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Abstract

Notions and tools for finite time stability of closed sets for hybrid dynamical systems modeled as hybrid inclusions are
introduced. Finite time stability of a closed set is defined as the following two properties: Lyapunov stability, namely, the
property that solutions that start close to the set stay close to it, and finite time convergence. In the latter property, the amount
of time required to converge to the set of interest is captured by a settling-time function that depends on hybrid time, namely,
the time elapsed during flows and the number of jumps (or events) of the hybrid system. Various sufficient conditions for such
properties to hold for a given closed set are established. Conditions involving Lyapunov-like functions that strictly decrease
during flows, that strictly decrease during jumps, and that strictly decrease along both regimes are proposed – these functions
are only required to be locally Lipschitz. A link between (non-finite time) asymptotic stability and the proposed notion is
also established. In addition, sufficient conditions for finite time attractivity involving properties at jumps of the system, the
second derivative of a Lyapunov-like function, and a property of nested sets are provided. Throughout the paper, examples
exercise the results. In addition, an application to finite time parameter estimation is provided and results are applied to it.
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1 Introduction

Finite time stability is a notion that requires convergence
of solutions in finite time. More precisely, a point or,
more generally, a closed set A is finite time stable if the
following two properties hold for the distance between
any maximal solution and the set of interest: has stable
behavior in the Lyapunov sense, that is, solutions that
start close to the set stay close to it; and converges to
zero in finite time. For a continuous-time system of the
form

ż = f(z),

the uniform version of finite time stability for a closed
set A is typically defined as follows:

⋆) Every solution t 7→ φ(t) to the system satisfies

|φ(t)|A ≤ β(|φ(0)|A, t) (1)

for each t in the domain of definition of φ.
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In (1), | · |A denotes the distance to the set A, where
β is a class-GKL function 1 ; see, e.g., [19,8]. The GKL
estimate in (1) implies that the Euclidean distance be-
tween the solution φ and the set A is upper bounded by
a function of their initial distance that decreases to zero
in finite time (when the domain of φ is long enough). A
naturally similar notion can be formulated for discrete-
time systems z+ = g(z), where z+ denotes the value of
the state after discrete updates.

The problem of finite time stability of sets for a class
of hybrid dynamical systems is considered in this paper.
A hybrid dynamical system is denoted as H, has data
(C,F,D,G), and is defined by

ż ∈ F (z) z ∈ C,

z+ ∈ G(z) z ∈ D,
(2)

where z is the state, F is a set-valued map that defines
the continuous dynamics, which are allowed on the sub-
set of the state space C, and G is a set-valued map that
defines the discrete behavior, which is allowed on the
subset D. A solution to H is given by a function φ that

1 A class-GKL function β : [0,∞)× [0,∞) → [0,∞) is such
that, for each fixed t≥ 0, s 7→ β(s, t) is strictly increasing
and continuous, and β(0, t) = 0 for all t ∈ [0,∞); and, for
each fixed s ≥ 0, t 7→ β(s, t) is continuous and, for some
T ∈ (0,∞), decreases to zero as t approaches T .
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is parametrized by (t, j) ∈ [0,∞)× {0, 1, 2, . . .}. When-
ever φ flows according to the continuous dynamics, t in-
creases with ordinary time, while, whenever φ has a jump
according to the discrete dynamics, j is incremented by
one so as to denote the number of jumps in the solution
thus far. For this class of hybrid dynamical systems, the
notion of finite time stability, its properties, and suffi-
cient conditions that guarantee it are provided. Due to
the combination of continuous and discrete dynamics,
an appropriate notion of finite time stability for such
systems should allow for the finite time convergence to
occur after a finite amount of ordinary time t, a finite
number of jumps j, or both. Due to this, the function
characterizing the time to converge to the set of interest
may depend on both t and j. The presence of the sets
C and D in the model (2) further demands solutions to
exist for enough (hybrid) time so as to allow them to
converge to the set of interest. The notions and results
in this paper address all of these challenges.

1.1 Related Work

Significant contributions to the problem of finite time
stability in dynamical systems is available in the litera-
ture. One of the earliest contributions are the works by
Salehi and Ryan [30] and Haimo [17] on finite time con-
trollers. In [30] an optimal feedback controller that con-
verges to the origin in finite time for linear time-invariant
systems with Hurwitz system matrix and nonsingular
input matrix is provided. In [17], motivated by the need
of feedback laws that guarantee convergence to the ori-
gin after a finite amount of time, and unlike optimal
feedback laws that are given by continuous functions of
the state, the notion of finite time differential equations
in continuous time was introduced. Sufficient conditions
involving integrals and auxiliary finite time differential
equations are provided for first and second order sys-
tems, and, using a comparison principle and Lyapunov
functions, extended to nonlinear systems of arbitrary di-
mension. Building from these results and motivated by
the stabilization to the origin of double integrators (see
[6]), Bhat and Bernstein formalized the notion of finite
time stability of the origin and uniqueness of solutions
to such systems in [6] and [8]. The main motivator for
the study of uniqueness of solutions is that a system
with its origin being finite time stable may not have
unique solutions due to the fact that solutions from the
origin that go backward in time are nonunique; hence,
the right-hand side of the system might not be Lips-
chitz at the origin. In [8], within a general framework,
necessary and sufficient conditions for finite time stabil-
ity are presented when solutions are unique in forward
time; cf. [31,17]. A key contribution of [8] is that conti-
nuity of the time to converge function (or settling func-
tion) plays a key role in finite time stability of the origin.
More recently, Moulay and Perruquetti in [24] address
the case when this function is not necessarily continu-
ous. In a follow up article, [26], the authors establish sev-
eral necessary and sufficient conditions for continuous-

time nonautonomous systems using Lyapunov functions.
These finite time stability notions and sufficient condi-
tions have been used in multiple applications, includ-
ing the design of observers [23,21], consensus algorithms
for multi-agent systems [20], finite-time converging feed-
back controllers [30,33], and finite-time parameter esti-
mators [29]. It should be noted that much of the litera-
ture on finite time stability pertains to sufficient condi-
tions. It appears that the only rigorous statements about
converse Lyapunov theorems for such a notion are in
[7,8]. In those articles, Bhat and Bernstein formulate a
converse result that requires continuity of the settling-
time function. They argue that, in general, one may not
be able to relax such assumption and indicate that there
are examples with a finite time stable equilibrium point
for which it is impossible to find a continuously differen-
tiable Lyapunov function certifying finite time stability.

Another type of finite time stability following the idea in
[12] has also beenwidely researched. Such notion guaran-
tees that, within a finite time interval, all inputs bounded
by a prescribed constant result in outputs bounded by
another constant. In [4], finite-time control problems are
studied. In [3,2], finite time stability for continuous-time
linear time-varying systems with jumps is considered. In
[5], sufficient conditions for finite time stability of sys-
tems with impulsive dynamics are studied under the as-
sumption that the continuous-time dynamics are linear
time-varying and impulsive behavior is linear, which re-
stricts its applicability.

The fact that the aforementioned results on finite time
stability pertain to either continuous-time or discrete-
time systems prevents their use for systems with vari-
ables that can change both continuously and, at times,
jump, that is, hybrid dynamical systems. Hybrid dynam-
ical systems are a powerful class of systems able of cap-
turing the dynamics of a wide range of systems, rang-
ing from mechanical and electrical systems to biological
systems, and beyond. While a theory for the study of
asymptotic stability of sets, along with its robustness, is
available in the literature [14,15], the case of that notion
when attractivity occurs in finite (hybrid) time, namely,
finite time stability, has not been thoroughly studied
for such systems. The hybrid systems literature includes
very few – yet important – efforts towards the develop-
ment of such missing theory. In [27], Nersesov and Had-
dad introduce sufficient conditions for finite time sta-
bility of the origin for a particular class of time-driven
hybrid systems, referred to as impulsive dynamical sys-
tems. In that work the authors employ scalar and vector
Lyapunov functions, being sufficient conditions for the
continuous evolution of the impulsive systems their fo-
cus – in particular, finite time attractivity due to jumps,
or both due to flows and jumps, are not studied in [27].
In [28], Orlov studies finite-time stability of the origin of
switched systems that are piecewise continuous and ho-
mogeneous, and shows that global asymptotic stability
of the origin implies global finite-time stability. In [10],
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and relying on the results in [8], Chen and coauthors
study switched systems and provide conditions to assure
finite time stability of the origin. In addition to a notion
of finite time stability that does not prioritize neither the
continuous nor the discrete dynamics, results on robust-
ness of finite time stability for general hybrid dynamical
systems are also not available in the literature.

