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Abstract—In this paper, tools to study forward invariance
properties with robustness to disturbances, referred to as robust
Jorward invariance, are proposed for hybrid dynamical systems
modeled as hybrid inclusions. Hybrid inclusions are given in
terms of differential and difference inclusions with state and
disturbance constraints, for whose definition only four objects
are required. The proposed robust forward invariance notions
allow for the diverse type of solutions to such systems (with and
without disturbances), including solutions that have persistent
flows and jumps, that are Zeno, and that stop to exist after
finite amount of (hybrid) time. Sufficient conditions for sets to
enjoy such properties are presented. These conditions are given
in terms of the objects defining the hybrid inclusions and the set
to be rendered robust forward invariant. In addition, as special
cases, these conditions are exploited to state results on nominal
forward invariance for hybrid systems without disturbances.
Furthermore, results that provide conditions to render the
sublevel sets of Lyapunov-like functions forward invariant are
established. Analysis of a controlled inverter system is presented
as an application of our results. Academic examples are given
throughout the paper to illustrate the main ideas.

I. INTRODUCTION
A. Background and Motivation

Forward invariance of sets for a dynamical system are key in
numerous applications, including air traffic management [1],
obstacle avoidance in vehicular networks [2], threat assessment
in semi-autonomous cars [3], network control systems [4], and
building control [5]. Techniques to verify such properties are
vital in the design of many autonomous systems. Such tools
are even more valuable under the presence of disturbances.
Formally, a set K is said to be forward invariant for a
dynamical system if every solution to the system from K stays
in K. This property is also referred to as flow-invariance [6] or
positively invariance [7]. When solutions are nonunique and
invariance only holds for some solutions from each point in
K, then K is said to be weakly forward invariant — the so-
called viability in [8]. In the presence of disturbances, one is
typically interested in invariance properties that hold for all
possible allowed disturbances, which has been referred to as
robust forward invariance; see, e.g., [5], [9], [10].

Tools to verify invariance of a set for continuous-time and
discrete-time systems have been thoroughly investigated in the
literature. In the seminal article [11], the so-called Nagumo
Theorem is established to determine forward invariance (and
weak forward invariance) of sets for continuous-time systems
with unique solutions. Given a locally compact set K that
is to be rendered forward invariant and a continuous-time
system with a continuous vector field, the Nagumo Theorem
requires that, at each point in the boundary of K, the vector
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field belongs to the tangent cone to K; see also [8, Theorem
1.2.1]. This result has been revisited and extended in several
directions. In [12], conditions for weak invariance as well as
invariance for closed sets are provided — a result guaranteeing
finite-time weak invariance is also presented. In particular, one
result shows that a closed set K is forward invariant for a
continuous-time system with unique solutions if and only if
the vector field and its negative version are subtangential to K
at each point in it. A similar result is known as the Bony-Brezis
theorem, which, instead of involving a condition on the tangent
vectors, requires the vector field to have a nonpositive inner
product with any (exterior) normal vector to the set K [13],
[14]. Taking advantage of convexity and linearity of the objects
considered, [15] provides necessary and sufficient conditions
for forward invariance of convex polyhedral sets for linear
time-invariant discrete-time systems. Essentially, conditions
in [15] require that the new value of the state after every
iteration belongs to the set that is to be rendered forward
invariant. This condition can be interpreted as the discrete-
time counterpart of the condition in the Nagumo Theorem.
For the case of time-varying continuous-time systems, [6]
provides conditions guaranteeing forward invariance properties
of K given by a sublevel set of a Lyapunov-like function; see
also [16]-[18]. The analysis of forward invariance of a set
for systems under the effect of perturbations has also been
studied in the literature; see [19] for the case when K is a
cone, [20], [21] when K is a polyhedral. The survey article
[7] and the book [8] summarize these and other analysis results
for forward invariance of sets in continuous-time and discrete-
time systems. Thought outside the scope of this paper, the
notion of robust controlled forward invariance has also been
studied in the literature, see, e.g., [5], [9], [10].

The study of forward invariance in systems that combine
continuous and discrete dynamics is not as mature as the
continuous-time and discrete-time settings. Certainly, when
the continuous dynamics are discretized, the methods for
purely discrete-time systems mentioned above are applicable
or can be extended without significant effort for certain classes
of hybrid models in discrete time; see, in particular, the
results for a class of piecewise affine discrete-time systems
in [22]. Establishing forward invariance (both nominal and
robust) is much more involved when the continuous dynamics
are not discretized. Forward invariance of sets for impulsive
differential inclusions, which are a class of hybrid systems
without disturbances, are established in [23]. In particular,
[23] proposes conditions to guarantee (weak — or viability —
and strong) forward invariance of closed sets and a numerical
algorithm to generate invariant kernels. For hybrid systems
modeled as hybrid automata, safety specification is often recast
as a forward invariance problem. In such context, several
computational approaches have been proposed for hybrid
automata with nonlinear continuous dynamics, disturbances,



and control inputs. In [24], a differential game approach is
proposed to compute reachable sets for the verification of
safety in a class of hybrid automata. In [25], an algorithm
is proposed to approximate invariant sets of hybrid systems
that have continuous dynamics with polynomial right-hand-
side and that can be written as hybrid programs.

B. Contributions

Motivated by the lack of results for the study of robust
and nominal forward invariance in hybrid systems, we pro-
pose tools for analyzing forward invariance properties of
sets. In particular, formal notions of invariance and solution-
independent conditions that guarantee desired invariance prop-
erties of sets are established for hybrid dynamical systems
modeled as

(z,w.) € Cy
(I,U}d) S Dw

T € Fy(z,w.)

Huw
xt € Gy(z,wq)

ey
which we refer to as hybrid inclusions [26] and where z is
the state and w = (w,, wy) is the disturbance; see Section II
for a precise definition. In the upcoming second part of this
work, tools for the design of invariance-inducing controllers
for hybrid system with disturbances are proposed based on
the results presented in this paper. The main challenges in
asserting such forward invariance properties of a set K, subset
of the state space, include the following:

1) Combined continuous and discrete dynamics: given a dis-
turbance signal and an initial state value, a solution to (1)
may evolve continuously for some time, while at certain
instances, jump. As a consequence, the set K must have the
property that solutions stay in it when either the continuous
or the discrete dynamics are active.

2) Potential nonuniqueness and noncompleteness of solutions:
the fact that the dynamics of (1) are set valued and the
existence of states from where flows and jumps are both
allowed (namely, the state components of C,, and D,, may
have a nonempty overlap with points from where flows
are possible) lead to nonunique solutions. In particular,
at points in K where both flows and jumps are allowed,
conditions for invariance during flows and at jumps need
to be enforced simultaneously.

3) Presence of disturbances for systems with state constraints:
for it to be interesting, forward invariance of a set K for a
hybrid system with disturbances is an invariance property
that has to hold for all possible disturbances. In technical
terms, for every x such that (z,w.) belongs to C,,, the
vectors in the set F,(z,w.) need to be in directions that
flow outside of K is impossible for all values of w..
Similarly, for each x such that (z,wq) belongs to D,
the set G, (x,wq) should be contained in K regardless of
the values of wy.

4) Forward invariance analysis of intersection of sets: when
provided a Lyapunov-like function, V, for the given sys-
tem, conditions to guarantee forward invariance properties
will need to take advantage of the nonincreasing property
of V. In such a case, the state component of the sets
Cy and D, will be intersected by sublevel sets of the

given Lyapunov-like function, which require less restrictive
conditions than for general sets.

In this paper, we provide results that help tackle these
key issues systematically. For starters, we present a result
to guarantee existence of nontrivial solutions to the system
modeled as in (1), which also provides insights for solution
behaviors based on completeness. Then, we introduce the
notions and sufficient conditions for forward invariance in
hybrid dynamical systems. The proposed notions of robust
forward invariance are uniform over all possible disturbances,
and allow for solutions to be nonunique and to cease to
exist in finite (hybrid) time (namely, not complete). For each
notion, we propose sufficient conditions that the data of the
hybrid inclusions and the set K should satisfy to render
K robustly forward invariant. Results for hybrid systems
without disturbances are derived as special cases of the robust
ones. Compared to [23], which studies the nominal systems
exclusively, we focus on a more general family of hybrid
systems, for example, we do not always insist on the flow map
to be Marchaud and Lipschitz; see, e.g., [8], [23], [27]. As an
application of the results for generic sets K, we present a novel
approach to verify forward invariance of a sublevel set of a
given Lyapunov-like function intersected with the sets where
continuous or discrete dynamics are allowed. Such a result lays
the groundwork for the second part of this paper. Because
of the nonincreasing properties of the given Lyapunov-like
function along solutions, the developed conditions are less
restrictive and more constructive when compared to the ones
for a generic set K. Moreover, our results are also insight-
ful for systems with purely continuous-time or discrete-time
dynamics. In fact, because of the generality of the hybrid
inclusions framework, the results in this paper are applicable
to broader classes of systems, such as those studied in [6]-[8],
[12], [15], [28].

C. Organization and Notation

The remainder of the paper is organized as follows.! Ro-
bust and nominal forward invariance are formally defined in
Section III. Sufficient conditions to guarantee nominal and
robust notions are presented in Section IV-A and Section IV-C,
respectively. In Section V, a Lyapunov-like function is used
to ensure forward invariance of sublevel sets. An application
of our results for the analysis of a controlled inverter system
is presented in Section VI. Academic examples are provided
to illustrate major results.

Notation: Given a set-valued mapping M : R™ = R", we
denote the range of M asrge M = {y e R" :y € M(z),z €
R™} and the domain of M as dom M = {x € R™ : M(z) #
(0}. The closed unit ball around the origin in R™ is denoted as
B. Given r € R, the r-sublevel set of a function V' : R" — R
is Ly(r) :=={z €eR":V(z) <r},and V7I(r) = {z e R":
V(z) = r} denotes the r-level set of V. Given a vector z, |z|
denotes the 2-norm of 2. We use |z|x to denote the distance

'Preliminary version of the results in this paper appeared without proof
in the conference articles [29] and [30]. This work considers a more general
class of disturbance signals than [29]. Some conditions from [29] to guarantee
invariance are further relaxed in this paper. In addition, compared to [30],
this work includes results to verify forward invariance of sublevel sets of
Lyapunov-like functions.



from point x to a closed set K, i.e., |z|x = gn}f{ | — &|. The
€

closure of the set K is denoted as K. The set of boundary
points of a set K is denoted by 0K and the set of interior
points of K is denoted by intK . Given vectors = and y, (z,y)
is equivalent to [z T yT]T.

II. PRELIMINARIES

In this paper, we present results on robust and nominal
forward invariance properties for hybrid system modeled using
the hybrid inclusions framework. More precisely, for hybrid
system H, given as in (1), we are interested in robust
forward invariance properties of a set that are uniform in
the allowed disturbances w; while the notions of nominal
forward invariance are studied for hybrid systems # as in [26],
which is considered as a special case of H,, with constant
zero disturbance, i.e., w = 0. We further explore the relaxed
conditions to guarantee nominal forward invariance of sublevel
sets of Lyapunov-like functions. In this section, we present
basic definitions and properties of H,, that are important for
deriving the forthcoming results.

