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ABSTRACT

Recommender system is an essential component of web services
to engage users. Popular recommender systems model user prefer-
ences and item properties using a large amount of crowdsourced
user-item interaction data, e.g., rating scores; then top-N items
that match the best with a user’s preference are recommended to
the user. In this work, we show that an attacker can launch a data
poisoning attack to a recommender system to make recommenda-
tions as the attacker desires via injecting fake users with carefully
crafted user-item interaction data. Specifically, an attacker can trick
a recommender system to recommend a target item to as many
normal users as possible. We focus on matrix factorization based
recommender systems because they have been widely deployed in
industry. Given the number of fake users the attacker can inject,
we formulate the crafting of rating scores for the fake users as an
optimization problem. However, this optimization problem is chal-
lenging to solve as it is a non-convex integer programming problem.
To address the challenge, we develop several techniques to approx-
imately solve the optimization problem. For instance, we leverage
influence function to select a subset of normal users who are influen-
tial to the recommendations and solve our formulated optimization
problem based on these influential users. Our results show that our
attacks are effective and outperform existing methods.
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1 INTRODUCTION

Recommender system is a key component of many web services to
help users locate items they are interested in. Many recommender
systems are based on collaborative filtering. For instance, given
a large amount of user-item interaction data (we consider rating
scores in this work) provided by users, a recommender system
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learns to model latent users’ preferences and items’ features, and
then the system recommends top-N items to each user, where the
features of the top-N items best match with the user’s preference.

As arecommender system is driven by user-item interaction data,
an attacker can manipulate a recommender system via injecting
fake users with fake user-item interaction data to the system. Such
attacks are known as data poisoning attacks [9, 10, 17, 19, 23, 34, 38].
Several recent studies designed recommender-system-specific data
poisoning attacks to association-rule-based [38], graph-based [10]
and matrix-factorization-based recommender systems [19]. How-
ever, how to design customized attacks to matrix-factorization-
based top-N recommender systems remains an open question even
though such recommender systems have been widely deployed in
the industry. In this work, we aim to bridge the gap. In particular,
we aim to design an optimized data poisoning attack to matrix-
factorization-based top-N recommender systems. Suppose that an
attacker can inject m fake users into the recommender system and
each fake user can rate at most n items, which we call filler items.
Then, the key question is: how to select the filler items and assign
rating scores to them such that an attacker-chosen target item is
recommended to as many normal users as possible? To answer this
question, we formulate an optimization problem for selecting filler
items and assigning rating scores for the fake users, with an objec-
tive to maximize the number of normal users to whom the target
item is recommended.

However, it is challenging to solve this optimization problem be-
cause it is a non-convex integer programming problem. To address
the challenge, we propose a series of techniques to approximately
solve the optimization problem. First, we propose to use a loss
function to approximate the number of normal users to whom the
target item is recommended. We relax the integer rating scores to
continuous variables and convert them back to integer rating scores
after solving the reformulated optimization problem. Second, to
enhance the effectiveness of our attack, we leverage the influence
function approach inspired by the interpretable machine learning
literature [14, 15, 33] to account for the reality that the top-N rec-
ommendations may be only affected by a subset S of influential
users. For convenience, throughout the rest of this paper, we refer to
our attack as S-attack. We show that the influential user selection
subproblem enjoys the submodular property, which guarantees a
(1 — 1/e) approximation ratio with a simple greedy selection algo-
rithm. Lastly, given S, we develop a gradient-based optimization
algorithm to determine rating scores for the fake users.