1.2 Contributions

In this paper, we introduce and study notions of finite
time stability for a class of hybrid systems. Finite time
stability for closed sets is defined as the property that
every maximal solution that starts close to the set stays
close to the set (stability) and that, for some neighbor-
hood around the set, solutions converge to it in finite
hybrid time (finite time attractivity). The finite time at-
tractivity property is characterized by a function, the
settling-time function, that has value equal to zero at
the set. Properties with respect to initial conditions and
time are proposed. A particular feature of the proposed
notions is that when the hybrid system has no jumps,
meaning (2) has an empty jump set, then the proposed
notions covers those for continuous-time systems. Sim-
ilarly, these proposed notions cover the case when the
hybrid system has no flows. Furthermore, the new no-
tions allow also for solutions that converge after a finite
amount of flow time and a finite number of jumps.

After the finite time stability notion is illustrated in ex-
amples, we introduce several sufficient conditions guar-
anteeing it. First, we propose sufficient conditions that
guarantee finite time stability of a closed set when, dur-
ing flows, a Lyapunov function strictly decreases, while
at jumps, it is nonincreasing. The proposed conditions
imply finite time convergence to the set of interest dur-
ing flows as long as the domain of the solutions flow for
enough amount of time. A dual result for the case when a
Lyapunov function strictly decreases during jumps, and
remains nonincreasing during flows, is established. The
conditions in these two results are combined to formu-
late Lyapunov conditions guaranteeing strict decrease of
a Lyapunov function both along flows and jumps. Un-
like results in the literature, and due to the nonsmooth
nature of hybrid systems, we allow the Lyapunov func-
tions to be locally Lipschitz on an open subset of the
flow set, and continuous everywhere else. Furthermore,
the proposed sufficient conditions lead to expressions or
bounds on the settling-time function.

As the stability part of the proposed finite time stability
notion can be checked using the tools in [15], we explore
alternative conditions guaranteeing finite time attrac-
tivity. The first result proposes conditions guaranteeing
that the set of interest is reached after a jump. This re-
sult is shown to be a useful tool to establish finite time
attractivity for hybrid systems that have a dead-beat-
like property. Under the assumption that the elapsed
time between consecutive jumps is uniformly bounded

above by a positive constant, a second set of sufficient
conditions exploiting properties of the second derivative
of a Lyapunov-like function during flows is proposed. In
addition, a finite time attractivity result for the case of
multiple sets that are finite time attractive with basins
of attractions that are nested is introduced.

Building from the tools in [15] for the study of robust-
ness of asymptotically stability, we present conditions
assuring robustness to small perturbations of finite time
stability of closed sets. The class of perturbations are
general enough to include measurement noise, modeling
disturbances, and unmodeled hybrid dynamics. Further-
more, we exercise this and earlier results in a concrete
application, namely, the estimation of parameters that
enter in affine form the dynamics of a continuous-time
system. In particular, we show that small perturbations
on the dynamics of the affine system do not lead to much
different estimates than in the nominal case.

Examples throughout the paper illustrate the results.
Our results for general hybrid systems are used to show
that a slight variation of the algorithm in [1,18] for finite
time estimation of parameters can be shown to induce a
finite time stability property of the zero-error estimation
set globally.

The organization of the remainder of this paper is as
follows. Section 2 presents preliminaries about the hy-
brid systems framework used and nonsmooth Lyapunov
functions. The finite time stability notion and associated
sufficient conditions are in Section 3. A preliminary ver-
sion of this work was presented in the conference paper
[22] without proofs and fewer details. In particular, this
paper includes all of the technical proofs, new results
(Theorem 3.10, Theorem 3.18, and Proposition 3.21), a
new example (Example 3.19), and an entire new section
with an application to finite time parameter estimation
(Section 4, with Proposition 4.4 and Example 4.5).

2 Preliminaries

2.1 Notation

Given a set S ⊂ R
n, S is the closure of S and is de-

fined by the intersection of all closed sets containing
S; conS denotes the closure of the convex hull of S.
Given ν ∈ R

n, w ∈ R
m, the Euclidean vector norm

|ν| :=
√
ν⊤ν, and [ν⊤ w⊤]⊤ is equivalent to (ν, w). Given

a function f : Rm → R
n, its domain of definition is de-

fined as dom f := {x ∈ R
m : f(x) is defined}; its range

is defined by rgef := {f(x) : x ∈ dom f}. The right
limit of f is defined as f+(x) := limν→0+ f(x + ν) if it
exists. A function f belongs to C2 if its derivative is con-
tinuously differentiable. For x ∈ R

n and A ⊂ R
n closed,

|x|A := infy∈A |x − y|. A function α : R≥0 → R≥0 is a
class-K function, denoted by α ∈ K, if it is zero at zero,
continuous, strictly increasing; it is a class-K∞ function,
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denoted by α ∈ K∞, if α ∈ K and is unbounded; α
is positive definite, i.e., α ∈ PD, if α(s) > 0 ∀s > 0
and α(0) = 0. A function ϕ : R≥0 × R≥0 → R≥0 is a
class-KL function, also written ϕ ∈ KL, if it is nonde-
creasing in its first argument, nonincreasing in its second
argument, limr→0+ ϕ(r, s) = 0 for each s ∈ R≥0, and
lims→∞ ϕ(r, s) = 0 for each r ∈ R≥0. Given a matrix
A ∈ R

n×n, eig(A) is the set of eigenvalues of A. For any
x ∈ R, ceil(x) denotes the next larger integer of x. The
set SPp×p contains positive semidefinite matrices with
dimension p× p.

2.2 Hybrid Systems

In this paper, a hybrid systemH is defined as in (2) with
data (C,F,D,G), where z ∈ R

n is the state, F : Rn ⇒

R
n defines the flow map representing the continuous dy-

namics and C defines the flow set on which F is effective.
The set-valued map G : Rn ⇒ R

n defines the jump map
andmodels the discrete behavior or jumps. The setD de-
fines the jump set, which is the set of points from where
jumps are allowed. A solution φ to H is parametrized by
(t, j) ∈ R≥0 × N, where t denotes ordinary time and j
denotes jump time. 2 A solution to H is called maximal
if it is not a truncated version of another solution. It is
called complete when its domain is unbounded. A solu-
tion is Zeno if it is complete and its domain is bounded
in the t direction. A solution is precompact if it is com-
plete and bounded. The set of all maximal solutions to
H is denoted by SH, and the set of all maximal solutions
to H with initial condition belongs to a set A is denoted
by SH(A). A hybrid system H is said to satisfy the hy-
brid basic conditions if it satisfies [15, Assumption 6.5].
A set S is said to be forward invariant for H if for each
solution φ to H from φ(0, 0) ∈ S, then rgeφ ⊂ S.

We refer the reader to [15] for more details on these
notions and the hybrid systems framework.

2.3 Nonsmooth Lyapunov Functions

Given a hybrid system H with data (C,F,D,G), let
V : O → R be continuous on O and locally Lipschitz
on a neighborhood of C. Following [11], the generalized
gradient in the sense of Clarke of V at a point z ∈ C,
denoted by ∂V (z), is a closed, convex, and nonempty
set equal to the convex hull of all limits of the sequence
∇V (zi), where zi is any sequence converging to z that
avoids any set with zero Lebesgue measure that contains
points at which V is nondifferentiable – since V is locally
Lipschitz, ∇V exists almost everywhere. Then, Clarke’s
generalized directional derivative of V at a point z in the
direction of v is given by

V ◦(z, v) = max
ζ∈∂V (z)

〈ζ, v〉. (3)

2 A solution to H is defined in [15, Definition 2.6].

Then, for any solution t 7→ z(t) to ż ∈ F (z),

d

dt
V (z(t)) ≤ V ◦(z(t), ż(t)) (4)

for almost all t in the domain of definition of the function
z, where the derivative d

dt
V (z(t)) is understood in the

standard sense since V is locally Lipschitz. The reader
is referred to [11] for more details on the generalized
gradient and Clarke’s generalized directional derivative.

Following [32], a bound on the increase of the function
V along solutions to the hybrid system H is obtained by
defining the function uC : O → [−∞,+∞) as

uC(z) :=





max
v∈F (z)

max
ζ∈∂V (z)

〈ζ, v〉 if z ∈ C

−∞ otherwise
(5)

Then, for each solution φ to H and each t at which
d
dt
V (φ(t, j)) exists, the following bound holds:

d

dt
V (φ(t, j)) ≤ uC(φ(t, j)). (6)

Similarly, to obtain a bound on the change in V at jumps,
the following quantity is defined:

uD(z) :=





max

ζ∈G(z)
V (ζ) − V (z) if z ∈ D

−∞ otherwise
(7)

Then, for any solutionφ toH and for any (tj+1, j), (tj+1, j+
1) ∈ domφ, it follows that

V (φ(tj+1, j + 1))−V (φ(tj+1, j)) ≤ uD(φ(tj+1 , j)). (8)

Note that when F is a single-valued map, uC(z) =
V ◦(z, F (z)) for each z ∈ C. When G is a single-valued
map, uD(z) = V (G(z))− V (z) for each z ∈ D.

3 Finite Time Stability

3.1 Finite Time Stability Notions

In this work, inspired from [8], we focus on the following
finite time stability notion for hybrid systems H.

