
A Hybrid Control Algorithm for Object Grasping

Using Multiple Agents

Hyejin Han and Ricardo G. Sanfelice

Abstract— This paper presents a hybrid control approach for
grasping objects by multiple agents without rebounding. When
multiple agents grasp an object cooperatively, the motion of
the agents is constrained due to the geometrical and frictional
conditions at the contact points. In this paper, each agent acting
on an object of interest is controlled by a hybrid controller
which includes a position controller, a force controller, and
some logic to coordinate grasping. The proposed approach
provides a method to steer the agents to grasping positions on
an object along appropriate directions and to asymptotically
exert stabilizing forces at each contact point. The stability
properties induced by the hybrid controller can be asserted
using Lyapunov stability tools for hybrid systems. The set of
allowed initial conditions guaranteed is characterized using
sublevel sets of Lyapunov functions. The proposed algorithm is
verified in simulations.

I. INTRODUCTION

Despite decades of research, there still exists the challenge
of performing robust autonomous grasping and manipulation
by reliable physical interactions. Most grasping tasks require
robust control of the contact forces and of the motion of the
robot. Due to the fact that grasping tasks are accomplished
through contacts, it is crucial to perform the transition
between non-contact and contact motion without rebounding
so that the contact between the robot and the grasped object
is maintained once established.

Various approaches have been proposed to address the
problem of controlling robots that execute tasks while in
contact with the environment. In [1], a hybrid force and
position controller was proposed to control both the motion
of the robot and the force between the end-effector and its
work environment. The solution in [1] provides a way to
select compliant directions to interact with the environment.
A dynamic hybrid control method, which takes the dynamics
of the manipulator into consideration, is proposed in [2].
A unified approach for end-effector dynamic control and
contact forces in the operational space framework has been
proposed in [3]. In the operational space framework, end-
effector tasks that involve constrained motions and contact
forces are formulated. While most approaches have been de-
veloped for controlling the position and force simultaneously,
these require the knowledge of the kinematics and dynamics
of the entire robot [4], [5].

Switching strategies were proposed in [6]–[8] to overcome
the problem of transition from unconstrained motion of the
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end-effector to constrained motion. However, it is often
difficult to select appropriate gains and parameters of the
controllers, and several bouncing events on the contact sur-
face might happen before the contact is stable. Meanwhile,
coordinated controls of multiple robots have been addressed
in many scenarios, which include manipulation tasks such
as grasping a large flexible object [9], [10]. Each robot
has an independent controller and is autonomous, so that a
decentralized framework can be applied to grasp an object.

In this paper, building from the control strategy in [11], a
hybrid control algorithm for grasping tasks involving multi-
ple agents is proposed. We provide a design procedure for the
individual agents’ hybrid controllers. Each hybrid controller
is designed to control individual position and force, the latter
relying only on contact force measurements to assure that
rebounding does not occur from a certain compact set of
initial conditions. With the proposed controller, each agent
approaches the desired contact point along a constrained task
direction and exerts the appropriate force onto the grasped
object. The proposed algorithm guarantees that contact be-
tween all of the agents and the object occurs simultaneously
and that the desired set points are robustly asymptotically
stable.

This paper is organized as follows. Basic notions are
summarized in Section II. Section III introduces the prob-
lem to be solved and outlines our proposed solution. The
proposed solution is presented in more detail in Section
V. The modeling, analysis, and design is performed in the
framework of hybrid systems in Section III. Due to space
constraints, some details and proofs are omitted and will be
published elsewhere.

