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Abstract— In this paper, we show that the hybrid controller
that is induced by a Synergistic Lyapunov Function and
Feedback (SLFF) pair relative to a compact set, can be extended
to the case where the original affine control system is subject to
a class of additive disturbances known as matched uncertainties,
provided that the estimator dynamics do not add new equilibria
to the closed-loop system. We also show that the proposed
adaptive hybrid controller is amenable to backstepping. Finally,
we apply the proposed hybrid control strategy to the problem of
global asymptotic stabilization of a compact set in the presence
of an obstacle and we illustrate this application by means of
simulation results.

1. INTRODUCTION

Over the last few years, there has been significant research
effort towards the development of new analysis tools for
hybrid dynamical systems, i.e., systems whose solutions
exhibit both continuous-time and discrete-time behaviors
(c.f. [1]). This research effort has fueled the development of
novel hybrid control architectures, such as synergistic hybrid
control, which we further explore in this paper.

Synergistic hybrid feedback is a hybrid control strategy
that is comprised of a collection of potential functions that
asymptotically stabilize a given compact set by gradient
descent. If, for all equilibria that do not lie within the given
compact set, there exists another function in the collection
which has a lower value and does share the same equilibria,
then it is possible to achieve global asymptotic stabilization
of the given compact set through hysteretic switching. This
control strategy has been successfully applied to the problem
of global asymptotic stabilization of a compact set for sys-
tems evolving in compact manifolds, such as pendulum sta-
bilization [2], vector-based rigid body stabilization [3], [4],
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tracking for a vectored-thrust vehicle [5], rigid-body tracking
through unit-quaternion feedback [6] and rotation matrix
feedback [7], [8]. Synergistic hybrid feedback provided a
solution to global asymptotic stabilization on compact man-
ifolds, thus overcoming the topological obstructions which
plagued earlier continuous feedback approaches (c.f. [9]).

Another application which imposes similar limitations to
continuous feedback is obstacle avoidance. Obstacle avoid-
ance is an important and longstanding problem that reflects
the need to drive mechanical systems from one place to
another while avoiding any number of obstacles in its way.
Several solutions to this problem have been proposed over
the last few decades as highlighted in [10]. In particular, it is
possible to find both stochastic [11] as well as determinisc
approaches [12] to tackle the obstacle avoidance problem.
However, it was shown in [13] that in a spherical state
space, there is at least one saddle equilibrium point for
each obstacle within the state space, thus precluding global
asymptotic stabilization of a setpoint by continuous feedback.
To address this limitation a hybrid control solution was
proposed in [14]. In this paper, we propose a different hybrid
control approach to the same problem using the concept of
Synergistic Lyapunov Function and Feedback (SLFF) pairs
that was introduced in [15].

The main contributions of this paper are as follows: 1) we
provide sufficient conditions for the construction of a SLFF
pair for a affine control system that is subject to matched
uncertainties from a SLFF pair for the unperturbed system;
2) we develop a backstepping control design that preserves
the synergism properties, provided that no new equilibria are
added to the system due to the presence of perturbations and;
3) we apply the proposed controller to the problem of global
obstacle avoidance. More specifically, in Section III, we
present the notion of a SLFF pair and, similar to [15], show
how it induces a hybrid controller for a control affine system
that renders a given compact set globally asymptotically
stable for the closed-loop hybrid system. In Section IV, we
demonstrate that, given a SLFF pair for the control affine
system, it is possible to modify the controller in order to
compensate the effect of bounded matched uncertainties.
In Section V, we show that SLFF pairs and the hybrid
controllers that they induce are amenable to hybrid back-
stepping. In Section VI, we show that SLFF pairs can be
used to solve the problem of global asymptotic stabilization
of a compact set in the presence of an obstacle and we
demonstrate this application by means of simulation results
in Section VI-A. In Section II, we present some mathematical
preliminaries and notation that we use throughout the paper
and in Section VII we provide some concluding remarks.
The proofs of the results in this paper will appear elsewhere.



