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Abstract A macroscopic model that accounts for the effect of momentum dispersion on
flows in porous media is proposed. The model is based on the pore-scale-prevalence-
hypothesis (PSPH). The effects of macroscopic velocity gradient on momentum transport
are approximated using a Laplacian term. A local Reynolds number Res, which
characterizes the strength of momentum dispersion, is introduced to calculate the effective
viscosity. The characteristic length used in defining Res is the pore size while the
characteristic velocity is the mixing velocity. A Taylor expansion is made for the effective
viscosity with respect to Res. The two leading order terms of the Taylor series are adopted
in the present PSPH momentum-dispersion model. The model constants are determined
from the direct numerical simulation (DNS) results of a flow in the same porous medium
bounded by two walls. The effective viscosity approaches the molecular viscosity when
the porosity is increased to 1. It approaches infinity when the porosity approaches 0. The
benchmark studies show that the effects of the macroscopic velocity gradient can be
approximated by the Laplacian term. The proposed PSPH momentum-dispersion model is
highly accurate in a wide range of Reynolds and Darcy numbers as well as porosities.
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A porous medium consists of a solid matrix with interconnected voids [1]. Many
industrial processes can be approximated as convection in porous media [2-5]. Turbulence
is welcome in many processes [2, 3] since it might significantly enhance the heat and mass
transfer. Turbulent convection in a porous medium can be calculated using direct numerical
simulation (DNS), in which all geometrical details of the porous matrix are taken into
account. However, DNS is often too computationally expensive and provides too much
information to be practical in engineering applications. Therefore, convection in porous
media is more often studied by solving macroscopic equations.

Macroscopic equations for simulating flow in a porous medium can be derived by
time- and volume-averaging the Navier-Stokes equations [6,7]. The effect of the porous
matrix on the losses of mechanical energy is often approximated by the Darcy term when
the flow velocity is low. The Forchheimer term is used to correct the Darcy equation when
the velocity is high. In a recent study, Lasseux et al. [8] proposed a more accurate and
complicated model that involves two effective coefficients for accounting for the time-
decaying influence of the flow initial condition. However, the Darcy-Forchheimer equation
is still the most widely used model for solving engineering problems.

Another alternative to the Darcy equation is known as the Brinkman equation. A
Laplacian term is introduced in the macroscopic momentum equation to model the effects
of the velocity gradient, including the effects of momentum dispersion and molecular
diffusion. In early papers, the effective viscosity fI in the Brinkman equation was assumed
to have the same value as the molecular viscosity y, see Brinkman [9]. However, the
experiments by Givler and Altobelli [10] show that i may be different from pu, and the
effects of this difference were investigated in Kuznetsov [11]. Later, Valdes-Parada et al.
[12] argued the effective viscosity is different from the fluid viscosity only for high
porosity cases. By performing a series of numerical simulations, Vafai [13] concluded that
whether fi/u is larger or smaller than unity depends on the type of a porous medium.
Ochoa-Tapia and Whitaker [ 14] suggested that a value of [i/u can be approximated as 1/¢,
where ¢ is the porosity of the porous medium. Thus, fi/u is larger than unity. Bear and
Bachmat [15] suggested fi/u to be equal to 1/(¢t*), where T* is the tortuosity of the
porous medium and depends on the geometry of a porous matrix. Saez et al. [16] also
suggested that fi/u is close to the tortuosity which is thought to be less than unity. Based
on the earlier work by Vafai and Tien[17,18] and without strict validation, Hsu and Cheng
[19] proposed a momentum equation that models the momentum dispersion by the
Brinkman term, in which fi/u is set to 1.

Some studies examined the validity of the Brinkman equation. Using the Green’s
function approach, Durlofsky and Brady [20] suggested that the Brinkman equation is valid
for ¢ > 0.95. Rubinstein [21] showed that the Brinkman equation can be used when ¢ is
as small as 0.8. Nield and Bejan [1] argued that the Brinkman model is breaking down
when a large value of i/u is needed to match theory and experiment. Gerritsen et al. [22]
suggested that the Brinkman equation is not uniformly valid as the porosity tends to unity.
Auriaut [23] stated that the Brinkman equation appears to be valid for flows through fixed



Numerical Modeling of Momentum Dispersion in Porous... 3

beds of particles or fibers at very low porosity. It cannot be physically justified for classical
porous media with connected porous matrices. However, in another recent study Kuznetsov
and Kuznetsov [24] showed that the Brinkman model can fit experimental data when fi/u
is as large as 8 and reported the confidence intervals for the effective viscosity. It is still
not clear whether a Laplacian term, such as one used in the Brinkman model, can be used
as a reasonable approximation of momentum dispersion, especially when the porosity is
small.