We evaluate our S-attack and compare it with multiple baseline
attacks on two benchmark datasets, including Yelp and Amazon
Digital Music (Music). Our results show that our attacks can ef-
fectively promote a target item. For instance, on the Yelp dataset,
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when injecting only 0.5% of fake users, our attack can make a ran-
domly selected target item appear in the top-N recommendation
lists of 150 times more normal users. Our S-attack outperforms the
baseline attacks and continues to be effective even if the attacker
does not know the parameters of the target recommender system.
We also investigate the effects of our attacks on recommender sys-
tems that are equipped with fake users detection capabilities. For
this purpose, we train a binary classifier to distinguish between
fake users and normal ones. Our results show that this classifier is
effective against traditional attack schemes, e.g., PGA attack [19],
etc. Remarkably, we find that our influence-function-based attack
continues to be effective. The reason is that our proposed attack is
designed with stealth in mind, and the detection method can detect
some fake users but miss a large fraction of them. In summary, our
contributions are as follows:

e We propose the first data poisoning attack to matrix-factorization-
based Top-N recommender systems, which we formulate as a
non-convex integer optimization problem.

e We propose a series of techniques to approximately solve the
optimization problem with provable performance guarantee.

e We evaluate our S-attack and compare it with state-of-the-art
using two benchmark datasets. Our results show that our attack
is effective and outperforms existing ones.

2 RELATED WORK

Data poisoning attacks to recommender systems: The secu-
rity and privacy issues in machine learning models have been stud-
ied in many scenarios [24, 29-31, 39, 41, 42]. The importance of
data poisoning attacks has also been recognized in recommender
systems [7, 21-23, 28, 37]. Earlier work on poisoning attacks against
recommender systems are mostly agnostic to recommender systems
and do not achieve satisfactory attack performance, e.g., random
attack [17] and average attack [17]. Recently, there is a line of
work focusing on attacking specific types of recommender systems
[10, 19, 38]. For example, Fang et al. [10] proposed efficient poison-
ing attacks to graph-based recommender systems. They injected
fake users with carefully crafted rating scores to the recommender
systems in order to promote a target item. They modeled the at-
tack as an optimization problem to decide the rating scores for
the fake users. Li et al. [19] proposed poisoning attacks to matrix-
factorization-based recommender systems. Instead of attacking
the top-N recommendation lists, their goal was to manipulate the
predictions for all missing entries of the rating matrix. As a re-
sult, the effectiveness of their attacks is unsatisfactory in matrix-
factorization-based top-N recommender systems.

Data poisoning attacks to other systems: Data poisoning at-
tacks generally refer to attacks that manipulate the training data
of a machine learning or data mining system such that the learnt
model makes predictions as an attacker desires. Other than recom-
mender systems, data poisoning attacks were also studied for other
systems. For instance, existing studies have demonstrated effective
data poisoning attacks can be launched to anomaly detectors [27],
spam filters [25], SVMs [4, 36], regression methods [12, 35], graph-
based methods [32, 43], neural networks [5, 11, 20], and federated
learning [9], which significantly affect their performance.
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3 PROBLEM FORMULATION

3.1 Matrix-Factorization-Based Recommender
Systems: A Primer

A matrix-factorization-based recommender system [16] maps users
and items into latent factor vectors. Let U, 7 and & denote the
user, item and rating sets, respectively. We also let |2/, |7| and
|&| denote the numbers of users, items and ratings, respectively.
Let R € RIUIXIZI represent the user-item rating matrix, where
each entry ry; denotes the score that user u rates the item i. Let
Xy € R4 and y; € R4 denote the latent factor vector for user u and
item i, respectively, where d is the dimension of latent factor vector.
For convenience, we use matrices X = [x,... ,xm|] and Y =
[y1,- .,y 1] to group all x- and y-vectors. In matrix-factorization-
based recommender systems, we aim to learn X and Y via solving
the following optimization problem:

argmin Y (rui — xpyi)* + A D a3+ D lwill]. (1)
u i

XY (ui)es

where ||-||5 is the {2 norm and A is the regularization parameter.
Then, the rating score that a user u gives to an unseen item i is
predicted as 7,,; = x,) y;, where x; denotes the transpose of vector
xy,. Lastly, the N unseen items with the highest predicted rating
scores are recommended to each user.