II. PRELIMINARIES AND NOTATION
A. Notation

The n-dimensional Euclidean space is represented by R"
and it is equipped with the inner product (u,v) = u'w,
defined for each u,v € R™ and the norm |z| := \/(z, )
for each x € R". The n-dimensional Euclidean space has
the topology generated by a countable basis of open balls
of the form ¢+ B := {x € R™ : |z —¢| < €}, where
¢ € R" and € > 0. More generally, given a set 2 C R",
we define Q + B := | J, ., ¢ + €B. The operators 0 and S
denote the boundary and the closure of a set S, respectively.
Given a subset S of X := X3 x Xy, the projection of S
onto X is represented by 7x, (S) := {z1 € X1 : (x1,22) €
S for some xo € Xo5}. Similarly, the projection of S onto
X5 is denoted by TX, (S) = {1‘2 e Xy (,Tl,xg) S
S for some x1 € X;}. The tangent cone to a set S C R
at a point x € R", denoted by T,.5, is the set of all vectors
w € R™ for which there exists z; € S, 7; > 0 with z; —> =
and 7; — 07 such that w = lim; o (z; — ) /7.

A set-valued map M : S = R"™ associates a subset of R"
to each point in S, represented by M (x). The graph of a set-
valued map M : S = R™ is given by gph M := {(z,y) €
S xR™:y e M(x)}, its domain is given by dom M =
ms(gph M) and its range is rge M = mgrn (gph M). A set-
valued map M is: outer semicontinuous if gph M is closed;
locally bounded if, for each x € dom M there exists a
neighborhood U, of = such that M (U,,) is bounded; upper
semicontinuous if M(x) is closed for each x € dom M,
M is outer semicontinuous and locally bounded; lower
semicontinuous if, for each x € dom M, all convergent
sequences z; — x in dom M have a subsequence x;(x) such
that M (2;;)) converges to M (x); continuous if it is both
upper and lower semicontinuous.

Given a differentiable function F' : R™*" x RF*¢ —
RP*49 we define

_ Ovec(F)
" Ovec(X)T
for each (X,Y) € R™*" xRF*¢ for each X € R™*", where
vec(A) = [ef AT ... el AT]T for each A € R™*" and
e; € R™ is a vector of zeros, except for the i-th component,
which is 1. If F: R™*" — R, then VF(X) :=DF(X)".

DxF(X,Y) (X,Y)

B. Hybrid Systems
A hybrid system H with state space R" is defined as

follows: .
§eFE) ¢eC
£reGl) €D

where £ € R” is the state, C C R™ is the flow set,
F: R* = R” is the flow map, D C R" denotes the
jump set, and G : R™ == R” denotes the jump map. A
solution £ to A is parametrized by (¢,7), where ¢ denotes
ordinary time and j denotes the jump time, and its domain
dom & C R>x N is a hybrid time domain: for each (T, J) €
dom¢, dom¢& N ([0,7] x {0,1,...J}) can be written in the
form U7_y([t;,t;41],7) for some finite sequence of times
0=ty <ty <ty <---<ty, where Ij = [tj,tj+1] and the
t;’s define the jump times. A solution £ to a hybrid system

is said to be maximal if it cannot be extended by flowing
nor jumping and complete if its domain is unbounded. The
projection of solutions onto the ¢ direction is given by
ELe(t) == &(t, J(t)) where J(t) := max{j : (¢,7) € dom¢E}.
The distance of a point £ € R™ to a closed set A C R™ is
given by [£] , := infyc4 |y — &|. The definitions of global
uniform pre-asymptotic stability and invariance can be found
in [1].

III. SYERGISTIC LYAPUNOV FUNCTIONS AND FEEDBACK
PAIRS

In this paper, we address the problem of globally asymp-
totically stabilizing a given compact set for an affine control
system that is subject to exogenous disturbances. In particu-
lar, similar to [15], we consider the dynamical system

for each (z, ¢, u,0) € X x QxR™x (), where x € X" denotes
the state of the system with X C R”™ closed, ¢ € Q with
Q C Z finite represents a logic variable, u € R represents
the input, § € () represents a constant disturbance whose
norm is bounded by 0y € R, i.e.

Q:={0cR |0 <6}, )

Yy X x Q@ — R*, 4, X x Q@ — R™™ and
e © X x @ — R’ are continuous functions satisfying
Yo(x,q) := Pu(z,q)1s(x,q) for each (z,q) € X x Q for
some continuously differentiable function 1/’@ X x Q =
R™**. To meet the desired goal, we resort to the concept of
Synergistic Lyapunov Functions and Feedback (SLFF) pairs
that was introduced in [15] and which we reproduce next for
completeness.

