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ABSTRACT
Recommender system is an essential component of web services

to engage users. Popular recommender systems model user prefer-

ences and item properties using a large amount of crowdsourced

user-item interaction data, e.g., rating scores; then top-N items

that match the best with a user’s preference are recommended to

the user. In this work, we show that an attacker can launch a data
poisoning attack to a recommender system to make recommenda-

tions as the attacker desires via injecting fake users with carefully

crafted user-item interaction data. Specifically, an attacker can trick

a recommender system to recommend a target item to as many

normal users as possible. We focus on matrix factorization based

recommender systems because they have been widely deployed in

industry. Given the number of fake users the attacker can inject,

we formulate the crafting of rating scores for the fake users as an

optimization problem. However, this optimization problem is chal-

lenging to solve as it is a non-convex integer programming problem.

To address the challenge, we develop several techniques to approx-

imately solve the optimization problem. For instance, we leverage

influence function to select a subset of normal users who are influen-

tial to the recommendations and solve our formulated optimization

problem based on these influential users. Our results show that our

attacks are effective and outperform existing methods.

CCS CONCEPTS
• Security and privacy → Web application security.
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1 INTRODUCTION
Recommender system is a key component of many web services to

help users locate items they are interested in. Many recommender

systems are based on collaborative filtering. For instance, given

a large amount of user-item interaction data (we consider rating

scores in this work) provided by users, a recommender system
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learns to model latent users’ preferences and items’ features, and

then the system recommends top-N items to each user, where the

features of the top-N items best match with the user’s preference.

As a recommender system is driven by user-item interaction data,

an attacker can manipulate a recommender system via injecting

fake users with fake user-item interaction data to the system. Such

attacks are known as data poisoning attacks [9, 10, 17, 19, 23, 34, 38].
Several recent studies designed recommender-system-specific data

poisoning attacks to association-rule-based [38], graph-based [10]

and matrix-factorization-based recommender systems [19]. How-

ever, how to design customized attacks to matrix-factorization-

based top-N recommender systems remains an open question even

though such recommender systems have been widely deployed in

the industry. In this work, we aim to bridge the gap. In particular,

we aim to design an optimized data poisoning attack to matrix-
factorization-based top-N recommender systems. Suppose that an
attacker can injectm fake users into the recommender system and

each fake user can rate at most n items, which we call filler items.
Then, the key question is: how to select the filler items and assign
rating scores to them such that an attacker-chosen target item is
recommended to as many normal users as possible? To answer this

question, we formulate an optimization problem for selecting filler

items and assigning rating scores for the fake users, with an objec-

tive to maximize the number of normal users to whom the target

item is recommended.

However, it is challenging to solve this optimization problem be-

cause it is a non-convex integer programming problem. To address

the challenge, we propose a series of techniques to approximately

solve the optimization problem. First, we propose to use a loss

function to approximate the number of normal users to whom the

target item is recommended. We relax the integer rating scores to

continuous variables and convert them back to integer rating scores

after solving the reformulated optimization problem. Second, to

enhance the effectiveness of our attack, we leverage the influence
function approach inspired by the interpretable machine learning

literature [14, 15, 33] to account for the reality that the top-N rec-

ommendations may be only affected by a subset S of influential

users. For convenience, throughout the rest of this paper, we refer to

our attack as S-attack. We show that the influential user selection

subproblem enjoys the submodular property, which guarantees a

(1 − 1/e) approximation ratio with a simple greedy selection algo-

rithm. Lastly, given S, we develop a gradient-based optimization

algorithm to determine rating scores for the fake users.

We evaluate our S-attack and compare it with multiple baseline

attacks on two benchmark datasets, including Yelp and Amazon

Digital Music (Music). Our results show that our attacks can ef-

fectively promote a target item. For instance, on the Yelp dataset,

https://doi.org/10.1145/3366423.3380072
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when injecting only 0.5% of fake users, our attack can make a ran-

domly selected target item appear in the top-N recommendation

lists of 150 times more normal users. Our S-attack outperforms the

baseline attacks and continues to be effective even if the attacker

does not know the parameters of the target recommender system.

