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Abstract   A macroscopic model that accounts for the effect of momentum dispersion on 
flows in porous media is proposed. The model is based on the pore-scale-prevalence-
hypothesis (PSPH). The effects of macroscopic velocity gradient on momentum transport 
are approximated using a Laplacian term. A local Reynolds number Red, which 
characterizes the strength of momentum dispersion, is introduced to calculate the effective 
viscosity. The characteristic length used in defining Red is the pore size while the 
characteristic velocity is the mixing velocity. A Taylor expansion is made for the effective 
viscosity with respect to Red. The two leading order terms of the Taylor series are adopted 
in the present PSPH momentum-dispersion model. The model constants are determined 
from the direct numerical simulation (DNS) results of a flow in the same porous medium 
bounded by two walls. The effective viscosity approaches the molecular viscosity when 
the porosity is increased to 1. It approaches infinity when the porosity approaches 0. The 
benchmark studies show that the effects of the macroscopic velocity gradient can be 
approximated by the Laplacian term. The proposed PSPH momentum-dispersion model is 
highly accurate in a wide range of Reynolds and Darcy numbers as well as porosities. 
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A porous medium consists of a solid matrix with interconnected voids [1]. Many 
industrial processes can be approximated as convection in porous media [2-5]. Turbulence 
is welcome in many processes [2, 3] since it might significantly enhance the heat and mass 
transfer. Turbulent convection in a porous medium can be calculated using direct numerical 
simulation (DNS), in which all geometrical details of the porous matrix are taken into 
account. However, DNS is often too computationally expensive and provides too much 
information to be practical in engineering applications. Therefore, convection in porous 
media is more often studied by solving macroscopic equations. 

Macroscopic equations for simulating flow in a porous medium can be derived by 
time- and volume-averaging the Navier-Stokes equations [6,7]. The effect of the porous 
matrix on the losses of mechanical energy is often approximated by the Darcy term when 
the flow velocity is low. The Forchheimer term is used to correct the Darcy equation when 
the velocity is high. In a recent study, Lasseux et al. [8] proposed a more accurate and 
complicated model that involves two effective coefficients for accounting for the time-
decaying influence of the flow initial condition. However, the Darcy-Forchheimer equation 
is still the most widely used model for solving engineering problems.  

Another alternative to the Darcy equation is known as the Brinkman equation. A 
Laplacian term is introduced in the macroscopic momentum equation to model the effects 
of the velocity gradient, including the effects of momentum dispersion and molecular 
diffusion. In early papers, the effective viscosity 𝜇෤ in the Brinkman equation was assumed 
to have the same value as the molecular viscosity 𝜇, see Brinkman [9]. However, the 
experiments by Givler and Altobelli [10] show that 𝜇෤ may be different from 𝜇, and the 
effects of this difference were investigated in Kuznetsov [11]. Later, Valdes-Parada et al. 
[12] argued the effective viscosity is different from the fluid viscosity only for high 
porosity cases. By performing a series of numerical simulations, Vafai [13] concluded that 
whether 𝜇෤/𝜇 is larger or smaller than unity depends on the type of a porous medium. 
Ochoa-Tapia and Whitaker [14] suggested that a value of 𝜇෤ 𝜇⁄  can be approximated as 1 𝜙⁄ , 
where 𝜙 is the porosity of the porous medium. Thus, 𝜇෤ 𝜇⁄  is larger than unity. Bear and 
Bachmat [15] suggested 𝜇෤ 𝜇⁄  to be equal to 1 ሺ𝜙𝜏∗ሻ⁄ , where 𝜏∗  is the tortuosity of the 
porous medium and depends on the geometry of a porous matrix. Saez et al. [16] also 
suggested that 𝜇෤ 𝜇⁄  is close to the tortuosity which is thought to be less than unity. Based 
on the earlier work by Vafai and Tien[17,18] and without strict validation, Hsu and Cheng 
[19] proposed a momentum equation that models the momentum dispersion by the 
Brinkman term, in which 𝜇෤ 𝜇⁄  is set to 1. 

Some studies examined the validity of the Brinkman equation. Using the Green’s 
function approach, Durlofsky and Brady [20] suggested that the Brinkman equation is valid 
for 𝜙 ൐ 0.95. Rubinstein [21] showed that the Brinkman equation can be used when 𝜙 is 
as small as 0.8. Nield and Bejan [1] argued that the Brinkman model is breaking down 
when a large value of 𝜇෤ 𝜇⁄  is needed to match theory and experiment. Gerritsen et al. [22] 
suggested that the Brinkman equation is not uniformly valid as the porosity tends to unity. 
Auriaut [23] stated that the Brinkman equation appears to be valid for flows through fixed 
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beds of particles or fibers at very low porosity. It cannot be physically justified for classical 
porous media with connected porous matrices. However, in another recent study Kuznetsov 
and Kuznetsov [24] showed that the Brinkman model can fit experimental data when 𝜇෤ 𝜇⁄  
is as large as 8 and reported the confidence intervals for the effective viscosity. It is still 
not clear whether a Laplacian term, such as one used in the Brinkman model, can be used 
as a reasonable approximation of momentum dispersion, especially when the porosity is 
small.  