II. PRELIMINARIES

A hybrid system H = (C, F, D, G) can be described as

H

{
µ̇ = F (µ) µ ∈ C
µ+ = G(µ) µ ∈ D

(1)

where µ ∈ R
n is the state and R

n denotes n-dimensional
Euclidean space, F : R

n → R
n denotes the flow map

capturing the continuous dynamics on the flow set C⊂R
n,

and G : R
n → R

n defines the jump map capturing the
discrete dynamics on the jump set D ⊂ R

n. A solution to
the hybrid system H is parametrized by (t, j) ∈ R≥0 × N

where t is the ordinary time variable and j is the discrete
jump variable, R denotes the real numbers, R≥0 := [0,∞),
and N :={0, 1, 2, . . .}. See [12] for more details about hybrid
dynamical systems.

A function α : R≥0 × R≥0 7→ R≥0 is a class-KL
function, also written β ∈ KL, if it is nondecreasing in
its first argument, nonincreasing in its second argument,
limr→0+ β(r, s) = 0 for each s∈R≥0, and lims→∞ β(r, s)=



0 for each r ∈ R≥0. Given a set S and a point x, dist(S, x)
denotes the Euclidean distance from x to S.

III. PROBLEM STATEMENT AND OUTLINE OF HYBRID

CONTROL SOLUTION

We consider the problem of grasping an object at N
contact points using the same number of end-effectors or
agents evolving in space. Each contact point and associated
force to exert, denoted (xd

c,i, y
d
c,i, z

d
c,i)∈R

3 and fd
c,i∈R

3 for

each i ∈ I := {1, 2, . . . , N}, respectively, will serve as the
reference to each of the agents; these are provided by a grasp
generator. Motivated by the challenges outlined in Section I,
the problem to solve is as follows:

Problem: Given an object to grasp, N agents to achieve
contact with the object, and, for each i ∈ I, contact
positions (xd

c,i, y
d
c,i, z

d
c,i) and desired contact forces fd

c,i,
design an algorithm to guarantee that the N agents establish
simultaneous contact at points nearby (xd

c,i, y
d
c,i, z

d
c,i) without

rebounding and, after that, asymptotically exert force fd
c,i for

each i ∈ I. �

Our approach to providing a solution to this problem is to
treat the grasping task involving multiple contact points as
a multi-agent system in which each agent is commanded by
an individual (hybrid) feedback controller, which, in turn,
is coordinated by a (hybrid) supervisory algorithm. More
precisely, a hybrid closed-loop system corresponding to agent
i has state ξi and dynamics of the form

Hi

{
ξ̇i = Fi(ξi) ξi ∈ Ci

ξ+i = Gi(ξi) ξi ∈ Di
i ∈ I, (2)

and the resulting system consists of N hybrid systems
coordinated to perform the desired grasping task.

To solve the stated problem, we develop a hybrid controller
supervising individual controllers in each agent, namely, po-
sition controllers and force controllers. Using the information
provided by a grasp generator, the main task of each such
controller is to first regulate position, so as to steer the agent
to nearby the contact point simultaneously, and then regulate
both position and force, so as to keep the vehicle nearby
the contact point and exert the force needed to establish a
stable grasp without rebounding. The supervisor employs the
output of an algorithm providing the contact points and force
needed to establish a stable grasp. Furthermore, when small
perturbations are present in the system, which may trigger
events of the supervisor at different time instances, contact
between the agents and the object occur at times and at
points that are nearby to those in the nominal conditions,
and the resulting forces remain close to those determined by
the grasp generator. The proposed logic does not incorporate
avoidance strategies between the agents and the objects but
that is part of future work.

IV. OBJECT GRASPING USING MULTIPLE AGENTS

A. Agents model

We consider agents with dynamics in joint space given by

M(q)q̈+ C(q, q̇)q̇ +N (q, q̇) = T − J ⊤(q)fc (3)

where M is the manipulator inertia matrix, C is the Coriolis
matrix, N includes gravity terms and other forces that act
at the joints, T is the vector of the actuators’ torques, J

is the Jacobian matrix relating the joint space velocity to
the workspace velocity, and fc is the vector of the contact
forces due to the interaction between the manipulator and
the environment. As the interest is in the interaction of N
agents with an object, for each i ∈ I, (3) is rewritten in
the workspace coordinates χi = (xi, yi, zi) ∈ R