Following [26], a solution to the hybrid system H,, is pa-
rameterized by the ordinary time variable ¢ € R>q := [0, o0)
and by the discrete jump variable j € N := {0,1,2,...},
and defined on a hybrid time domain & C R>¢ x N; see
[26, Definition 2.3]. The set E is a hybrid time domain
if, for each (T,J) € E, E n ([0,7] x{0,1,...,J}) can
be written as Uj;ol ([tj,tj+1],4) for some finite sequence
of times 0 = tg < t1 < to < < tj. A hybrid
arc ¢ is a function on a hybrid time domain if, for each
j €N, t— ¢t j) is absolutely continuous on the interval
I :={t:(t,j) € dom ¢}.

The data of hybrid system H,, in (1) is defined by the flow
set C, C R™ x W,, the flow map F,, : R™ x W, = R", the
jump set D,, C R™xW,, and the jump map G, : R"xWy; =
R™. The space for the state x is R™ and the space for the
disturbance w = (w., wq) is W = W, x Wy C R x R,
The sets C,, and D,, define conditions that 2 and w should
satisfy for flows or jumps to occur. In this paper, we assume
dom F, O Cy and dom Gy, O D,,. A hybrid disturbance w
is a function on a hybrid time domain that, for each j € N,
t — w(t,j) is Lebesgue measurable and locally essentially
bounded on the interval {¢ : (¢,5) € domw}. When w(t, j) =
0 for every (t,j) € domw (which means that there is no
disturbance), the system #,, reduces to the nominal hybrid
system introduced in [26], which is given by

” xeC & €F(x)
reD zteG(x).

For convenience, we define the projection of S C R™ x W,
onto R as IT¥(S) := {x € R" : Jw, € W, s.t. (z,w.) € S},
and the projection of S C R™ x Wy onto R™ as IT¥(S) :=
{z € R" : Jwg € Wy s.t. (x,wq) € S}. Given sets C,, and
D,,, the set-valued maps ¥y’ : R® = W, and ¥7 : R" =
Wy are defined for each z € R" as U¥(z) := {w, € W, :
(z,we) € Cyw} and WY (z) := {wg € Wy : (x,wq) € Dy},
respectively.

As an extension to the definition of solution to (2), namely,
Definition A.1, solution pairs to a hybrid system H,, as in (1)

2)

are defined as follows.

Definition 2.1: (solution pairs to H,,) A pair (¢, w) consist-
ing of a hybrid arc ¢ and a hybrid disturbance w = (w,, wq),
with dom¢ = domw(= dom(¢,w)), is a solution pair to
the hybrid system H,, in (1) if (¢(0,0),w.(0,0)) € C,, or
(¢(0,0),wq(0,0)) € Dy, and
(S1,,) for all j € N such that I/ has nonempty interior

((b(tv])a wc(tuj)) € Cw
do , . , )
E(taj) € Fw((b(ta])a wc(tuj))
(S2,,) for all (t,j) € dom ¢ such that (¢,5 + 1) € dom ¢,
((b(tv])vwd(tv])) € D'u)
¢(t7] + 1) € Gw(¢(t7.7)7 wd(tuj))
In addition, a solution pair (¢, w) to H,, is

« nontrivial if dom(¢, w) contains at least two points;

« complete if dom(¢,w) is unbounded;

» maximal if there does not exist another (¢, w)" such that
(¢, w) is a truncation of (¢, w)’ to some proper subset of
dom(¢, w)’. O

We use Sy, to represent the set of all maximal solution
pairs to the hybrid system #,, and, given K C R", Sy, (K)

denotes the set that includes all maximal solution pairs (¢, w)
to the hybrid system H,, with ¢(0,0) € K.

for all ¢ € int I7,

for almost all ¢ € I7 ,

III. ROBUST AND NOMINAL FORWARD INVARIANCE

In this section, we formally introduce the notions of robust
and nominal forward invariance of sets for system H,, given
as in (1) and ‘H given as in (2), respectively. In particular, a set
K enjoys robust forward invariance when the state evolution
begins from K and stays within K regardless of the value of
the disturbance w. First, we introduce weak versions of such
forward invariance notions for H,,.

Definition 3.1: (robust weak forward (pre-)invariance of a
set) The set K’ C R" is said to be robustly weakly forward pre-
invariant for H,, if for every x € K there exists one solution
pair (¢, w) € Sy, (x) such that rge¢ C K. The set K C R"
is said to be robustly weakly forward invariant for H,, if for
every x € K there exists a complete (¢, w) € Sy, (x) such
that rge ¢ C K. O

The following notions are considered stronger than the ones
in Definition 3.1 because all maximal solution pairs that start
from the set K are required to stay within K.

Definition 3.2: (robust forward (pre-)invariance of a set) The
set K C R"™ is said to be robustly forward pre-invariant for
H, if every (¢, w) € Sy, (K) is such that rge¢ C K. The
set ' C R™ is said to be robustly forward invariant for H,, if
for every x € K there exists a solution pair to H,, and every
(¢, w) € Sy, (K) is complete and such that rge¢p C K. O

In the upcoming second part of this paper, Definition 3.1 and
Definition 3.2 are presented in the context of robust controlled
invariance properties of sets for H, ,, under the effect of a
given state-feedback pair.

For hybrid systems without disturbances, i.e., H given as in
(2), the forward invariance notions introduced above reduce to
the ones below; see also [30, Definition 2.3 - Definition 2.6].



Definition 3.3: (nominal forward invariance of a set) The

set K C R"™ is said to be

o weakly forward pre-invariant for H if for every x € K
there exists one ¢ € Sy /() with rge¢ C K;

o weakly forward invariant for H if for every x € K there
exists one complete solution ¢ € Sy (x) with rge¢p C K;

o forward pre-invariant for H if every ¢ € Sy(K) has
rge¢ C K;

o forward invariant for H if for every x € K there exists
one solution, and every ¢ € Sy (K) is complete and has
rge¢ C K.

The relationship among these four notions is summarized in
the diagram in Figure 1.

+Vo € S (K)

Weak Forward
pre-Invariance

Forward
pre-Invariance

+ Completeness + Completeness

Weak Forward | +Y¢ € Su(K)

Invariance

Forward
Invariance

Fig. 1: Relationships of the notions of forward invariance for
a set K.

Note that some of the proposed notions require solutions to
exist and maximal solutions to be complete. Hence, inspired
by the conditions guaranteeing existence of solutions to H
(see Proposition A.2), we provide the following result for
guaranteeing existence of nontrivial solution pairs to H,, and
characterizing their possible behavior.

Proposition 3.4: (basic existence under disturbances) Con-
sider a hybrid system H,, = (Cw, Fu, Doy, Gy) as in (1). Let
& e Iv(Cy )UH“’( w)- If § € I1Y(Dy,), or
(VCy) there exist € > 0, an absolutely continuous function z :

[0,e] = R™ with Z(0) = &, and a Lebesgue measurable
and locally essentially bounded function W, : [0,e] —
We such that (Z(t), w.(t)) € Cy, for all t € (0,¢) and
Z(t) € Fy(Z(t), we(t)) for almost all t € [0,¢], where
We(t) € WP (Z(t)) for every t € [0,¢],
then, there exists a nontrivial solution pair (¢,w) from the
initial state $(0,0) = & If & € T§(Dy) and (VCy)
holds for every ¢ € TI¥(Cy) \ II¥(D.,), then there exists
a nontrivial solution pair to H. from every initial state
¢ € *(C,,) UTIY(D,,), and every solution pair (¢,w) €
Sy, (I (Cy) UILY (D)) from such points satisfies exactly
one of the following:
a) the solution pair (¢, w) is complete;

) (¢, w) is not complete and “ends with flow”: with (T, J) =
sup dom(¢, w), the interval I’ has nonempty interior, and
either

b.1) I’ is closed, in which case either
b.1.1) ¢(T,J) € g (Cy) \ (I (Co) UILE (D)), or
b.1.2) from ¢(T,J) flow within II¥(C.,) is not possible,

meaning that there is no € > 0, absolutely con-
tinuous function Z : [0,e] — R™ and a Lebesgue
measurable and locally essentially bounded function
we : [0,e] — W, such that Z(0) = ¢(T,J),
(Z(t), we(t)) € Cy for all t € (0,¢), and Z(t) €

Fu(2(t), we(t)) for almost all t € [0,¢]|, where
We(t) € WY (Z(t)) for every t € [0,¢], or
b.2) I’ is open to the right, in which case (T,J) ¢
dom(¢,w) due to the lack of existence of an absolutely
continuous function Z : I — R™ and a Lebesgue
measurable and locally essentially bounded function
we = [0,€] = We satisfying (2(t),w.(t)) € Cy for all
t €intl’, Z(t) € F,,(2(t), w.(t)) for almost all t € I’
and such that Z(t) = ¢(t,J) for all t € I, where
We(t) € P (Z(¢)) for every t € [0,¢];
¢) (p,w) is not complete and
(T,J) = supdom(¢,w) € dom(g,
dom(¢, w), and either
e.1) (T, J) ¢ T (Cu) UTIY(D,,), o
¢.2) ¢(T,J) € T¥(Cy) \ TI¥(D,,),% and from ¢(T,J) flow
within TI¥ (C.,) as defined in b.1.2) is not possible.

Proof To prove the existence of a nontrivial solution pair

from &, we show that under the given assumptions, a solution

pair (¢, w) satisfying the conditions in Definition 2.1 can be
constructed such that dom(¢, w) contains at least two points.

We have the following cases:

i) If £ € II} (D), then there exist w}; such that ({,w}) €
D,, by definition of IT}(D,,). Let the hybrid disturbance
w1 = (w, wq) be defined on dom wy := {(0,0)}U{(0,1)}
as wq(0,0) = w} and wq(0,1) = a, where @ € Wy and
w,. can be arbitrary. By definition of the jump map G,
there exists b € G,,(§,w};). Let ¢1 be a hybrid arc with
dom ¢; = dom w, defined as ¢1(0,0) = & and ¢4 (0,1) =
b. Then, (¢1,w1) is a nontrivial solution pair to #.,;

ii) If £ € ITIY(Cy) \ 11 (D) and (VC,,) holds, there exist
¢ > 0, an absolutely continuous function z : [0,¢] —
R™ and a Lebesgue measurable and locally essentially
bounded function w, : [0,¢] — W, with Z(0) = ¢
and w.(0) € WY () satisfying (S1,) in Definition 2.1.
Let the hybrid disturbance we = (w,,wq) be defined on
domws := [0,e) x {0} with w.(¢,0) = w,(t) for every
t € [0,e) and let wy be given arbitrarily. Let the hybrid
arc ¢ be defined on dom ¢ = dom wy as ¢2(t,0) = Z(t)
for every t € [0,¢). Then, (¢2,w2) is a nontrivial solution
pair to H,,.

Item i) and ii) imply the existence of a nontrivial solution pair

to H,, from every & € II§(D,,) and every & € II*(Cy) \

IIY(D,,), respectively, that is, for every £ € II¥(C,) U

1% (D).