Some other studies suggested that the Brinkman term does not need to be taken into 
account in many applications since its effect is significant only in a thin boundary layer, 
see Nield et al. [1], Tam [25], and Levy [26]. However, in a recent DNS study, Jin and 
Kuznetsov [27] showed that the Brinkman term may have an important effect near a wall 
when the flow is turbulent.  

Jin et al. [28, 29] studied turbulent flows in porous media using DNS and proposed 
the pore-scale-prevalence hypothesis (PSPH). The PSPH states that the size of turbulent 
eddies is restricted by the pore size. Jin and Kuznetsov [27] further indicated that both 
turbulent motions and momentum dispersion are characterized by the pore size. Chu et al. 
[30] confirmed the PSPH if the porous matrix is not sparsely packed. However, the effect 
of the pore size on momentum dispersion is not explicitly accounted for in previous models 
[9, 14, 19]. 

The purpose of this paper is to develop a momentum-dispersion model based on the 
PSPH. Results of the PSPH momentum-dispersion model will be validated by the DNS 
results in which the detailed pore-scale geometry is accounted for. Through this study, we 
will also try to answer whether the effects of the velocity gradient on momentum transport 
can be reasonably well approximated by using the Laplacian term.   

The structure of this paper is as follows. The governing equations and numerical 
methods in this study are introduced in section 2. Equations for the model coefficients are 
discussed in section 3. In section 4, the developed macroscopic model is applied to 
simulating flows in two types of porous media to demonstrate its utility. Finally, the 
conclusions are given in section 5. 

  

2 Governing equations and numerical methods 

2.1 Governing equations for microscopic DNS 

The governing equations for microscopic DNS of incompressible flows in porous 
media are the transient Navier-Stokes equations. They are 

డ௨೔

డ௫೔
ൌ 0,                                                         (2.1) 
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The dimensions of the velocity 𝑢௜ , distance 𝑥௜ , time 𝑡, density 𝜌, pressure 𝑝, kinematic 
viscosity of the fluid 𝜈, and negative of the applied pressure gradient 𝑔௜ (assumed to be a 
constant value) in Eqs. (2.1) and (2.2) are [LT], [L], [T], [ML-3], [ML-1T-2], [L2T-1], and 
[LT-2], respectively, where L, T and M can be any units of length, time, and mass. These 
units are not specified so that the numerical results can be applied in any system of units. 

The detailed geometry of the porous matrix is accounted for in microscopic DNS. The 
Navier-Stokes equations are solved directly without introducing any additional model. The 
purpose of performing microscopic DNS is to determine the model coefficients and to 
obtain the data for model validation.  

 

2.2 Governing equations for macroscopic simulation 

Macroscopic equations for flows in porous media are derived by volume averaging 
the Navier-Stokes equations. The approach of derivation is similar to that used by de Lemos 
[31,32], who averaged the governing equations (2.1)-(2.2) over volume and time. By 
contrast, only volume averaging was used in our derivation. The macroscopic equations 
are expressed as 
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ൌ 0,                                                      (2.3) 
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The operator 〈∙〉௜  denotes volume averaging over the fluid region of a representative 

elementary volume (REV). The porosity 𝜙 is defined as 𝜙 ൌ
௏೑

௏ೞା௏೑
 , where 𝑉௦ and 𝑉௙ are 

the solid and fluid volumes in a REV, respectively. 𝑅௜ denotes the total drag caused by the 
effect of the porous matrix.  

It should be noted that an undetermined tensor 𝜙〈 𝑢௜ 𝑢௝ 
௜

 
௜ 〉௜ , which corresponds to 

momentum dispersion, appears in Eq. (2.4). The spatial deviation 𝜑 ௜  , where 𝜑 could be 
any variable under consideration, is the difference between the real value and its intrinsic 
average, calculated as  

𝜑 ௜ ൌ 𝜑 െ 〈𝜑〉௜                                                    (2.5) 

𝜙〈 𝑢௜ 𝑢௝ 
௜

 
௜ 〉௜ needs to be closed before the macroscopic equations (2.3)-(2.4) can be solved. 

 

2.3 Total drag  

The total drag 𝑅௜ is usually approximated by the Forchheimer extension of the Darcy 
equation [33], calculated as 
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𝑅௜ ൌ 𝑅஽௜ ൅ 𝑅ி௜ ൌ ఔ

௄
𝑢஽௜ ൅ ௖ಷ

√௄
|𝐮஽|𝑢஽௜                                 (2.6) 

𝑢஽௜  denotes the seepage velocity 𝜙〈𝑢௜〉௜ . 𝐮஽  is the superficial velocity vector. 𝑐ி  is a 
dimensionless coefficient which accounts for the nonlinear increase of the form-drag with 
the velocity. Masuka and Takatsu [34] and Wood et al. [35] stated that the Darcy–
Forchheimer law appears to be valid for both laminar and turbulent flows. The permeability 
𝐾 is a measure of the ability of a porous medium to allow fluids to pass through it. For a 
homogeneous porous medium, 𝐾  is traditionally determined by the ratio of 𝜈𝑢஽ଵ  and 

𝑔ଵ െ ଵ

ఘ

୼௣

୼௫ 
 as the flow velocity is small (approaches 0), where Δ𝑝 is the increase of pressure 

over the length Δ𝑥. 