3, after a
coordinate transformation from q to χi, which results in [13]

M̃iχ̈i + C̃iχ̇i + Ñi = Fi − fc,i (4)

where M̃i, C̃i, and Ñi (for simplicity their arguments are
not included) are obtained from the matrices in joint space
(namely, Mi, Ci, and Ni; cf. (3)), and Fi is the vector of
forces/torques applied at the end-effector of the i-th agent.
Section V-B also illustrates the proposed hybrid controller
on a nonholonomic model of the agents.

B. Object model

The surface of the object to grasp is assumed to be soft
and so both the tangent plane and the normal can be defined
at the contact points – these points are obtained from an
algorithm that calculates a stable grasp; see Section IV-D.
The object is defined by the set of points given by

W = {χ : s(χ) ≤ 0}

where s is a function that is smooth enough and χ are the
workspace coordinates.

C. Contact force model

To characterize the relationship between the bodies’
penetration and the reaction force involved in the end-
effector/object interaction, we employ the so-called Kelvin-
Voigt linear contact model. In such a model the viscoelastic
material of the environment is described by the dynamics of
a linear spring with stiffness kc and damper coefficient bc.
The contact force fc,i is then given as follows [14]:

fc,i(χi, χ̇i) = kcχℓ,i + bcχ̇ℓ,i (5)

when contact between the end-effector and the object oc-
curs, and zero otherwise. The states χℓ,i and χ̇ℓ,i are the
compression distance and the compression velocity along
the direction of contact, respectively – we use subindex ℓ to
denote such local coordinates. Figure 1(a) depicts such local
coordinates on the (x, y)-plane: red and green lines on the
desired contact point refer to xℓ,i-direction and yℓ,i-direction,
respectively.

D. Stable grasp generator

Given the object to grasp as defined in Section IV-B, we
choose the contact points and forces in the workspace

(xd
c,i, y

d
c,i, z

d
c,i) ∈ R

3, fd
c,i ∈ R

3 ∀i ∈ I (6)

that guarantee a stable grasp. The force balance equations
for a grasped object subject to the contact force fc,i with a
set of N contact points can be described as follows:

w = G̃f (7)

where w is the resulting wrench, G̃=[G̃1 · · · G̃N ] such that

G̃i =

[
ni si 0

(xd
c,i, y

d
c,i, z

d
c,i)×ni (xd

c,i, y
d
c,i, z

d
c,i)×si ni

]
, (8)
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Fig. 1. Example of grasping task with three agents (i.e., N = 3) on the
(x, y)-plane. (a) For each agent i, the desired contact point (xd

c,i, y
d
c,i) is

given by the grasp generator. Red and green lines on the desired contact
point refer to the xℓ,i-direction and yℓ,i-direction, respectively. (b) Position
trajectory of each agent until the contact force is stabilized.

for each i ∈ I; f = (fd
c,1, . . . , f

d
c,N), and ni and si are the

normal and tangent to the object at the i-th contact point,
respectively. A solution (6) to (7) with w=0 defines a stable

grasp, where G̃ is determined by the contact force and object
models.

There exist various approaches to optimize the placement
of grasp points. In this paper, we use the method of maximiz-
ing grasp quality in [15]. Using the Ferrari-Canny metric, the
most commonly used metric as a grasp quality evaluation,
an optimal grasp minimizing the contact force magnitudes
has been chosen among multiple different grasps satisfying
(6) with w=0. We refer the reader to [16] for more details
of the choice of the contact points and forces.