Some other studies suggested that the Brinkman term does not need to be taken into
account in many applications since its effect is significant only in a thin boundary layer,
see Nield et al. [1], Tam [25], and Levy [26]. However, in a recent DNS study, Jin and
Kuznetsov [27] showed that the Brinkman term may have an important effect near a wall
when the flow is turbulent.

Jin et al. [28, 29] studied turbulent flows in porous media using DNS and proposed
the pore-scale-prevalence hypothesis (PSPH). The PSPH states that the size of turbulent
eddies is restricted by the pore size. Jin and Kuznetsov [27] further indicated that both
turbulent motions and momentum dispersion are characterized by the pore size. Chu et al.
[30] confirmed the PSPH if the porous matrix is not sparsely packed. However, the effect
of the pore size on momentum dispersion is not explicitly accounted for in previous models
[9, 14, 19].

The purpose of this paper is to develop a momentum-dispersion model based on the
PSPH. Results of the PSPH momentum-dispersion model will be validated by the DNS
results in which the detailed pore-scale geometry is accounted for. Through this study, we
will also try to answer whether the effects of the velocity gradient on momentum transport
can be reasonably well approximated by using the Laplacian term.

The structure of this paper is as follows. The governing equations and numerical
methods in this study are introduced in section 2. Equations for the model coefficients are
discussed in section 3. In section 4, the developed macroscopic model is applied to
simulating flows in two types of porous media to demonstrate its utility. Finally, the
conclusions are given in section 5.

2 Governing equations and numerical methods
2.1 Governing equations for microscopic DNS

The governing equations for microscopic DNS of incompressible flows in porous
media are the transient Navier-Stokes equations. They are
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The dimensions of the velocity u;, distance x;, time t, density p, pressure p, kinematic
viscosity of the fluid v, and negative of the applied pressure gradient g; (assumed to be a
constant value) in Egs. (2.1) and (2.2) are [LT], [L], [T], [ML*], [ML'T2], [L*T"'], and
[LT2], respectively, where L, T and M can be any units of length, time, and mass. These
units are not specified so that the numerical results can be applied in any system of units.

The detailed geometry of the porous matrix is accounted for in microscopic DNS. The
Navier-Stokes equations are solved directly without introducing any additional model. The
purpose of performing microscopic DNS is to determine the model coefficients and to
obtain the data for model validation.

2.2 Governing equations for macroscopic simulation

Macroscopic equations for flows in porous media are derived by volume averaging
the Navier-Stokes equations. The approach of derivation is similar to that used by de Lemos
[31,32], who averaged the governing equations (2.1)-(2.2) over volume and time. By
contrast, only volume averaging was used in our derivation. The macroscopic equations
are expressed as

Aswd) _ (2.3)
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The operator (-)! denotes volume averaging over the fluid region of a representative

elementary volume (REV). The porosity ¢ is defined as ¢ = %, where Vg and Vy are
sTVf

the solid and fluid volumes in a REV, respectively. R; denotes the total drag caused by the
effect of the porous matrix.

It should be noted that an undetermined tensor ¢(‘u;"w;), which corresponds to

momentum dispersion, appears in Eq. (2.4). The spatial deviation ‘¢ , where ¢ could be
any variable under consideration, is the difference between the real value and its intrinsic
average, calculated as

‘o =p—(p) (2.5)

d)(iuiiuj)i needs to be closed before the macroscopic equations (2.3)-(2.4) can be solved.