Next, we prove that every maximal solution pair (¢, w) to
H., satisfies exactly one of the properties in a), b), and c).
Suppose the nontrivial solution pair (¢, w) is not complete,
i.e., case a) does not hold and either b) or ¢) holds. We
show that only one of these properties holds. Let (T, J) =
sup dom(¢, w).

If (T, J) € dom(¢, w), then I” is closed and case b.2) does
not hold, for which we have either

“ends with jump”: with
w), (T,J —1) €

iii) 77 is a singleton; or
iv) I/ has nonempty interior.

2As a consequence of (¢, w) ending with a jump, i.e., ¢(T, J)gII¥ (D),
&(T,J) € I¥ (Cw) \ T (D) is under the condition in case c.2).




If iii) is true, the solution pair (¢, w) ends with a jump and

either ¢(T', J) ¢ II¥(C,,) UITY(D,,), which directly leads to
case c.1), or ¢(T,J) € II¥(Cy) UIIY(D,). The latter case
leads to c.2) only since otherwise (¢, w) can be extended by
flow via the functions z and w, as described in b.1.2) or by
a jump as described in item i) above with an arbitrary wy €
\I/y(:c). If iv) is true, then, by item (S1,,) in Definition 2.1, case
b.1.1) holds, i.e., p(T, J) € TT¥(C,,) \ (IT¥(C,,) UTTY(Dy,)),
or case b.1.2) holds, namely, the solution pair (¢, w) cannot
be extended via flows. In summary, if (T, J) € dom ¢, then
only one among b.1.1), b.1.2), c.1) and c¢.2) may hold.

If (T, J) ¢ dom(¢,w), then I” is open to the right, and by
maximality of (¢, w), b.2) holds. [ ]

Proposition 3.4 presents conditions guaranteeing existence
of nontrivial solution pairs to H,, from every initial state
¢ € I¥(Cy) UIIY(D,), as well as characterizes all pos-
sibilities for maximal solution pairs. In particular, maximal
solution pairs that are not complete can either “end with
flow” or “end with jump.” In short, the former means that I
has a nonempty interior over which (¢(¢, J), we(t, J)) € Cy
for all ¢ € intI’ and %2(t,.J) € Fu(¢(t,J),we(t,J)) for
almost all ¢t € intI/, where (T,J) = supdom(¢,w). In
particular, case b.1.1) corresponds to a solution pair ending
at the boundary of Cy, case b.1.2) describes the case of
a solution pair ending after flowing and at a point, where
continuing to flow is not possible, while case b.2) covers
the case of a solution pair escaping to infinity in finite time.
The case “end with jump” means that (T,J),(T,J — 1) €
dom(¢p, w), (¢(T, J—1),wq(T, J—1)) € D,,, and the solution
pair ends either with ¢(7T',J) € II¥(Cy,) UILY(D,,) due to
flow being not possible or with ¢(7, J) ¢ I1Y (C\, )UILY (D, ),
where (T, J) = sup dom(¢, w).

Remark 3.5: Case c.1) in Proposition 3.4 is not possible
when G, (D,,) C I¥(C,,) UTT¥(D,,).> Moreover, when the
disturbance signal w. is generated by an exosystem of the

4
form e € Fy(we) we € Wy, 3)
(VCy) can be guaranteed if, for each (£, w.), there exists
a neighborhood U such that for every (v,w.) € U N
Cu, (Fuw(z,we), Fe(w:))NTe, (z,w:) # 0, provided that C,,
is closed and (F,, F.) is outer semicontinuous and locally
bounded with nonempty and convex values on C,.

IV. SUFFICIENT CONDITIONS FOR ROBUST AND NOMINAL
FORWARD INVARIANCE

Definition 3.1 and Definition 3.2 state that a set enjoys
robust forward invariance properties when the state evolution
stays within the set regardless of the value of the disturbance.
When disturbance signals are identically zero, Definition 3.3
reduces to nominal forward invariance properties for H given
as in (2). Verifying these properties for a given set using the
definitions requires to solve for solution pairs to H,, and
solutions to H, respectively, explicitly. To circumvent that
challenge, we present, when possible, solution-independent
conditions to guarantee each notion.

3Gw(Dw) = {2/ € R™ : Iz, wq) € D, ' € Guw(z,wq)}

“The disturbance w. generated by (3) are not necessarily differentiable
but rather, absolutely continuous over each interval of flow. For examples of
exosystems given as in (3) and having also jumps, see [31].

For clarity of exposition, in Section IV-A, we provide
sufficient conditions for the nominal cases, of which the
preliminary version is presented in [30]. Then, in Section IV-C,
these conditions are extended to hybrid systems with generic
disturbance signals, i.e., H,, given as in (1).

A. Sufficient Conditions for Nominal Forward Invariance
Properties for H

We present the sufficient conditions for forward invariance
of a given set K for H that involve the data (C, F, D, G).
For the discrete dynamics, namely, the jumps, such conditions
involve the understanding of where G maps the state to.
Inspired by the well-known Nagumo Theorem [11], for the
continuous dynamics, namely, the flows, our conditions use
the concept of tangent cone to the closed set K. The tangent
cone at a point z € R™ of a closed set K C R" is defined
using the Dini derivative of the distance to the set, and is given

by5
= 0} . )

In the literature (see, e.g., [32, Definition 4.6] and [23]), this
tangent cone is also known as the sequential Bouligand tangent
cone or contingent cone. In contrast to the Clarke tangent cone
introduced in [32, Remark 4.7], which is always a closed
convex cone for every z € K, the tangent cone (possibly
nonconvex) we consider in this work includes all vectors that
point inward to the set K or that are tangent to the boundary
of K.

Our sufficient conditions for forward invariance require part
of the data of H and the set K to satisfy the following mild
assumption.

Assumption 4.1: The sets K, C, and D are such that K C
C'UD and that K N C is closed. The map F : R* = R" is
outer semicontinuous, locally bounded relative to K N C', and
F(z) is nonempty and convex for every x € K N C.

e Twlk
T = R™:1 f—
K (x) {w € im i -

The following result is a consequence of the forthcoming
Theorem 4.11 in Section IV-C and its proof will be delayed
to that section. Sufficient conditions for a given set K to be
weakly forward pre-invariant and weakly forward invariant are
presented.

Theorem 4.2: (nominal weak forward pre-invariance and
weak forward invariance) Given H = (C, F,D,G) as in (2)
and a set K, suppose K,C, D, and F satisfy Assumption 4.1.
The set K is weakly forward pre-invariant for H if the
following conditions hold:

4.2.1) For every x € KN D, Gx)NK #0;
4.2.2) For every v € C\ D, F(z) NTrnc(x) # 0;
where C := O(KNC)\ L and L := {x € OC : F(z) N
Te(x) = 0}. Moreover, K is weakly forward invariant for H
if, in addition, KN L C D and, with K* = K \ D,
Nx) for every ¢ € Sy(K*) with rge¢ C K, case b.2) in
Proposition A.2 does not hold.

3In other words, w belongs to Tk (z) if and only if there exist sequences
7 \¢ 0 and w; — w such that z + 7w; € K for all i € N; see also
[8, Definition 1.1.3]. The latter property is further equivalent to the existence
of sequences z; € K and 7; > 0 with z; — x,7; \( O such that w =
lim; 00 (i — ) /75

5Note that, for a convex set, the Bouligand tangent cone coincides with the
Clarke tangent cone.



The next result, which is a consequence of Theorem 4.15
provides sufficient conditions for a set K to be forward pre-
invariant and forward invariant for H.

Theorem 4.3: (nominal forward pre-invariance and forward
invariance) Given H = (C, F, D, G) as in (2) and a set K C
R", suppose K,C, D, and F' satisfy Assumption 4.1 and that
F is locally Lipschitz on C. Let C and L be given as in
Theorem 4.2. The set K is forward pre-invariant for H if the
following conditions hold:

43.1) G(KND) C K;
4.3.2) For every x € C, F(z) C Tknc(x).

Moreover, K is forward invariant for ‘H if, in addition, K N
L C D and, with K* = K N C, item Nx) in Theorem 4.2
holds.

Remark 4.4: Some of the conditions in Theorem 4.2 and
Theorem 4.3 are weaker than those required by results in [30].
The construction of the set L in items 4.2.2) and 4.3.2) is
inspired by the viability domain in [8, Definition 1.1.5]. Note
that when Nx) holds, completeness of maximal solutions is
guaranteed by ensuring that K N L C D, which guarantees
that solutions can continue to evolve from L via a jump.

The following example is used to illustrate Theorem 4.2 and
Theorem 4.3.

Example 4.5 (solutions with finite escape time): Consider
the hybrid system H = (C, F, D,G) in R? with system data
given by F(z) := (1 + 22,0) for every x € C = {z €
R?: 21 € [0,00), 22 € [-1,1]} and G(z) := (z1 + B, z2) for
everyr € D:={x e R?: 21 €[0,00),22 =0}. Let K =C
and note the following properties of maximal solutions to H:
« For some z € K, there exists ¢ = (¢1,¢2) € Su(x) with

rge ¢ C K, but is not complete due to tl{gl ¢1(t,0) = o0

with ¢* < oo; for instance, from = = (0, 1), the solution

given by ¢(¢,0) = (tan(t),1) for every (¢,0) € dom¢
has its ¢; component escape to infinite as ¢ approaches

" =7w/2;

e From points in D C K, there exist maximal solutions that

leave K and are not complete: such solutions end after a
jump because their 1 component is mapped outside of K.

z2

1

Fig. 2: Flow and jump sets of the system in Example 4.5.

Thus, we verify weak forward pre-invariance of K by ap-
plying Theorem 4.2. The sets K, C, D and the map F' satisfy
Assumption 4.1 by construction and condition 4.2.1) holds for

H by definition of GG, D and K. Since L = (), condition 4.2.2)
holds because for every « € C, F(x) points horizontally, and

R x R<o if 21 € (0,00),22 =1

R x Rx>o if 21 € (0,00), 20 = —1
Tch(I) = RZO X Rgo if x = (0, 1)

R>o xR ifxz1 =0,290 € (—1,1)

Ruo x Rsg  if @ = (0, —1).

Tangent cones of K N C at points x,,x, and x; of K are
shown in Figure 2.