Given a compact set A C X x Q, the continuous functions
V:R"xQ —= Ryjand £ : R" x @ — R™ form a SLFF
pair candidate relative to A for

T = f(z,q,k(x,q),0
{. [are0.0 o pexrso @
qg=0
if:
(A1) V is continuously differentiable on a neighborhood of

X x Q;
(A2) Each sublevel set of V, given by

Qu(r) :={(z,q) € X x Q: V(z,q) <r},

is compact;

(A3) Vis positive definite relative to A;

(A4) For all (z,q) € X x Q, f(z,q,k(z,q),0) be-
longs to the tangent cone to X x Q at (x,q) and
(VW(,q), f(x,q,k(2,q),0)) < 0.

A SLFF pair candidate (V] x) relative to A for (3) induces
the hybrid controller with output x and dynamics

¢=0 (z,9) € C:={(z,q) € X x Q: py(x,q) < 6}
(4a)
gt =ov(z) (x,9) € D:={(x,9) € X x Q: py(x,q) > 6}
(4b)
where 6 > 0,
pv(x) := V(z,q) — min V(z, p) (5)
peEQ



for each (x,¢q) € X x Q and
ov(z) := arg min{V(z,q) : g € Q}
for each z € X.
The interconnection between (1) and (4) results in the
closed-loop hybrid system H := (C, F, D,G), given by

i = rag = [fEen 0] e ec

om0 [,

Property (A4) guarantees that each sublevel set of V is
invariant for the nominal instance of the system (1), i.e.,
with 8 = 0. Properties (Al) through (A3), ensure that the
closed-loop hybrid system resulting from the interconnection
between (1) and (4) is endowed with the following properties.

(6)

@)
(z,q) € D.

Lemma 1. Given a compact set A C X x Q and a SLFF
pair candidate relative to A for (3), the following holds:
1) The function

vy(z) := min V(z, q) Ve e X

qeQ
is continuous; 2) The function gy in (6) is outer semicontin-
uous and ovy(x) is compact for each x € X; 3) The function
wy in (5) is continuous.

The regularity properties that are presented in Lemma 1
are key in proving that the closed-loop hybrid system (7)
satisfies the hybrid basic conditions, given in [1, Assump-
tion 6.5], as proved next.

Lemma 2. Given a compact set A C X x Q and a SLFF
pair candidate relative to A for (3), the data (C,F,D,G)
of the closed-loop hybrid system satisfies the following:

(S1) The sets C and D are closed;

(§2) The flow map F is outer semicontinuous and locally
bounded relative to C, and F(x,q) is convex for each
(z,q) € X x Q;

(S3) The jump map G is outer semicontinuous and locally
bounded relative to D.

The hybrid basic conditions ensure that the closed loop
system (7) is endowed with robustness to perturbations and
small measurement noise, as explained in [1, Chapter 7]. In
particular, these conditions ensure that the system is well-
posed and allow for the application of invariance principles
for hybrid dynamical systems that are at the core of the
stability proofs that are presented in this paper. Finally, we
prove that each maximal solution to A in (7) is complete.

Lemma 3. Given a compact set A C X x Q and a SLFF
pair candidate relative to A for (3), each maximal solution
to (7) is complete.

Given a SLFF pair candidate (V, x) relative to A for (3),
we define £ := {(z,q) € X x Q: (VV(x,q), F(z,q)) = 0}
and let U C & denote the largest weakly invariant subset of

{g'c = f(z,q,5(x,9),0)

(z,q) €& (®)

q=0

Then, the SLFF pair candidate (V, ) is a SLFF pair relative
to A for (3) if

(AS5) py(z,q) > 0 for each (z,q) € U\ A.

If there exists § > 0 such that puy(x,q) > § for each (z,q) €

W\ A, we say that (V, ) has synergy gap exceeding 0.
Property (AS) implies that it is possible to avoid unwanted

equilibria by switching among the available feedback laws

and Lyapunov functions as shown in the following theorem.

Theorem 1 ([15, Theorem 7]). Suppose that (V,k) is a
synergistic Lyapunov function and a feedback pair relative
to the compact set A for (3) with synergy gap exceeding 9.
Then, the compact set A is globally asymptotically stable for
the closed-loop system (7) (with 6 = 0).

In the sequel, we show that it is possible to modify a
given SLFF pair to compensate for the presence of constant
disturbances 6 € .