Some studies show that 𝑐ி is not a constant but is related to the superficial (filtration) 
flow velocity, see Lage et al. [36]. Here, we make a Taylor expansion for 𝑅௜ with respect 
to a local Reynolds number, Re௄, calculated as 

𝑅௜ ൌ ఔ

௄
𝑢஽௜൫1 ൅ 𝑐ிଵRe௄ ൅ 𝑐ிଶRe௄

ଶ ൅ ⋯ ൅ 𝑐ி௡Re௄
௡ ൅ 𝑂ሺRe௄

௡ାଵሻ൯               (2.7) 

𝑐ிଵ, 𝑐ிଶ, ⋯, 𝑐ி௡ are the coefficients of the Taylor series. Re௄ is the local Reynolds number 
based on the permeability, calculated as 

Re௄
 ൌ √௄|𝐮ವ|

ఔ
                                                        (2.8) 

Comparing Eqs. (2.6) and (2.7), it is evident that 𝑐ி is calculated as 

𝑐ி ൌ 𝑐ிଵ ൅ 𝑐ிଶRe௄
 ൅ ⋯ ൅ 𝑐ி௡Re௄

௡ିଵ ൅ 𝑂ሺRe௄
௡ ሻ                          (2.9) 

In this study, 𝑅௜ is approximated with the three leading order terms of Eq. (2.7), as  

 𝑅௜ ൎ ఔ

௄
𝑢஽௜ሺ1 ൅ 𝑐ிଵRe௄ ൅ 𝑐ிଶRe௄

ଶ ሻ                                   (2.10) 

The dependence of 𝑐ி on the velocity is taken into account in Eq. (2.9). 

 

2.4 PSPH model for momentum dispersion 

The gradient of macroscopic velocity might affect the momentum dispersion 
𝜙〈 𝑢௜ 𝑢௝ 

௜
 
௜ 〉௜ , molecular diffusion 2𝜈𝑠஽௜௝ , and total drag 𝑅௜ . A symmetric tensor 𝐷௜௝ ൌ

2𝜈෤𝑠஽௜௝ is introduced to account for its effects, where 𝑠஽௜௝ is the strain rate of the superficial 

velocity 𝐮஽, 𝜈෤ is an effective viscosity. The macroscopic equation (2.4) becomes  
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                 (2.11) 

𝜈෤ 𝜈⁄  is often treated as a constant or a function of the porosity [9, 14]. However, the DNS 
results by Jin et al. [27] showed that the magnitude of 𝜈෤ increases with an increase in the 
local Reynolds number, as the momentum dispersion becomes more important.  
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We propose a new Reynolds number that characterizes the strength of the local 
momentum dispersion. According to the PSPH, the characteristic length scale of the flow 
in a porous medium is the pore size 𝑠. In a review paper, Wood et al. [35] suggested that 
the pore size can be characterized by the mean particle diameter for a generic porous matrix 

(GPM). In this study, we use √𝐾 to characterize the pore size 𝑠, because √𝐾 has a linear 

relationship with 𝑠 when the shape of the porous matrix is fixed. √𝐾 is also used as the 
length scale because it is easy to determine 𝐾 for a porous matrix. 

Jin and Kuznetsov [27] suggested that the characteristic velocity for flows in porous 

media close to the wall is the product of √𝐾 and the magnitude of the strain rate ห𝑠஽௜௝ห, 
calculated as  

ห𝑠஽௜௝ห ൌ ൫2𝑠஽௜௝𝑠஽௜௝൯
ଵ/ଶ

                                       (2.12) 

This is similar to the mixing length model of Prandtl [37] in which the fluid is assumed to 
mix within the mixing length due to turbulent fluctuations. 

Using √𝐾 and ห𝑠஽௜௝ห√𝐾 as the characteristic length and velocity, respectively, Reௗ is 
defined as 

Reௗ ൌ
௄ห௦ವ೔ೕห

ఔ
                                                   (2.13) 

For a one-dimensional wall bounded flow, Reௗ represents the ratio between the inertial 

force 𝑢|𝑑𝑢 𝑑𝑦⁄ | and the resisting force according to the Darcy law, 
ఔ

௄
𝑢, where 𝑢 is the 

macroscopic streamwise velocity and 𝑦 is the distance from the wall.  

The ratio 𝜈෤ 𝜈⁄  approaches a constant value 𝑐஻ଵ when the Reynolds number Reௗ 
approaches 0. A Taylor expansion with respect to Reௗ can be made for 𝜈෤ 𝜈⁄ , as follows 

𝜈෤ 𝜈⁄ ൌ 𝑐஻ଵ ൅ 𝑐஻ଶReௗ ൅ ⋯ ൅ 𝑐஻௡Reௗ
௡ିଵ ൅ 𝑂ሺReௗ

௡ሻ                       (2.14) 

where 𝑐஻ଵ, 𝑐஻ଶ, ⋯, 𝑐஻௡ are the coefficients of the Taylor series. In this study, we take the 
two leading order terms of Eq. (2.14), i.e.,  

𝜈෤ 𝜈⁄ ൎ 𝑐஻ଵ ൅ 𝑐஻ଶReௗ                                           (2.15) 

The effective viscosity 𝜈෤ in Eq. (2.11) can be determined using Eq. (2.15). 

 

2.5 Numerical methods 

Two methods are used in the simulation. They are 

 A finite volume method (FVM) which directly solves the Navier-Stokes equations. 