V. HYBRID CONTROL ALGORITHM FOR GRASPING

USING MULTIPLE AGENTS

A. Hybrid Controller for Synchronized Grasping

The proposed controller is hybrid due to the combination
of state variables that change continuously and, at times,
jump [12], [17]. To coordinate each of the agents, the hybrid
controller implements a supervisory logic that employs a
controllable decreasing timer variable τi ∈ R≥0 and a logic
variable qi∈Q := {−1, 0, 1, 2, 3} for each i ∈ I agent. The
timer state is used to schedule the steering of the agents so
as to make contact with the object simultaneously. The five
possible values of the logic variable represent the different
modes of operation and phases therein – these are defined
in the enumerated list below.

For each agent, the hybrid controller includes a position
controller and a force controller for the purposes of control-
ling the position of the agents and the force exerted to the
object. The position controller steers the agent to contact.
The force controller employs measurements of the contact
force in the direction of motion. To design these control
algorithms, we follow the approaches in [3], [7], and [8].
First, we design the following inner feedback-linearizing
loop that compensates for the internal and external forces of
the manipulator, but certainly does not overcome the contact
force:

Fi = ui + C̃iχ̇i + Ñi (9)

where ui is a new virtual control input. Then, as in [7],
without loss of generality, we focus on the case in which
the interaction between the agent and its environment occurs
along a normal direction to the object, namely, the interaction
between the agent and the object happens at a point on the
line with that normal direction. We refer to this line as the

interaction line; see Figure 1(a). Assuming that the mass is
unitary, the dynamics of the agent along the interaction line

is given as follows:

χ̈i = ui − fc,i(χi, χ̇i). (10)

Using the contact force model in Section IV-C, once an
agent reaches the surface of the object, the contact force is
calculated based on the compression distance and velocity,
respectively, for which, when focusing on the interaction
between the agents and the object along the interaction line,
results in fc,i in (5) being a scalar quantity given in local
coordinates xℓ,i and ẋℓ,i; namely, when contact occurs,

fc,i(χi, χ̇i) = kcxℓ,i + bcẋℓ,i (11)

Note that the xℓ,i-direction spans the interaction line as it is
defined as the direction of the contact force.

Given the contact points and forces in (6) from the grasp
generator, and assuming that the agents start far enough away
from the object, the proposed supervisory logic for each
agent i∈I is as follows:

1) The position controller initially steers the agents to
(nearby) the interaction line. During this phase the i-
th agent is in position control mode, for which qi=0.

2) When the agent position is close enough (characterized
by the parameter ε>0) to the interaction line, the agent
enters into waiting mode, for which qi=2. In this mode
the agent holds its position.

3) When all agents are in waiting mode, all logic variables
are set to value 3 and the travel time of each agent
to make contact with the object is computed by solving
the closed-loop system dynamics. Then, the appropriate
waiting duration for each agent is calculated by resetting
τi to a nonnegative value chosen to guarantee that all
agents establish contact with the object simultaneously
when the timer expires. The decreasing timer counts
down as long as it is nonnegative. The logic variable qi
of the agents in this phase remains at 3.

4) When τi reaches zero, the logic variable is reset to qi=
1, and the agent enters another position control mode

phase, but now the agent is directly steered towards the
object along the interaction line.

5) When the contact force fc,i is larger than or equal
to a certain threshold (denoted γi

2), we set qi = −1
to put the agent in force control mode. The force
controller is activated and the contact force is regulated
to the magnitude of fd

c,i. A switch back to the position
controller is only possible when the contact force has
decreased enough (characterized by a parameter γi

1,
which is positive and strictly smaller than γi

2) – this
hysteresis mechanism assures that rebounding does not
occur and provides robustness to small perturbations;
see [11] for more details.

As a result, all agents make contact with the object simulta-
neously and maintain contact at nearby the desired location
without rebounds.



The logic outlined above can be modeled as a hybrid
control algorithm given in terms of differential and difference
equations with constraints. With such a model, the tools for
stability analysis in [12], [17] are applied; see Section V-B.
The state of the control algorithm is given by

η = (q1, τ1, q2, τ2, . . . , qN , τN )

and its input is

uc = ((χ1, χ̇1), fc,1, (χ2, χ̇2), fc,2, . . . , (χN , χ̇N ), fc,N)

plus the measurement noise signal on (χi, χ̇i) and fc,i

m = (m1,mfc,1 ,m2,mfc,2 , . . . ,mN ,mfc,N ).