2.3 Total drag

The total drag R; is usually approximated by the Forchheimer extension of the Darcy
equation [33], calculated as
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Ri = Rpi + Rpy = up; + 7= [up Jup; (2.6)

up; denotes the seepage velocity ¢{u;). up is the superficial velocity vector. cg is a
dimensionless coefficient which accounts for the nonlinear increase of the form-drag with
the velocity. Masuka and Takatsu [34] and Wood et al. [35] stated that the Darcy—
Forchheimer law appears to be valid for both laminar and turbulent flows. The permeability
K is a measure of the ability of a porous medium to allow fluids to pass through it. For a

homogeneous porous medium, K is traditionally determined by the ratio of vup; and

91— %i—z as the flow velocity is small (approaches 0), where Ap is the increase of pressure

over the length Ax.

Some studies show that cg is not a constant but is related to the superficial (filtration)
flow velocity, see Lage et al. [36]. Here, we make a Taylor expansion for R; with respect
to a local Reynolds number, Reg, calculated as

R, = %um(l + cp1Reg + cppRe% + -+ + cpReR + O(Reﬁ“)) (2.7)

Cr1, Cra, ***» Cpp are the coefficients of the Taylor series. Reg is the local Reynolds number
based on the permeability, calculated as

Rey = YAl 2.8)
Comparing Egs. (2.6) and (2.7), it is evident that cg is calculated as
Cr = Cp1 + CpaReg + -+ + cppReR 1 + O(Re}) (2.9)

In this study, R; is approximated with the three leading order terms of Eq. (2.7), as
R; = %um(l + cp1Reg + cpyRe%) (2.10)

The dependence of ¢ on the velocity is taken into account in Eq. (2.9).

2.4 PSPH model for momentum dispersion

The gradient of macroscopic velocity might affect the momentum dispersion
¢(iuiiuj)i, molecular diffusion 2vsp;;, and total drag R;. A symmetric tensor D;; =
2Vsp;j is introduced to account for its effects, where sp;; is the strain rate of the superficial
velocity up, ¥ is an effective viscosity. The macroscopic equation (2.4) becomes

dup; , d(upiupi/P) _ _ 13(¢(p)) _p 4 9Dy
at oxj o p 0x + d)’gl ¢Rl + Oxj

2.11)

V/v is often treated as a constant or a function of the porosity [9, 14]. However, the DNS
results by Jin et al. [27] showed that the magnitude of ¥ increases with an increase in the
local Reynolds number, as the momentum dispersion becomes more important.
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We propose a new Reynolds number that characterizes the strength of the local
momentum dispersion. According to the PSPH, the characteristic length scale of the flow
in a porous medium is the pore size s. In a review paper, Wood et al. [35] suggested that
the pore size can be characterized by the mean particle diameter for a generic porous matrix

(GPM). In this study, we use VK to characterize the pore size s, because VK has a linear

relationship with s when the shape of the porous matrix is fixed. VK is also used as the
length scale because it is easy to determine K for a porous matrix.

Jin and Kuznetsov [27] suggested that the characteristic velocity for flows in porous
media close to the wall is the product of VK and the magnitude of the strain rate |SDL- jl,
calculated as

1/2

Ispij| = (2spijspij) (2.12)

This is similar to the mixing length model of Prandtl [37] in which the fluid is assumed to
mix within the mixing length due to turbulent fluctuations.

Using VK and |le- j |\/f as the characteristic length and velocity, respectively, Re is
defined as

_ Klspijl

Req = —2L (2.13)

For a one-dimensional wall bounded flow, Re, represents the ratio between the inertial
force uldu/dy| and the resisting force according to the Darcy law, %u, where u is the

macroscopic streamwise velocity and y is the distance from the wall.

The ratio ¥/v approaches a constant value cg; when the Reynolds number Re,
approaches 0. A Taylor expansion with respect to Re,; can be made for ¥/v, as follows

/v = cgy + cgzReq + -+ + cgpRel T + O(Reh) (2.14)

where cgq, Cgy, ***, Cg, are the coefficients of the Taylor series. In this study, we take the
two leading order terms of Eq. (2.14), i.e.,

V/v = cgy + cgRey (2.15)

The effective viscosity ¥ in Eq. (2.11) can be determined using Eq. (2.15).