Now, consider the same data but with G replaced by
G'(z) = G(z)N(R> x R) for each z € D. The set K = C'is
forward pre-invariant for this system. This is because maximal
solutions are not able to jump out of K as G’ only maps
21 components of solutions to [0, 4+00). More precisely, the
conditions in Theorem 4.3 hold: we have G'(D N K) C K,
and Assumption 4.1 and condition 4.3.2) hold as discussed
above. A

Remark 4.6: The hybrid inclusions framework allows for
an overlap between the flow set C' and the jump set D. As
a result, the proposed conditions are not necessary to induce
forward invariance properties of sets for 7. When existence
of nontrivial solutions and completeness are not required for
every point in K, as in the “pre” notions, some of these
conditions are necessary. In fact, suppose K,C,D, and F
satisfy Assumption 4.1:

o If K is weakly forward pre-invariant for #, then for every
ze(KND)\C, G(x)NK # 0.
o If K is forward pre-invariant or forward invariant for H,
then condition 4.3.1) in Theorem 4.3 holds.
o If K is weakly forward invariant or forward invariant for
H, then for every x € K\ D, F(z) N Tknc(x) # 0.7
Moreover, unlike [23, Theorem 3], when the flow map F' is
Marchaud® and Lipschitz as defined in Definition A.4, condi-
tion F(z) C Tknc(x) for every x € K \ D is not necessary
as the following example shows. Consider H in (2) with data
F(z) = ! ?fx >l for each x € C = [-1,1],
[-1,1] ifx=-1
G(z) := {—1,0} for each x € D := {1}. By inspection, the
set K = C is forward invariant for 7 and F’ is Marchaud and
Lipschitz. However, at = —1 € K\ D, F(—1) D —1 but
—1¢ Tknc(—1).

B. Sufficient Conditions for Nx)

In Theorem 4.2 and Theorem 4.3, item Nx) excludes case
b.2) in Proposition A.2, where solutions escape to infinity in
finite time during flows. In fact, when every solution ¢ to & €
F(z) with ¢(0,0) € K* does not have a finite escape time,
namely, there does not exist t* < oo such that tlix?* lo(t)] =

00, item Nx) holds for H and K* as defined in Theorem 4.2
and Theorem 4.3, respectively. Although, in principle, such a
condition is solution dependent, it can be guaranteed without

7A similar claim is presented in [8, Proposition 3.4.1] for continuous-time
system.

8A map F is Marchaud on K N C when Assumption 4.1 holds and F' has
linear growth on K N C} see [8, Definition 2.2.4].



solving for solutions when F' is single valued and globally
Lipschitz. Moreover, we provide several other alternatives in
the next result.

Lemma 4.7: (sufficient conditions for completeness) Given

H = (C,F,D,G) and a set K C R"™, suppose K,C,D, and
F satisfy Assumption 4.1 , set D is closed and item 4.2.2) in
Theorem 4.2 holds. Condition Nx) holds if
4.7.1) K* is compact; or
4.7.2) F has linear growth on K*.
Proof Let ¢ € Sy (K™*) with rge¢ C K be as described by
b.2) in Proposition A.2; namely, ¢ — ¢(t,.J) defined on I/,
where (T, J) = supdom ¢, T+J < oo and, for some 7, [/ =
[ts,T). Since t — (¢, J) is locally absolutely continuous on
17, tan% ¢(t,J) is finite or infinity. If it is finite, then ¢ —
#(t, ) can be extended to I7, which contradicts with b.2).
Then, it has to be that tan% @(t,J) is infinity. When 4.7.1)
holds, thﬂrr% ¢(t, J) being infinity is a contradiction since K*
is compact.

If 4.7.2) holds, [23, Lemma 17'0 implies that t — ¢(t, J)
is either:

o defined over [t s, 00) with values in K N C;!'! or
o defined over [t;,T] with T > t;, ¢(T,J) € D and
o(t,J) € KNC forevery t € [ts,T).

In either case, we have a contradiction. ]
The next example illustrates Theorem 4.2, Theorem 4.3 and
Lemma 4.7.
Example 4.8: (weakly forward invariant set) Consider the
hybrid system H = (C, F, D, G) in R? given by
F(z) := (2, —x1) Vz € C;
G(z) := (—0.921, x2) Yz e D,
where C := {z € R? : [z| < 1,29 > 0} and D := {z € R?:
X1 Z —1,$2 = 0}

Fig. 3: Sets and directions of flows/jumps in Example 4.8.

The set K3 = OC is weakly forward invariant for H by
Theorem 4.2. More precisely, for every € K1 N D, G(x) €
K1; and for every z € 9(K1NC)\ (DUL) = {x e R? : || =
1,29 > 0}, since (V(2? 4+ 23 — 1), F(x)) = 0, applying item
1) in Lemma A.5, we have F'(z) € Tk,nc(z). In addition,
KN C = 9C is compact, which implies condition Nx) holds
by Lemma 4.12. Thus, for every z € K, there exists one

9When 4.7.1) holds, condition 4.2.2) in Theorem 4.2 is not required.

10 The sets X, K,C in [23, Lemma 1] are C, K N C, D (or () when
applied for Theorem 4.3), respectively, in our context.

! This is the only case that applies for Theorem 4.3.

complete solution that stays in K;. For example, for every
x € [—1,1] x {0}, there exists one complete solution that
is discrete and stays in K; (from the origin there is also a
complete continuous solution that remains at the origin), but
also there exist maximal solutions that flow inside {z € R? :
|z] < 1} and leave K;.

Now consider Ko = C. It is forward invariant for H by
applying Theorem 4.3. In fact, using the observations above,
item 4.3.2) can be verified via Lemma A.5 since (V (2% + 23 —
1), F(z)) = 0 forevery z € (K2NC)\L = {z € R? : |z| =
1,22 > 0} U ([-1,0] x {0}). A

Note that one can replace condition 4.3.2) in Theorem 4.3
by
43.2") For every z € (K N C),

F(z) C Tknc(x)

F(:Z?) N (Tc(x) \Tch(I)) =0
Note that assumption (6) is important as in some cases, having
item (5) only leads to solutions that escape the set K by
flowing as shown in the following example. Consider the
hybrid system H on R? with

F(x) = (2,—7) Vo €C:={xeR?:xy15 >0}

Gx) == VreD:={zcR*: 2 >0,29 = 0},
where v > 0. The set K = {z € R? : 7 > 0,25 > 0} is
weakly forward invariant, and the sets K, C, D and the map F

satisfies (5). However, at the origin, we have F'(0) = (0, —)
and

ifz¢0CND (5)
if 2 €9CND. (6)

Te(0) = (Rx0 x R>0) U (R<o x R<o),

Tch(O) = RZQ X Rzo.
Hence, at the origin, one solution can flow into C'\ K (the
third quadrant) because F'(0) € T (0) \ Tknc(0).

The following example is an application of Theorem 4.3
and Lemma 4.7.

Example 4.9: (forward invariant set) Consider the hybrid
system given by

xeC z=F(x):=(—|r1]z2,0)
H{xGD xt =G(x) =

where the flow set is C = {z € R? : |z| < 1,2120 > 0}
and the jump set is D = {x € R? : |z| < 1,129 < 0}. We
observe that during flow, solutions evolve continuously within
the unit circle centered at the origin; while at jumps, solutions
remain at the current location. Applying Theorem 4.3, we
show that the set K1 = C; U Dy is forward invariant for
H, where C; = {z € R? : 21 > 0,292 > 0,|z| < 1} and
D1 ={x € R? : 27 < 0,29 > 0,|x| < 1}. By construction,
K,,C,D and F satisfy Assumption 4.1. Condition 4.3.1)
holds since G maps the state to its current value. Condition
4.3.2) holds since

o for every z € {z € 9Cy : |z| = 1}, since x1x2 >
0,(V(z3 + 23), F(x)) = —2|x1|122 < 0;

o for every z € {z € 9C, : |z| # 1}, F(x) = (0,0), which
leads to F(x) € Tk,nc(x).

€T,



Finally, applying Lemma 4.7, Nx) holds since K1 N C is
compact. AN

In Example 4.9, the set K; is forward invariant for H
as shown therein. When arbitrarily small disturbances are
introduced, solution pairs may escape the set of interest. In
particular, we revisit Example 4.9 with disturbances in the next
section, and show that K is only weakly forward invariant,
uniformly in the given disturbances. The forthcoming results
in Section I'V-C are useful to verify such properties of sets for
hybrid systems H,, given as in (1).

C. Sufficient Conditions for Robust Forward Invariance Prop-
erties for H,,

As an extension to the nominal notions, the robust forward
invariance notions for H,, in Definition 3.1 - 3.2 capture
four types of forward invariance properties, some of which
are uniform over disturbances w for H,. In this section,
Theorem 4.11 and Theorem 4.15 extend Theorem 4.2 and
Theorem 4.3 to hybrid systems H,, given in (1). These results
will be exploited in forward invariance-based control design
for hybrid systems (with and without disturbances) in Part II of
this work. Similar to the results in Section IV-A, throughout
this section, the following version of Assumption 4.1 with
disturbances is assumed.

Assumption 4.10: The sets K, Cw, and D,, are such that
K c TI¥(C,,) UTI¥(D,,) and that K NTI¥(C,,) is closed.
The map F3, is outer semicontinuous, locally bounded on (K x
W.)NCy, and F,,(z,w.) is nonempty and convex for every
(z,we) € (KxW,)NCy. Forevery x € IT¥(C.,),0 € U¥(z).

Assumption 4.10 guarantees that all points in the set to
render invariant, namely, K, are either in the projections to the
state space of (', and D,,, which is necessary for solutions
from K to exist. The closedness of the set KNII¥ (C),) and the
regularity properties of F,, are required to obtain conditions
in terms of the tangent cone; see, also, [26, Proposition 6.10].
The assumption of 0 € ¥¥(z) for every x € II¥(C,,) usually
holds for free since systems with disturbances, such as H,,,
typically reduce to the nominal system, in our case H, when
the disturbances vanish. A similar property could be enforced
for the disturbance wg, but such an assumption is not needed
in our results.

Next, we propose sufficient conditions to guarantee robust
weak forward pre-invariance and robust weak forward invari-
ance of a set for H,,.

Theorem 4.11: (sufficient conditions for robust weak
forward (pre-) invariance of a set) Given H, =
(Cw, Fu, Dy, Gy) as in (1) and a set K C R"™, suppose
Cy, Fu, Dy and K satisfy Assumption 4.10. The set K is
robustly weakly forward pre-invariant for H,, if the following
conditions hold:

4.11.1) For every x € K N1IIY(
Gy (x,wq) N K # 0;

Dy,), Jwg € VY (x) such that

4.11.2) For every z € II*(Cy) \ ¥ (Dy), Fu(z,0) N
Trrme(c,)(®) # 0
where Cyy = ((O(K NII¥ (Cy)) X We) NCly)\ Loy and Ly, :=

{(z,w.) € Cy : & € IM¥(Cy), Fu(z,w:)N Traeyy

)(55) =

0}. Moreover, K is robustly weakly forward invariant for H.,
if, in addition, K N II¥(L,,) C 1% (D) and, with K* =
(K\TIF (Dw)) x We) N C,

*) For every (¢, w) € Sy, (I (K*)) with rge ¢ C K, case
b.2) in Proposition 3.4 does not hold.