Definition 3.1 Consider a hybrid system H on R
n, a

closed set A ⊂ R
n, an open neighborhood N of A, and

a function 3 T : N → [0,∞) called the settling-time
function. The closed set A is said to be

1) stable for H if for every ε > 0, there exists δ > 0
such that for every φ ∈ SH(N ) with |φ(0, 0)|A ≤ δ,
we have |φ(t, j)|A ≤ ε for all (t, j) ∈ domφ;

3 Or, more precisely, a functional determining the amount
of time required for a solution φ to converge to A.

4



2) locally finite time attractive (LFTA) for H if there
exists µ such that A + µB ⊂ N and, for each φ ∈
SH(A + µB), we have sup(t,j)∈domφ t + j ≥ T (φ)
and

lim
(t,j)∈domφ:t+jրT (φ)

|φ(t, j)|A = 0; (9)

3) locally finite time stable (LFTS) for H if it is stable
and LFTA for H.

Remark 3.2 The global version of the notions in Defi-
nition 3.1 is obtained when C ∪D ⊂ N ; when LFTA is
global, we write FTA. Furthermore, a “pre” version of the
finite time attractivity notion, like the one in [15, Defini-
tion 3.6], is not pursued here as such a notion would hold
for free for maximal solutions that are not complete – in
fact, such a “finite-time pre-attractivity” property would
always hold for maximal solutions that are not complete
by picking T with large enough values. Since convergence
to a set A that is LFTA occurs in finite time, for each
compact set of the basin of attraction there exists a fi-
nite (hybrid) time such that every solution from the said
compact set converges to A on or before that time. Due
to this, the LFTA notion is uniform on compact sets
and in convergence time. Finally, note that for a given
φ ∈ S(N ) with φ(0, 0) = ξ, T (ξ) can be decomposed as
T (ξ) = T ⋆(ξ)+J ⋆(ξ) for some functions T ⋆ : N → R≥0

and J ⋆ : N → N, with

lim
(t,j)∈domφ:t+jրT ⋆(ξ)+J ⋆(ξ)

|φ(t, j)|A = 0.

The notions in Definition 3.1 are illustrated in the fol-
lowing examples.

Example 3.3 Inspired from [25, Example 14], con-
sider the hybrid system H = (C,F,D,G) with state
z = (x, τ) ∈ R× [0, 1] and data given by 4

F (z)=

[
−k|x|α sgn(x)

1

]
z ∈ C = R× [0, 1],

G(z)=

[
−x

0

]
z ∈ D = R× {1},

(10)

where α ∈ (0, 1) and k > 0. Each maximal solution
φ = (φx, φτ ) to H from φ(0, 0) = (x0, τ0) satisfies

φ(t, 0) =
(
|x0|1−α − k(1− α)t

) 1
1−α sgn(x0) (11)

4 The function sgn : R → {−1, 1} is defined as sgn(x) = 1
if x ≥ 0, and sgn(x) = −1 otherwise.

for all 0 ≤ t ≤ min
{
1− τ0,

|x0|
1−α

k(1−α)

}
. Let N̄ be such that

|x0|1−α

k(1− α)
+ τ0 − 2 ≤ N̄ ≤ |x0|1−α

k(1− α)
+ τ0 − 1,

where N̄ is an integer. If N̄ ≤ −1, we obtain |x0|
1−α

k(1−α) ≤
1− τ0. From (11), we have that φ(t⋆, 0) = 0 where t⋆ =
|x0|

1−α

k(1−α) . Furthermore, φ(t, j) = 0 for all (t, j) ∈ domφ

such that t ≥ t⋆ according to (10). When N̄ ≥ 0, we have

φ(1−τ0, 1)=−
(
|x0|1−α−k(1−α)(1−τ0)

) 1
1−α sgn(x0). (12)

Moreover, after N̄ + 1 jumps,

|φ(1 − τ0 + N̄ , N̄ + 1)|
=

∣∣∣
(
|x0|1−α − k(1− α)(1 − τ0 − N̄)

) 1
1−α

∣∣∣ .
(13)

Therefore, using the property that

1− τ0 + N̄ ≤ |x0|1−α

k(1− α)
≤ 1− τ0 + N̄ + 1,

it implies that φ converges to 0 between the (N̄ + 1)-th
jump and the (N̄ + 2)-th jump. In fact,

φ

( |x0|1−α

k(1− α)
, N̄ + 1

)
= 0

and φ(t, j) = 0 for all (t, j) ∈ domφ such that t ≥
|x0|

1−α

k(1−α) . Therefore, the set {0} × [0, 1] is FTA. △
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(a) The projection of the
states z1 and z2 on the t di-
rection.

t

|z 1
−
z 2
|

0
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1.2

(b) The projection of the Eu-
clidean distance between z1
and z2 on the t direction

Fig. 1. The trajectories of the states (z1, z2) for two fireflies in
(14) and the Euclidean distance between them. Parameters
used are γ = 0.7, z1(0, 0) = 0, z2(0, 0) = 0.3 and ε̃ = 0.1.

Example 3.4 Consider the model of interacting fireflies
in [14, Example 25]. The time of flashes of a firefly is de-
termined by the firefly’s internal clock. In between flashes,
the internal clock gradually increases at a common rate
γ > 0. When it reaches a certain threshold, a flash occurs
and the clock is instantly reset to 0. In a group of fire-
flies, the flash of one firefly affects the internal clock of
all other fireflies. That is, when a firefly witnesses a flash
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from another firefly, its internal clock instantly increases
to a value closer to the threshold. To model the internal
clock of the i-th firefly and to simplify the analysis, we
consider a normalized clock; namely, the clock, denoted
by zi, takes values in the interval [0, 1] and flashes occur
when xi reaches the threshold 1. In between flashes, the
clock state flows toward the threshold according to żi = γ.
The resulting hybrid system H for two fireflies has state
z = (z1, z2) ∈ R

2 and data

F (z) := (γ, γ) ∀z ∈ C,

G(z) :=

[
g((1 + ε̃)z1)

g((1 + ε̃)z2)

]
∀z ∈ D,

(14)

where C := [0, 1] × [0, 1] and D := {z ∈ C :
max{z1, z2} = 1}. The parameter ε > 0 represents
the effect on the timer of a firefly when another fire-
fly’s timer expires, i.e., the timer increases (1 + ε̃)
times its current value. The set-valued map g is defined
as g(s) = s when s < 1, g(s) = 0 when s > 1 and
g(s) = {0, 1} when s = 1. Then, the set of interest is
A = {z ∈ C : z1 = z2}, which defines the situation
when both fireflies flash at the same time, namely, syn-
chronized flashing. It can be shown that the compact set
A is finite time stable for the system H from any open

subsets Ñ ⊂ {z ∈ C : |z1 − z2| 6= (1+ ε̃)/(2+ ε̃)} 5 such

that A ⊂ Ñ . A rigorous analysis will be carried out in
Example 3.12. A simulation is shown in Figure 1. 6 △

3.2 Sufficient Conditions for Finite Time Stability

In this section, several sufficient conditions are estab-
lished for finite time stability of a closed set A for H.

3.2.1 Sufficient conditions for finite time stability

When the distance of each solution φ ∈ SH(N ) to a
closed set A strictly decreases during flows, the condi-
tions in the following result guarantee finite time stabil-
ity. The set N defines an open neighborhood of A.

Theorem 3.5 Consider a hybrid systemH on R
n and a

closed setA⊂N ⊂R
n withN open such thatG(N ) ⊂ N .

The set A is LFTS for H if there exist a continuous
function V : N →R≥0 that is locally Lipschitz on an open
neighborhood of C ∩ N , and c1>0, c2∈ [0, 1) such that

1) for every ξ ∈ N ∩ (C ∪ D) \ A, each φ ∈ SH(ξ)

satisfies V 1−c2(ξ)
c1(1−c2)

≤ sup(t,j)∈domφ t;

5 Solutions from the set {z ∈ C : |z1−z2| = (1+ ε̃)/(2+ ε̃)}
do not converge to A.
6 Code at https://github.com/HybridSystemsLab/FTSFireflies

2) the function V is positive definite with respect to A
and

uC(z) ≤ −c1V
c2(z) ∀z ∈ C ∩N , (15)

uD(z) ≤ 0 ∀z ∈ D ∩N , (16)

where the functions uC and uD are defined in (5) and (7),
respectively. Furthermore, for each φ ∈ SH(N ∩(C∪D))
with φ(0, 0) = ξ:

a) the settling-time function T : N ∩(C∪D) → [0,∞)
satisfies T (ξ) ≤ T ⋆(ξ) + J ⋆(ξ), where T ⋆(ξ) =
V 1−c2 (ξ)
c1(1−c2)

, and J ⋆(ξ) is such that (T ⋆(ξ),J ⋆(ξ)) ∈
domφ;

b) |φ(t, j)|A = 0 ∀(t, j) ∈ domφ such that t ≥ T ⋆(ξ).