2.5 Numerical methods
Two methods are used in the simulation. They are
e A finite volume method (FVM) which directly solves the Navier-Stokes equations.

e A Lattice-Boltzmann method (LBM) which determines the particle distribution;
this method indirectly corresponds to solving the Navier-Stokes equations.
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The FVM is used for solving the macroscopic equations (2.3)-(2.4). The solver is
developed based on the open source computational fluid dynamics (CFD) code OpenFoam
18.12. To compute the derivatives of the velocity, the variables at the interfaces of the grid
cells are obtained with linear interpolation. This leads to a second order central difference
scheme for spatial discretization. The pressure at the new time level is determined by the
Poisson equation. The velocity is corrected by the Pressure-Implicit scheme with Splitting
of Operators (PISO) pressure-velocity coupling.

The LBM is used for solving the microscopic equations (2.1)-(2.2) to determine the
model coefficients and obtain the validation data. The basic equation of the present LBM
is a discretized version of the Boltzmann equation [38] with the collision operator being
treated by the Bhatnagar-Gross-Krook (BGK) model [39], i.e.

fix+ &t + A0 - fi(x t) = =2 (fix 1) = £ (x 1)) 2.16)

where &; is a discrete particle velocity, f;(X, t) is the probability to find a particle with a
velocity &; at a position X at a time #, f;°?(x, t) is the equilibrium form of f;(x,t), and £ is
the relaxation time, which is related to the viscosity of the fluid (see Chen & Doolen[40]).

With the help of the Chapman—Enskog expansion [40], the compressible Navier—
Stokes equations can be derived from the Lattice Boltzmann equation. Eq. (2.16) is
equivalent to the incompressible Navier—Stokes equations (2.1)-(2.2) for small Mach
numbers, i.e. for negligible compressibility of the fluid [40].

The bounce back model is used to account for the no-slip boundary condition at the
solid walls. In this model the particles are bounced back to the flow domain without any
loss of mechanical energy when the particles collide with a wall. This model ensures
conservation of mass and momentum at the boundary. More details can be found in
Mohamad [41].

Both the FVM and LBM solvers have received intensive validations and verifications
in our previous studies [27-29]. Therefore, these numerical methods are directly used in
this study. The DNS solutions can be used to validate the model results. Typical DNS cases
are calculated using different meshes to estimate the uncertainty of the DNS solutions due
to mesh-dependence. It will be introduced below when the numerical results are discussed.

3. Model coefficients

The model coefficients K, cpq, Cgq, Cp1, and cg, are geometric parameters which are
independent of the flow condition. They need to be determined before the macroscopic
equations (2.3)-(2.4) can be solved. Various empirical and half-empirical correlations exist
for calculating these coefficients.

In the case of beds of particles or fibers, the permeability K can be approximated by
the Carman—Kozeny equation [42, 43]
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_ _ D3¢°
T 180(1-¢)2 G.1)

where Dp, is an effective average particle or fiber diameter.

cr 1s often set to a constant in previous studies, so ¢ is identical to cg; and cg, 1s 0.
Ward [44] suggested that cg 1s a universal constant, with a value of approximately 0.55. In
a later study, Beavers et al.[45] showed that ¢ can be better expressed as

cr =055 (1- 5.50%) (3.2)

where d is the sphere diameter and D,, is the size of the bed. Nield and Bejan[1] suggested
that ¢ depends on the nature of the porous medium, and can be as small as 0.1. Irmay[46]
suggested an alternate equation for calculating the total drag R;, i.e.,

_Ba-¢ |, a(i-¢)
Ri=oges Uity 55

lup|up; , (3.3)

which is known as Ergun’s equation. The model coefficients a and [ are set to 1.75 and
150, respectively. K and ¢y in Eq. (3.3) are calculated as

_ _DB,¢° _ o p-1/24-3/2
b cp = af T2 (34

Cg, has never been accounted for in the previous studies. Brinkman[9] set cg; to 1.
Thus, D;j in Eq. (2.11) is calculated as

6uDi

5
axj

which neglects momentum dispersion. The same assumption is also used in the
macroscopic equations proposed by Hsu and Cheng [19].

The results of Ochoa-Tapia and Whitaker [14] suggest that cg; = % D;; is then

calculated as

vV 0up;
Di.—_J

=52 (3.6)

In practice, we find that the correlations above may produce considerable errors since
these model coefficients are related to the geometry of the porous matrix. The concept of
tortuosity was introduced in some studies to account for the variation of pore-scale
geometries. However, it is hard to determine the tortuosity. Also, we have not found a clear
relationship between the model coefficients and the tortuosity. Therefore, the concept of
tortuosity is not used in this study.