 A Lattice-Boltzmann method (LBM) which determines the particle distribution; 
this method indirectly corresponds to solving the Navier-Stokes equations. 
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The FVM is used for solving the macroscopic equations (2.3)-(2.4). The solver is 
developed based on the open source computational fluid dynamics (CFD) code OpenFoam 
18.12. To compute the derivatives of the velocity, the variables at the interfaces of the grid 
cells are obtained with linear interpolation. This leads to a second order central difference 
scheme for spatial discretization. The pressure at the new time level is determined by the 
Poisson equation. The velocity is corrected by the Pressure-Implicit scheme with Splitting 
of Operators (PISO) pressure-velocity coupling. 

The LBM is used for solving the microscopic equations (2.1)-(2.2) to determine the 
model coefficients and obtain the validation data. The basic equation of the present LBM 
is a discretized version of the Boltzmann equation [38] with the collision operator being 
treated by the Bhatnagar-Gross-Krook (BGK) model [39], i.e.  

𝑓௜ሺ𝐱 ൅ 𝛏𝒊Δ𝑡, 𝑡 ൅ Δ𝑡ሻ െ 𝑓௜ሺ𝐱, 𝑡ሻ ൌ െ ଵ

ఛො
ቀ𝑓௜ሺ𝐱, 𝑡ሻ െ 𝑓௜

௘௤ሺ𝐱, 𝑡ሻቁ                     (2.16) 

where 𝛏𝒊 is a discrete particle velocity, 𝑓௜ሺ𝐱, 𝑡ሻ is the probability to find a particle with a 
velocity 𝛏𝒊 at a position 𝐱 at a time t, 𝑓௜

௘௤ሺ𝐱, 𝑡ሻ is the equilibrium form of 𝑓௜ሺ𝐱, 𝑡ሻ, and 𝜏̂ is 
the relaxation time, which is related to the viscosity of the fluid (see Chen & Doolen[40]).  

With the help of the Chapman–Enskog expansion [40], the compressible Navier–
Stokes equations can be derived from the Lattice Boltzmann equation. Eq. (2.16) is 
equivalent to the incompressible Navier–Stokes equations (2.1)-(2.2) for small Mach 
numbers, i.e. for negligible compressibility of the fluid [40]. 

The bounce back model is used to account for the no-slip boundary condition at the 
solid walls. In this model the particles are bounced back to the flow domain without any 
loss of mechanical energy when the particles collide with a wall. This model ensures 
conservation of mass and momentum at the boundary. More details can be found in 
Mohamad [41]. 

Both the FVM and LBM solvers have received intensive validations and verifications 
in our previous studies [27-29]. Therefore, these numerical methods are directly used in 
this study. The DNS solutions can be used to validate the model results. Typical DNS cases 
are calculated using different meshes to estimate the uncertainty of the DNS solutions due 
to mesh-dependence. It will be introduced below when the numerical results are discussed.  

 

3. Model coefficients 

The model coefficients 𝐾, 𝑐ிଵ, 𝑐ிଶ, 𝑐஻ଵ, and 𝑐஻ଶ are geometric parameters which are 
independent of the flow condition. They need to be determined before the macroscopic 
equations (2.3)-(2.4) can be solved. Various empirical and half-empirical correlations exist 
for calculating these coefficients. 

In the case of beds of particles or fibers, the permeability 𝐾 can be approximated by 
the Carman–Kozeny equation [42, 43] 
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𝐾 ൌ ஽ುమ
మ థయ

ଵ଼଴ሺଵିథሻమ  
                                                    (3.1) 

where 𝐷௉ଶ
  is an effective average particle or fiber diameter.  

𝑐ி is often set to a constant in previous studies, so 𝑐ி is identical to 𝑐ிଵ and 𝑐ிଶ is 0. 
Ward [44] suggested that 𝑐ி is a universal constant, with a value of approximately 0.55. In 
a later study, Beavers et al.[45] showed that 𝑐ி can be better expressed as 

𝑐ி ൌ 0.55 ቀ1 െ 5.5 ௗ

஽೐
ቁ                                             (3.2) 

where 𝑑 is the sphere diameter and 𝐷௘ is the size of the bed. Nield and Bejan[1] suggested 
that 𝑐ி depends on the nature of the porous medium, and can be as small as 0.1. Irmay[46] 
suggested an alternate equation for calculating the total drag 𝑅௜, i.e.,  

𝑅௜ ൌ ఉሺଵିథሻమ

஽ುమ
మ థయ  

𝑢஽௜ ൅ ఈሺଵିథሻ

஽ುమ
 థయ  

|𝐮஽|𝑢஽௜
  ,                                 (3.3) 

which is known as Ergun’s equation. The model coefficients 𝛼 and 𝛽 are set to 1.75 and 
150, respectively. 𝐾 and 𝑐ி in Eq. (3.3) are calculated as 

𝐾 ൌ ஽ುమ
మ థయ

ఉሺଵିథሻమ  
, 𝑐ி ൌ 𝛼𝛽ିଵ/ଶ𝜙ିଷ/ଶ                                    (3.4) 

𝑐஻ଶ has never been accounted for in the previous studies. Brinkman[9] set 𝑐஻ଵ to 1. 
Thus, 𝐷௜௝ in Eq. (2.11) is calculated as 

𝐷௜௝ ൌ 𝜈
డ௨ವ೔

 

డ௫ೕ
,                                                     (3.5) 

which neglects momentum dispersion. The same assumption is also used in the 
macroscopic equations proposed by Hsu and Cheng [19]. 