Proof Let Ω ⊂ N be a forward invariant set for H con-
taining an open neighborhood of A; e.g., a small enough
sublevel set of V , which is guaranteed to exist by the as-
sumptions. Pick any φ ∈ SH(Ω) and note that rgeφ ⊂ Ω.
Pick any (t, j) ∈ domφ and let 0 = t0 ≤ t1 ≤ · · · ≤
tj+1 = t satisfy

domφ∩([0, t]×{0, 1,· · ·, j})=⋃j
i=0 ([ti, ti+1]×{i}) . (17)

For each i ∈ {0, 1, . . . , j} and almost all s ∈ [ti, ti+1],
φ(s, i) ∈ C ∩N . Using (6), the condition in (15) implies
that, for each i ∈ {0, 1, . . . , j} and for almost all s ∈
[ti, ti+1],

d

ds
V (φ(s, i)) ≤ uC(φ(s, j)) ≤ −c1V

c2(φ(s, i)), (18)

which implies that

V −c2(φ(s, i))dV (φ(s, i)) ≤ −c1ds (19)

when V (φ(s, i)) > 0. Note that the above inequality
holds trivially when V (φ(s, i)) = 0. Integrating over
[ti, ti+1] both sides of this inequality yields

1

1− c2

(
V 1−c2(φ(ti+1, i))− V 1−c2(φ(ti, i))

)

≤ −c1(ti+1 − ti). (20)

Similarly, for each i ∈ {1, · · · , j}, φ(ti, i − 1) ∈ D ∩ N
and

V (φ(ti, i))− V (φ(ti, i− 1)) ≤ 0. (21)

The two inequalities in (20) and (21) imply that, for each
(t, j) ∈ domφ,

1

1− c2

(
V 1−c2(φ(t, j)) − V 1−c2(ξ)

)
≤ −c1t. (22)
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Using G(N ) ⊂ N , positive definiteness of V , item 1),
and the fact that c2 ∈ (0, 1), we get

V 1−c2(φ(t, j)) ≤ V 1−c2(ξ)− c1(1− c2)t. (23)

Then, it follows that φ reaches A in finite time (t, j).
Furthermore, an upper bound for the settling-time func-
tion can be computed as

T (ξ) ≤ T ⋆(ξ) + J ⋆(ξ), (24)

where T ⋆(ξ) = V 1−c2 (ξ)
c1(1−c2)

, and J ⋆(ξ) is chosen such

that (T ⋆(ξ),J ⋆(ξ)) ∈ domφ. Note that T ⋆(ξ) <
sup(t,j)∈domφ t, the existence of (T ⋆(ξ),J ⋆(ξ)) ∈ domφ
is guaranteed. �

Remark 3.6 Assumption 1) in Theorem 3.5 is satisfied
if the domain of each φ∈SH(N ) is unbounded in the t di-
rection. A result in a similar spirit, but for small ordinary
time asymptotic stability can be found in [16, Proposition
3.2]. Moreover, when the jump set is empty and the flow
set is such that N ⊂ C, H reduces to a continuous-time
system on N , and the result in Theorem 3.5 reduces to a
result for continuous-time systems with constraints; see,
e.g., [8, Theorem 4.2].

Remark 3.7 From Definition 3.1, if a closed set A is
FTS forH with settling-time function T : N∩(C∪D) →
R≥0, where N is an open neighborhood of A, then the set
A is also pre-asymptotically stable (see [15, Definition
3.6]) for H with basin of attraction N . However, the
reverse implication is not true. When for K∞ functions
α1 and α2, the function V satisfies

α1(|z|A)≤V (z)≤α2(|z|A)

for all z ∈ (C ∪ D ∪ G(D)) ∩ N and C ∪D ⊂ N , then
Theorem 3.5 guarantees a global uniform version of finite
time stability notion in Definition 3.1.

In the following example, the conditions in Theorem 3.5
are exercised.

Example 3.8 Consider the system in Example 3.3, the
function V : R × [0, 1] → R≥0 given by V (z) = 1

2x
2 for

each z ∈ C, and the compact set A = {0} × [0, 1]. We
have that, for each z ∈ C,

〈∇V (z), F (z)〉 = −k|x|1+α = −2
1+α

2 kV (z)
1+α

2 .

Then, condition (15) is satisfied with N = R× R, c1 =

2
1+α

2 k > 0 and c2 = 1+α
2 ∈ (0, 1). Moreover, for all

z ∈ D, V (G(z))−V (z) = 0, which verifies the condition
in (16). Note that the condition in item 1) follows since
every maximal solution to H in (10) is complete (with
its domain of definition unbounded in the t direction);
e.g., by applying [15, Proposition 6.10]. Therefore, by

Theorem 3.5, the set {0} × [0, 1] is LFTS. △

Inspired by Example 3.4, when the distance of a solution
φ ∈ SH to a closed set A strictly decreases at jumps, we
can establish the following result.

Theorem 3.9 Consider a hybrid systemH on R
n and a

closed set A ⊂ N ⊂ R
n with N open such that G(N ) ⊂

N . The set A is LFTS for H if there exist a continuous
function V : N → R≥0, locally Lipschitz on an open
neighborhood of C ∩N , and c > 0 such that

1) for every ξ ∈ N ∩ (C ∪ D) \ A, each φ ∈ SH(ξ)
satisfies

ceil

(
V (ξ)

c

)
≤ sup

(t,j)∈domφ

j;

2) the function V is positive definite with respect to A
such that

uC(z) ≤ 0 ∀z ∈ C ∩ N ,

uD(z) ≤ −min {c, V (z)} ∀z ∈ D ∩N .
(25)

where the functions uC and uD are defined in (5) and (7),
respectively. Furthermore, for each φ∈SH(N ∩(C∪D))
with φ(0, 0)=ξ:

a) the settling-time function T : N ∩(C∪D) → [0,∞)
satisfies

T (ξ) ≤ T ⋆(ξ) + J ⋆(ξ),

where J ⋆(ξ) = ceil
(
V (ξ)
c

)
and T ⋆(ξ) is such that

(T ⋆(ξ),J ⋆(ξ))∈dom φ and (T ⋆(ξ),J ⋆(ξ)−1)∈domφ;
b) |φ(t, j)|A=0 ∀(t, j)∈dom φ such that j≥J ⋆(ξ).

Proof Let Ω ⊂ N be a forward invariant set for H con-
taining an open neighborhood of A; e.g., a small enough
sublevel set of V . Pick any φ ∈ SH(Ω) and note that
rgeφ ⊂ Ω. Pick any (t, j) ∈ domφ and let 0 = t0 ≤ t1 ≤
· · · ≤ tj+1 = t satisfy (17). For each i ∈ {0, 1, . . . , j} and
almost all s ∈ [ti, ti+1], φ(s, i) ∈ C. Using (6), the con-
dition in (25) implies that, for each i ∈ {0, 1, . . . , j} and

for almost all s ∈ [ti, ti+1],
dV (φ(s,i))

ds
≤ 0. Integrating

over [ti, ti+1] both sides of this inequality yields

V (φ(ti+1, i))− V (φ(ti, i)) ≤ 0. (26)

Similarly, by using (8) and (25), for each i ∈ {1, · · · , j},
φ(ti, i− 1) ∈ D and

V (φ(ti, i))−V (φ(ti, i−1))≤−min{c, V (φ(ti, i−1))}. (27)
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The two inequalities in (26) and (27) imply that, for each
(t, j) ∈ domφ,

V (φ(t, j)) − V (ξ) ≤ −
j∑

i=1

min{c, V (φ(ti, i− 1))}.

Proceeding as in the proof of Theorem 3.5, φ converges
to A in finite time. Furthermore, an upper bound for
the settling-time function can be computed as T (ξ) ≤
T ⋆(ξ)+J ⋆(ξ), where J ⋆(ξ) = ceil

(
V (ξ)
c

)
and T ⋆(ξ) is

such that

(T ⋆(ξ),J ⋆(ξ)), (T ⋆(ξ),J ⋆(ξ)− 1) ∈ domφ.

Note that for J ⋆(ξ) < sup(t,j)∈domφ j, the existence of

(T ⋆(ξ),J ⋆(ξ)) ∈ domφ is guaranteed. �

The following result combines the conditions in Theo-
rem 3.5 and in Theorem 3.9 to arrive to strict conditions
for finite time stability of a closed set. By combining
the conditions in those results, a tighter bound on the
settling-time function can be obtained. A proof can be
formulated by combining the arguments in the proofs of
Theorem 3.5 and Theorem 3.9.