We also investigate the effects of our attacks on recommender sys-

tems that are equipped with fake users detection capabilities. For

this purpose, we train a binary classifier to distinguish between

fake users and normal ones. Our results show that this classifier is

effective against traditional attack schemes, e.g., PGA attack [19],

etc. Remarkably, we find that our influence-function-based attack

continues to be effective. The reason is that our proposed attack is

designed with stealth in mind, and the detection method can detect

some fake users but miss a large fraction of them. In summary, our

contributions are as follows:

• Wepropose the first data poisoning attack tomatrix-factorization-

based Top-N recommender systems, which we formulate as a

non-convex integer optimization problem.

• We propose a series of techniques to approximately solve the

optimization problem with provable performance guarantee.

• We evaluate our S-attack and compare it with state-of-the-art

using two benchmark datasets. Our results show that our attack

is effective and outperforms existing ones.

2 RELATEDWORK

Data poisoning attacks to recommender systems: The secu-

rity and privacy issues in machine learning models have been stud-

ied in many scenarios [24, 29–31, 39, 41, 42]. The importance of

data poisoning attacks has also been recognized in recommender

systems [7, 21–23, 28, 37]. Earlier work on poisoning attacks against

recommender systems are mostly agnostic to recommender systems

and do not achieve satisfactory attack performance, e.g., random

attack [17] and average attack [17]. Recently, there is a line of

work focusing on attacking specific types of recommender systems

[10, 19, 38]. For example, Fang et al. [10] proposed efficient poison-

ing attacks to graph-based recommender systems. They injected

fake users with carefully crafted rating scores to the recommender

systems in order to promote a target item. They modeled the at-

tack as an optimization problem to decide the rating scores for

the fake users. Li et al. [19] proposed poisoning attacks to matrix-

factorization-based recommender systems. Instead of attacking

the top-N recommendation lists, their goal was to manipulate the

predictions for all missing entries of the rating matrix. As a re-

sult, the effectiveness of their attacks is unsatisfactory in matrix-

factorization-based top-N recommender systems.

Data poisoning attacks to other systems: Data poisoning at-

tacks generally refer to attacks that manipulate the training data

of a machine learning or data mining system such that the learnt

model makes predictions as an attacker desires. Other than recom-

mender systems, data poisoning attacks were also studied for other

systems. For instance, existing studies have demonstrated effective

data poisoning attacks can be launched to anomaly detectors [27],

spam filters [25], SVMs [4, 36], regression methods [12, 35], graph-

based methods [32, 43], neural networks [5, 11, 20], and federated

learning [9], which significantly affect their performance.

3 PROBLEM FORMULATION
3.1 Matrix-Factorization-Based Recommender

Systems: A Primer
A matrix-factorization-based recommender system [16] maps users

and items into latent factor vectors. Let U, I and E denote the

user, item and rating sets, respectively. We also let |U|, |I | and

|E | denote the numbers of users, items and ratings, respectively.

Let R ∈ R |U |×|I | represent the user-item rating matrix, where

each entry rui denotes the score that user u rates the item i . Let

xu ∈ Rd and yi ∈ Rd denote the latent factor vector for user u and

item i , respectively, where d is the dimension of latent factor vector.

For convenience, we use matrices X = [x1, . . . ,x |U |] and Y =
[y1, . . . ,y |I |] to group all x- andy-vectors. In matrix-factorization-

based recommender systems, we aim to learn X and Y via solving

the following optimization problem:

argmin

X ,Y

∑
(u ,i)∈E

(
rui − x

⊤
u yi

)
2

+ λ

(∑
u
∥xu ∥

2

2
+

∑
i
∥yi ∥

2

2

)
, (1)

where ∥·∥
2
is the ℓ2 norm and λ is the regularization parameter.

Then, the rating score that a user u gives to an unseen item i is
predicted as r̂ui = x⊤u yi , where x

⊤
u denotes the transpose of vector

xu . Lastly, the N unseen items with the highest predicted rating

scores are recommended to each user.

3.2 Threat Model
Given a target item t , the goal of the attacker is to promote item

t to as many normal users as possible and maximize the hit ratio

h(t), which is defined as the fraction of normal users whose top-N
recommendation lists include the target item t . We assume that the

attacker is able to inject some fake users into the recommender sys-

tem, each fake user will rate the target item t with high rating score

and give carefully crafted rating scores to other well-selected items.