3.2 Threat Model

Given a target item ¢, the goal of the attacker is to promote item
t to as many normal users as possible and maximize the hit ratio
h(t), which is defined as the fraction of normal users whose top-N
recommendation lists include the target item t. We assume that the
attacker is able to inject some fake users into the recommender sys-
tem, each fake user will rate the target item ¢ with high rating score
and give carefully crafted rating scores to other well-selected items.
The attacker may have full knowledge of the target recommender
system (e.g., all the rating data, the recommendation algorithm).
The attacker may also only have partial knowledge of the target
recommender system, e.g., the attacker only has access to some
ratings. We will show that our attacks are still effective when the
attacker has partial knowledge of the target recommender system.

3.3 Attack Strategy

We assume that the rating scores of the target recommender system
are integer-valued and can only be selected from the set {0, 1,- - -,
Fmax }> Where rp gy is the maximum rating score. We assume that
the attacker can inject m fake users into the recommender system.
We denote by M the set of m fake users. Each fake user will rate
the target item ¢ and at most n other carefully selected items (called
filler items). We consider each fake user rates at most n filler items
to avoid being easily detected. We let r,, and Q, denote the rating
score vector of fake user v and the set of items rated by v, respec-
tively, where v € M and |Q¢| < n + 1. Then, ry; is the score that
user v rates the item i, i € Q. Clearly, Q,, satisfies |Q| = ||ru]lo,
where |||, is the £p norm (i.e., the number of non-zero entries in a
vector). The attacker’s goal is to find an optimal rating score vector
for each fake user v to maximize the hit ratio h(t). We formulate
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this hit ratio maximization problem (HRM) as follows:
HRM: max h(t) (2)
st |Qul <n+1, Yv e M, 3)

roi €{0, 1, ,rmax}, VYoeMVieQy. (4)

Problem HRM is an integer programming problem and is NP-hard
in general. Thus, finding an optimal solution is challenging. In the
next section, we will propose techniques to approximately solve
the problem.

4 OUR SOLUTION

We optimize the rating scores for fake users one by one instead of
optimizing for all the m fake users simultaneously. In particular, we
repeatedly optimize the rating scores of one fake user and add the
fake user to the recommender system until we have m fake users.
However, it is still challenging to solve the HRM problem even if
we consider only one fake user. To address the challenge, we design
several techniques to approximately solve the HRM problem for
one fake user. First, we relax the discrete ratings to continuous data
and convert them back to discrete ratings after solving the problem.
Second, we use a differentiable loss function to approximate the
hit ratio. Third, instead of using all normal users, we use a selected
subset of influential users to solve the HRM problem, which makes
our attack more effective. Fourth, we develop a gradient-based
method to solve the HRM problem to determine the rating scores
for the fake user.

4.1 Relaxing Rating Scores

We let vector wy, = [wyi,i € Qp]T be the relaxed continuous
rating score vector of fake user v, where wy,; is the rating score that
user v gives to the item i. Since ry; € {0, 1, -, rmax} is discrete,
which makes it difficult to solve the optimization problem defined
in (2), we relax the discrete rating score ry,; to continuous variables
wyi that satisfy wy; € [0, rmax]. Then, we can use gradient-based
methods to compute w,. After we solve the optimization problem,
we convert each wy,; back to a discrete integer value in the set
{01, ,rmax}

4.2 Approximating the Hit Ratio

We let I, be the set of top-N recommended items for a user u, i.e.,
T}, consists of the N items that u has not rated before and have the
largest predicted rating scores. To approximate the optimization
problem defined in (2), we define a loss function that is subject to
the following rules: 1) for each item i € Ty, if 7;; < 7y, then the
loss is small, where 7y,; and 7, are the predicted rating scores that
user u gives to item i and target item ¢, respectively; 2) the higher
target item ¢ ranks in I}, the smaller the loss. Based on these rules,
we reformulate the HRM problem as the following problem:

min Log(wo) = > Y g(Fui = Fur) + nllwolly

uelU iely (5)

s.t. woi € [0, rmax|s

where g(x) = is the Wilcoxon-Mann-Whitney loss

1
1+exp(—x/b)
function [2], b is the width parameter, 1 is the regularization pa-

rameter, and ||-||; is the £{; norm. Note that g(-) guarantees that
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Lqi(wy) > 0 and is differentiable. The ¢; regularizer ||wy||; aims
to model the constraint that each fake user rates at most n filler
items. In particular, the ¢; regularizer makes a fake user’s ratings
small to many items and we can select the n items with the largest
ratings as the filler items.