Next, we provide the differential and difference equations,
along with the constraints, for each agent i ∈ I modeling
the proposed control algorithm. Below, li denotes the i-th
interaction line.

Flows: The continuous change of the logic variable qi is
given by the (trivial) differential equation

q̇i = 0 (12)

which always keeps the logic variables constant in the
continuous-time regime. The timer variable τi continuously
decrements itself according to the differential equation

τ̇i = −1 (13)

when qi = 3 and τi ≥ 0 and, for any other values of qi and
τi, τi changes (trivially) according to

τ̇i = 0 (14)

Jumps: The jumps of the hybrid controller update the vari-
ables qi and τi so as to implement the logic above. These
updates are instantaneous and governed by the following
difference equations with constraints:

a) From position control mode to waiting mode:

q+i = 2, τ+i = τi (15)

when qi = 0 and dist(li, χi) ≤ ε
b) From waiting mode to position control mode:

b1) to steering toward the object (first phase):

q+i = 1, τ+i = τi (16a)

when qi=3, dist(li, χi) ≤ ε and τi ≤ 0,
b2) to steering back to nearby the line (second phase):

q+i = 0, τ+i = τi (16b)

when qi∈{2, 3} and dist(li, χi) ≥ ε′, ε′>ε

c) From position control mode to force control mode:

q+i = −1, τ+i = τi (17)

when qi = 1 and fc,i ≥ γi
2

d) From force control mode to position control mode:

q+i = 1, τ+i = τi (18)

when qi = −1 and fc,i ≤ γi
1

e) From waiting mode (first phase) to waiting mode (sec-
ond phase) when all agents are nearby their respective
interaction line:

q+i = 3, τ+i = Ti(χi) (19)

when qi=2 for all i∈I, and Ti is the waiting time that

is calculated based on the time to reach the surface of
the object for each agent i.

The output of the hybrid controller assigns the virtual input
ui (see (9)) of the agents as follows:

ui =





κP (χi, χ̇i) if qi ∈ {0, 1}
κF (χi, χ̇i, fc,i) if qi = −1
(0, 0) if qi ∈ {2, 3}

(20)

where κP is the position controller and κF is the force
controller. Note that when the agent is in waiting mode, its
input is identically zero so as to wait at the current location.
The time to reach the surface of the object, namely, Ti,
can be analytically computed once the position controller
is designed. More details on how to design such feedback
laws using Lyapunov theory are provided next.

B. Main Results

The state of each individual agent is denoted ηi∈R
3 and

represents position and velocity in the local frame.1 For agent
i ∈ I, the states ηi,1 and ηi,2 are the position and velocity
in the xℓ,i-direction, and ηi,3 is the position in the yℓ,i-
direction. As stated in Section V-A, the i-th hybrid controller
employs τi and qi to implement a supervisory logic. The
logic therein leads to an i-th hybrid closed-loop system
Hi=(Ci, Fi, Di, Gi) as in (2) with state ξi := (ηi, τi, qi) ∈
Z := R

3 × R≥0 ×Q. The controller parameters kip, kid are
the proportional and derivative feedback gains of the xℓ,i

position controller, respectively, and kip,y is the proportional
feedback gain of the yℓ,i position controller. The parameter
kif is the proportional feedback gain of the force controller.