Proof Given C,,, F,, D,, and K satisfying Assumption 4.10,

zero disturbance is always admissible to H,, during continuous

evolution of solution pairs. We define a restriction of H,,

by K with zero disturbance during flows as follows: H,, =

(C,F,Dy,Gy), where C := KNIIY(Cy), F(x) = Fy(z,0)

for every x € IIY(C,) and D,, := (K x Wy) N D,,. Since

K C II¥(Cy) UIIE (D), by Definition 2.1, there exists a

solution pair to H,, from every § € K. Let K1 = H“j(ﬁw),

Ko = K\ (I} (Dy) ULTY (Ly)) and K3 = K\ (K1UK>). By

definition, every { € K3 is such that £ € II¥(L,,) \ I (D)

and F(£) N Tm(@ = (). Then, item (a) in [26, Lemma

5.26] and Definition A.1 imply there is only trivial solution

from £ to H,,, in which case we have rge ¢ C K. Otherwise,

in the case where ¢(0,0) € K7 U K, we show there exists

(¢, w) € Si., that is nontrivial and it has rge¢ C K when

4.11.1) and 4.11.2) hold true. To this end, we construct a

nontrivial solution pair from every £ € K; U Ks. Since K;

and K are disjoint sets, we have following two cases:

i) when ¢ € Ky: since K; C I (D,), a jump is possible
from every £ € K, i.e., from every (£, wq) € D,,. Let
©4(0,0) = & By condition 4.11.1), there exists wy €
U (), 9a(0,1) € Gy (&, Wa), such that ¢,(0,1) € K.

ii) when { € Ky since K C v (C,) UTI¥(D,), € €
v (C,) \ TT%(D,,) and solution pairs can only evolve by
flowing from £. Conditions enforced by Assumption 4.10
imply that C is closed, F' is outer semicontinuous, locally
bounded and convex valued on C. Since T5(z) = R™ for
every x € (1ntC') \ ( (D ) UTIY(Ly,)), item 4.11.2)
implies that F'(z) N ( ) # 0 for every x € Ks. Then,
by an application of [26, Proposition 6.10], there exists
a nontrivial solution ¢ to H, from every { € K,. By
item (S1) in Definition A.1, such a nontrivial solution ¢
is absolutely continuous on [0,¢], for some ¢ > 0, with
#,(0) = &, dy(t) € F(¢p(t)) for almost all ¢ € [0,¢] and
¢y(t) € C for all ¢ € (0,¢]. By closedness of C, we have
ou(t,0) € K for every t € [0,¢].

The above shows that from every point in K, solution pairs

to H, can be extended via jumps with the state component

staying within K using the construction in case i). While
from points in K, solution pairs can be extended using the
construction in case ii) with the state component staying within

K. As a consequence, from every point in K, there exists at

least one (¢, w) € Si; withrge¢ C K.

Next, we prove that each such (5, w) is also maximal to
Hy.' If (¢, w) is complete, then it is already maximal and
a solution pair to H,,. Consider the case that (¢, w) is not
complete. Proceeding by contradiction, suppose (¢, w) is not
maximal for ,,, meaning that there exists (¢, w) such that

o(t,j) = qNS(t,j) and w(t,j) = w(t,j) for every (¢,j) €

12During flows, we have (¢, 0).



dom ¢ and dom ¢ \ domﬁ #£ (. Let (T, J) = supdom ¢. If
(T,J) € domg¢, then, ¢(7T,J) € K and we have the two
following cases:

o 5(T, J) € K1 UK>, 4.11.1) and closeness of C imply that,
using the arguments in i) and ii) above, it is possible for ¢
to satisfy ¢(¢,j) € K for some (t,j) € dom ¢\ dom ¢. By
definition of solution pairs, this contradicts with maximality
of (¢, w) for Hp. B

e #(T,J) € Ks, by definition of L., Fy,(¢(T,J),w:) N
Tiaey(O(T, ) = 0 for every we € Wy (¢(T,J)).
Hence, supdom ¢ = (7', J), which contradicts with the
assumption dom ¢ \ dom ¢ # (.

If (T,J) ¢ dom ¢, according to Proposition 3.4, _only b.2)

holds.!® In such a case, there is no function z : I/ — R"

satisfying the conditions in b.2) of Proposition 3.4, which are

needed to have a (¢, w) such that dom ¢ \ dom ¢ # (). Thus,

K is robustly weakly forward pre-invariant for H,,.

The last claim requires to show that among these maximal
solution pairs to H,, that stay in K for all future time, there
exist one complete solution pair from every point in K when,
in addition, (K NII¥(L,,)) C I} (D,,) and item %) hold. To
this end, first, note that the existence of a nontrivial solution
pair to H,, from every = € K follows from (K NII¥*(L,,)) C
I1¥(D,,), which implies K3 = {). Then, we apply Proposi-
tion 3.4 to complete the proof. Proceeding by contradiction,
given any £ € K, suppose every (¢*, w*) € Sy, (£) is not
complete, i.e., (T, J) = supdom ¢*, T + J < oo, and case a)
in Proposition 3.4 does not hold. Such a solution pair (¢*, w*)
is not as described in case b.1.1) in Proposition 3.4 due to the
closeness of KNITY(CY,). Case c.1) does not hold for (¢*, w*)
either, since rge ¢* C K and K C II¥(C,,) UIIY (D,,). Thus,
by Proposition 3.4, (¢*,w*) can only end as described by case
b.1.2), b.2) or c.2).

o The solution pair ends because the functions described in
case b.1.2) or c.2) of Proposition 3.4, i.e., z does not
exist for (¢*(T,J), w*(T,J)). However, using the same
argument in item ii) above with w, = 0, for every
(z,0) € K; x 0 there exists z such that b.1.2) holds, which
leads to a contradiction. _

o If (¢*,w*) is as described by case b.2), ¢*(0,0) ¢ IT¥(K™)
by assumption x). More precisely, ¢*(0,0) € K;, hence,
the solution pair can be extended following the same con-
struction in i) above, which contradicts with the maximality
of (¢*, w*). ]

Condition 4.11.1) in Theorem 4.11 guarantees that for every
x € K NIIY(D,) such that there exists wg € UY(x),
the jump map contains an element that also belongs to
K. Under the stated assumptions, condition 4.11.2) implies
the satisfaction of (VC,) with zero disturbance w., which
suffices for the purpose of Theorem 4.11 as it is about weak
forward invariance notions. While involving the tangent cone
of K NII¥(C,,) in condition 4.11.2) is natural, such solution
property is more than needed for robust weak forward pre-
invariance of K as defined in Definition 3.1. Similarly to

13Case a) does not hold due to (5, w) not being complete, while b.1) and
¢) do not hold because (T, J) ¢ dom ¢.

Lemma 4.7, solution-independent conditions that imply %) are
derived for the disturbance case.

Lemma 4.12: (sufficient conditions for completeness) Given
Hy = (Cuw, Fuy,Dy,Gy) and a set K C R™ suppose
K,Cy, Dy, and F,, satisfy Assumption 4.10. set 11§ (D,,) is
closed and item 4.11.2) in Theorem 4.11 holds. Condition %)
in Theorem 4.11 holds if

4.12.1) K* is compact; or N
4.12.2) F,, has linear growth on K*.
The following example illustrates Theorem 4.11.

Example 4.13 (robustly weakly forward invariant set): Con-
sider a variation of hybrid system # in Example 4.9 with
disturbances given by

(Iawc) eCy = Fw(I wc) = ( |I1|$2,wc|$1|$1)
Hw § (,wq) € Dy 2t € Goy(m,w4) 1=
{R(0)x : 0 € [wa, —wal},
where R(0) := CO.SG sin 0 is a rotation matrix, C,, =
—sinf cosf

{(z,we) € RZXxR:0 < we < |z|] < 1,722 > 0}, and
Dy = {(z,wg) € RZ xR : 2115 < 0,]z] < 1,-3 <
wg < 0}. As shown in Figure 4, the projections of C,,
and D,, onto R? are given by I1¥(C,,) = C; U Cy on R?
with Co = {z € R? : 21 < 0,22 < 0,]z] < 1} and by
HEU(DM) = D1 U Dy with Dy = {CC c R?: 1 > 0,20 <
0,|z| < 1}, respectively.'* Based on provided dynamics,
solutions travel counter-clockwise during flows, while they
either rotate clockwise or counter-clockwise during jumps. As
a result, solutions can evolve in any of the four quadrants in
R?, either by flow or jump.

A T2

/"}

D,
‘
y

G
-N \ 0

Cs D,

Fig. 4: Projection onto the state space of flow and jump sets
of the system in Example 4.13. The blue solid arrows indicate
possible hybrid arcs during flow, while the red dashed arrows
indicate possible hybrid arcs during jumps.

First, we apply Theorem 4.11 to conclude robust weak
forward invariance of the set K1 = Cy U D; for H,,. Assump-
tion 4.10 holds for K4, Cy,, D, and F, by construction. Since
the set L,, is empty, condition 4.11.1) holds since for every
(x,wq) € (K1 X Wa) N D,,, the selection z+ = R(0)x always
results in 27 € K. Condition 4.11.2) holds since, applying

14We use the same definitions for K, Ci, and D; as in Example 4.9.



item 1) in Lemma A.5, for every z € 0Cy \ II§(D,,), since
r1T2 < 0, we have

<V(:v% + x%), Fy(2,0)) = —2z125]21| < 0.

Then, the robust weak forward invariance of K; follows
from 4.12.2) in Lemma 4.12 and Theorem 4.11. Note that
the property is weak due to the following observations:

o Because of the set-valuedness of the map G,,, there exists
a solution pair from a point {; € D; that jumps to a point
in Co that is not in K, as depicted in Figure 4. On the
other hand, from the same point £, there exists a solution
pair that keeps jumping from and to &;, and stays within
D, C Kq;

Because of the overlap between II¥(C\,) and II¥(D,),
there exists a solution pair that starts from a point {3 € D,
and flows to a point in Cs that is not in K7, as depicted in
Figure 4. On the other hand, the solution pair that jumps
from and to & from & stays within Dy C K. A

To derive a set of sufficient conditions guaranteeing the
stronger robust forward invariance property of K, i.e., every
solution pair to H,, is such that its state component stays
within the set K, when starting from K, we require the dis-
turbances w and the set K to satisfy the following assumption.

Assumption 4.14: For every £ € (0K) NII¥(Cy), there
exists a neighborhood U of & such that U¥(z) C WY (¢) for
every x € U NIIY (Cy).

The next result provides conditions implying robust forward
pre-invariance and robust forward invariance of a set for H,,.

Theorem 4.15: (sufficient conditions for robust forward
(pre-) invariance of a set) Given H,, = (Cu, Fu, Dy, Gu)
as in (1) and a set K C R", suppose Cy, Fy,, Dy, and K
satisfy Assumption 4.10. Furthermore, suppose the mapping
x — Fy(z,w.) is locally Lipschitz uniformly in w. on C,.
The set K is robustly forward pre-invariant for H., if the
following conditions hold:

4.15.1) For every (v,waq) € (K xWa)N Dy, Gu(z,wa) C K;
4.15.2) For every (z,w.) € Cy, Fy(z,w.) C Tgnme(c,)(T)-

where éw and L., be given as in Theorem 4.11. Moreover,
K is robustly forward invariant for H,, if, in addition, K N
ITY (L) C ITY(Dy) and, with K* = (KNIIY(Cy)) X We)N
Cw, condition ) in Theorem 4.11 holds.