4.3 Determining the Set of Influential Users

It has been observed in [18, 33] that different training samples have
different contributions to the solution quality of an optimization
problem, and the performance of the model training could be im-
proved if we drop some training samples with low contributions.
Motivated by this observation, instead of optimizing the ratings of
a fake user over all normal users, we solve the problem in (5) using
a subset of influential users, who are the most responsible for the
prediction of the target item before attack. We let S € U represent
the set of influential users for the target item ¢. For convenience, in
what follows, we refer to our attack as S-attack. Under the S-attack,
we further reformulate (5) as the following problem:

nv}/ivn,ﬁs(wv) = Z Z 9(Fui — Fut) + nllwolly
uesiel, (6)
s.t. woi € [0, rmax].

Next, we propose an influence function approach to determine
S and then solve the optimization problem defined in (6). We let
F (8, t) denote the influence of removing all users in the set S on
the prediction at the target item ¢, where influence here is defined
as the change of the predicted rating score. We want to find a set of
influential users that have the largest influence on the target item ¢.
Formally, the influence maximization problem can be defined as:

max [ (S,1), st|S|=A, @)

where A is the desired set size (i.e., the number of users in set S).
However, it can be shown that the problem is NP-hard [13]. In order
to solve the above influence maximization problem of (7), we first
show how to measure the influence of one user, then we show how
to approximately find a set of A users with the maximum influence.

We define n(k, t) as the influence of removing user k on the
prediction at the target item ¢:

wlet) € Y oK), ®)

where ¢((k, j), t) is the influence of removing edge (k, j) in the user-
item bipartite on the prediction at the target item t, Q is the set of
items rated by user k. Then, the influence of removing user set S
on the prediction at the target item ¢ can be defined as:

FSEY k). )

Since the influence of user and user set can be computed based
on the edge influence ¢((k, j), t), the key challenge boils down to
how to evaluate ¢((k, j), t) efficiently. Next, we will propose an
appropriate influence function to efficiently compute ¢((k, j), t).

4.3.1 Influence Function for Matrix-factorization-based Recommender
Systems. For a given matrix-factorization-based recommender sys-
tem, we can rewrite (1) as follows:

1
0" = argmin — Z U((u, 1), 0), (10)
o 8l (u,i)e&
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where 62 (X,Y). We let #,,;(6) denote the predicted rating score
user u gives to item i under parameter , and 7,,;(8) = x,, (8)y;(6).
If we increase the weight of the edge (k, j) € & by some {, then
the perturbed optimal parameter 0;5’ (k.j) €3 be written as:
% . 1 . .
& ) = argmin 7 > ), 0)+ Lk, )),0). (1)
(u,i)e&
Since removing the edge (k, j) is equivalent to increasing its
weight by ¢ = —ﬁ, the influence of removing edge (k, j) on the
prediction at edge (o, t) can be approximated as follows [8, 15]:

OFor |05, .
. def % X« * 1 L(k,
(k. ), 0.0) s (607, 1)) = For 0 )z——-M

1&] e
=0
1 A * — B *
= Everoi(e YHp!Vot((k, j), 0%), (12)
where 0;‘\ (k.j) is the optimal model parameter after removing edge

(k,j) and Hyg~ represents the Hessian matrix of the objective func-
tion defined in (10). Therefore, the influence of removing edge (k, j)
on the prediction at the target item ¢ can be computed as:

ol ) S Y 10K, (0, D), (13)

where || is the absolute value.