The attacker may have full knowledge of the target recommender

system (e.g., all the rating data, the recommendation algorithm).

The attacker may also only have partial knowledge of the target

recommender system, e.g., the attacker only has access to some

ratings. We will show that our attacks are still effective when the

attacker has partial knowledge of the target recommender system.

3.3 Attack Strategy
We assume that the rating scores of the target recommender system

are integer-valued and can only be selected from the set {0, 1, · · · ,

rmax }, where rmax is the maximum rating score. We assume that

the attacker can injectm fake users into the recommender system.

We denote byM the set ofm fake users. Each fake user will rate

the target item t and at most n other carefully selected items (called

filler items). We consider each fake user rates at most n filler items

to avoid being easily detected. We let rv and Ωv denote the rating

score vector of fake user v and the set of items rated by v , respec-
tively, where v ∈ M and |Ωv | ≤ n + 1. Then, rvi is the score that
user v rates the item i , i ∈ Ωv . Clearly, Ωv satisfies |Ωv | = ∥rv ∥0,
where ∥·∥

0
is the ℓ0 norm (i.e., the number of non-zero entries in a

vector). The attacker’s goal is to find an optimal rating score vector

for each fake user v to maximize the hit ratio h(t). We formulate
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this hit ratio maximization problem (HRM) as follows:

HRM: max h(t) (2)

s.t. |Ωv | ≤ n + 1, ∀v ∈ M, (3)

rvi ∈ {0, 1, · · · , rmax }, ∀v ∈ M,∀i ∈ Ωv . (4)

Problem HRM is an integer programming problem and is NP-hard

in general. Thus, finding an optimal solution is challenging. In the

next section, we will propose techniques to approximately solve

the problem.

4 OUR SOLUTION
We optimize the rating scores for fake users one by one instead of

optimizing for all them fake users simultaneously. In particular, we

repeatedly optimize the rating scores of one fake user and add the

fake user to the recommender system until we havem fake users.

However, it is still challenging to solve the HRM problem even if

we consider only one fake user. To address the challenge, we design

several techniques to approximately solve the HRM problem for

one fake user. First, we relax the discrete ratings to continuous data

and convert them back to discrete ratings after solving the problem.

Second, we use a differentiable loss function to approximate the

hit ratio. Third, instead of using all normal users, we use a selected

subset of influential users to solve the HRM problem, which makes

our attack more effective. Fourth, we develop a gradient-based

method to solve the HRM problem to determine the rating scores

for the fake user.

4.1 Relaxing Rating Scores
We let vector wv = [wvi , i ∈ Ωv ]

⊤
be the relaxed continuous

rating score vector of fake userv , wherewvi is the rating score that

user v gives to the item i . Since rvi ∈ {0, 1, · · · , rmax } is discrete,

which makes it difficult to solve the optimization problem defined

in (2), we relax the discrete rating score rvi to continuous variables
wvi that satisfywvi ∈ [0, rmax ]. Then, we can use gradient-based

methods to computewv . After we solve the optimization problem,

we convert each wvi back to a discrete integer value in the set

{0, 1, · · · , rmax }.

4.2 Approximating the Hit Ratio
We let Γu be the set of top-N recommended items for a user u, i.e.,
Γu consists of the N items that u has not rated before and have the

largest predicted rating scores. To approximate the optimization

problem defined in (2), we define a loss function that is subject to

the following rules: 1) for each item i ∈ Γu , if r̂ui < r̂ut , then the

loss is small, where r̂ui and r̂ut are the predicted rating scores that

user u gives to item i and target item t , respectively; 2) the higher
target item t ranks in Γu , the smaller the loss. Based on these rules,

we reformulate the HRM problem as the following problem:

min

wv
LU (wv ) =

∑
u ∈U

∑
i ∈Γu

д(r̂ui − r̂ut ) + η∥wv ∥1

s.t.wvi ∈ [0, rmax ],

(5)

where д(x) = 1

1+exp(−x/b) is the Wilcoxon-Mann-Whitney loss

function [2], b is the width parameter, η is the regularization pa-

rameter, and ∥·∥
1
is the ℓ1 norm. Note that д(·) guarantees that

LU (wv ) ≥ 0 and is differentiable. The ℓ1 regularizer ∥wv ∥1 aims

to model the constraint that each fake user rates at most n filler

items. In particular, the ℓ1 regularizer makes a fake user’s ratings

small to many items and we can select the n items with the largest

ratings as the filler items.