The results of Ochoa-Tapia and Whitaker [14] suggest that 𝑐஻ଵ ൌ ଵ

థ
. 𝐷௜௝  is then 

calculated as 

𝐷௜௝ ൌ ఔ

థ

డ௨ವ೔
 

డ௫ೕ
                                                    (3.6) 

In practice, we find that the correlations above may produce considerable errors since 
these model coefficients are related to the geometry of the porous matrix. The concept of 
tortuosity was introduced in some studies to account for the variation of pore-scale 
geometries. However, it is hard to determine the tortuosity. Also, we have not found a clear 
relationship between the model coefficients and the tortuosity. Therefore, the concept of 
tortuosity is not used in this study.  

With the fast development of high-performance computers, it is possible to determine 
the model coefficients directly from the CFD results. To determine the model coefficients, 
we use DNS to compute the flow in the porous medium that is bounded by two walls. 
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Periodic boundary conditions are used in the streamwise and transverse directions. The 
number of REVs in the wall-normal direction should be large enough so that the flow near 
the central region is not affected by the walls.  

Two types of porous matrices are utilized in this study; they are composed of arrays 
of spheres or cubes. A schematic geometry of the porous matrix is shown in Fig. 1. The 
porous matrix is composed of 96 (4 ൈ 8 ൈ 4) REVs. The domain size is 4𝑠 ൈ 8𝑠 ൈ 4𝑠, 
where the pore size 𝑠 is defined as the distance between two adjacent solid elements. The 
viscosity 𝜈 is set to 0.002 L2T-1. 𝑔ଵ is varied to obtain different Reynolds numbers. The 
simulations are performed using the LBM. The grid points are uniformly distributed. 
ሺ41 𝑠 𝑑⁄ ሻଷ grid points are used in each REV for laminar flows. 𝑑 is the size of the porous 
element. ሺ81 𝑠 𝑑⁄ ሻଷ grid points are used in each REV for turbulent flows. Up to 161 million 
grid points are used in the study.  

Since a wall only affects the flow in a few REVs next to it, the macroscopic equation 
in the central region of the channel can be simplified to  

𝑔ଵ െ 𝑅ଵ ൌ 𝑔ଵ െ ఔ

௄
𝑢஽ଵሺ1 ൅ 𝑐ிଵRe௄ ൅ 𝑐ிଶRe௄

ଶ ሻ ൌ 0                           (3.7) 

In order to determine the value of K, we first specify 𝑔ଵ and then calculate the seepage 
velocity 𝑢஽ଵ. We then calculate the approximate value of K by fitting the DNS results with 

𝑔ଵ ൌ ఔ

௄
𝑢஽ଵ for 1 ൑ Re௦ ൑ 20, where Re௦ is the Reynolds number based on the pore size 

𝑠. The corresponding values of Re௄ are in the range 0.04-0.8. Ward [44] suggested that the 
transition from the Darcy regime to the Forchheimer regime occurs in the Re௄ range 1-10, 
so the flow is still in the Darcy regime. We did not determine 𝐾 for very small values of 
Re௦ because it leads to a considerable error for flows with large Re௄ values. We then set 
𝑐ிଶ in Eq. (3.7) to 0, and adjusted the values of 𝐾 and 𝑐ிଵ by fitting the microscopic DNS 
results with Eq. (3.7) for Re௄ ൑ 3. After 𝐾 and 𝑐ிଵ are determined, the value of 𝑐ிଶ is 
obtained by fitting the microscopic DNS results for Re௄ ൐ 3. The solution of Eq. (3.7) and 
the microscopic DNS results for the porous matrix composed of spheres are compared in 
Fig. 2. Typical turbulent cases are recalculated using a different resolution (71ଷ grid points 
for each REV) to estimate the uncertainty due to the mesh resolution.  It can be seen that 
our DNS solutions are generally mesh-independent. It is evident that 𝑐ிଶ has significant 
effects at large Re௄ values. 
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Fig. 1 Schematic geometry of the porous matrix. 

 

 

 
Fig. 2 Applied pressure gradient 𝑔ଵ versus Reynolds number Re௄. The porous matrix is 
made of arrays of spheres. 𝜙 ൌ 0.48 (𝑠 𝑑⁄ ൌ 1), 𝐾 ൌ 0.0026, 𝑐ிଵ ൌ 0.049, and 𝑐ிଶ ൌ
0.003. The DNS solutions from a high-resolution mesh (81ଷ grid points for each REV) 
and from a low-resolution mesh (71ଷ grid points for each REV) are compared to indicate 
the numerical error.  

 

The values of 𝐾 for different geometries of porous elements are shown in Fig. 3. It 
can be seen that the geometry of the porous matrix has significant effects on the model 
coefficients. The correlations proposed in the previous studies produce considerable errors, 
particularly for large values of 𝜙 . Therefore, instead of using the correlations in the 

d 

𝑔ଵ 

s 

2𝐻  𝑢௖௟ 

𝑢஽ଵ 
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references, the values of 𝐾 are determined by fitting with the DNS results obtained in this 
study. 