Theorem 3.10 Consider a hybrid system H on R
n and

a closed set A⊂N ⊂R
n with N open such that G(N ) ⊂

N . The set A is LFTS for H if there exist a continuous
function V : N → R≥0, locally Lipschitz on an open
neighborhood of C∩N , and c1, c3>0, c2∈ [0, 1) such that
item 1) in Theorem 3.5 and item 1) in Theorem 3.9 are
satisfied, the function V is positive definite with respect
to A and

uC(z) ≤ −c1V
c2(z) ∀z ∈ C ∩N , (28)

uD(z) ≤ −min {c3, V (z)} ∀z ∈ D ∩N , (29)

where the functions uC and uD are defined in (5) and (7),
respectively. Furthermore, for each φ∈SH(N ∩(C∪D))
with φ(0, 0)=ξ:

a) the settling-time function T : N ∩(C∪D) → [0,∞)
satisfies T (ξ) ≤ mini∈{1,2} {T ⋆

i (ξ) + J ⋆
i (ξ)} ,

where T ⋆
1 (ξ) = V 1−c2 (ξ)

c1(1−c2)
, J ⋆

1 (ξ) is such that

(T ⋆
1 (ξ),J ⋆

1 (ξ)) ∈ domφ, J ⋆
2 (ξ) = ceil

(
V (ξ)
c3

)
, and

T ⋆
2 (ξ) is such that (T ⋆

2 (ξ),J ⋆
2 (ξ))∈dom φ and

(T ⋆
2 (ξ),J ⋆

2 (ξ)−1)∈domφ;
b) |φ(t, j)|A = 0 for all (t, j) ∈ domφ such that t ≥

T ⋆
1 (ξ) or j≥J ⋆

2 (ξ).

The following result provides conditions for finite time
stability of a set that is already asymptotically stable.

Theorem 3.11 Consider a hybrid system H on R
n and

a closed setA ⊂ N ⊂ R
n withN open such thatG(N ) ⊂

N . The set A is LFTS to H if

1) the set A is uniformly asymptotically stable 7 with
basin of attraction including N ;

2) there exists a neighborhood U ⊂ N of A such that:
2.1) for every φ ∈ SH(U ∩ (C ∪D)), (t, 1) ∈ domφ

for some t ∈ R≥0;
2.2) G((D ∩ U) \ A) ⊂ A.

Proof Pick any (t, j) ∈ domφ and let 0 = t0 ≤ t1 ≤
· · · ≤ tj+1 = t satisfy (17). For each i ∈ {0, 1, . . . , j} and
almost all s ∈ [ti, ti+1], φ(s, i) ∈ C. Since the set A is
asymptotically stable, there exists ϕ ∈ KL such that

|φ(t, j)|A ≤ ϕ(|ξ|A, t+ j). (30)

Then, for each ε > 0, there exists (T (ξ),J (ξ)) ∈ domφ
such that |φ(t, j)|A < ε for all (t, j) ∈ domφ and t +
j ≥ T (ξ) + J (ξ). If φ(T (ξ),J (ξ)) ∈ A, then the claim
follows; if not, from assumption in item 2.1), we obtain
that there exists t′ ≥ T (ξ) such that (t′,J (ξ) + 1) ∈
domφ. Using the assumption in item 2.2), we get

φ(T (ξ),J (ξ) + 1) ∈ A

and |φ(T(ξ),J(ξ) + 1)|A =0. The stability part follows
from the fact that A is asymptotically stable for H. �

In the following example, the results of Theorem 3.11
are applied.

Example 3.12 Consider the system in Example 3.4. To
show the FTS property of the set A, let k = ε̃

2+ε̃
and

consider the function

V (z) := min{|z1−z2|, 1+k−|z1−z2|} ∀z ∈ X , (31)

where

X :=
{
z ∈ R

2 : V (z) < 1+k
2

}
=

{
z ∈ R

2 : |z1 − z2| 6= 1+k
2

}
.

This function V is continuously differentiable on the open
setX \A and it is Lipschitz onX . Following [14, Example
25], let m⋆ = 1+k

2 and m ∈ (0,m⋆), Km = {z ∈ C ∪D :
V (z) ≤ m}, and defineCm = C∩Km andDm = D∩Km.
By definition of V , it follows that

〈∇V (z), F (z)〉 = 0 ∀z ∈ Cm \ A. (32)

Now consider z ∈ Dm. Since V is symmetric on the
variables z1 and z2, without loss of generality, consider
the case z = (1, z2), where z2 ∈ [0, 1]\{1/(2+ ε̃)}. Then,

V (z) = min{1− z2, k + z2}, (33)

V (G(z)) = min{g((1+ε̃)z2), 1+k−g((1+ε̃)z2)}. (34)

7 A closed setA is said to be uniformly asymptotically stable
with basin of attraction BA if there exists a class-KL function
β such that every solution φ to H from BA is complete and
satisfies |φ(t, j)|A ≤ β(|φ(0, 0)|A, t+j) for all (t, j) ∈ domφ.
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When g((1 + ε̃)z2) = (1 + ε̃)z2, there are two cases

• if z2<1/(2+ε̃), V (z)=k+z2>(1+ε̃)z2≥V (G(z));
• if z2>1/(2+ε̃), V (z)=1−z2≥V (G(z)).

Therefore, the set A is globally asymptotically stable for
the system Hm = (Cm, F,Dm, G) and using [15, Propo-
sition 6.10], every maximal solution to Hm is complete.
Furthermore, given ε̃ > 0, for ε = ε̃/(1 + ε̃) and picking
m such that (A + εB) ∩ C ⊂ Cm, we have that for all
z ∈ Dm ∩ (A+ εB),

G(z) = 0 ∈ A. (35)

Then, it follows from Theorem 3.11 that A is finite time
stable for the system Hm = (Cm, F,Dm, G) with N =
{z ∈ C ∪D : V (z) < m}. △

3.2.2 Sufficient conditions for finite time attractivity

In this section, two sufficient conditions guaranteeing
global finite time attractivity are presented and illus-
trated in examples. These results are followed by suffi-
cient conditions for local finite time attractivity exploit-
ing a property of the second derivative of a Lyapunov
function and a property of nested sets.

Next, a result similar to that of Theorem 3.9 is es-
tablished when maximal solutions to H converge to A
through jumps.

Proposition 3.13 Consider a hybrid system H =
(C,F,D,G) on R

n and a closed nonempty set A ⊂ R
n.

If a nonempty set Ã is finite time attractive for H, there

exists δ > 0 such that Ã + δB ⊂ G−1(A), and no flows

from the set (Ã+ δB) \ A are possible, then the set A is
FTA, where G−1(A) := {z ∈ D : G(z) ⊂ A}.

Remark 3.14 A sufficient condition guaranteeing that

no flows from the set (Ã + δB) \ A are possible is when
the flow set C is closed and F (z) ∩ TC(z) = ∅ for all

z ∈ C ∩ ((Ã+ δB) \ A).

The following corollary considers the situation when the
dynamics of a hybrid system H are linear in one of the
state components and its solutions exhibit dwell-time
behavior.

Corollary 3.15 Consider a hybrid system H with state
z=(x1, x2)∈R

n1 ×R
n2 , where n1 > 0, n2 > 0, and the

closed set A={0}×R
n2 ⊂R

n1 × R
n2 . The set A is FTA

for H if the following holds:

1) the flow map and jump map are single valued
and their x1 components are linear, i.e., F (z) =
(Ax1, f(x2)) for all z ∈ C and G(z) = (Bx1, g(x2))
for all z ∈ D with A ∈ R

n1×n1 , B ∈ R
n1×n1 ,

f : Rn2 → R
n2 , and g : Rn2 → R

n2 ;

2) for each φ ∈ SH, sup(t,j)∈domφ j ≥ n1 + 1, where
n1 is the dimension of x1 component, and the flow
time between every two consecutive jumps after the
first jump are identical, i.e., there exists γ > 0 such
that tj+1− tj = γ for all j ∈ N\{0} and j ≤ n1+1;

3) the matrix B exp(Aγ) is nilpotent, where A,B come
from item 1) and γ from item 2).

Furthermore, for each φ∈SH(N∩(C∪D)) with φ(0, 0)=ξ:

a) there exists a settling-time function T : R
n1 ×

R
n2 → [0,∞) satisfying T (ξ) ≤ T ⋆(ξ) + J ⋆(ξ),

where J ⋆(ξ) = n1 + 1 and T ⋆(ξ) is such that
(T ⋆(ξ),J ⋆(ξ)) ∈ domφ and (T ⋆(ξ),J ⋆(ξ) − 1) ∈
domφ;

b) |φ(t, j)|A=0 ∀(t, j)∈dom φ such that j≥J ⋆(ξ).