4.3 Determining the Set of Influential Users
It has been observed in [18, 33] that different training samples have

different contributions to the solution quality of an optimization

problem, and the performance of the model training could be im-

proved if we drop some training samples with low contributions.

Motivated by this observation, instead of optimizing the ratings of

a fake user over all normal users, we solve the problem in (5) using

a subset of influential users, who are the most responsible for the

prediction of the target item before attack. We let S ∈ U represent

the set of influential users for the target item t . For convenience, in
what follows, we refer to our attack asS-attack. Under theS-attack,

we further reformulate (5) as the following problem:

min

wv
LS(wv ) =

∑
u ∈S

∑
i ∈Γu

д(r̂ui − r̂ut ) + η∥wv ∥1

s.t.wvi ∈ [0, rmax ].

(6)

Next, we propose an influence function approach to determine

S and then solve the optimization problem defined in (6). We let

𭟋(S, t) denote the influence of removing all users in the set S on

the prediction at the target item t , where influence here is defined
as the change of the predicted rating score. We want to find a set of

influential users that have the largest influence on the target item t .
Formally, the influence maximization problem can be defined as:

max 𭟋(S, t), s.t. |S| = ∆, (7)

where ∆ is the desired set size (i.e., the number of users in set S).

However, it can be shown that the problem is NP-hard [13]. In order

to solve the above influence maximization problem of (7), we first

show how to measure the influence of one user, then we show how

to approximately find a set of ∆ users with the maximum influence.

We define π (k, t) as the influence of removing user k on the

prediction at the target item t :

π (k, t)
def

=
∑

j ∈Ωk
φ((k, j), t), (8)

where φ((k, j), t) is the influence of removing edge (k, j) in the user-

item bipartite on the prediction at the target item t , Ωk is the set of

items rated by user k . Then, the influence of removing user set S

on the prediction at the target item t can be defined as:

𭟋(S, t) def=
∑

k ∈S
π (k, t). (9)

Since the influence of user and user set can be computed based

on the edge influence φ((k, j), t), the key challenge boils down to

how to evaluate φ((k, j), t) efficiently. Next, we will propose an

appropriate influence function to efficiently compute φ((k, j), t).

4.3.1 Influence Function forMatrix-factorization-based Recommender
Systems. For a given matrix-factorization-based recommender sys-

tem, we can rewrite (1) as follows:

θ∗ = argmin

θ

1

|E |

∑
(u ,i)∈E

ℓ((u, i),θ ), (10)
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where θ ≜ (X ,Y ). We let r̂ui (θ ) denote the predicted rating score

user u gives to item i under parameter θ , and r̂ui (θ ) ≜ x⊤u (θ )yi (θ ).
If we increase the weight of the edge (k, j) ∈ E by some ζ , then

the perturbed optimal parameter θ∗ζ ,(k , j) can be written as:

θ∗ζ ,(k , j) = argmin

θ

1

|E |

∑
(u ,i)∈E

ℓ((u, i),θ ) + ζ ℓ((k, j),θ ). (11)

Since removing the edge (k, j) is equivalent to increasing its

weight by ζ = − 1

|E |
, the influence of removing edge (k, j) on the

prediction at edge (o, t) can be approximated as follows [8, 15]:

Φ((k, j), (o, t))
def

= r̂ot
(
θ∗ε\(k , j)

)
− r̂ot (θ

∗)≈−
1

|E |
·

∂r̂ot
(
θ∗ζ ,(k , j)

)
∂ζ

�������
ζ =0

=
1

|E |
∇θ r̂

⊤
ot (θ

∗)H−1θ ∗ ∇θ ℓ((k, j),θ
∗), (12)

where θ∗ε\(k , j) is the optimal model parameter after removing edge

(k, j) and Hθ ∗ represents the Hessian matrix of the objective func-

tion defined in (10). Therefore, the influence of removing edge (k, j)
on the prediction at the target item t can be computed as:

φ((k, j), t)
def

=
∑

o∈U
|Φ((k, j), (o, t))| , (13)

where |·| is the absolute value.