IV. ADAPTIVE SYNERGISTIC HYBRID FEEDBACK

In this section, we modify the synergistic hybrid controller
in (4) to address the case where 6 in (1) is nonzero (we refer
the reader to [17] for an overview of adaptive controller
design and backstepping under the influence of model un-
certainty). Given a SLFF pair (V, ), let € R’ denote an
estimate of the disturbance 6 satisfying

6 =T, Proj(ve(z,q) VV(z,q), é), )
where Ty € R**? is a positive definite matrix and Proj :
R’ x R — R’ is given by

if p(f) <0or Vp(d)Tn<0

o n
Proj(n,0) := {(I _ p)v p<é>Vp<é>*)
ET Ve ved )

for each (,6) € RY x RY,
076 — 62

b= 0%
p(0) €2 + 2¢efy

for each § € R? with € > 0 and 6, > 0 given in (2). The
function Proj in (9) implements an adaptive feedback law
with the following properties (c.f. [18]):

(P1) Each solution ¢ — 0(t) to

otherwise

6=T", Proj(n(t), é),
from 6 €  + B with input ¢ + 7(t) satisfies rged C
Q + €B;
(P2) We have that
(0 —0)" Proj(n,0) > (6 —60)"n
for each (1,0) € R® x RE.

Given a SLFF pair relative to A for (3), denoted by (V, k),
we define

Vo(a,q,0) == V() + 56— ) Tg" (6~ )

Iio(l‘,q,é) = ’i(%Q) - "/Jé(xvcﬂé

for each (z,q,0) € Sy := X x Q x (Q + ¢B). Following
the controller design that was introduced in Section III and
setting u = ko(x,q), we obtain the closed-loop hybrid
system Hg := (Cy, Fy, Do, Go) given by

(jjaq.vo):FO(Iaqvo) (CC,(],@)GOO

(zt,q%,0%) € Go(x,4,0)  (2,4,0) € Dy

(11a)
(11b)



where Cy := {(x,q,0) € So : pv,(z,q,0) < 0}, Do =
{(x,q,0) € So : pvyy(2,¢,0) > 6} and
f(x,q,k0(x,q),0)

Fo(z,q,0) :== 0
Ty Proj(d)g(x,q)TVV(:c,q),é)
V(x,q,é) e Cy
(12a)
x
Go(x,q,é) = |ov, (:T,é) V(:v,q,é) € Dy.
0
(12b)

We show next that the functions (Vj, ko) in (10) form a
SLFF pair candidate relative to the compact set

Ag = A x {0}, (13)

Proposition 1. The pair (Vo, ko) in (10) is a SLFF pair
candidate relative to Ag for

(:.Caq.vo):FO('rv%e) (Iaqvo) € 8.

Since (Vp, ko) is a SLFF pair candidate relative to Ag

for (14), we have in particular that V{, is nonincreasing along

solutions to the closed-loop system (11). However, showing

that (Vp, ko) is a SLFF pair relative to .4¢ for (14) requires

further assumptions on the nature of the SLFF pair (V, k)
and the function 1)y, as shown next.

(14)

Theorem 2. Given a SLFF pair (V, ) relative to a compact
set A C X x Q for (3) with synergy gap exceeding 0, let U
denote the largest weakly invariant subset of (8) and let ¥
denote the largest weakly invariant subset of

(:.Caq.ae):FO('rv(Le) (Iaqvo)ego

with & = {(x,q,0) € So : (VVo(z,q,0), Fo(x,q,0)) =
0}. If the projection of Wo\ Ay onto X x Q is a subset of
U\ A, ie.,

WXXQ(\I’()\AU) C \I’\.A, (15)

then (Vo, ko) in (10) is a SLFF pair relative to Ay for (14)
with synergy gap exceeding 9.

It follows directly from [15, Theorem 7] that, under the
assumptions of Theorem 2, the set 4 in (13) is globally
asymptotically stable for the closed-loop hybrid system (11).
Next, we demonstrate that synergism is a property that can
also be preserved through backstepping.

V. ADAPTIVE BACKSTEPPING OF SYNERGISTIC

FEEDBACKS
Consider the following dynamical system
&= f(x,q,u,0)
6 = Ty Proj(v(¢), 0)
U=T

with ¢ = (2,¢,0,u) € S := X x Q x (Q + €B) x R™,
which is obtained from (1) by adding the estimator dynamics
with
v(¢) = o(w,q) VW, q)
+ 1/19(957 q)TIDw(KO(xu q, 6))TF;1(U - :‘ﬁo(l’, q, 9))

for each ( € &;, and w is considered as a state of the
dynamical system with 7 € R™ as the new input.