For each i∈I, we define Ai :=(xF
ℓ,i, 0, y

d
ℓ,i) where xF

ℓ,i=

fd
c,i/kc. Then, given parameters kc, bc∈(0,+∞) of the work

environment and desired contact force 0<fd
c,i< f̂c,i where

f̂c,i is the maximum allowed force, one can always find

1) compact sets K0,i,K1,i,K2,i ⊂ R
3,

2) parameters kip, k
i
d, k

i
p,y, k

i
f , γ

i
1, γ

i
2, x

d
ℓ,i of the hybrid

controller

such that the set Ai×{0}×{−1} is locally asymptotically
stable with basin of attraction containing ((K0,i×{0}×{1})∪
(K1,i×{0}×{0})∪ (K2,i×{0}×{−1})) for Hi. In fact, a
particular choice of these sets is

• K0,i=(LV1
(r1)∩{ηi∈R

3 : ηi,1≤0})∪(LV2
(r2)∩{ηi∈

R
3 : ηi,1 ≥ 0}) where xd

ℓ,i, k
i
p, k

i
d > 0, V1(ηi,1, ηi,2) =

1
2a1(ηi,1−xd

ℓ,i)
2+ 1

2b1η
2
i,2 with a1, b1 satisfying a1

b1
=

kip, and V2(ηi,1, ηi,2) =
1
2a2(ηi,1−xP

ℓ,i)
2+ 1

2b2η
2
i,2 with

a2, b2 satisfying a2

b2
= kip+kc where xP

ℓ,i :=
ki
p

ki
p+kc

xd
ℓ,i;

r1 and r2 are the maximum value of the level set of V1

and V2, respectively, such that the following conditions
are satisfied: the r1-level set of V1 intersects the point
ηi,1=0, ηi,2=η∗i,2−δ and r2=min{ra2 , r

b
2}, where the

ra2 -level set of V2 is such that it crosses the intersection
of the rF -level set and the min γi

2 line, and the rb2-level
set of V2 is such that it intersects the point ηi,1 = 0,
ηi,2=η∗i,2 − δ, where η∗i,2 is the maximum value of the

velocity allowed at the contact location and δ∈(0, η∗i,2);

1For simplicity, we write it in local coordinates. The global coordinates
case requires replacing ηi by Φ(ηi) where Φ(ηi) is a transformation
involving both rotation and translation of the coordinates.
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Fig. 2. Example of sublevel sets of Lyapunov functions. η0i :=(η0i,1, η
0

i,2)
is the initial point. The lines lγ1 and lγ2 are given by lγ1 :={(ηi,1, ηi,2) :

ηi,2=− kc
bc

ηi,1 + γ1
bc

} and lγ2 :={(ηi,1, ηi,2) : ηi,2=− kc
bc

ηi,1 + γ2
bc

}.

• K1,i=LV3
(r3) where V3(ηi,3)=

1
2a3(ηi,3−ydℓ,i)

2, a3>

0, kip,y>0, and r3>0;
• K2,i = LVF

(rF ) where VF (ηi,1, ηi,2) := a(ηi,1 −

xF
ℓ,i)

2+ bη2i,2+2c(ηi,1−xF
ℓ,i)ηi,2, and PF :=

[
a c
c d

]
=

R
[
p1 0
0 p2

]
R⊤, p1, p2 > 0, R :=

[
− sinβ − cosβ
cosβ − sinβ

]
,

and β := arctan(−kc/bc), k
i
f ∈

(
0, −2c2kc+abkc+acbc

(bkc−cbc)2

)
;

rF is the value of the level set of VF when VF is at
ηi,1=0, ηi,2=

c
b
xF
ℓ,i where xF

ℓ,i :=fd
c,i/kc; and

the parameters in 2) can be chosen as follows: γi
1,min = 0,

γi
1,max = xF

ℓ,i

(
kc −

√
k2
cb−2ckcbc+ab2c

b

)
, γi

2,min = bc
c
b
xF
ℓ,i,

γi
2,max=kc min{ kp

kp+kc
xd
ℓ,i, x

F
ℓ,i}, xd

ℓ,i∈ [xd
ℓ,imin

,+∞] where

xd
ℓ,imin

=xF
ℓ,ibc

c
b

kp+kc

kpkc
. Since the hybrid closed-loop system

satisfies the hybrid basic conditions (see [17]), we can find
β ∈ KL such that for each ǫ > 0 and each compact set
Ki,0,Ki,1,Ki,2⊂R