Proof Let φ = (φx1 , φx2) ∈ SH. Pick any (t, j) ∈ domφ
and let 0 = t0 ≤ t1 ≤ · · · ≤ tj+1 = t satisfy (17).
For each i ∈ {0, 1, . . . , j} and almost all s ∈ [ti, ti+1],
φ(s, i) ∈ C and

φx1(s, i) = exp(A(s− ti))φ
x1(ti, i). (36)

Similarly, for each i ∈ {1, · · · , j}, φ(ti, i− 1) ∈ D and

φx1(ti, i) = Bφx1(ti, i− 1). (37)

Therefore, using (36) and (37), for any (t, j) ∈ domφ,
we get,

φx1(t, j) = exp(A(t− tj))(B exp(Aγ))max{0,j−1}B

exp(Aτ0))φ
x1(0, 0),

where τ0 is the time it takes to reach the first jump (may
not equal to γ). Since the matrix B exp(Aτ) ∈ R

n1×n2 is
nilpotent, (B exp(Aτ))n1 = 0. Therefore, the finite time
convergence is reached within n1 + 1 jumps. �

Remark 3.16 The second component x2 of the state in
the system in Corollary 3.15 can be arbitrary, but it would
typically be involved in a mechanism that guarantees that
the property in item 2) holds. Due to this, x2 may include
variables that behave like a timer. If the hybrid system
H with linear flow and jump dynamics in Corollary 3.15
is such that C = ∅, then, the result in Corollary 3.15
is similar to the results about deadbeat convergence for
discrete-time systems with constraints; see, e.g., [13].

Example 3.17 Consider a hybrid system with state z =
(x1, x2), x1 = (x11, x12) and z ∈ X := R

2 × [0, 1], its

9



data H = (C, f,D, g) is given by

ż =




0 1 0

−1 0 0

0 0 0


 z+




0

0

−1


 z ∈ C

z+ =

[
G 0

0 0

]
z+




0

0

1


 z ∈ D

(38)

where C = {z ∈ X : x2 ∈ [0, 1]}, D = {z ∈ X : x2 = 0},

G =
1

5

[
2 cos(1)−sin(1) − cos(1)−2 sin(1)

4 cos(1)−2 sin(1) −2 cos(1)−4 sin(1)

]
. (39)

Consider the set A = {0} × {0} × [0, 1] and a solution
φ = (φx1 , φx2) ∈ SH. Then, φx1(t, 0) = exp(At)φx1 (0, 0)
for all t ∈ [0, 1− φx2(0, 0)], where

A =

[
0 1

−1 0

]
.

Furthermore, after three jumps,

φx1(3− φx2(0, 0), 3)

= (G exp(A))2G exp(A(1 − φx2(0, 0)))φx1(0, 0).

Note that G exp(A) is a nilpotent matrix, i.e., all eigen-
values are located at zero. In fact, since

exp(A) =

[
cos(1) sin(1)

− sin(1) cos(1)

]
,

which is an invertible matrix, we have that G =
G0(exp(A))

−1 for any given nilpotent matrix G0. By
letting

G0 =

[
2/5 −1/5

4/5 −2/5

]
,

we obtain (39). Then, (G exp(A))2 = 0. Therefore, the
solution φ converges to A within 3 jumps. Furthermore,
since the time between two consecutive jumps is equal to
one,A is finite time stable toH with T = 3. A simulation
is shown in Figure 2, where finite time convergence is
approached within 2 jumps. 8 Note that the trajectory
shown in Figure 2 reaches A after the second jump due
to the fact that G exp(A)G is zero in this example. △

Next, we establish a result when the second derivative
of a Lyapunov function is strictly concave.

Theorem 3.18 Consider a hybrid systemH on R
n with

8 Code at https://github.com/HybridSystemsLab/FTSNilpotency
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-2

0
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(a) The projections of tra-
jectories of x11 and x12 on
the t direction.

-1 0 1 2 3 4 5
-1

-0.5

0

0.5

1
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(b) Phase plot of x11 and
x12, the origin is denoted by
the blue triangle.

Fig. 2. The trajectories of components x11, x12 of solutions
to (38). Initial condition is z(0, 0) = (3, 3, 1).

single-valued maps F and G, and a closed set A ⊂ N ⊂
R

n with N open such that G(N ) ⊂ N . Suppose that for
each ξ ∈ N ∩ (C ∪D), each φ ∈ SH(ξ) satisfies

1) sup(t,j)∈domφ t = ∞,

2) there exists γ > 0 such that tj+1 − tj ≥ γ for all
j ≥ 1, where (tj , j), (tj+1, j) ∈ domφ (i.e., the
elapsed time between consecutive jumps is uniformly
bounded below by a positive constant).

Moreover, suppose there exists a function V ∈ C2 such
that V is positive definite with respect toA. Denoting the
function ν : Rn → R by ν(z) := 〈∇V (z), F (z)〉, consider
the following conditions:

3) for some c1 > 0,

〈∇ν(z), F (z)〉+ c1 ≤ 0 ∀z ∈ C ∩N , (40)

V (G(z))− V (z) ≤ 0 ∀z ∈ D ∩ N , (41)

4) there exists M : Rn → R≥0 such that for each φ ∈
SH(N∩(C∪D)) with φ(0, 0) = ξ, ν(φ(t, j)) ≤ M(ξ)
for all (t, j) ∈ domφ such that φ(t, j) ∈ C ∩N ,

5) for any φ∈SH(N ∩ (C ∪D)), J = sup
(t,j)∈domφ

j<∞,

6) for any φ ∈ SH(N ∩ (C ∪ D)), J = sup
(t,j)∈domφ

j =

∞, and there exists γ such that tj+1 − tj ≤ γ for
all j ≥ 1 and (tj , j), (tj+1, j) ∈ domφ (i.e., the
elapsed time between consecutive jumps is uniformly
bounded above by a positive constant),

7) for any φ ∈ SH(N ∩ (C ∪ D)) with φ(0, 0) = ξ,
t1 = sup(t,0)∈domφ t satisfies t1 ≥ T ⋆(ξ), where

T ⋆(ξ) =
V̇ (ξ)+

√
V̇ 2(ξ)+2c1V (ξ)

c1
. (42)

Then, we have the following properties:

a) when items 1)-3), 4), 5) hold, the setA is LFTA and,
for each φ ∈ SH(N ∩ (C ∪D)) with φ(0, 0) = ξ such
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that rgeφ ⊂ N , the settling-time function satisfies

T ⋆(ξ) = tJ +
M(ξ)+

√
M(ξ)2+2(V (ξ)+M(ξ)tJ )c1

c1
; (43)

b) when items 1)-3), 4), 6) hold and, for each φ ∈
SH(N ∩ (C ∪ D)) with φ(0, 0) = ξ such that
rgeφ ⊂ N ,

1

2
c1γ

2 −M(ξ)γ > 0,

the set A is LFTA, and the settling-time function
satisfies

J ⋆(ξ) =
V (ξ) + c1γ

2

1
2 c1γ

2 −M(ξ)γ
;

c) when items 1)-3), 7) hold, the set A is LFTA and
the settling-time function for a given φ ∈ SH(N ∩
(C ∪ D)) with φ(0, 0) = ξ such that rgeφ ⊂ N ,
satisfies T (ξ) ≤ T ⋆(ξ) where T ⋆ is given in (42). If
T (ξ) = T ⋆(ξ), A ∩D 6= ∅.

Proof Let Ω ⊂ N be a forward invariant set for H con-
taining an open neighborhood of A; e.g., a small enough
sublevel set of V . Pick any φ ∈ SH(Ω) and note that
rgeφ ⊂ Ω. Pick any (t, j) ∈ domφ and let 0 = t0 ≤ t1 ≤
· · · ≤ tj+1 = t satisfy (17). For each i ∈ {0, 1, . . . , j}
and almost all s ∈ [ti, ti+1], φ(s, i) ∈ C ∩ N . Then, us-
ing (40), we have that, for each i ∈ {0, 1, . . . , j} and for
almost all s ∈ [ti, ti+1],

d2

ds2
V (φ(s, i)) + c1 ≤ 0. (44)

Integrating over [ti, ti+1] both sides of this inequality
twice yields

V (φ(ti+1, i))− V (φ(ti, i))

≤ V̇ (φ(ti, i))(ti+1 − ti)−
1

2
c1(ti+1 − ti)

2

≤ M(ξ)(ti+1 − ti)−
1

2
c1(ti+1 − ti)

2. (45)

where we used the property in item 4). Similarly, for each
i ∈ {1, · · · , j}, φ(ti, i− 1) ∈ D ∩ N , and thus

V (φ(ti, i))−V (φ(ti, i− 1)) ≤ 0 ∀i ∈ {1, · · · , j}. (46)

Using inequalities (45) and (46), it implies that, ∀j ∈ N,

V (φ(t, j)) − V (ξ)

≤ M(ξ)t− 1

2
c1 max{(j − 1), 0}γ2− 1

2
c1(t− tj)

2.
(47)

The inequality (47) leads to the following cases:

• when item 5) holds, we have

V (φ(t, j))≤V (ξ)+M(ξ)tj+M(ξ)(t−tj)− 1
2c1(t−tj)

2.

Then, using the the fact V is nonnegative, it follows
that the resulting T ⋆(ξ) is equal to the one in (43)
since item 1) guarantees that t ≥ T ⋆(ξ) satisfies
(t, j) ∈ domφ for some j. Therefore, item a) holds;

• when item 6) holds, then, we have for j ≥ 1,

V (φ(t, j))≤V (ξ)+c1γ
2−(j + 1)

(
1

2
c1γ

2 −M(ξ)γ

)
.