The values of c୊ ൌ c୊ଵ ൅ c୊ଶRe୏
  for the porous matrices composed of spheres and 

cubes are shown in Fig. 4. Values of c୊ଵ and c୊ଶ are also obtained directly by fitting the 
DNS results. It can be seen that the values of c୊ for a porous matrix composed of spheres 
are close to the lower limit of the values suggested by Nield and Bejan [1]. The values of 
c୊ for a porous matrix composed of cubes are even lower. 

0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

K
/d

2



 Spheres
 Cubes
 Carman-Kozeny
 Ergun

 
ig. 3 Permeability 𝐾 versus porosity 𝜙 for porous matrices composed of spheres and 
cubes. The 𝐾 values obtained from DNS results are compared with the results from the 
Carman–Kozeny (Eq. 3.1) and Ergun (Eq. 3.4) equations.  
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Fig. 4 The Forchheimer coefficient 𝑐ி versus Re௄. The porous matrix is composed of 
spheres (𝜙 ൌ 0.48) or cubes (𝜙 ൌ 0.42). The values of 𝑐ி in this study are calculated 
using 𝑐ி ൌ 𝑐ிଵ ൅ 𝑐ிଶRe௄

 . 𝑐ிଵ and 𝑐ிଶ are determined from the DNS results. They are 
compared with the range 0.1-0.55 suggested by Nield and Bejan [1] and the predictions 
of the Ergun equation (Eq. 3.4). 

 

The macroscopic equation near the wall can be simplified as  

𝜙𝑔ଵ െ 𝜙𝑅ଵ ൅ ௗ

ௗ௫భ
ሺ𝜈෤𝐷ଵଶሻ ൌ 0                                       (3.8) 

The coefficients for calculating 𝑅ଵ have already been determined above. 𝑐஻ଵ and 𝑐஻ଶ are 
determined by fitting the solution of Eq. (3.8) near the wall to the DNS results. The error 
of 𝑅ଵ in the central region may affect the accuracy of 𝑐஻ଵ and 𝑐஻ଶ. To avoid this uncertainty, 
the value of 𝑐ிଶ is adjusted so that the calculated velocity at the center line 𝑢௖௟ is identical 
to the DNS results.   

We first set 𝑐஻ଶ to 0. 𝑐஻ଵ is adjusted until the solution of Eq. (3.8) averaged in the first 
REV close to wall is identical to the DNS results. The DNS results for Re௄ ൑ 1 are used 
to determine 𝑐஻ଵ. The values of 𝑐஻ଵ for different geometries of porous elements are shown 
in Fig. 5. It can be seen that 𝑐஻ଵ approaches 1 as 𝜙 increases asymptotically to 1, while it 
approaches infinity as 𝜙  decreases asymptotically to 0. This agrees with physical 
expectations. 𝑐஻ଵ does not change significantly when the geometry of the porous matrix is 
changed. It can be reasonably approximated as 

𝑐஻ଵ ൌ 49.63 ൈ
ሺଵିథሻమ

థబ.ఱ ൅ 1                                           (3.9) 

𝑐஻ଶ is determined by fitting the model results to the DNS results for Re௄ ൐ 1, see Fig. 
6. 𝑐஻ଶ  for porous matrices composed of cubes or spheres can be approximated by the 
following correlation 

𝑐஻ଶ ൌ 0.79 ൈ ሺଵିథሻమ

థయ                                               (3.10) 

𝑐஻ଶ  approaches 0 as 𝜙 increases asymptotically to 1, while it approaches infinity as 𝜙 
decreases asymptotically to 0. Only two geometries of the porous elements are considered 
in this study. Our numerical results show that values of 𝑐஻ଵ  and 𝑐஻ଶ  are not affected 
significantly when the pore-scale geometry is changed.  

 

4. Test cases 

The developed macroscopic equations are used to solve the flows in two types of 
porous media to demonstrate the utility of the developed macroscopic model. The first case 
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deals with a flow in a channel occupied by a homogeneous and isotropic porous medium. 
The second case deals with a flow in a porous medium with two porosity scales.  
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Fig. 5 𝑐஻ଵ versus porosity 𝜙 for different geometries of porous elements. 
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Fig. 6 𝑐஻ଶ versus porosity 𝜙 for different geometries of porous elements. 

 

4.1 Flow in a channel occupied by a homogeneous and isotropic porous medium 

Microscopic DNS results for the flow rate in the same porous media have been used 
to determine the model coefficients. The purpose of this test case is to show that the PSPH 
momentum-dispersion model can be used for wide ranges of Darcy numbers (Da) and 
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Reynolds numbers (Re௖௟). The Reynolds number Re௖௟ is based on the half channel height 
𝐻 and the centerline velocity in the channel 𝑢௖௟, and is defined as 

Re௖௟ ൌ ௨೎೗ு

ఔ
                                                          (4.1) 

The Darcy number is defined as 

Da ൌ ௄

ுమ                                                           (4.2) 

The instantaneous velocity magnitudes for representative Reynolds numbers are shown in 
Fig. 7. It may also be observed that the wall mainly affects the first REV next to it.  
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Fig. 7 Instantaneous velocity magnitude. In (a) and (b), the porous matrix is composed 
of spheres, 𝜙 ൌ 0.48. (a) Re௖௟=98, laminar; (b) Re௖௟=1730, turbulent. In (c) and (d), the 
porous matrix is composed of cubes, 𝜙 ൌ 0.49. (c) Re௖௟=127, laminar; (d) Re௖௟=2339, 
turbulent.   