4.3.2  Approximation Algorithm for Determining S. Due to the com-
binatorial complexity, solving the optimization problem defined in
(7) remains an NP-hard problem. Fortunately, based on the observa-
tion that the influence of set S (e.g., F (S, t)) exhibits a diminishing
returns property, we propose a greedy selection algorithm to find a
solution to (7) with an approximation ratio guarantee. The approxi-
mation algorithm is a direct consequence of the following result,
which says that the influence F (S, t) is monotone and submodular.

THEOREM 1 (SUBMODULARITY). The influence F (S, t) is normal-
ized, monotonically non-decreasing and submodular.

Proor. Define three sets A, B and C, where A € Band C =
B\ A. To simplify the notation, we use F (A) to denote f (A, t).
It is clear that the influence function is normalized since F (0) = 0.
Since F(B)-F(A)= X Fw- Fw= % Fw=FC)>

ueB ueA ueB\A

0, which implies that the influence f (S, t) is monotonically non-
decreasing. To show the submodular property, we let S denote the
complement of a set S. Now, consider an arbitrary set D, for which

we have: F (BU D) - [ (AUD) = F(BUD)\ (AU D)) &
F(C\(CND)) <F(C)=F(B)-F(A),where (a) follows from
(BUD)Y)\(AUD)=(BUD)N(AUD)=C\(CN D) Hence,
the influence F (S, t) is submodular and the proof is completed. O

Based on the submodular property of F (S, t), we propose Algo-
rithm 1, a greedy-based selection method to select an influential
user set S with A users. More specifically, we first compute the
influence of each user, and add the user with the largest influence
to the candidate set S (breaking ties randomly). Then, we recom-
pute the influence of the remaining users in the set ¢ \ S, and
find the user with the largest influence within the remaining users,
so on and so forth. We repeat this process until we find A users.
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Algorithm 1 Greedy Influential User Selection.

Input: Rating matrix R, budget A.

Output: Influential user set S.
1: Initialize S = 0.
2: while |S| < A do
3:  Select u = arg maxy eqp s7(k, ).
& S« Su{u}.
5: end while
6: return S.

Clearly, the running time of Algorithm 1 is linear. The following
result states that Algorithm 1 achieves a (1 — 1/e) approximation
ratio, and its proof follows immediately from standard results in
submodular optimization [26] and is omitted here for brevity.

THEOREM 2. Let S be the influential user set returned by Algo-
rithm 1 and let S* be the optimal influential user set, respectively. It
then holds that F (S, t) > (1 - %) F(S*,1).

4.4 Solving Rating Scores for a Fake User
Given S, we design a gradient-based method to solve the problem
in (6). Recall that we let wy, = [wy;,i € Qy]T be the rating vector
for the current injected fake user v. We first determine his/her
latent factors by solving Eq. (1), which can be restated as:

arg min Z (rui —x;—yi)z + Z (woi —z-'—yi)2

XY,z (y e iel

A (D Ixalld+ D7 gl + z03) . (1)

where z € RY is the latent factor vector for fake user v, and &’
is the current rating set (rating set & without attack plus injected
ratings of fake users added before user v).

Toward this end, note that a subgradient of loss £ g(wy,) in (6)
can be computed as:

Gwo) = D" D" Vi, gliui = Fu) + 18 [wolly

ueSiely

A9 (6.
L3y i) o ) ool 09

where 8y i1 = Fui — Fur and 3%(55,4,“) — 9(5,,,,-1)(11)—9(514,”)). The

u,it

subgradient 0 ||wy||; can be computed as m”wvlh = |Wz;|. To

compute V4 yi, noting that f; = x,} y;, then the gradient 2;;;
can be computed as:
L o () 85 + T (91) 5 (10
Wo
where [, (xy) and Ji, (y;) are the Jacobian matrices of x;, and
y; taken with respect to wy, respectively. Next, we leverage first-
order stationary condition to approximately compute Jy, (x) and
Jw,, (yi). Note that the optimal solution of problem in (14) satisfies
the following first-order stationary condition:

My =) (rui =Xy, 1
Myi= Y o ui =X yxe + (woi —2Tyz, (18)
z=) . (woi =2 yiyi, (19)
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Algorithm 2 Our S-Attack.