Note that by assumption in item b), 1
2c1γ

2−γM(ξ) >
0. Therefore, there exists (T ⋆(ξ),J ⋆(ξ)) ∈ domφ such
that

V (φ(T ⋆(ξ),J ⋆(ξ)))

≤ V (ξ) + c1γ
2 − (J ⋆(ξ) + 1)

(
1

2
c1γ

2 −M(ξ)γ

)
≤ 0.

In particular, J ⋆(ξ) =
V (ξ)+c1γ

2

1
2
c1γ2−M(ξ)γ

. Therefore, item

b) holds;
• when item 7) holds, then, from (44), we have, for
(t, 0) ∈ domφ,

V (φ(t, 0)) ≤ V (ξ) + V̇ (ξ)t− 1

2
c1t

2. (48)

From (48), we obtain that

T ⋆(ξ) =
V̇ (ξ) +

√
V̇ 2(ξ) + 2c1V (ξ)

c1
, (49)

which leads to item c). �

Example 3.19 Consider the bouncing ball system [15,
Example 1.1] H with data

H :





ẋ = F (x) :=

[
x2

−χ

]
x ∈ C,

x+ = G(x) :=

[
x1

−x2

]
x ∈ D,

(50)

where C = {x ∈ R
2 : x1 ≥ 0}, D = {x ∈ R

2 : x1 =
0, x2 ≤ 0}. The parameter χ > 0 denotes the gravity.
See [15, Example 1.1] for more details on this model.
Consider the set A = {x ∈ C ∪D : x1 = 0} (denotes the
ground) and a smooth function V (x) = x1. Then, ν(x) =
x2 ∀x ∈ R

2. Moreover, 〈∇ν(x), F (x)〉+χ ≤ 0 for all x ∈
C, and V (G(x))−V (x) = 0 for all x ∈ D. Furthermore,
for a maximal solution φ = (φ1, φ2) to H from φ(0, 0) =

(ξ1, ξ2), it follows that t1 =
ξ2+

√
ξ2
2
+2χξ2

χ
= T ⋆(φ(0, 0)).

Therefore, items 3) and 7) in Theorem 3.18 hold with

11



N = R
2. By item (c) of Theorem 3.18, the set A is FTA

for H. Note that A is not stable since a maximal solution
from A with nonzero x2 component will leave A. △

Our last sufficient condition pertains to finite time con-
vergence of solutions from closed sets. To establish such
condition, we use the following notion.

Definition 3.20 Consider a hybrid systemH onR
n and

closed setsA1,A2 ⊂ R
n. Let T : N → R≥0 withN ⊂ R

n

open and such that A1 ⊂ N . The closed set A2 is said to
be finite time attractive from A1 (FTA from A1) for H
if for every solution φ ∈ SH(A1),

lim
t+jրT (φ(0,0))

|φ(t, j)|A2
= 0. (51)

Now, we are ready to present the following cascade-like
result.

Proposition 3.21 Consider a hybrid system H on R
n

and closed sets A0,A1, . . . ,Ak⋆ ⊂ R
n, k⋆ ∈ N. Suppose

that

1) the set A0 is FTA for H with the settling-time func-
tion T0 : N0 → R≥0, N0 ⊂ R

n open and such that

C ∪D ⊂ N0 and for any φ ∈ SH with φ(0, 0) = ξ,
sup(t,j)∈domφ(t+ j) > T0(ξ),

2) for each i ∈ {1, 2, . . . , k⋆}, Ai is FTA from Ai−1

with the settling-time function Ti : Ni → R≥0,

Ni ⊂ R
n open and such that (C ∪ D) ∩ Ai ⊂

Ni, and for any φ ∈ SH(Ai−1) with φ(0, 0) = ξ,
sup(t,j)∈domφ(t+ j) > Ti(ξ).

Then, the set Ak⋆ is globally finite time attractive.

Proof Let φ ∈ SH and φ(0, 0) = ξ0. Since A0

is FTA for H, by item 1), there exists T0(ξ0) =
T ⋆
0 (ξ0) + J ⋆

0 (ξ0) such that limt+jրT0(ξ0) |φ(t, j)|A0
= 0

and φ(T ⋆
0 (ξ0),J ⋆

0 (ξ0)) ∈ A0. Using the assump-
tion that A1 is FTA from A0 for H and item 2),
there exists T1(ξ1) = T ⋆

1 (ξ1) + J ⋆
1 (ξ1) such that

(T ⋆
1 (ξ1) + T ⋆

0 (ξ0),J ⋆
1 (ξ1) + J ⋆

0 (ξ0)) ∈ domφ and

lim
t+jրT ⋆

1
(ξ1)+T ⋆

0
(ξ0)+J ⋆

1
(ξ1)+J ⋆

0
(ξ0)

|φ(t, j)|A1
= 0.

where ξ1 = φ(T ⋆
0 (φ(0, 0)),J ⋆

0 (φ(0, 0))). By recursively
using the property that Ai is FTA from Ai−1 for i ∈
{1, 2, . . . , k⋆} and item 2), we obtain that

lim
t+jր

∑
k⋆

i=0
(T ⋆

i
(ξi)+J ⋆

i
(ξi))

|φ(t, j)|Ak⋆ = 0, (52)

where ξi = φ(
∑i−1

ℓ=0 T ⋆
ℓ (ξℓ),

∑i−1
ℓ=0 J ⋆

ℓ (ξℓ)) for i ∈
{1, 2, 3, . . . , k⋆}, and ξ0 = φ(0, 0). Therefore, Ak⋆ is
globally finite time attractive. �

Remark 3.22 Using results from [15, Lemma 7.20], one
can show that if H satisfies the hybrid basic conditions
and a compact setA is FTS forH then the compact setA
is semiglobally practically robustlyKL pre-asymptotically
stable for H.

4 Application to Finite Time Parameter Esti-
mation

In this section, we show an application of the proposed
finite time stability notion in Definition 3.1 and results
in Section 3 for the design of a finite time parameter
estimation algorithm with robustness. As in [1,18], the
systems considered are of the form

ẋ = f(x) + g(x)θ (53)

where x ∈ R
n is the state which can be measured,

and θ ∈ R
p is the unknown parameter vector. Follow-

ing [1,18], a parameter estimation algorithm for sys-
tem (53) leads to a hybrid system Hp with state z =

(x, x̂, θ̂, L,Q, η,Γ)∈X :=R
n×R

n×R
p×R

n×p×SPp×p×
R

n × R
p and data 9

F (z) :=




f(x) + g(x)θ

f(x) + g(x)θ̂ +K(x− x̂) + Lh(z)

h(z)

g(x)−KL

L⊤L

−Kη

L⊤(Lθ̂ + x− x̂− η)




∀z ∈ C

G(z) := (x, x,Q−1Γ, 0, 0, 0, 0) ∀z ∈ D

(54)

where x̂ is the estimate of x, θ̂ is the estimate of θ,
L,Q, η,Γ are auxiliary state variables, and h(z)=Ω(L⊤+
g(x)⊤)(x−x̂). The parameters of the algorithm are ε>0,
K>0, Ω=Ω⊤>0. The flow set is C={z ∈ X : det(Q) ≤
ε}, and the jump set is D= {z ∈ X : det(Q) ≥ ε}. To
make the jump map well-defined as in [1,18], the follow-
ing persistency of excitation condition is imposed.

Assumption 4.1 The function g is differentiable and
there exist σ1, σ2 > 0 such that for any t0 ≥ 0 and any
solution t 7→ φx(t) to (53),

∫ t0+σ1

t0

g⊤(φx(s))g(φx(s))ds ≥ σ2I. (55)

9 The states L and Q can be vectorized to yield a vector z,
but to simplify notation we omit that.
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Remark 4.2 Under the persistency of excitation prop-
erty of g in Assumption 4.1, for each solution φ to the hy-
brid systemwith data as in (54), it can be shown that there
exists T > 0 such that the Q component of φ, namely,
φQ, is invertible at (T, 0), i.e.,

φQ(T, 0) =

∫ T

0

φ⊤
L (τ, 0)φL(τ, 0)dτ (56)

satisfies det(φQ(T, 0)) 6= 0. In fact, let φ ∈ SH with
φ = (φx, φx̂, φθ̂

, φL, φQ, φη, φΓ). Under Assumption 4.1
and following the proof of [18, Theorem 3], we have the
following property: there exist σ1, σ2 > 0 such that

∫ σ1

0

φ⊤
L (s, 0)φL(s, 0)ds ≥ σ2I

Moreover, it follows that for any m > 0,

∫ mσ1

0

φ⊤
L (s, 0)φL(s, 0)ds ≥ mσ2I.

By picking m⋆, ε > 0 such that (m⋆σ1, 0) ∈ domφ and
(m⋆σ2)

p ≥ ε, we have

φQ(m
⋆σ1, 0) =

∫ m⋆σ1

0

φ⊤
L (τ, 0)φL(τ, 0)dτ + φQ(0, 0)

≥ m⋆σ2I.