Given a compact subset A of X x Q and a SLFF pair
(V, k) relative to A for (3), the main goal of this section
is the construction of a SLFF pair (V1, k1) relative to the
compact set

Al = {C e 81 : (.I,q,é) S AO, u = Iﬁ}o(I,q,é)}-

In this direction, we define

Vi(C) := Vo(z, q,0)

1 n A
+ 5(“’ - KO(‘Tu q, 9))T1—‘1_1(u - Iio(l’, q, 9))
(16a)

k1(C) = —1(z, )To Proj(v(¢),0) — ku(u — ro(z, q,0))
—T19u(z,q) " VV(z,q) + Du(ro(x, q,0)) f (x, g, u,6)
(16b)

for each (z,q, é,u) € &1, under the additional assumption
that x is continuously differentiable. Following the controller
design that was introduced in Section III and setting 7 =
%1((), we obtain the closed-loop hybrid system H; :=
(Cl, Fl, Dl, Gl) given by

(=F() ¢eCi={CeS:py(() <} (~17a)
(F=Gi1(¢) ¢eDi:={CeS :un ()= (17b)
where 6 > 0 and
[ f(:r?q?u?e)
0
Fi(¢) = Iy Proj(u(¢). 8) V¢ e Cy (18a)
)
G1(C) = QVI(“’éé’”) V¢ e D;.  (18b)
u

We are able to prove the following result using arguments
similar to those of Theorem 2.

Theorem 3. Given a SLFF pair (V, k) relative to a compact
set A C X x Q for (3) with synergy gap exceeding § and
K continuously differentiable on an open neighborhood of
X x Q, if (15) holds, then (V1, k1) is a SLFF pair relative
to Ay for

(=Fi(Q)

with synergy gap exceeding 9.

Ces 19)

It follows from Theorem 3 and Theorem 1 that A; is
globally asymptotically stable for (19). In Theorems 2 and 3,
we demonstrate that a given SLFF pair for the unper-
turbed system (3) generates SLFF pairs for (14) and (21),
respectively, under the additional assumption (15). In the
next section, we apply the proposed controllers to global
asymptotic stabilization of a compact set in the presence of
an obstacle.



VI. SYNERGISTIC ARTIFICIAL POTENTIAL FUNCTIONS
FOR GLOBAL OBSTACLE AVOIDANCE

In this section, we present a solution to the problem of
global asymptotic stabilization of a compact subset A, of R
for (1) in the presence of an obstacle using the synergistic
hybrid feedback strategy of Sections IV and V. In particular,
we consider that an obstacle is represented by a compact
subset A/ of R™ that we remove from the state space.

In this direction, let Q C Z be finite set and {M,}qec0
denote a collection of closed subsets of R™ satisfying

(Mg =N (20a)
qeQ
Yge Q MyNA, =0. (20b)

For each ¢ € Q, let V;, : R®™\M, — R denote a proper
indicator of A, on its domain, i.e., each V; is a continuous
function that is positive definite relative to A, and V,(z;) —
oo when ¢ — oo if either |x;| — oo or the sequence {z;}5°
approaches M. Each function V; is commonly referred to
as an artificial potential function (see e.g. [19]).

Defining V(z,q) := V,(z) for each (x,q) € R" x Q, it
follows from the previous assumptions that each sublevel set
of V is compact and that V is positive definite relative to
A := A, x Q. Crucially, it follows from the construction of
V that none of its sublevel sets include the obstacle N, i.e.,

e (Qy(r)) NN =0 for all r > 0. (1)

Therefore, if each V; is continuously differentiable and if,
for each ¢ € Q, there exists a continuously differentiable
function x : R"™\ M, — R™ such that (A4) and (AS5) hold,
then (V, k) is a SLFF pair relative to A for (3). In particular,
this means that the controller design of Section III can be
used for global asymptotic stabilization of a compact set
A for (3). In addition, if condition (15) holds, then any of
controller design strategies that are presented in Sections IV
and V can be applied.

Remark 1. Note that, since (23) holds by construction, the
state space X can be taken as a sublevel set of V. Due to the
properties of V, it is always possible to encompass solutions
whose initial conditions lie arbitrarily close to N.

In the next section, we present a particular SLFF pair that
allows for global asymptotic stabilization of the origin of a
simple integrator on R? in the presence of an obstacle.