Input: Rating matrix R, target item ¢, parameters m, n,d, n, A, A, b.
Output: Fake user set M.

1: Find influential user set S according to Algorithm 1 for item ¢.

2: Let M = 0.

3: forv=1,--- ,mdo

4:  Solve the optimization problem defined in Eq. (6) to get wy,.
Select n items with the largest values of wy,; as filler items.
Set ryr = rmax-
Let p; and oiz be item i’s mean and variance of the scores

N

rated by all normal users. Let ro,; ~ N (u;, al.z) be the random
rating for each filler item i given by fake user v.

8 LetR<— RU{rp}and M «— MU {v}.

9: end for

10: return {r,}"  and M.

where Q,, is the set of items rated by user u and Q' is the set of
users who rate the item i. Inspired by [19, 35], we assume that
the optimality conditions given by (17)-(19) remain valid under an
infinitesimal change of w,,. Thus, setting the derivatives of (17)-(19)
with respect to w;, to zero and with some algebraic computations,
we can derive that:

[7)

e Xu _ o, (20)
Woi

dyi _ T \7!

T (/II+ ZueQi XyX, + 22 ) z, (21)

where I is the identity matrix and (21) follows from (x, y;)x;, =
(xux))y;. Lastly, computing (20) and (21) for all i € Iy yields
Jw, (xy) and Ji_ (y;). Note that V,,_7,; can be computed in exactly
the same procedure. Finally, after obtaining G(wy,), we can use the
projected subgradient method [3] to solve wy, for fake user v. With
wy, we select the top n items with largest values of wy,; as the filler
items. However, the values of w;, obtained from solving (6) may not
mimic the rating behaviors of normal users. To make our S-attack
more “stealthy,” we will show how to generate rating scores to
disguise fake user v. We first set ry,4 = rmax to promote the target
item ¢. Then, we generate rating scores for the filler items by rating
each filler item with a normal distribution around the mean rating
for this item by legitimate users, where N(y;, oiz) is the normal
distribution with mean y; and variance criz of item i. Our S-attack
algorithm is summarized in Algorithm 2.

5 EXPERIMENTS
5.1 Experimental Setup

5.1.1 Datasets. We evaluate our attack on two real-world datasets.
The first dataset is Amazon Digital Music (Music) [1]. This dataset
consists of 88,639 ratings on 15,442 music by 8,844 users. The sec-
ond dataset is Yelp [40], which contains 504,713 ratings of 11,534
users on 25,229 items.

5.1.2  S-Attack Variants. With different ways of choosing the in-
fluential user set S, we compare three variants of our S-attack.

U-Top-N attack (U-TNA): This variant uses all normal users as
the influential user set S, i.e., S = U, then solve Problem (6).
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Table 1: HR@10 for different attacks.

Dataset | Attack size | None PGA SGLD U-TNA S-TNA-Rand S-TNA-Inf
0.3% 0.0017 0.0107 0.0138 0.0498 0.0141 0.0543
0.5% 0.0017 0.0945 0.1021 0.1355 0.0942 0.1521

Music 1% 0.0017 0.1803 0.1985 0.2492 0.2054 0.2567
3% 0.0017 0.3681 0.3587 0.4015 0.3511 0.4172
5% 0.0017 0.5702 0.5731 0.5832 0.5653 0.6021
0.3% 0.0015 0.0224 0.0261 0.0619 0.0258 0.0643
0.5% 0.0015 0.1623 0.1757 0.2304 0.1647 0.2262

Yelp 1% 0.0015 0.4162 0.4101 0.4323 0.4173 0.4415
3% 0.0015 0.4924 0.5131 0.5316 0.4923 0.5429
5% 0.0015 0.6442 0.6431 0.6806 0.6532 0.6813

S-Top-N attack+Random (S-TNA-Rand): This variant randomly
selects A users as the influential user set S, then solve Problem (6).