With the fast development of high-performance computers, it is possible to determine
the model coefficients directly from the CFD results. To determine the model coefficients,
we use DNS to compute the flow in the porous medium that is bounded by two walls.
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Periodic boundary conditions are used in the streamwise and transverse directions. The
number of REVs in the wall-normal direction should be large enough so that the flow near
the central region is not affected by the walls.

Two types of porous matrices are utilized in this study; they are composed of arrays
of spheres or cubes. A schematic geometry of the porous matrix is shown in Fig. 1. The
porous matrix is composed of 96 (4 X 8 X 4) REVs. The domain size is 4s X 8s X 4s,
where the pore size s is defined as the distance between two adjacent solid elements. The
viscosity v is set to 0.002 L*T-!. g, is varied to obtain different Reynolds numbers. The
simulations are performed using the LBM. The grid points are uniformly distributed.
(41s/d)3 grid points are used in each REV for laminar flows. d is the size of the porous
element. (81 s/d)3 grid points are used in each REV for turbulent flows. Up to 161 million
grid points are used in the study.

Since a wall only affects the flow in a few REVs next to it, the macroscopic equation
in the central region of the channel can be simplified to

91— Ri =91 — %um(l + cpReg + CF2R912<) =0 (3.7)

In order to determine the value of K, we first specify g, and then calculate the seepage
velocity up,. We then calculate the approximate value of K by fitting the DNS results with

g1 = %um for 1 < Rey < 20, where Re; is the Reynolds number based on the pore size

s. The corresponding values of Reg are in the range 0.04-0.8. Ward [44] suggested that the
transition from the Darcy regime to the Forchheimer regime occurs in the Reg range 1-10,
so the flow is still in the Darcy regime. We did not determine K for very small values of
Reg because it leads to a considerable error for flows with large Rey values. We then set
cgp in Eq. (3.7) to 0, and adjusted the values of K and cg4 by fitting the microscopic DNS
results with Eq. (3.7) for Rey < 3. After K and cp, are determined, the value of cg, is
obtained by fitting the microscopic DNS results for Rey > 3. The solution of Eq. (3.7) and
the microscopic DNS results for the porous matrix composed of spheres are compared in
Fig. 2. Typical turbulent cases are recalculated using a different resolution (713 grid points
for each REV) to estimate the uncertainty due to the mesh resolution. It can be seen that
our DNS solutions are generally mesh-independent. It is evident that cg, has significant
effects at large Reg values.
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Fig. 1 Schematic geometry of the porous matrix.

Fig. 2 Applied pressure gradient g, versus Reynolds number Rey. The porous matrix is
made of arrays of spheres. ¢ = 0.48 (s/d = 1), K = 0.0026, cr; = 0.049, and ¢y, =
0.003. The DNS solutions from a high-resolution mesh (813 grid points for each REV)

and from a low-resolution mesh (713 grid points for each REV) are compared to indicate
the numerical error.

The values of K for different geometries of porous elements are shown in Fig. 3. It
can be seen that the geometry of the porous matrix has significant effects on the model
coefficients. The correlations proposed in the previous studies produce considerable errors,
particularly for large values of ¢. Therefore, instead of using the correlations in the
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references, the values of K are determined by fitting with the DNS results obtained in this
study.

The values of cg = cpq + cpyRey for the porous matrices composed of spheres and
cubes are shown in Fig. 4. Values of cg; and cg, are also obtained directly by fitting the
DNS results. It can be seen that the values of cg for a porous matrix composed of spheres
are close to the lower limit of the values suggested by Nield and Bejan [1]. The values of
cg for a porous matrix composed of cubes are even lower.

0.08 . ; . ;
]
1
—&— Spheres !
—e— Cubes !
0.06 | Carman-Kozeny I’ u
= — -Ergun ’
i)
> 0.04 E
B

0.02

0.00
0.4

1.0

ig. 3 Permeability K versus porosity ¢ for porous matrices composed of spheres and
cubes. The K values obtained from DNS results are compared with the results from the
Carman—Kozeny (Eq. 3.1) and Ergun (Eq. 3.4) equations.

