration Discrepancy shown on the left-hand side of
(1). Results are shown in the following plots where the axes use a loga-
rithmic (base 10) scale. The Fiducial median is used as the point estimator
for the discrepancy and is shown in blue. 95% fiducial confidence interval
(band) is shown in black. The red line (horizontal line at 0) corresponds to
perfect calibration. A negative Log discrepancy means LR value overstated
the weight of evidence in favor of HP whereas a positive Log discrepancy
means LR value overstated the weight of evidence in favor of HD. Clearly
calibration (or lack of it) cannot be demonstrated for large LR values due
to lack of adequate information (Fig. 1).

In the illustrative examples above, the calibration plot suggests the
following: Software A has a downward slope suggesting that as the
reported LR values get increasingly larger than 1 they tend to increas-
ingly overstate the weight of evidence in favor of HP. In the case of
Software B, the calibration plot suggests that it may be overstating the
weight of evidence in favor of HP by little less than a factor of 10.

5. Summary

In this presentation we have proposed an approach for directly assessing

Fig. 1. (Left) Calibration plot for software system A. (Right) Calibration plot for software system B. The blue trace represents the Fiducial median estimate for the Logarithm
of the calibration discrepancy. The black and cyan traces on either side of the blue trace are, respectively, the boundaries of a 95% pointwise and simultaneous fiducial
confidence interval for the log discrepancy. The red horizontal line shows the log discrepancy curve for a perfectly calibrated LR system. The green vertical line marks the
spot where GPD extrapolation begins. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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calibration of LR systems using the fact that a well calibrated LR system
should possess the property that LR of LR is LR. We illustrated the appli-
cation of the method in some real examples using two of the available
continuous LR systems. We discussed aggregate measures of performance
only. Further examination of performance in subpopulations is of interest.
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