Then, using [18, Lemma 2], it follows that

det(φQ(m
⋆σ1, 0)) ≥ det(m⋆σ2I) = (m⋆σ2)

p ≥ ε (57)

Remark 4.3 Note that the model in [1] does not have
recursive jumps and that the model in [18] has a slightly
different flow map. In particular, in [18], the term Lh(z)
in F involved in the right-hand side for x̂ is in the right-
hand side of η instead.

Proposition 4.4 Suppose Assumption 4.1 holds
for (53). Consider the parameter estimation algo-
rithm leading to the hybrid system with data as in
(54) with 10 K = K1 + 1

4g(x)Ωg
⊤(x), K1 > 1

4I,
τmax > 0, and ε > 0 such that det(φQ(τmax, 0)) =

det
(∫ τmax

0 φ⊤
L (τ, 0)φL(τ, 0)dτ

)
= ε for all maximal so-

lutions with zero initial conditions of the components
L,Q, η, and Γ. Then, the set A1 = {z ∈ X : x̂ = x, η =

0, θ̂ = θ} is globally finite time stable for H. Further-
more, the settling-time function for a given φ ∈ SH with
φ(0, 0) = ξ ∈ X satisfies T (ξ) ≤ τmax + 1.

Proof Given the choices of K,K1, τmax and ε such
that the assumption is satisfied, let φ ∈ SH with
φ = (φx, φx̂, φθ̂

, φL, φQ, φη, φΓ). Under Assumption 4.1,

10 The arguments in K are dropped for simplicity.

and according to the arguments in Remark 4.2, there
exists T > 0 such that det(φQ(T , 0)) = ε is satisfied.

Therefore, φ(T , 0) ∈ D and it follows that the set
A0 = {z ∈ X : L = 0, Q = 0, η = 0,Γ = 0} is globally
finite time attractive for H.

Now, consider φ⋆ = (φ⋆
x, φ

⋆
x̂, φ

⋆

θ̂
, φ⋆

L, φ
⋆
Q, φ

⋆
η, φ

⋆
Γ) ∈

SH(A1). Due to the dynamics of the state componentQ,
φ⋆ also reaches the jump set in finite time. In particular,
φ⋆(τmax, 0) ∈ D. At the jump, according to the jump

map, by using the relationship 11 η = x− x̂− L(θ− θ̂),
we have that

φ⋆
Γ(τmax, 0) =

∫ τmax

0

φ⋆
L(s, 0)

⊤φ⋆
L(s, 0)ds θ. (58)

Therefore, we obtain φ⋆

θ̂
(τmax, 1) = θ. Furthermore, ac-

cording to the construction of the jump map G, we have
φ⋆
x(τmax, 1) = φ⋆

x̂(τmax, 1) and φ⋆
η(τmax, 1) = 0. Thus,

the set A1 is finite time attractive from A0 for H.

To show that the set A1 is stable, for any given ε>0, let
δ>0 be such that for any

φ = (φx, φx̂, φθ̂
, φL, φQ, φη, φΓ) ∈ SH

with |φ(0, 0)|A1
≤ δ, the following holds:

|φ(t, 0)|A1
≤ ε ∀(t, 0) ∈ domφ. (59)

Note that there exists such δ since the set A0 is globally
finite time attractive for H, hence solution components
φL, φQ, φη, φΓ do not have finite time escape behavior.
In fact, the inequality (59) can be checked by computing
the finite time reachable set from initial conditions that
belongs to the δ-ball of the set A1.

Now, denote φe = φx − φx̂ and φθ̃ = φθ − φ
θ̂
, then,

|φ|2A1
= 1

2 (φ
⊤
e φe + φ⊤

θ̃
Ω−1φθ̃ + φ⊤

η φη), where Ω = Ω⊤ >

0. Then 12 , for almost all (t, j) ∈ domφ such that j ≥ 1,

d

dt
|φ|2A1

≤ −φ⊤
e K1φe − φ⊤

η

(
K1 −

1

4
I

)
φη (60)

where we used the property φη = φe−φLφθ̃, which holds

after the first jump, and K = K1 +
1
4gΩg

⊤. Moreover,

11The state component η satisfies η = x − x̂ − L(θ − θ̂)
during flows after the first jump. In fact, for solutions with
initial conditions in G(D) and during flow, η̇ = −Kη, let

η1 = x − x̂ − L(θ − θ̂) then η̇1 = g(x)(θ− θ̂)−K(x− x̂)−

Lh(z)−L(−h(z))−(g(x)−KL)(θ−θ̂) = −Kη1. Furthermore,
for maximal solutions with initial conditions in A1, η(0, 0) =
0 = η1(0, 0).
12 For simplicity, the solution argument (t, j) is omitted.
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for each (t, j) ∈ domφ such that (t, j + 1) ∈ domφ,

|φ(t, j + 1)|2A1
− |φ(t, j)|2A1

= −|φ(t, j)|2A1
≤ 0. (61)

Then, under the conditions in the statement, integrating
both sides of the inequality (60) and using (61) leads to
|φ(t, j)|A1

≤ |φ(t1, 1)|A1
≤ |φ(t1, 0)|A1

, where (t1, 0) ∈
domφ is such that (t1, 1) ∈ domφ. Furthermore, by us-
ing (59), it follows that |φ(t, j)|A1

≤ ε. Therefore, the
set A1 is stable. Since the set A0 is FTA for H, then,
by applying Proposition 3.21 with k⋆ = 1, the set A1 is
globally finite time stable for H. �

Example 4.5 Consider the following frequency estima-
tion problem: given a signal t 7→ ζ(t) = Υ sin(ωt), where
Υ > 0 is the magnitude and ω > 0 is the frequency, glob-
ally estimate ω from measurements of ζ. To formulate
this problem as the problem of estimating a parameter (θ)
of a model as in (53), let x = (x1, x2) be such that x1 = ζ
and ẋ1 = x2, t 7→ ζ(t) is the first component to the solu-
tion to (62), where Υ is related to the initial condition.
This is an exosystem/generator approach for the genera-
tion of t 7→ ζ(t). Note that a similar problem was studied
in [9]. Then, we obtain the following parametric form

ẋ = Ax+ g(x)θ, (62)

where

A =

[
0 1

−1 0

]
, g(x) =

[
0

−x1

]
, (63)

and θ = ω2 − 1. Then, for any t0 ≥ 0, σ1 = π
ω

and

σ2 = πΥ2

2ω , it can be checked that

∫ t0+σ1

t0

g(x(s))⊤g(x(s))ds =
πΥ2

2ω
,

which verifies Assumption 4.1. Then, a parameter esti-
mation algorithm for estimating θ can be designed follow-
ing the construction in (54). A simulation 13 is shown
in Figure 3(a), where the parameters are Υ= 1, ω = 2,
ε = 0.3, Ω = 1, K1 = 1 and the initial conditions are
x(0, 0)=(2, 2), φx̂(0, 0) = (1, 1), φ

θ̂
(0, 0) = 4, φL(0, 0) =

(0.1, 0.1), φQ(0, 0) = 0, φη(0, 0) = (0.1, 0.2), φΓ(0, 0) =

0.1, the estimate θ̂ converges to θ after two jumps.

Table 1
Summary of the robustness property with respecting to dif-
ferent values of ρ

ρ 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

ε 0.03 0.07 0.12 0.16 0.21 0.26 0.32 0.37

To study the robustness property of finite time stability,

13 Code at https://github.com/HybridSystemsLab/FTSParameter
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Fig. 3. Simulations of the closed-loop system between (62)

and (54), showing θ̂ converging to θ in finite time.

consider the following perturbed model

ẋ = Ax+ g(x)θ + dx2 , (64)

where dx2 is an unknown perturbation on the state x. A
simulation is shown in Figure 3(b) with same set of pa-
rameters, and the perturbation signal t 7→ dx2(t) is given
by dx2(t) = ρ(sin(10t), cos(10t)) with ρ = 1. In fact, for
the frequency estimation algorithm, since g(x) in (63) is

continuous, the resulting flow map F̃ is continuous. Fur-
thermore, Q ∈ R≥0 and Q−1 is continuous on D. There-
fore, hybrid basic conditions are satisfied and thus Re-
mark 3.22 can be applied. Its performance with difference
values of ρ is summarized in Table 1, where ρ ≈ 10ε. △

5 Conclusion

A notion of finite time stability consisting of both stabil-
ity and finite time attractivity was proposed for hybrid
systems. Sufficient conditions guaranteeing the new no-
tion were proposed. These conditions conveniently iso-
late the properties needed when finite time convergence
occurs via flows or via jumps. Conditions for robustness
of the new notion to perturbations, though generic, rely
on the regularity of the data of the hybrid system so as
to preserve the finite time stability property semiglob-
ally and practically. Current efforts are focused on es-
tablishing robustness in terms of ISS and extending the
results to networked hybrid systems.
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