 

We fix the Reynolds number Re௖௟ (or 𝑢௖௟) and reduce the pore size 𝑠, which results in 
three different scale ratios (𝐻/𝑠): 20, 30, and 40. The corresponding Darcy numbers are 
8.5 ൈ 10ି଺, 3.8 ൈ 10ି଺, and 2.1 ൈ 10ି଺, respectively. Fig. 8 shows that the distribution 
of 𝑢஽ଵ is steeper near the wall when Da is smaller. The results of 𝑢஽ଵ from the PSPH 
model and DNS are averaged in each REV, so they can be compared quantitatively. The 
symbol 〈… 〉୴ in Fig. 8 denotes the whole REV-averaged velocity 〈𝑢஽ଵ〉୴ obtained from 
DNS and PSPH model results. It can be seen that the results from the PSPH model are in 
good agreement with the DNS results.  
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Fig. 8 𝑢஽ଵ 𝑢௖௟⁄  and 〈𝑢஽ଵ〉୴ 𝑢௖௟⁄  versus the normalized distance from the wall 𝑥ଶ 𝐻⁄ . The 
porous matrix is composed of cubes, 𝜙 ൌ 0.49, Re௖௟ ൌ 127. Lines: 𝑢஽ଵ 𝑢௖௟⁄  obtained 
from continuous PSPH model results; hollow symbols: 〈𝑢஽ଵ〉୴ 𝑢௖௟⁄  from REV-averaged 
PSPH model results; solid symbols: 〈𝑢஽ଵ〉୴ 𝑢௖௟⁄  from REV-averaged DNS results.  

 

The numerical results in Fig. 8 are shown again in Fig. 9 but the distance from the wall 
𝑥ଶ  is normalized with the pore size 𝑠  instead of 𝐻 . The DNS results from two mesh 
resolutions are almost identical, indicating the mesh-independence of the DNS solution. 
The profiles of 𝑢஽ଵ collapse to a single curve, suggesting that the characteristic length of 
the flow is 𝑠; this is in accordance with the PSPH. Figure 9 also shows that the PSPH 
momentum-dispersion model is more accurate than the macroscopic model using 
Brinkman’s expression [9] or Ochoa-Tapia and Whitaker’s expression [14].  
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Fig. 9 𝑢஽ଵ 𝑢௖௟⁄  and 〈𝑢஽ଵ〉୴ 𝑢௖௟⁄  versus the normalized distance from the wall 𝑥ଶ 𝑠⁄ . The 
porous matrix is composed of cubes, 𝜙 ൌ 0.49, Re௖௟ ൌ 127.  

 

Different Reynolds numbers Re௖௟ can be obtained by changing the applied pressure 
gradient 𝑔ଵ. Fig. 10 shows the results for different values of Re௖௟, which are in the turbulent 
regime. There are some perturbations of the velocity for the porous medium composed of 
spheres, this is also observed in Jin and Kuznetsov [27]. These perturbations are not found 
for the porous medium composed of cubes. The profiles of  𝑢஽ଵ for different values of Re௖௟ 
collapse to a single curve when they are normalized with 𝑢௖௟. The DNS results are mesh-
independent, see Fig. 10b. The model results for both porous matrices are in good 
agreement with the DNS results.  
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(b) 

Fig. 10 Streamwise velocity 〈𝑢஽ଵ〉୴ versus the normalized distance from the wall 𝑥ଶ 𝑠⁄  
for different values of Re௖௟. The porous matrix is composed of spheres (a) and cubes (b). 
Hollow symbols: PSPH model results; solid symbols: DNS results. Mesh1: 101ଷ grid 
points for each REV; mesh 2: 76ଷ grid points for each REV.  

 

It can be also seen in Fig. 10 that, for the porous matrix under consideration, the wall 
only affects the flow in the first REV next to it. Therefore, in Fig. 11, we only compare the 
macroscopic and microscopic results for volume-averaged value of 𝑢஽ଵ in the first REV 
next to the wall. 𝑐஻ଶ has non-negligible effects when the flow is characterized by a large 
Reynolds number, particularly when the flow is turbulent, see Fig. 11b. The value of 𝑢஽ଵ 
next to the wall may be over-predicted by 10% if 𝑐஻ଶ is neglected.  
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Fig. 11 〈𝑢஽ଵ〉୴ in the first REV next to the wall versus the applied pressure gradient 𝑔ଵ. 
The porous matrix is composed of cubes. (a) whole range of values of the applied 
pressure gradient; (b) zoomed results in the turbulent regime.  
 