0.6 T T
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Fig. 4 The Forchheimer coefficient ¢ versus Reg. The porous matrix is composed of
spheres (¢p = 0.48) or cubes (¢p = 0.42). The values of ¢y in this study are calculated
using ¢ = Cpq + cppReg. cpq and cp, are determined from the DNS results. They are
compared with the range 0.1-0.55 suggested by Nield and Bejan [1] and the predictions
of the Ergun equation (Eq. 3.4).

The macroscopic equation near the wall can be simplified as

g1 — dRy + 7~ (D1) = 0 (3.8)

The coefficients for calculating R; have already been determined above. cg; and cp, are
determined by fitting the solution of Eq. (3.8) near the wall to the DNS results. The error
of R, in the central region may affect the accuracy of cg; and cg,. To avoid this uncertainty,
the value of cp, is adjusted so that the calculated velocity at the center line u; is identical
to the DNS results.

We first set cp, to 0. cp, is adjusted until the solution of Eq. (3.8) averaged in the first
REV close to wall is identical to the DNS results. The DNS results for Rey < 1 are used
to determine cg4. The values of cp; for different geometries of porous elements are shown
in Fig. 5. It can be seen that cg; approaches 1 as ¢ increases asymptotically to 1, while it
approaches infinity as ¢ decreases asymptotically to 0. This agrees with physical
expectations. cg; does not change significantly when the geometry of the porous matrix is
changed. It can be reasonably approximated as

(1-¢)?
¢0.5

CBl = 49.63 X + 1 (3.9)

Cpy 1s determined by fitting the model results to the DNS results for Rey > 1, see Fig.
6. cg, for porous matrices composed of cubes or spheres can be approximated by the
following correlation

_ 2
gy = 0.79 X % (3.10)

cgy approaches 0 as ¢ increases asymptotically to 1, while it approaches infinity as ¢
decreases asymptotically to 0. Only two geometries of the porous elements are considered
in this study. Our numerical results show that values of cg; and cp, are not affected
significantly when the pore-scale geometry is changed.

4. Test cases

The developed macroscopic equations are used to solve the flows in two types of
porous media to demonstrate the utility of the developed macroscopic model. The first case
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deals with a flow in a channel occupied by a homogeneous and isotropic porous medium.
The second case deals with a flow in a porous medium with two porosity scales.

25 : : : :

—=— Spheres
—O— Cubes
——Eq. (3.9)

0.4
¢

Fig. 5 cp, versus porosity ¢ for different geometries of porous elements.

B Sphere
O Cube
3L Eq. (3.10) i

0 . . . . . .
0.40 0.45 0.50 0.55 0.60 0.65 0.70

¢

Fig. 6 cp, versus porosity ¢ for different geometries of porous elements.

4.1 Flow in a channel occupied by a homogeneous and isotropic porous medium

Microscopic DNS results for the flow rate in the same porous media have been used
to determine the model coefficients. The purpose of this test case is to show that the PSPH
momentum-dispersion model can be used for wide ranges of Darcy numbers (Da) and
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Reynolds numbers (Re.;). The Reynolds number Re_; is based on the half channel height
H and the centerline velocity in the channel u,;, and is defined as

Re, = “4= 4.1)
The Darcy number is defined as
K
Da = — (4.2)

The instantaneous velocity magnitudes for representative Reynolds numbers are shown in
Fig. 7. It may also be observed that the wall mainly affects the first REV next to it.

Ul LT [U] LT
0.0 0.1 0.2 0.3 0.4 0.0 1.5 4.5 6.0
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[ul LT Ul L7
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“mmn“mmuw wmmwmmmw

wall

mid-plane mid-plane
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Fig. 7 Instantaneous velocity magnitude. In (a) and (b), the porous matrix is composed
of spheres, ¢ = 0.48. (a) Re;=98, laminar; (b) Re.;=1730, turbulent. In (¢) and (d), the
porous matrix is composed of cubes, ¢ = 0.49. (c) Re,;=127, laminar; (d) Re,;=2339,

turbulent.