S-Top-N attack+Influence (S-TNA-Inf): This variant finds the
influential user set S by Algorithm 1, then solve Problem (6).

5.1.3 Baseline Attacks. We compare our S-attack variants with
the following baseline attacks.

Projected gradient ascent attack (PGA) [19]: PGA attack aims
to assign high rating scores to the target items and generates filler
items randomly for the fake users to rate.

Stochastic gradient Langevin dynamics attack (SGLD) [19]: T-
his attack also aims to assign high rating scores to the target items,
but it mimics the rating behavior of normal users. Each fake user
will select n items with the largest absolute ratings as filler items.

5.1.4  Parameter Setting. Unless otherwise stated, we use the fol-
lowing default parameter setting: d = 64, A = 400, = 0.01,
b =0.01, and N = 10. Moreover, we set the attack size to be 3% (i.e.,
the number of fake users is 3% of the number of normal users) and
the number of filler items is set to n = 20. We randomly select 10
items as our target items and the hit ratio (HR@N) is averaged over
the 10 target items, where HR@N of a target item is the fraction of
normal users whose top-N recommendation lists contain the target
item. Note that our S-attack is S-TNA-Inf attack.

5.2 Full-Knowledge Attack

In this section, we consider the worst-case attack scenario, where
the attacker has full knowledge of the recommender system, e.g.,
the type of the target recommender system (matrix-factorization-
based), all rating data, and the parameters of the recommender
system (e.g., the dimension d and the tradeoff parameter A in use).

Table 1 summaries the results of different attacks. “None” means
the hit ratios without any attacks. First, we observe that the variants
of our S-attack can effectively promote the target items using only
a small number of fake users. For instance, in the Yelp dataset, when
injecting only 0.5% of fake users, S-TNA-Inf attack improves the hit
ratio by 150 times for a random target item compared to that of the
non-attack setting. Second, the variants of our S-attack outperform
the baseline attacks in most cases. This is because the baseline
attacks aim to manipulate all the missing entries of the rating matrix,
while our attack aims to manipulate the top-N recommendation
lists. Third, it is somewhat surprising to see that the S-TNA-Inf
attack outperforms the T/-TNA attack. Our observation shows that
by dropping the users that are not influential to the recommendation
of the target items when optimizing the rating scores for the fake
users, we can improve the effectiveness of our attack.



WWW °20, April 20-24, 2020, Taipei, Taiwan

0.4400 . . . 0.5800 r ! :
0.5300 / 1
0.4800 /
—&— S-TNA-Inf (d=32) |
—&— S-TNA-Inf (d=64)

—»%— S-TNA-Inf (d=128)
—— SGLD (d=64)
h h

0.4050

0.3700

“a— S-TNANf (d=32) |

0.3350 F 0.4300
—=— S-TNA-Inf (d=64)
—»— S-TNA-Inf (d=128)
—+— SGLD (d=64)
A h

HR@10
HR@10

0.3000 L 0.3800 L
20% 40% 60% 80%  100% 20% 40% 60% 80%  100%
Size of observed data Size of observed data
(a) Music (b) Yelp

Figure 1: The attacker knows a subset of ratings for the nor-
mal users and does not know d.
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Figure 2: FNR scores for different attacks.
5.3 Partial-Knowledge Attack

In this section, we consider partial-knowledge attack. In particular,
we consider the case where the attacker knows the type of the target
recommender system (matrix-factorization-based), but the attacker
has access to a subset of the ratings for the normal users and does
not know the dimension d. In particular, we view the user-item
rating matrix as a bipartite graph. Given a size of observed data,
we construct the subset of ratings by selecting nodes (users and
items) with increasing distance from the target item (e.g., one-hop
distance to the target item, then two-hop distance and so on) on
the bipartite graph until we reach the size of observed data.