Proof Since condition 4.15.1) and 4.15.2) imply condition
4.11.1) and 4.11.2), respectively, under given conditions,
which include the fact that Cy,, F,, D,, and K satisfy As-
sumption 4.10, the set K is robustly weakly forward pre-
invariant for H,, by Theorem 4.11.

Now we show that every (¢, w) € Sy, (K) hasrge¢ C K.
Proceeding by contradiction, suppose there exists a solution
pair (¢,w) € Sy, (K) such that rge¢p \ K # (. Then,
there exists (t*,7*) € dom ¢ such that ¢(t*,j*) ¢ K, ie.,
¢ eventually leaves K in finite hybrid time.'> Then, we have
the two following cases:
t+j—rsup, dolrg%+supj dom ¢ d)(t’ ]) =
oo (that is, ¢ stays in K but escapes to infinity, potentially in finite

hybrid time) corresponds to a solution that satisfies the definition of forward
invariance for K.

5Note that when rge ¢ C K and

i) In the case that ¢ “left K by jumping,” namely, ¢(t,j) €
K for all (t,j) € dom¢ with ¢t + j < t* + j*,
(p(t*,7* — 1),wq) € D, with ¢(t*,5*) ¢ K for some
wq € WY (p(t*, 75 —1)). This contradicts item 4.15.1). More
precisely, since ¢(t*, j* —1) € KNII¥(D,,), item 4.15.1)
implies that ¢(t*, %) € Gy (P(t*, j* —1), wa(t*, 55 —1)) C
K for every wq € UY(p(t*, j* —1)). Thus, ¢ did not leave
K by jumping. Then, it must be the case that ¢ left K by
flowing, which is treated in the next item.

ii) In the case that ¢ “left K by flowing,” namely, there
exists a hybrid time instant (7,5*) € dom¢ such that
o(t,7*) € I¥(Cy) \ K for all t € (7%,¢*] and t* — 7*
is arbitrarily small and positive. Moreover, by closedness
of K NII¥(Cy), we suppose that ¢(7*,j*) € (OK) N
0¥ (Cy)."o Let t — x(t) € K NII¥(Cy) be such that for
every t € [7%,1]

[2(t) | ke c.) = [2(8) = x(B)], ©)
where z(t) = ¢(t, j*) for all ¢ € [7*,t*]. Such points exist
because of the closedness of K NII¥(C,,). By definition of
solution pairs to H,,, the function t — |2(t)| ke (c,,) 18
absolutely continuous. Thus, for almost every ¢ € [7*,¢*],
412t KN (C,,) exists and equals to the Dini derivative of
|2(t)| ke (c,,)- Let t be such that both %|Z(t)|1mng(cw)
and Z(t) exist. We have

d
pn 2()| knme (c)

2@+ hE) | ke ey — 120 knme o)
= lim inf ,
R\0 h
which, by definition of x(¢) and (7), satisfies

|2(t) + h2(t)| ke (cw) — [2(0) | KA ()

h
< FOX@OIHIXO+he®) ke cw) — 12Ol knme c.)
- h
(@) + hE) ke o)
N h
t + hw w
< Ix(t) flimnc (Cw) 1A — ],
for every w € Tk nmw(c,,)(X(t)). Moreover, for every such
w,
t) + h w
lim inf Ix(t) w|1mnc (Cw) _ 0
R\0 h
by definition of the tangent cone in (4). Hence, we have
d
E|Z(t)|KﬂH1CU(Cw)
t + h w
< liminf X®) wh{ﬁnc (Cuw) +|2(t) — w]
ANG) h

= |2(t) — w|.
Thus, for almost every t € [7*,t*],
d .
£|Z(t)|fmng(cw) < 2 T 00y (0(8)-

Since K NII¥(C,,) is closed, by definition, x(t) € K N

1By definition of solution pair, it is the case that ¢ left K NTI¥(C,,) and
entered IT¥(Cy ) \ K passing through (0K) NIIY¥ (Cw).




¥ (Cy,) for every t € [7*,¢*]. Condition 4.15.2) implies
that for almost all ¢ € [7*,¢*], and every w € ¥¥(x(1)),

we have

d .
217 Olxome ) < E@lreang ey ®)

< Z@IF, (x(t)w)-

Since t* —7* is positive and can be arbitrarily small, it is al-
ways possible to construct a neighborhood of x(¢) for every
t € [7*,t*], denoted U, with z(t) € U, and it is such that
P (2(t)) C T¥(x(t)) by Assumption 4.14. Then, because
of that and the fact that the mapping z — F,(x,w.) is
locally Lipschitz uniformly in w, on C,, , we can construct
a neighborhood U’ of z(t) such that x(t) € U’ for every
t € [r*,t*] and for which there exists a constant A > 0
satisfying

Fuy(2(t), we) C Fu(x(1), we) + Alz(t) — x(t)|B
for every t € [7*,t*] and every w. € ¥¥(z(¢)). Hence,

c

for every t € [7*,t*], every w, € U¥(z(t)), and every
n € Fy(z(t), we),

7 Fu (x(t)00) < Al2(8) — X (B)].

Moreover, since 2(t) € F,(z(t),w.), for every w, €
U¥(2(t)), together with (8) and (7), we have that

d .
£|Z(t)|KﬂH;”(Cw) < Z®)| Py (x(t) we)
< Az(t) = x(O)] = Alz() | knnw 0.,)-

Then, by the Gronwall Lemma (see [33, Lemma A.1]), for
every t € [T%,t*],

|2()| knme c,) = 0.
Since K NII¥(C)) is closed, ¢(t*,j*) € K NIIY(Cy),
which contradicts the definition of ¢*. Thus, there does
not exist maximal solution pair (¢,w) € Sy, (K) that
eventually leaves K NII¥(C,,) by flowing.

Thus, the set K is robustly forward pre-invariant for #,,.

Following the proof of Theorem 4.11, when K NII¥ (L,,) C
ITY (D), with 4.11.1) and 4.11.2) satisfied, there exists a
nontrivial solution pair (¢, w) with ¢(0,0) = £ to H,, from
every ¢ € K. Then, robust forward invariance of K follows
from the addition of condition ). As shown above, every
(¢p,w) € Sp,, (K) has rge¢ C K, thus, it suffices to show
that every maximal solution pair to H,, is complete. We
proceed by contradiction. Suppose there exists a maximal
solution pair (¢*,w*) € Sy, (K) that is not complete, and
(T, J) = supdom ¢*. Because every (¢,w) € Sy, (K) has
rge¢ C K, by an application of Proposition 3.4, (¢*,w*)
only satisfies one of the cases described in item b.1.2), b.2),
and c.2). In particular, condition ) eliminates case b.2) by
assumption. Then, condition 4.15.1) and condition 4.15.2)
imply that (¢*,w*) can be extended within K by jumps
and flows, respectively. More precisely, when ¢*(T,J) €
¥ (Cy), conditions in Assumption 4.10 and item 4.15.2)
imply the function z : [0,e] — R™ as described in (VC,,) in
Proposition 3.4 exists with w.(t) = 0 for every ¢ € [0, ], and
such (Z,w,) can be used to extend (¢*, w*) to hybrid instant

11

(T + €, J), which contradicts the maximality of (¢*,w*).!”
When ¢*(T,J) € IIY(D,), jumps are always possible by
virtue of condition 4.15.1). Therefore, the set K is robustly
forward invariant for H,,. [ |

Remark 4.16: In comparison to Theorem 4.11, Lipschitzness
of the set-valued map F,, (uniformly in w) is assumed.
Together with Assumption 4.14, they are crucial to ensure
that every solution pair stays in the designated set during
flows. Note that Assumption 4.14 guarantees such property
uniformly in w, (see the proof of Theorem 4.15 for details).
We refer readers to the example provided below Theorem 3.1
in [7], which shows solutions leave a set due to the absence of
locally Lipschitzness of the right-hand side of a continuous-
time system.

The following example shows an application of Theo-
rem 4.15.

Example 4.17 (Example 4.13 revisited): Consider the hybrid
system in Example 4.13. We apply Theorem 4.15 to show the
set Ko = IIY(Cy,) UILY(D,) is robustly forward invariant
for H,,. Similar to Example 4.13, L,, = (), Assumption 4.10
and condition %) hold for K,, F,,,C,, and D,. Moreover,
Assumption 4.14 holds since w. < |x| for every x € II¥(C,,)
and the map F), is locally Lipschitz on C,, by construction.
Then, condition 4.15.1) holds since for every (x,wq) €
(K2 xW4)N D,,, the map G, only “rotates” the state variable
a without changing |x| within the unit circle centered at the
origin. Condition 4.15.2) holds since
o for every (z,w.) € (0K2 x W,.) N C,,, because 0 < w, <

|z| <1 and 2129 > 0, we have

(V(2? +23), Fu(z,we))
= 221 (—x2|x1]) + 222 (Wex1 |21])
= 2z129(we — 1)|21] <0,
which, applying item 1) in Lemma A.S,

Fy(r,w.) € TszHg(Cw)(I);
o for every (z,w.) € ((O(II¥(Cy)) \ 0K2) x W.) N C,, the

tangent cone Tk, (c,,)(Z) is given by

implies

R>o xR ifx € Cr,z1 =0,22 ¢ {0,1}
R<o xR ifx € Co,z1 =0,20 ¢ {0,—1}
R x R>g ifxeCi,z ¢{0,1},22=0
R x R<g ifx e Coymq ¢{0,—1},20=0
RQZO U RQSO x =0,
which, applying item 1) in Lemma A.5, implies

Fy(z,w.) € Tk,nme(c,)(w) holds true by definition of
Fw.IS
Thus, the set K5 is robustly forward invariant for H,,. A

V. NOMINAL FORWARD INVARIANCE OF SUBLEVEL SETS
OF LYAPUNOV-LIKE FUNCTIONS

For many control problems, Lyapunov-like functions V' :
R™ — R for ‘H and H, can be obtained via analysis or

"Note that the resulting disturbance will be Lebesgue measurable and
locally essentially bounded on interval 1.

18We recall from Example 4.13 that C; = {x € R? : 21 > 0,22 >
0,]z] <1} and Cy = {x € RZ: 21 < 0,22 <0, |z| < 1}.



numerical methods. For such systems, we can verify the robust
and nominal forward invariance of the r—sublevel sets of V'
by exploiting the nonincreasing property of ' along solutions.
In this work, for the nominal case, conditions on the system
data, namely (C, F, D, G) in Theorem 4.2 and Theorem 4.3
are explored to guarantee the forward invariance of a subset
of its r—sublevel set that is given by

M, = Ly(r)n(CUD,). 9)

We leave the more generic study of robust forward invariance
properties for H,, via Lyapunov methods for Part II of
this work, where the Lyapunov functions are used to select
feedback laws that render robust forward invariance of their
sublevel sets.

The next result introduces a set of constructive conditions
that induce weak forward invariance and forward invariance
for M,. in (9) for H. These conditions ensure that solutions
stay within M, and also guarantee existence and completeness
of nontrivial solutions from every point in the set M,.. For
convenience, given a function V' and two constants r,7* € R
with » < 7*, we define the set Z(r,r*) :== {z € R" : r <
V(z) <r*}.