4.2 Flows in porous media with two porosities 

To further investigate the generality of the proposed PSPH momentum-dispersion 
model, the flows in porous media with two porosities are simulated. The geometry of the 
porous matrix is shown in Fig. 12. A constant applied pressure gradient 𝑔ଵ forces the fluid 
to flow with two characteristic velocities. The zone with a higher porosity has a higher 
velocity. Therefore, this type of flow has two characteristic Reynolds numbers based on 
the pore size 𝑠, calculated as 

Reଵ ൌ ௨ೌ௦

ఔ
; Reଶ ൌ ௨್௦

ఔ
                                             (4.2) 

where 𝑢௔ and 𝑢௕ are the macroscopic velocities in the two porous medium zones far away 
from the interface. The computational domain is composed of 128 (4 ൈ 8 ൈ 4) REVs. The 
two porous medium zones have the same pore size 𝑠 but different sizes of porous elements 
(𝑑ଵ and 𝑑ଶ), leading to two different porosities 𝜙ଵ and 𝜙ଶ. Up to 661 million grid points 
are used for turbulent flows (each REV has 151ଷ points).  

Typical laminar and turbulent flows in this porous medium are shown in Fig. 13. The 
porosities of the two porous medium zones are 𝜙ଵ ൌ 0.42 and 𝜙ଶ ൌ 0.49, respectively. It 
can be seen that the effects of the interface are limited to the two REVs in the vicinity of 
the interface.  
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Fig. 12 Schematic geometry of a porous matrix with two porosities. 

 

Figure 14 shows the velocity profiles in the wall normal direction for 𝑔ଵ ൌ 0.07 and 
𝑔ଵ ൌ 1.1. Both laminar and turbulent cases are calculated using a lower-resolution mesh 
(each REV has 91ଷ points). It can be seen that the results for the laminar flow are mesh-
independent. The results for the turbulent flow are slightly mesh-dependent. The 
macroscopic model results are compared with the microscopic DNS results. It can be 
seen that the PSPH momentum-dispersion model is more accurate than the macroscopic 
model with Brinkman’s expression [9] or Ochoa-Tapia and Whitaker’s expression [14].  
When the mesh resolution is improved, the DNS results become closer to the PSPH-
model results.  
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Fig. 13 Instantaneous velocity magnitude. The porous matrix is composed of cubes, 
𝜙ଵ ൌ 0.42, 𝜙ଶ ൌ 0.49. (a) Reଵ ൌ 30 and Reଶ ൌ 60 (laminar flow); (b) Reଵ ൌ 454 and 
Reଶ ൌ 860 ሺturbulent flowሻ. 
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(b) 

Fig. 14 REV-averaged streamwise velocity 〈𝑢஽ଵ〉୴ versus the normalized distance from 
the wall 𝑥ଶ 𝑠⁄ . The porous matrix is composed of cubes, 𝜙ଵ ൌ 0.42, 𝜙ଶ ൌ 0.49. (a) 
Reଵ ൌ 30 , Reଶ ൌ 60  (laminar flow); (b) Reଵ ൌ 454 , Reଶ ൌ 860  (turbulent flow). 
Mesh1: 151ଷ grid points for each REV; mesh 2: 91ଷ grid points for each REV. 
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The results for more values of 𝑔ଵ and 𝜙 are shown in Fig. 15. This figure depicts the 
values of 〈𝑢஽ଵ〉୴ in two REVs adjacent to the interface. It can be seen that the PSPH model 
can be used in a wide range of the flow conditions, including both laminar and turbulent 
flows. In general, the errors in velocity distributions predicted by the model for all 
conditions simulated here are small. The deviation of model predictions from DNS results 
may increase when the difference between the two porosities increases. The deviation may 
be related to the errors of both the momentum-dispersion model and Darcy-Forchheimer 
model. 

0.1 1

0.1

1

<
u D

1>
v  [

L
T

-1
]

g
1
[LT-2]

     DNS  PSPH 


1
    


2
    

 
(a) 

0.1 1

0.1

1

     DNS  PSPH


1
     


2
     

<
u D

1>
v  [

L
T

-1
]

g
1
[LT-2]

 
(b) 

Fig. 15 〈𝑢஽ଵ〉୴ in the first REV next to the wall versus applied pressure gradient 𝑔ଵ. (a) 
Cubes, 𝜙ଵ ൌ 0.42 and 𝜙ଶ ൌ 0.49; (b) cubes, 𝜙ଵ ൌ 0.42 and 𝜙ଶ ൌ 0.54. 

 

5. Conclusions 

A momentum-dispersion model for flows in porous media is proposed based on the 
PSPH, which states that the characteristic length scale for flows in porous media is the pore 
size. The effects of macroscopic velocity gradient are modeled by using a Laplacian term 

in the macroscopic momentum equation. The local Reynolds number Reௗ ൌ
௄ห௦ವ೔ೕห

ఔ
, which 

describes the strength of the local momentum dispersion, is introduced using the pore size 

(identified by √𝐾) as the characteristic length and the mixing velocity, √𝐾ห𝑠஽௜௝ห, as the 
characteristic velocity. The effective viscosity is expanded as a Tayler series with respect 
to Reௗ. The model coefficients are expected to be only related to the geometry of the REV. 
They can be determined from the DNS results for flows in a wall-bounded porous medium 
made of the REVs under consideration. 

The proposed macroscopic equations are used to simulate the flows in two types of 
porous media, a porous medium bounded by two walls and a porous medium with two 
porosities. The model results are in good agreement with the DNS results in wide ranges 
of the Reynolds number, Darcy number, and porosity. The study shows that the effects of 
macroscopic velocity gradient on momentum transport in porous media can be reasonably 
well approximated using a Laplacian term. 
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