Figure 1 shows the attack results when the attacker observes
different amounts of normal users ratings and our attack uses dif-
ferent d, where the target recommender system uses d = 64. The
attack size is set to be 3%. Note that in the partial-knowledge attack,
the attacker selects the influential user set and generates fake users
based only on the observed data. Naturally, we observe that as the
attacker has access to more ratings of the normal users, the attack
performance improves. We find that our attack also outperforms
SGLD attack (which performs better than PGA attack) in the partial-
knowledge setting. Moreover, our attack is still effective even if the
attacker does not know d. In particular, the curves corresponding
to different d are close to each other for our attack in Figure 1.

6 DETECTING FAKE USERS

To minimize the impact of potential attacks on recommender sys-
tems, a service provider may arm the recommender systems with
certain fake-user detection capability. In this section, we investigate
whether our attack is still effective in attacking the fake-user-aware
recommender systems. Specifically, we extract six features—namely,
RDMA [6], WDMA [23], WDA [23], TMF [23], FMTD [23], and
MeanVar [23]-for each user from its ratings. Then, for each attack,

Minghong Fang, Neil Zhengiang Gong, and Jia Liu

Table 2: HR@10 for different attacks when attacking the
fake-user-aware recommender systems.

Dataset | Attack size | None PGA SGLD U-TNA S-TNA-Rand S-TNA-Inf
0.3% 0.0011 0.0028 0.0064 0.0127 0.0068 0.0199
0.5% 0.0011 0.0043 0.0145 0.0298 0.0139 0.0342

Music 1% 0.0011 0.0311 0.0916 0.1282 0.0934 0.1215
3% 0.0011 0.2282 0.2631 0.2846 0.2679 0.2994
5% 0.0011 0.3243 0.3516 0.3652 0.3531 0.3704
0.3% 0.0010 0.0018 0.0097 0.0231 0.0093 0.0242
0.5% 0.0010 0.0062 0.0278 0.0431 0.0265 0.0474

Yelp 1% 0.0010 0.1143 0.1585 0.1774 0.1612 0.1831
3% 0.0010 0.3301 0.3674 0.3951 0.3665 0.3968
5% 0.0010 0.4081 0.4223 0.4486 0.4269 0.4501

we construct a training dataset consisting of 800 fake users gener-
ated by the attack and 800 randomly sampled normal users. We use
the training dataset to learn a SVM classifier. Note that the classifier
may be different for different attacks.

Fake-user detection results: We deploy the trained SVM classi-
fiers to detect the fake users under different attacks settings. Figure 2
reports the fake users detection results of different attacks, where
False Negative Rate (FNR) represents the fraction of fake users that
are predicted to be normal. From Figure 2, we find that PGA attack
is most likely to be detected. The reason is that the fake users gener-
ated by PGA attack do not rate the filler items according to normal
users’ behavior, thus the generated fake users are easily detected.
We also observe that a large fraction of fake users are not detected.

Attacking fake-user-aware recommender systems: We now
test the performance of attacks on fake-user-aware recommender
systems. Suppose that the service provider removes the predicted
fake users from the system detected by the trained SVM classifiers.
We recompute the hit ratio after the service provider excludes the
predicted fake users from the systems. Note that a large portion of
fake users and a small number of normal users will be deleted. The
results are shown in Table 2. We observe that PGA attack achieves
the worst attack performance when the service provider removes
the predicted fake users from the systems. The reason is that the
PGA attack is most likely to be detected. Comparing Table 1 and
Table 2, we can see that when the target recommender system is
equipped with fake-user detectors, our attacks remain effective in
promoting the target items and outperform the baseline attacks.
This is because the detectors miss a large portion of the fake users.

7 CONCLUSION

In this paper, we proposed the first data poisoning attack to matrix-
factorization-based top-N recommender systems. Our key idea
is that, instead of optimizing the ratings of a fake user using all
normal users, we use a subset of influential users. Moreover, we
proposed an efficient influence function based method to determine
the influential user set for a specific target item. We also performed
extensive experimental studies to demonstrate the efficacy of our
proposed attacks. Our results showed that our proposed attacks
outperform existing ones.
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