3 such that ((K0,i×{0}×{1})∪ (K1,i×
{0}×{0}) ∪ (K2,i×{0}×{−1})) is a subset of the basin
of attraction of Hi, there exists δ∗ > 0 such that for each
position and force measurement noise m : R≥0 → δ∗B,
solutions ξi to Hi with noise m for initial conditions z0i ∈
((K0,i×{0}×{1})∪ (K1,i×{0}×{0})∪ (K2,i×{0}×{−1}))
are such that the ηi component of the solutions satisfy
|ηi(t, j)|A ≤ β(|η0i |A, t + j) + ǫ for each (t, j) ∈ dom ξi.
Figure 2 shows an example of sublevel sets of Lyapunov
functions above.

C. Nominal case

Now, we illustrate the design conditions above. We con-
sider the task of grasping an object with multiple con-
tact points. The proposed hybrid system is simulated with
MATLAB using the Hybrid Equation (HyEQ) Toolbox [18].
The simulation results show how the proposed controller
stabilizes the horizontal and vertical positions and ensures
contact force regulation in the multi-agent systems.2

In the following simulation, we apply the proposed hybrid
controller in Section V-A for N = 3 to grasp an object
defined on the (x, y)-plane as a polygon with vertices (in
clockwise order) given by {(−1.89,−4.95), (−4.99,−4.22),
(−3.70, 3.26), (−0.31, 4.96), (2.94, 4.62), (4.34,−3.48)};
see Figure 1. The parameters kc and bc are set to 10 and

2Simulation code can be found at
https://github.com/HybridSystemsLab/MultiAgentGrasping

0 1 2 3 4 5 6
-4

-2

0

2

0 1 2 3 4 5 6
-5

0

5

10

0 1 2 3 4 5 6
-3

-2

-1

0

0 1 2 3 4 5 6
-2

0

2

4

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6

0

2

4

6

8

Time[s]

η1,1

η1,2

η1,3

q1

τ1

fc,1

fc,1 ≥γ1
2

(a) Agent 1

0 1 2 3 4 5 6
-4

-2

0

2

0 1 2 3 4 5 6
-5

0

5

10

0 1 2 3 4 5 6
0

1

2

0 1 2 3 4 5 6
-2

0

2

4

0 1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0 1 2 3 4 5 6

0

2

4

6

8

Time[s]

η3,1

η3,2

η3,3

q3

τ3

fc,3

fc,3≥γ3
2

(b) Agent 3

Fig. 3. Grasping task with three agents: Plots of state variables of agent
1 and agent 3 in their local frames.
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Fig. 4. Plots of ηi,1 corresponding to each agent.

0.3, respectively. For each i ∈ I := {1, 2, 3}, the gains
kif , kip and kip,y are set to 16.0, 2.0 and 4.0, respectively;

the set of gains (k1d, k
2
d, k

3
d) is set to (1, 0.5, 0.5). The

desired contact forces fd
c,i obtained from the stable grasp

generator are 4.39, 4.2 and 2.97, respectively, at each con-
tact point. The thresholds γi

1 and γi
2 are chosen as 0.76

and 1.33, respectively. The thresholds ε and ε′ are set to
0.01 and 0.05, respectively. The initial condition of each
agent is (η01,1, η

0
1,2, η

0
1,3) = (−0.5, 0, 0), (η02,1, η

0
2,2, η

0
2,3) =

(−0.5, 0, 1), (η03,1, η
0
3,2, η

0
3,3)=(1, 0, 0), respectively.