4.3.2 Approximation Algorithm for Determining S. Due to the com-

binatorial complexity, solving the optimization problem defined in

(7) remains an NP-hard problem. Fortunately, based on the observa-

tion that the influence of set S (e.g.,𭟋(S, t)) exhibits a diminishing

returns property, we propose a greedy selection algorithm to find a

solution to (7) with an approximation ratio guarantee. The approxi-

mation algorithm is a direct consequence of the following result,

which says that the influence 𭟋(S, t) is monotone and submodular.

Theorem 1 (Submodularity). The influence 𭟋(S, t) is normal-
ized, monotonically non-decreasing and submodular.

Proof. Define three sets A, B and C, where A ⊆ B and C =

B \ A. To simplify the notation, we use 𭟋(A) to denote 𭟋(A, t).
It is clear that the influence function is normalized since 𭟋(∅) = 0.

Since𭟋(B)−𭟋(A) =
∑

u ∈B
𭟋(u)−

∑
u ∈A

𭟋(u) =
∑

u ∈B\A
𭟋(u) = 𭟋(C) ≥

0, which implies that the influence 𭟋(S, t) is monotonically non-

decreasing. To show the submodular property, we let S denote the

complement of a set S. Now, consider an arbitrary setD, for which

we have: 𭟋(B ∪ D) − 𭟋(A ∪ D) = 𭟋((B ∪ D) \ (A ∪ D)) (a)=
𭟋(C \ (C ∩ D)) ≤ 𭟋(C) = 𭟋(B) −𭟋(A), where (a) follows from
(B ∪ D) \ (A ∪ D) = (B ∪ D) ∩ (A ∪ D) = C \ (C ∩ D). Hence,

the influence𭟋(S, t) is submodular and the proof is completed. □

Based on the submodular property of 𭟋(S, t), we propose Algo-
rithm 1, a greedy-based selection method to select an influential

user set S with ∆ users. More specifically, we first compute the

influence of each user, and add the user with the largest influence

to the candidate set S (breaking ties randomly). Then, we recom-

pute the influence of the remaining users in the set U \ S, and

find the user with the largest influence within the remaining users,

so on and so forth. We repeat this process until we find ∆ users.

Algorithm 1 Greedy Influential User Selection.

Input: Rating matrix R, budget ∆.
Output: Influential user set S.

1: Initialize S = ∅.

2: while |S| < ∆ do
3: Select u = argmaxk ∈U\Sπ (k, t).
4: S ← S ∪ {u}.
5: end while
6: return S.

Clearly, the running time of Algorithm 1 is linear. The following

result states that Algorithm 1 achieves a (1 − 1/e) approximation

ratio, and its proof follows immediately from standard results in

submodular optimization [26] and is omitted here for brevity.

Theorem 2. Let S be the influential user set returned by Algo-
rithm 1 and let S∗ be the optimal influential user set, respectively. It

then holds that 𭟋(S, t) ≥
(
1 − 1

e

)
𭟋(S∗, t).

4.4 Solving Rating Scores for a Fake User
Given S, we design a gradient-based method to solve the problem

in (6). Recall that we letwv = [wvi , i ∈ Ωv ]
⊤
be the rating vector

for the current injected fake user v . We first determine his/her

latent factors by solving Eq. (1), which can be restated as:

argmin

X ,Y ,z

∑
(u ,i)∈E′

(
rui − x

⊤
u yi

)
2

+
∑
i ∈I

(
wvi − z

⊤yi
)
2

+λ
(∑

u
∥xu ∥

2

2
+

∑
i
∥yi ∥

2

2
+ ∥z∥2

2

)
, (14)

where z ∈ Rd is the latent factor vector for fake user v , and E ′

is the current rating set (rating set E without attack plus injected

ratings of fake users added before user v).
Toward this end, note that a subgradient of loss LS(wv ) in (6)

can be computed as:

G(wv ) =
∑
u ∈S

∑
i ∈Γu

∇wvд(r̂ui − r̂ut ) + η∂ ∥wv ∥1

=
∑
u ∈S

∑
i ∈Γu

∂д
(
δu ,it

)
∂δu ,it

(
∇wv r̂ui − ∇wv r̂ut

)
+ η∂ ∥wv ∥1, (15)

where δu ,it = r̂ui − r̂ut and
∂д(δu ,it )
∂δu ,it

=
д(δu ,it )(1−д(δu ,it ))

b . The

subgradient ∂ ∥wv ∥1 can be computed as
∂

∂wv i
∥wv ∥1 =

wv i
|wv i |

. To

compute ∇wv r̂ui , noting that r̂ui = x⊤u yi , then the gradient
∂r̂ui
∂wv

can be computed as:

∂r̂ui
∂wv

= Jwv (xu )
⊤yi + Jwv (yi )

⊤xu , (16)

where Jwv (xu ) and Jwv (yi ) are the Jacobian matrices of xu and

yi taken with respect towv , respectively. Next, we leverage first-

order stationary condition to approximately compute Jwv (xu ) and
Jwv (yi ). Note that the optimal solution of problem in (14) satisfies

the following first-order stationary condition:

λxu =
∑

i ∈Ωu
(rui − x

⊤
u yi )yi , (17)

λyi =
∑

u ∈Ωi (rui − x
⊤
u yi )xu + (wvi − z

⊤yi )z, (18)

λz =
∑

i ∈I
(wvi − z

⊤yi )yi , (19)
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Algorithm 2 Our S-Attack.

Input: Rating matrix R, target item t , parametersm,n,d,η, λ,∆,b.
Output: Fake user setM.

1: Find influential user set S according to Algorithm 1 for item t .
2: LetM = ∅.

3: for v = 1, · · · ,m do
4: Solve the optimization problem defined in Eq. (6) to getwv .

5: Select n items with the largest values ofwvi as filler items.

6: Set rvt = rmax .

7: Let µi and σ 2

i be item i’s mean and variance of the scores

rated by all normal users. Let rvi ∼ N(µi , σ
2

i ) be the random

rating for each filler item i given by fake user v .
8: Let R ← R ∪ {rv } andM ←M ∪ {v}.
9: end for
10: return {rv }mv=1 andM.

where Ωu is the set of items rated by user u and Ωi
is the set of

users who rate the item i . Inspired by [19, 35], we assume that

the optimality conditions given by (17)–(19) remain valid under an

infinitesimal change ofwv . Thus, setting the derivatives of (17)–(19)

with respect towv to zero and with some algebraic computations,

we can derive that:

∂xu
∂wvi

= 0, (20)

∂yi
∂wvi

=
(
λI +

∑
u ∈Ωi xux

⊤
u + zz

⊤
)−1

z, (21)

where I is the identity matrix and (21) follows from (x⊤u yi )xu =
(xux⊤u )yi . Lastly, computing (20) and (21) for all i ∈ Γu yields

Jwv (xu ) and Jwv (yi ). Note that ∇wv r̂ut can be computed in exactly

the same procedure. Finally, after obtaining G(wv ), we can use the

projected subgradient method [3] to solvewv for fake user v . With

wv , we select the top n items with largest values ofwvi as the filler

items. However, the values ofwv obtained from solving (6) may not

mimic the rating behaviors of normal users. To make our S-attack

more “stealthy,” we will show how to generate rating scores to

disguise fake user v . We first set rvt = rmax to promote the target

item t . Then, we generate rating scores for the filler items by rating

each filler item with a normal distribution around the mean rating

for this item by legitimate users, where N(µi , σ
2

i ) is the normal

distribution with mean µi and variance σ 2

i of item i . Our S-attack
algorithm is summarized in Algorithm 2.

5 EXPERIMENTS
5.1 Experimental Setup
5.1.1 Datasets. We evaluate our attack on two real-world datasets.

The first dataset isAmazonDigitalMusic (Music) [1]. This dataset
consists of 88,639 ratings on 15,442 music by 8,844 users. The sec-

ond dataset is Yelp [40], which contains 504,713 ratings of 11,534

users on 25,229 items.

5.1.2 S-Attack Variants. With different ways of choosing the in-

fluential user set S, we compare three variants of our S-attack.