We fix the Reynolds number Re; (or u,;) and reduce the pore size s, which results in
three different scale ratios (H/s): 20, 30, and 40. The corresponding Darcy numbers are
8.5x 107°,3.8x 107°, and 2.1 X 107°, respectively. Fig. 8 shows that the distribution
of up; is steeper near the wall when Da is smaller. The results of up; from the PSPH
model and DNS are averaged in each REV, so they can be compared quantitatively. The
symbol (...)V in Fig. 8 denotes the whole REV-averaged velocity (up;)" obtained from
DNS and PSPH model results. It can be seen that the results from the PSPH model are in

good agreement with the DNS results.

" DNS  model Da H/s
04 k1 — —O0— 8.5xe® 20
A —— —0—  38xe’ 30
h —— 0 2.1xe* 40

! ! ! !
0.00 0.02 0.04 0.06 0.08 0.10
x,/H

Fig. 8 up,/u.; and (up;)¥/u versus the normalized distance from the wall x, /H. The
porous matrix is composed of cubes, ¢ = 0.49, Re,; = 127. Lines: up, /u,; obtained
from continuous PSPH model results; hollow symbols: (up;)"/u. from REV-averaged
PSPH model results; solid symbols: (up,)¥/u,; from REV-averaged DNS results.

The numerical results in Fig. 8 are shown again in Fig. 9 but the distance from the wall
X, 1s normalized with the pore size s instead of H. The DNS results from two mesh
resolutions are almost identical, indicating the mesh-independence of the DNS solution.
The profiles of up, collapse to a single curve, suggesting that the characteristic length of
the flow is s; this is in accordance with the PSPH. Figure 9 also shows that the PSPH
momentum-dispersion model is more accurate than the macroscopic model using
Brinkman’s expression [9] or Ochoa-Tapia and Whitaker’s expression [14].
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Fig. 9 up,/u,; and (up,)V/u,; versus the normalized distance from the wall x,/s. The
porous matrix is composed of cubes, ¢ = 0.49, Re,; = 127.

Different Reynolds numbers Re; can be obtained by changing the applied pressure
gradient g,. Fig. 10 shows the results for different values of Re.;, which are in the turbulent
regime. There are some perturbations of the velocity for the porous medium composed of
spheres, this is also observed in Jin and Kuznetsov [27]. These perturbations are not found
for the porous medium composed of cubes. The profiles of up; for different values of Re;
collapse to a single curve when they are normalized with u.;. The DNS results are mesh-
independent, see Fig. 10b. The model results for both porous matrices are in good
agreement with the DNS results.

DNS
(mesh 1)
—— —— 1601

08| —— A 1730 i

PSPH

0.7 1 1 1 1 1 1 1
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(b)
Fig. 10 Streamwise velocity (up,)¥ versus the normalized distance from the wall x, /s
for different values of Re;. The porous matrix is composed of spheres (a) and cubes (b).
Hollow symbols: PSPH model results; solid symbols: DNS results. Mesh1: 1013 grid
points for each REV; mesh 2: 763 grid points for each REV.

It can be also seen in Fig. 10 that, for the porous matrix under consideration, the wall
only affects the flow in the first REV next to it. Therefore, in Fig. 11, we only compare the
macroscopic and microscopic results for volume-averaged value of up; in the first REV
next to the wall. cg, has non-negligible effects when the flow is characterized by a large
Reynolds number, particularly when the flow is turbulent, see Fig. 11b. The value of up,
next to the wall may be over-predicted by 10% if cg, is neglected.

Turbulent flow

Laminar flow

(a)
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Fig. 11 (up;)" in the first REV next to the wall versus the applied pressure gradient g;.
The porous matrix is composed of cubes. (a) whole range of values of the applied
pressure gradient; (b) zoomed results in the turbulent regime.

4.2 Flows in porous media with two porosities

To further investigate the generality of the proposed PSPH momentum-dispersion
model, the flows in porous media with two porosities are simulated. The geometry of the
porous matrix is shown in Fig. 12. A constant applied pressure gradient g, forces the fluid
to flow with two characteristic velocities. The zone with a higher porosity has a higher
velocity. Therefore, this type of flow has two characteristic Reynolds numbers based on
the pore size s, calculated as

Re; = ? Re, = % (4.2)

where u, and u;, are the macroscopic velocities in the two porous medium zones far away
from the interface. The computational domain is composed of 128 (4 X 8 X 4) REVs. The
two porous medium zones have the same pore size s but different sizes of porous elements
(d; and d,), leading to two different porosities ¢; and ¢,. Up to 661 million grid points
are used for turbulent flows (each REV has 1513 points).