Figure 3 illustrates the closed-loop trajectory of the three
agents obtained from the simulation. The vertical position
controller is initially applied (i.e., qi = 0). Approximately
1.5 seconds later, when dist(li, ξi) = |ηi,3 − ydℓ,i| ≤ ε, the
horizontal position controller is applied (i.e., qi =1). When
the contact force fc,i ≥ γi

2, the force controller is activated

(i.e., qi=−1). The contact force is regulated to fd
c,i by using

the force controller. As the plots of the contact forces in
Figure 3 indicate, the proposed hybrid controller guarantees
that the agents do not bounce off the surface of the object
after contact.

As shown in Figure 4, at approximately 2.5 seconds, all
three agents make contact with the object (i.e., {xi,1}3i=1=0)
simultaneously. A movie of this simulation is available at

https://github.com/HybridSystemsLab/MultiAgentGrasping
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Fig. 6. Noise case: Plots of local position xℓ,i for each agent.

https://youtu.be/6B8m584u-g4.

Figure 5 shows the trajectories with respect to the local
coordinates for different environments. After each agent
makes contact with the object (i.e., xℓ,i = 0), it maintains
its contact with the object while the position of each agent
is stabilized. Note that the different environment material
stiffness kc, the equilibrium point xF

ℓ,i is changed according

to xF
ℓ,i = |fd

c,i|/kc so as to exert the desired contact force

magnitudes of fd
c,i.

D. Noise case of agents having Dubins-like dynamics

Figure 6 shows the trajectories of the position xℓ,i corre-
sponding to each agent with different values of noise. In this
section, motivated by the wide applicability of Dubins-type
models, we apply our hybrid controller to the car-type model
given by

ẋℓ,i = vℓ,i cos θℓ,i, ẏℓ,i = vℓ,i sin θℓ,i,

v̇ℓ,i = uv,i − fc,i, θ̇ℓ,i = uθ,i

(21)

where, for each i∈I agent, (xℓ,i, yℓ,i)∈R
2 denotes planar

position, θℓ,i∈R denotes orientation and vℓ,i∈R denotes the
forward velocity, respectively; see, e.g., [19]. The inputs uθ,i

and uv,i are the angular velocity input and the acceleration
input, respectively. The norm of the angular velocity input is
upper bounded by the constant uθ,i, which implies that the
vehicle turns have a (nonzero) minimum turning radius. In
other words, given an input signal (uθ,i, uv,i), the resulting
paths in the (x, y)-plane have bounded curvature.

In the following simulation, the initial condition of
each agent i ∈ I := {1, 2, 3} is (x0

ℓ,1, y
0
ℓ,1, v

0
ℓ,1, θ

0
ℓ,1) =

(−2.5,−3, 1, π2 ), (x
0
ℓ,2, y

0
ℓ,2, v

0
ℓ,2, θ

0
ℓ,2) = (−2, 3, 1,−π

2 ) and

(x0
ℓ,3, y

0
ℓ,3, v

0
ℓ,3, θ

0
ℓ,3) = (−2.5, 2, 1,−π

2 ), respectively. A
Gaussian noise with zero mean and variance of σ =
0.01, 0.03, 0.05, 0.1, 0.2, 0.25, respectively, define the noise
signals fc,i and mi for each i ∈ I. The contact time tic is

changed under different noises, but mismatch of contact time
is approximately 0.08 seconds in the worst case (Table I).

Compared to the nominal case, mismatch of the equi-
librium points is approximately 0.1 (in norm) in the worst
case. Please go to https://youtu.be/7VPnZj6a7Bo to watch
a movie of this simulation.

σ |t1c − t2c | |t1c − t3c | |t2c − t3c |
0 0 0 0

0.01 0.05 0.05 0
0.03 0.05 0.08 0.05
0.05 0.05 0.05 0
0.1 0 0.08 0.08
0.2 0.05 0.025 0.025
0.25 0.01 0.05 0.05

TABLE I

CONTACT TIME OF THREE AGENTS.
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