U-Top-N attack (U-TNA): This variant uses all normal users as

the influential user set S, i.e., S = U, then solve Problem (6).

Table 1: HR@10 for different attacks.
Dataset Attack size None PGA SGLD U-TNA S-TNA-Rand S-TNA-Inf

Music

0.3% 0.0017 0.0107 0.0138 0.0498 0.0141 0.0543
0.5% 0.0017 0.0945 0.1021 0.1355 0.0942 0.1521
1% 0.0017 0.1803 0.1985 0.2492 0.2054 0.2567
3% 0.0017 0.3681 0.3587 0.4015 0.3511 0.4172
5% 0.0017 0.5702 0.5731 0.5832 0.5653 0.6021

Yelp

0.3% 0.0015 0.0224 0.0261 0.0619 0.0258 0.0643
0.5% 0.0015 0.1623 0.1757 0.2304 0.1647 0.2262

1% 0.0015 0.4162 0.4101 0.4323 0.4173 0.4415
3% 0.0015 0.4924 0.5131 0.5316 0.4923 0.5429
5% 0.0015 0.6442 0.6431 0.6806 0.6532 0.6813

S-Top-N attack+Random (S-TNA-Rand):This variant randomly

selects ∆ users as the influential user set S, then solve Problem (6).

S-Top-N attack+Influence (S-TNA-Inf): This variant finds the
influential user set S by Algorithm 1, then solve Problem (6).

5.1.3 Baseline Attacks. We compare our S-attack variants with

the following baseline attacks.

Projected gradient ascent attack (PGA) [19]: PGA attack aims

to assign high rating scores to the target items and generates filler

items randomly for the fake users to rate.

Stochastic gradient Langevin dynamics attack (SGLD) [19]:T-
his attack also aims to assign high rating scores to the target items,

but it mimics the rating behavior of normal users. Each fake user

will select n items with the largest absolute ratings as filler items.

5.1.4 Parameter Setting. Unless otherwise stated, we use the fol-
lowing default parameter setting: d = 64, ∆ = 400, η = 0.01,

b = 0.01, and N = 10. Moreover, we set the attack size to be 3% (i.e.,

the number of fake users is 3% of the number of normal users) and

the number of filler items is set to n = 20. We randomly select 10

items as our target items and the hit ratio (HR@N ) is averaged over

the 10 target items, where HR@N of a target item is the fraction of

normal users whose top-N recommendation lists contain the target

item. Note that our S-attack is S-TNA-Inf attack.

5.2 Full-Knowledge Attack
In this section, we consider the worst-case attack scenario, where

the attacker has full knowledge of the recommender system, e.g.,

the type of the target recommender system (matrix-factorization-

based), all rating data, and the parameters of the recommender

system (e.g., the dimension d and the tradeoff parameter λ in use).

Table 1 summaries the results of different attacks. “None” means

the hit ratios without any attacks. First, we observe that the variants

of our S-attack can effectively promote the target items using only

a small number of fake users. For instance, in the Yelp dataset, when

injecting only 0.5% of fake users, S-TNA-Inf attack improves the hit

ratio by 150 times for a random target item compared to that of the

non-attack setting. Second, the variants of our S-attack outperform

the baseline attacks in most cases. This is because the baseline

attacks aim tomanipulate all themissing entries of the ratingmatrix,

while our attack aims to manipulate the top-N recommendation

lists. Third, it is somewhat surprising to see that the S-TNA-Inf

attack outperforms theU-TNA attack. Our observation shows that

by dropping the users that are not influential to the recommendation

of the target items when optimizing the rating scores for the fake

users, we can improve the effectiveness of our attack.
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Figure 1: The attacker knows a subset of ratings for the nor-
mal users and does not know d .
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Figure 2: FNR scores for different attacks.

5.3 Partial-Knowledge Attack
In this section, we consider partial-knowledge attack. In particular,

we consider the case where the attacker knows the type of the target

recommender system (matrix-factorization-based), but the attacker

has access to a subset of the ratings for the normal users and does

not know the dimension d . In particular, we view the user-item

rating matrix as a bipartite graph. Given a size of observed data,

we construct the subset of ratings by selecting nodes (users and

items) with increasing distance from the target item (e.g., one-hop

distance to the target item, then two-hop distance and so on) on

the bipartite graph until we reach the size of observed data.