Typical laminar and turbulent flows in this porous medium are shown in Fig. 13. The
porosities of the two porous medium zones are ¢p; = 0.42 and ¢, = 0.49, respectively. It
can be seen that the effects of the interface are limited to the two REVs in the vicinity of
the interface.
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Idz;I D = 0

Fig. 12 Schematic geometry of a porous matrix with two porosities.

Figure 14 shows the velocity profiles in the wall normal direction for g; = 0.07 and
g1 = 1.1. Both laminar and turbulent cases are calculated using a lower-resolution mesh
(each REV has 913 points). It can be seen that the results for the laminar flow are mesh-
independent. The results for the turbulent flow are slightly mesh-dependent. The
macroscopic model results are compared with the microscopic DNS results. It can be
seen that the PSPH momentum-dispersion model is more accurate than the macroscopic
model with Brinkman’s expression [9] or Ochoa-Tapia and Whitaker’s expression [14].
When the mesh resolution is improved, the DNS results become closer to the PSPH-
model results.

Ul LT Ul 1L
0.0 0.15 0.3 0.45 0.6 0.0 16 3.2 48 6.4

interface interface

(b)
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Fig. 13 Instantaneous velocity magnitude. The porous matrix is composed of cubes,
¢, =0.42, ¢, = 0.49. (a) Re; = 30 and Re, = 60 (laminar flow); (b) Re; = 454 and
Re, = 860 (turbulent flow).

T T T T T T
10k —®— DNS (meshl) i
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(b)
Fig. 14 REV-averaged streamwise velocity (up;)" versus the normalized distance from
the wall x,/s. The porous matrix is composed of cubes, ¢; = 0.42, ¢, = 0.49. (a)
Re; = 30, Re, = 60 (laminar flow); (b) Re; = 454, Re, = 860 (turbulent flow).
Mesh1: 1513 grid points for each REV; mesh 2: 913 grid points for each REV.
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The results for more values of g, and ¢ are shown in Fig. 15. This figure depicts the
values of (up;)Y in two REVs adjacent to the interface. It can be seen that the PSPH model
can be used in a wide range of the flow conditions, including both laminar and turbulent
flows. In general, the errors in velocity distributions predicted by the model for all
conditions simulated here are small. The deviation of model predictions from DNS results
may increase when the difference between the two porosities increases. The deviation may

be related to the errors of both the momentum-dispersion model and Darcy-Forchheimer
model.

Turbulent flow

<u, > [LT"]
<up, > [LT"]

s, Turbulent flowj

DNS PSPH
¢, —@——0— DNS PSPH

¢] ———0—

o

¢, —A— A 01
§, —A——0—

0.1 . 1 0.1 s 1
(a) (b)
Fig. 15 (up;)" in the first REV next to the wall versus applied pressure gradient g;. (a)
Cubes, ¢, = 0.42 and ¢, = 0.49; (b) cubes, ¢p; = 0.42 and ¢, = 0.54.

5. Conclusions

A momentum-dispersion model for flows in porous media is proposed based on the
PSPH, which states that the characteristic length scale for flows in porous media is the pore
size. The effects of macroscopic velocity gradient are modeled by using a Laplacian term

. . . K|spij .
in the macroscopic momentum equation. The local Reynolds number Re; = @, which

describes the strength of the local momentum dispersion, is introduced using the pore size
(identified by VK) as the characteristic length and the mixing velocity, VK |sDi j|, as the
characteristic velocity. The effective viscosity is expanded as a Tayler series with respect
to Re;. The model coefficients are expected to be only related to the geometry of the REV.

They can be determined from the DNS results for flows in a wall-bounded porous medium
made of the REVs under consideration.

The proposed macroscopic equations are used to simulate the flows in two types of
porous media, a porous medium bounded by two walls and a porous medium with two
porosities. The model results are in good agreement with the DNS results in wide ranges
of the Reynolds number, Darcy number, and porosity. The study shows that the effects of
macroscopic velocity gradient on momentum transport in porous media can be reasonably
well approximated using a Laplacian term.
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