Theorem 5.1: (weak forward invariance and forward invari-
ance of M) Given a hybrid system H = (C,F,D,G) as in
(2), suppose the set C'is closed, the map F : R™ = R"™ is outer
semicontinuous and locally bounded, and F(x) is nonempty
and convex for all x € C. Suppose there exist a constant
r* € R and a function V : R"™ — R that is continuously
differentiable on an open set containing C such that

(VV(x),n) <0 Ve € Z(r,r*)NC,n € F(x), (10)
Vin)<r Vo € Ly(r)ND,n € G(z), (11)
Sor some r € (—o0,1*). Moreover, suppose such r satisfies

5.1.1) for every x € V=1(r), VV (x) # 0;

5.1.2) for every x € (Ly(r) NOC)\ D, F(z) NTc(x) # 0;
5.1.3) for every x € (V=1(r)NOC)\ D, the set C is regular
at x and 3§ € F(z) N Te(x), (VV (2),€) < 0},

5.1.4) condition Nx) in Theorem 4.2 holds for K* = M, NC

and H.

Then, for each such v € (—oo,r*) that defines a nonempty
and closed M, we have the following:

e The set M, is weakly forward invariant for H if
5.1.5) for every x € M, N D, G(z)N(CUD) #0;
o The set M, is forward invariant for ‘H if

5.1.6) GWM,NnD)c CUD.

Proof Fix r < r* that satisfies the conditions in Theorem 5.1.
The sets K = M,,C,D and the map F satisfy Assump-
tion 4.1. In fact, since M, is defined as the intersection of
an r-sublevel set of V' and the union of the flow set and the
jump set, M, is a subset of C' U D. Closedness of M, NC
follows from the fact that C is closed and V' is continuous. The
properties of F' directly follow from the assumptions. Now, we
apply Theorem 4.2 to prove weak forward invariance of the
set M,..

Since set L in Theorem 4.2 is empty in this case, we prove

that for every z € (M, NC)\ D,
F(z) N Try (rnc(z) # 0. (12)

To this end, we need the following properties of the sets
C,Ly(r) and of the map F. For every x € Ly (r), the
r—sublevel set Ly (r) is regular'® at = by a direct applica-
tion of [34, Corollary 2 of Theorem 2.4.7 (page 56)] with
f(z) = V(z) — r. Moreover, since (10) and item 5.1.1) hold,
for each z € V=(r), F(x) C Tr, (»y(x), and the set Ly (r)
admits a hypertangent®” at every z applying Lemma A.5.2!
Then, we show that (12) holds for every z € (M, NC)\ D
in the following cases:

1) For every x € (intLy (r) N OC) \ D, since Ty, (»ync () =
Te(z), 5.1.2) implies (12) holds;

2) For every x € V~(r) NintC, we have Ty, ()nc(z) =
Try(r(x). This implies (12) holds for every such z,
because F'(z) C T, (ry(v) as shown above;

3) For every x € (V~Y(r) N dC) \ D, 5.1.3) implies

Tc (ac) n intTLV(T) (CL‘) £ (.

Then, since Ly (r) and C are regular at z, we can apply
[34, Corollary 2 of Theorem 2.9.8 (page 105)] with Cy = C
and Cy = Ly (r) since Ly (r) admits a hypertangent at x:
for every x € EV‘l r) N OC) \ D, we have

Te(x) VT, (@) = Tr, (mne (@),
i.e., (12) holds.

Hence, condition 4.2.2) in Theorem 4.2 holds for the sets
C,K = M, and the map F.

Moreover, (11) implies for every 2 € M, N D, G(z) C
Ly (r). Together with item 5.1.5), (11) leads to condition
4.2.1) in Theorem 4.2. Then, according to Theorem 4.2, M,.
is weakly forward invariant for H as condition Nx) holds by
item 5.1.4).

For the remainder of the proof, we show that M,. is forward
invariant when condition 5.1.6) holds. First, we prove M, is
forward pre-invariant for the hybrid system H.

Consider the restriction to hybrid system H to the set
Ly (r*), denoted H and whose data is (C, F, D, G), where
the flow set and the jump set are given by C' = Ly (r*) N C
and D = Ly (r*) N D, respectively. Note that (11) implies
for every + € M, N D, G(x) C Ly(r). Then, every
¢ € Sz(M;) has rge¢p C Ly(r) if ¢ cannot leave Ly (r)
by “flowing.” We show by contradiction that this is the
case. Suppose ¢ left Ly (r) by “flowing” during the interval
" = [tj«,t;«41]: namely, ¢ left Ly (r) N C and entered
(Ly (r*)\ Ly (r))NC. More precisely, since Ly (r) C Ly (r*),
by closedness of M, and item (S1) in Definition A.1, there
exist hybrid time instants (¢*,j*),(7*,7*) € dom¢ with
¢(t*,5°) € (Lv (r*) \ Ly (r)) N C, ¢(v*,j*) € V7H(r) N C,
and ¢(t,7*) € (Lyv (r*)\Lv (r))NC for all t € (7*,t*], where
tj« < 1% <t* <tj«;11. Hence, we have

19 The set C'is regular at  provided the Bouligand tangent cone at 2 of C'
coincides with the Clarke tangent cone at = of C' (see [34, Definition 2.4.6]).
Furthermore, every convex set is regular — see [34, Theorem 2.4.7 and (page
55) and Corollary 2 (page 56)] for other special cases of regular sets.

20See [34, Section 2.4].

2IFunction h(x) = V(z) — r is directional Lipschitz since V' is continu-
ously differentiable and by item (i) in [34, Theorem 2.9.4].



V(o(r",57)) = r < V(e(t",j")) <r*. (13)

By item (S1) in Definition A.1, for every ¢ € intl7", o(t,5*) €
C.* According to (10), %V(gb(t,j*)) < 0 for almost all ¢ €
17" . Then, integrating both sides, we have
V(g(t,j") < V(e(r™, 57)),

which contradicts with (13). Hence, every ¢ € Sg;(M,.) stays
in M, during flow. Therefore, if ¢ left M, and entered
Ly (r)\ M,., which is outside of C'U D by definition of M,.,
it must have left C' U D via jumps. This is not possible by
virtue of 5.1.6). Thus, we establish the forward pre-invariance
of M, for H by Definition 3.3.

Moreover, we verify that every ¢ € Sz (M,.) with rge¢ C
M, is also a maximal solution to H by contradiction. Suppose
there exists ¢ € Sz(M,) with rge¢ C M, that can be
extended outside of M, for H. More precisely, there exists
¥ € Sy (M), such that dom 1)\ dom ¢ # (), for every (¢, ) €
dom ¢, ¥(t,j) = &(t, j) and for every (¢,7) € dom 1)\ dom ¢,
U(t,j) ¢ M,. Let (T, J) = supdom ¢. We have two cases:

4) ) extends ¢ via flowing: namely, (T, J) = ¢(T,J) €
M, NC, t s (t,J) is absolute continuous on I”. By
item (S1) in Definition A.1, 9(¢,J) € C for all ¢ € intI”.
Thus, it must be the case that (¢, J) € C'\ Ly (r) for some
t € I'. Since Ly (r) C Ly (r*), there exists t* € I7 such
that o (t*, J) € Ly (r*)N(C\ Ly (r)). This contradicts with
the maximality of ¢ to .

5) 1 extends ¢ via jumping: namely, (T, J) = ¢(T,J) €
M, ND and (T,J +1) ¢ M,. By item (S2) in
Def@ition A.1, this contradicts with the maximality of ¢
to H.

To complete the proof for forward invariance of M, for
H, we show that every ¢ € Sy(M,) is also complete.
Because condition 5.1.6) implies 5.1.5), we know the set M,
defined by the chosen » < r* is weakly forward invariant
for H. Hence, there exists a nontrivial solution to H from
every x € M,. Case b.1) Proposition A.2 is excluded for
every ¢ € Sy (M,) since M, N C is a closed set. Case
b.2) is not possible for every maximal solutions from M, by
assumption 5.1.4). Finally, G(M, N D) C M, implies case
¢) in Proposition A.2 does not hold. Therefore, only case a)
is true for every maximal solution starting from M,.. |

Condition 5.1.3) together with (10) result in a less re-
strictive requirement on the flow map F when compared
to the usual Lyapunov conditions for stability purposes, for
instance, condition (3.2b) in [26, Theorem 3.18], which often
rely on finding a qualified positive definite function with
strict decrease outside the set to stabilize. It is not a trivial
task to relax condition 5.1.3) in Theorem 5.1. When the
set {& € F(z) : (VV(x),§) < 0} is empty for some
x € V7Yr) N C, we have that for every ¢ € F(z),
(VV(x),&) = 0. With item 5.1.1), it is either that F'(z) = 0 or
F(z) # 0. If the former holds, condition 4.2.2) in Theorem 4.2
holds trivially. However, if the latter holds, it is possible to
get F(z) N Ty, (;)nc = O at such z, which implies that
only a trivial solution exists at such z. The following example
illustrates such a case.
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Example 5.2: Consider a system on R? given by i =
F(z) = (x2,—z1) with C = (—o0,—1] x R and pick
V as V(z) = x? with »* = 2. M, is nonempty and
closed for r € [1,7*). The conditions in Theorem 5.1 except
for 5.1.3), which does not hold for » = 1. In fact, for
r = 1, at the point (—1,0), the vector F((—1,0)) = (0,1)
lays in Tc((—1,0)) and satisfies (VV (x), F(z)) = 0 for
each x € Ly(r) N C, so 5.1.3) does not hold. As a result
F((-1,0)) ¢ TLV(T)HC((_LO))'

Remark 5.3: As stated in Section I, invariance is also a
property that is key in the study of safety in dynamical
systems. The Lyapunov-like function approach in this section
resembles the idea behind the safety certificates. Note that the
function V' in the results in this section is not sign definite
and that the aim was to assume as few properties as possible,
though it should be recognized that the invariance property
obtained is only for its sublevel sets. Connections between
results in this section and their extensions to invariance-based
control design is the focus of the upcoming second part of this

paper.

VI. FORWARD INVARIANCE ANALYSIS FOR A
CONTROLLED SINGLE-PHASE DC/AC INVERTER SYSTEM

We devote this section to present an application for the
proposed forward invariance analysis tools in this work. The
system of interest is a controlled single-phase DC/AC inverter;
see [35] for complete design details. As shown in Fig. 5, the
inverter consists of a full H-bridge connected to a series RLC
filter. The dynamics of the system are

Vbe

: R, 1
L _ |- 9— L — pvc
= felz) = . ,
| = = [
where R, L, C, are parameters of the circuit, z := (ip,vc) €
R?, and g € Q := {—1,0, 1} is a logic variable that describes

the position of the switches.

_ SQ\ Sgﬁ

Fig. 5: Single-phase DC/AC inverter.