Figure 1 shows the attack results when the attacker observes

different amounts of normal users ratings and our attack uses dif-

ferent d , where the target recommender system uses d = 64. The

attack size is set to be 3%. Note that in the partial-knowledge attack,

the attacker selects the influential user set and generates fake users

based only on the observed data. Naturally, we observe that as the

attacker has access to more ratings of the normal users, the attack

performance improves. We find that our attack also outperforms

SGLD attack (which performs better than PGA attack) in the partial-

knowledge setting. Moreover, our attack is still effective even if the

attacker does not know d . In particular, the curves corresponding

to different d are close to each other for our attack in Figure 1.

6 DETECTING FAKE USERS
To minimize the impact of potential attacks on recommender sys-

tems, a service provider may arm the recommender systems with

certain fake-user detection capability. In this section, we investigate

whether our attack is still effective in attacking the fake-user-aware

recommender systems. Specifically, we extract six features–namely,

RDMA [6], WDMA [23], WDA [23], TMF [23], FMTD [23], and

MeanVar [23]–for each user from its ratings. Then, for each attack,

Table 2: HR@10 for different attacks when attacking the
fake-user-aware recommender systems.
Dataset Attack size None PGA SGLD U-TNA S-TNA-Rand S-TNA-Inf

Music

0.3% 0.0011 0.0028 0.0064 0.0127 0.0068 0.0199
0.5% 0.0011 0.0043 0.0145 0.0298 0.0139 0.0342
1% 0.0011 0.0311 0.0916 0.1282 0.0934 0.1215

3% 0.0011 0.2282 0.2631 0.2846 0.2679 0.2994
5% 0.0011 0.3243 0.3516 0.3652 0.3531 0.3704

Yelp

0.3% 0.0010 0.0018 0.0097 0.0231 0.0093 0.0242
0.5% 0.0010 0.0062 0.0278 0.0431 0.0265 0.0474
1% 0.0010 0.1143 0.1585 0.1774 0.1612 0.1831
3% 0.0010 0.3301 0.3674 0.3951 0.3665 0.3968
5% 0.0010 0.4081 0.4223 0.4486 0.4269 0.4501

we construct a training dataset consisting of 800 fake users gener-

ated by the attack and 800 randomly sampled normal users. We use

the training dataset to learn a SVM classifier. Note that the classifier

may be different for different attacks.

Fake-user detection results:We deploy the trained SVM classi-

fiers to detect the fake users under different attacks settings. Figure 2

reports the fake users detection results of different attacks, where

False Negative Rate (FNR) represents the fraction of fake users that

are predicted to be normal. From Figure 2, we find that PGA attack

is most likely to be detected. The reason is that the fake users gener-

ated by PGA attack do not rate the filler items according to normal

users’ behavior, thus the generated fake users are easily detected.

We also observe that a large fraction of fake users are not detected.

Attacking fake-user-aware recommender systems: We now

test the performance of attacks on fake-user-aware recommender

systems. Suppose that the service provider removes the predicted

fake users from the system detected by the trained SVM classifiers.

We recompute the hit ratio after the service provider excludes the

predicted fake users from the systems. Note that a large portion of

fake users and a small number of normal users will be deleted. The

results are shown in Table 2. We observe that PGA attack achieves

the worst attack performance when the service provider removes

the predicted fake users from the systems. The reason is that the

PGA attack is most likely to be detected. Comparing Table 1 and

Table 2, we can see that when the target recommender system is

equipped with fake-user detectors, our attacks remain effective in

promoting the target items and outperform the baseline attacks.

This is because the detectors miss a large portion of the fake users.

7 CONCLUSION
In this paper, we proposed the first data poisoning attack to matrix-

factorization-based top-N recommender systems. Our key idea

is that, instead of optimizing the ratings of a fake user using all

normal users, we use a subset of influential users. Moreover, we

proposed an efficient influence function based method to determine

the influential user set for a specific target item. We also performed

extensive experimental studies to demonstrate the efficacy of our

proposed attacks. Our results showed that our proposed attacks

outperform existing ones.
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