By controlling their position (“ON” or “OFF”), the voltage
Vin to the RLC filter equals to either Vpe , 0 or —Vpc.
More precisely, we denote by ¢ = 1 when S; = S3 = ON
and Sy = S4 = OFF; by ¢ = 0 when S; = S; = OFF and
52253=ON;byq:—1 When51253:OFFand52:
S4 = ON. Given system parameters Vpc, L, C, and R, hybrid
controller is designed to generate a sinusoidal-like output v
approximating a reference voltage v, with amplitude b and
frequency w of the form ¢t — v,.(t) = bsin (wt + 6), where
0 is the initial phase. It can be shown that such a reference



signal on the (i, vc) plane has to make

iL 2 (Yo 2
1% = - (_) )
@ (%) + (%
unitary when vg = v, and ip = Cy¥c, where a = Cywb.
Let x = (¢,2) and given parameters 0 < ¢; < 1 < ¢,, this

control goal requires rendering the band around the reference
trajectory given by

T={recQxR?:¢; <V(2) <c,},

forward invariant for the closed-loop system. Then, the preci-
sion of the approximation is tunable based on the two design
parameters ¢; and c,. As ¢, — ¢; — 0, the resulting closed-
loop trajectories are “closer” to the reference trajectory, which
make V in (14) unitary. Using the hybrid controller proposed
in [35], the closed-loop system, denoted H = (C, F, D, G), is
in form of (2) with system data given by F(z) = (0, f4(2))

(14)

for every x € C := T, and G(z) = (G4(z),z) for every
x € D, with?
-1 if ¢ % —1 and
((V(2) =co and iy, > 0 and z ¢ M)
or (V(z) =¢; and if <0));
0 if (z€ My and if, #eand ¢=1)
Gol2) = f)r (z € My and if, # —e and ¢ = —1);
1 if ¢ %1 and
((V(z) =co and i, <0 and z ¢ Ms)
or (V(z) =¢; and if > 0));
{0,1}  if (V(2) = co,ip = —€,v¢ > 0);
{=1,0} if (V(2) =co,ir = €,vc < 0);

and the jump set D given as
D:= {2€QxR?:V(2)=c¢;,irqg<0,q # 0}
Ufz € Q xR*: V(2) = co,irq > 0,9 # 0}
UH{z e @ xR?: V(2) =¢;,q=0}.

Witha:%andﬁzﬁ,wedeﬁnel":{zeR2:
—aVpe < —aRip + (8 — a)ve < aVpe}. Next, applying
Theorem 4.3, we show the set T is forward invariant for H.

Proposition 6.1: ([35, Proposition 1]) Given positive system
constants R,L,Cy,w,Vpc such that LCow? > 1, and 0 <
¢; <1< ¢, such that T C Q x T, the closed set T is forward
invariant for the closed-loop system H = (C, F, D, G).

Proof By observation, 7, C, D, F' satisfy Assumption 4.1,
and F' is continuously differentiable. Condition 4.3.1) in
Theorem 4.3 holds since G(z) := (G4(z) x {z}) C (Q x{z})
for every € T. Since T = C, Trnc(x) = Te(x) for
every z € C. Hence, item 4.3.2) in Theorem 4.3 holds if
F(z) € Tc(z) for every x € OC' \ L. Note that L > D by
applying Lemma A.5 and the inner product properties listed
n [35, Lemma 2].2* In particular, for every x € D N {x :
V(z) = ¢o}, apply item 2) in Lemma A.5 with S = Ly (c,),
h(z) = V(z) — ¢o; while for every z € DN {x: V(z) = ¢;},

22With € as a (small enough) positive parameter, M1 = {z € R% : V(2
c0,0 <ip < e,vo <0} and Mo = {2 € R? : V(2) = cp, —€ <
0,vc > 0}.

21n fact, LNT C D by construction.

):
i, <

consider S = L(_y)(—¢;), h(z) = =V (2) + ¢; and item 1)
in Lemma A.5. Then, for every x € 97T \ L, by applying
Lemma A.5 and the inner product properties listed in [35,
Lemma 2], we have the value of ¢ chosen by the designed
controller always results in one of the two cases below:

o Whenz € {z:V(2) = co}\L, F(z) € {0} xTp (c,)(2);

e When z € {z : V(2) = &} \ L, F(z) € {0} x

R? \ TLV(Ci)(Z)'

Hence, F(z) € Tc(z) for every x € 0T \ L.

Finally, applying Lemma 4.12, item Nx) holds since F' is
affine linear for each assigned g € Q. |

Numerical simulations are performed to verify the property
listed in Proposition 6.1 via MATLAB Hybrid Equations
Toolbox (HyEQ); see details in [36]. The following system
parameters are used: R = 1Q, L = 0.1H, C, = 66.6uF,
Vpe =220V, b =120V, w = 1207, and ¢; = 0.9,¢, = 1.1.
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Fig. 6: Simulations of H different initial values of q.

Figure 6 shows the solutions to the closed-loop system H
with zp = (bChw, 0) = (3.013,0) and gq as either —1,0 or 1.
The three solutions stay within the projection of 7 onto the
(ir,vc) plane.
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Fig. 7: The output v¢ signal of H with gy = 0.

Fig. 7 shows that the output voltage vc behaves sinusoidal-
like. A Fast Fourier Transform (FFT) analysis is also per-
formed to show that the output signal has the desired fre-
quency; see [35, Fig. 6a].



VII. CONCLUSION

Forward invariance properties of sets that are uniform over
the disturbances for hybrid inclusions with disturbance inputs
are studied in this paper. When a set K enjoys such a property,
solution pairs evolve within the set they started from, even
under the effect of disturbances. We formally define robust
forward invariance of sets for hybrid systems 7, modeled
using differential and difference inclusions with state and
disturbance constraints. Among the four notions, two of them
are considered stronger than the other two in the sense that all
maximal solution pairs that start from the set of interest stay
in it.

Sufficient conditions for each notion are presented in terms
of the data of the hybrid system and require checking con-
ditions involving its discrete and continuous dynamics within
K. In particular, when starting from an intersection involving
K and the jump set, the jump map ought to map the state
back to K to allow solutions evolving within K during jumps;
while when starting from an intersection involving K and
the flow set, the flow map needs to have vectors pointing
inward of K to allow solutions evolving within it during flows.
To guarantee the robust invariance notions, the flow map is
required to enjoy a locally Lipschitz property on C,, to avoid
solutions from leaving K. Such a property is also ensured by
Assumption 4.14—a mild assumption on the inputs allowed by
C,, at points that are at the boundary of K and in C,,.

To achieve the notions that require completeness of maximal
solution pairs, a general result for H,, that characterizes
all possible ending behaviors of maximal solution pairs is
presented. The existence of nontrivial solution pairs from every
point in K is ensured by the assumption of zero disturbances
being admissible during flows. In addition, condition x) is
introduced to exclude the case of solution pairs escaping
to infinity in finite time, where two solution-independent
conditions are proposed to verify ) for H,,. The results on
robust invariance are specialized to the nominal case, i.e., H.

Finally, one result to render sublevel sets of Lyapunov-like
functions nominal forward invariant for H is provided. In
particular, properties of the tangent cone to the sublevel of the
Lyapunov-like function is exploited to derive mild conditions
for invariance of the sublevel set. These properties hold for
free when the flow set is convex (locally) or the Lyapunov-
like functions strictly decrease at the boundary of the set K.

In a second part of this work, which is being prepared,
results on existence of invariance inducing state-feedback laws
for H,, using robust control Lyapunov functions for forward
invariance will be provided. In particular, controller synthesis
that constructs state-feedback laws using a pointwise minimum
norm selection scheme are under development. Future research
directions include studying optimality properties of feedback
laws via inverse optimality analysis and the development of
barrier certificates for hybrid systems # and H.,,.
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A. Auxiliary Definitions and Results for Hybrid Systems

Definition A.1: (solutions to H, [26, Definition 2.6]) A
hybrid arc ¢ is a solution to the hybrid system (C, F, D, Q)
if $(0,0) € CU D, and
(S1) for all j € N such that I/ has nonempty interior

o(t,j) e C for all
o, . .
(S2) for all (¢,7) € dom ¢ such that (¢,5 + 1) € dom ¢,

o(t,j) e D ¢t j+1) € G((t4))-

Proposition A.2: ([30, Proposition 2.2]) Consider the hybrid
system H = (C,F,D,G). Let €€ CUD. If¢ € D or

(VC) there exist € > 0 and an absolutely continuous function

z : [0,e] = R™ such that z(0) = &, 2(t) € F(z(t)) for
almost all t € [0,¢] and z(t) € C for all t € (0,¢],
then there exists a nontrivial solution ¢ to H with $(0,0) = &.

If (VC) holds for every ¢ € C\ D, then there exists a nontrivial

solution to H from every point of C' U D, and every ¢ € Sy

satisfies exactly one of the following:

a) ¢ is complete;

b) ¢ is not complete and “ends with flow”, with (T,J) =
supdom ¢, the interval I I has nonempty interior; and
either

b.1) I’ is closed, in which case ¢(T,J) € C'\ (C U D); or

b.2) 17 is open to the right, in which case (T,J) ¢ dom ¢,

and there does not exist an absolutely continuous function
z : IY — R™ satisfying 2(t) € F(z(t)) for almost all
t eI’ 2(t) € C forallt €int I7, and such that z(t) =
o, J) forall t € I’;

¢) ¢ is not complete and “ends with jump”: for (T,J) =
sup dom ¢, one has ¢(T,J) ¢ C U D.

Furthermore, if G(D) C CUD, then c) above does not occur.

t € intl?,

for almost all ¢ € I7,

B. Auxiliary Definitions and Results for Set-valued Maps

Definition A.3: (outer semicontinuity of set-valued maps)
A set-valued map S : R® =% R™ is outer semicontinuous at
x € R™ if for each sequence {x;}$°, converging to a point
x € R™ and each sequence y; € S(z;) converging to a point
y, it holds that y € S(x); see [37, Definition 5.4]. Given a set
K C R™, it is outer semicontinuous relative to K if the set-
valued mapping from R™ to R™ defined by S(z) for x € K
and () for z ¢ K is outer semicontinuous at each x € K.

Definition A.4: (Lipschitz continuity of set-valued maps)
Given a set-valued map F' : R" x W, == R", the mapping
x + F(x,w) is locally Lipschitz uniformly in w at z, if there
exists a neighborhood U of x and a constant A > 0 such that
for every £ € U

F(z,w) C F(&,w)+ Az —¢|B
Yw € {w € W, : (U x W.) Ndom F'}.

Furthermore, © — F(z,w) is locally Lipschitz uniformly in
w on set K C dom F' when it is locally Lipschitz uniformly
in w at each = € IT¥(K).

Lemma A.5: ([34, Theorem 2.9.10]) Given a set S := {x :
h(z) < 0}, suppose that, for every x € {z : h(x) = 0}, h
is directionally Lipschitz at x with 0 ¢ Vh(z) # 0 and the
collection of vectors Y := {y : (Vh(z),y) < oo} is nonempty.
Then, the set S admits a hypertangent at x and

1) y € Ts(x) if (Vh(z),y) <0;
2) Jy € intTs(z) NintY such that (Vh(z),y) < 0.
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