A. Numerical Example

Let us consider the dynamical system

= f(z,q,u,0):=u+0 (22)

where z € R? denotes the state of the system, u € R?
denotes the input and 6 € ) denotes a constant disturbance.
In this section, we make use of synergistic hybrid feedback
to design a controller that globally asymptotically stabilizes
the origin of (24), hence A, = {0}, given the presence of
an obstacle that is represented by the compact set

N:i=c+rB
where ¢ := (¢1,c2) = (1,0) and r := 1/2.

Following the control design strategy that is outlined in
Section VI, we define Q := {—1,1} and

My =N U{(z1,22) € R?:qro > 0,21 =c1}.  (22)
It is straightforward to verify that {M,},co satisfies (22).
Next, we define ¢ : S = (—m,7) x {R €R : R > r} as
follows:

o(z,q) = Vl(:v,q)] :: [atan?(q(xl — 1), o — a2)

¢2(Ia q) |I - C|
23)
for each (z,q) € S with
S:={(r,q) €R?* x Q: 2z € R\ M,} (24)

which is an smooth function with smooth inverse where

arctan Z—f ifyp >0

arctan Z—f +7 ify; <0, y2>0
atan2(y2,91) °= 9 arctan B)—m ify1 <0, y2<0

/2 ifyp =0, y2>0

—7/2 ify1 =0, y2 <0

for each (y1,92) € {(y1,42) € R? : y2 = 0, y1 < 0} is the
four quadrant tangent inverse. Using (25), we define

(o +7/2)? (R —e))?
20a+m)(r—a)  2(R-7)
for each (a, R) € (—m,m) x {R€R: R >r}, and
Vo(x) == U(é(z,q)) (25)
for each z € R*\M,, which is a smooth proper indicator

of A, on R*\M,. To see this, note that, if {a;}en is a
convergent sequence to either m or —m, then

(@i +m/2)°
2(6% + 7T)(7T - Oéi)
Moreover, we also have that
(Ri —|c])?
2(Rz — ’f‘)
if {R;}ien is a convergent sequence to r, hence V(&) —

+oo for each convergent sequence {§; }ien to M. To verify
that V, is positive definite, note that

Vo(2) =0 <= oé(z,q) = (=7/2,|c])
— z=0.
Using the gradient-based feedback rule
r(x,q) = =VVy(x)
for each (z,q) € S, we have that
(VVy(@), r(2,q)) < = [V V()]

U(a, R) :=

— 400 as 1 — 00.

— 400 as ¢ — 00

(26)

for each (z,q) € S.

Proposition 2. Given r > 0, let V(z,q) := V() for each
(x,q) € S and X := Qy(r) with V, and S given in (27)
and (26), respectively. Then, the functions V and r given
in (27) and (28), respectively, form a SLFF pair relative to
A= A, xQ = {0} x{—1, 1} for (24) with § = 0. Moreover,
condition (15) also holds.

Proposition 2 allows for the application of the controller
design strategies that are described in Sections IV and V.



2.5¢ ]
2 L
1.5¢
o LF
8
0.5+
0 L
—0.5¢
1t
15 : : ‘ ‘ ‘ ‘ ‘ ‘
-1 =05 0 05 1 1.5 2 25 3 35
X1
—— Solution to (7) with ¢(0,0) =
— — — Solution to (7) with ¢(0,0) =
Solution to (11) with ¢(0,0) =
- = = Solution to (11) with ¢(0,0) =
Solution to (19) with ¢(0,0) =
Solution to (19) with ¢(0,0) =
Fig. 1. Representation of the trajectories of the & component of the

solutions to (7), (11) and (19) under the influence of nonzero disturbance
0 = (1,1), with z(0,0) = (2,0) and distinct initial values of the logic
variable ¢ € Q := {—1, 1}. It is possible to verify that the state trajectories
for (11) and (19) converge to the origin, but the solution to (7) is not able
to compensate the effect of nonzero disturbances.

Figure 1 represents the component  := (x1,x2) of two
solutions for each of the systems (7), (11) and (19) with
f given by (24) and 6 = (1,1). All the solutions share
the same initial condition for the state variable z, given
by x(0,0) = (2,0), but distinct initial values of the logic
variable ¢ € Q := {—1,1}. We verify that, although A
is globally asymptotically stable for (7) when 6 = 0 (c.f.
Theorem 1), Figure 1 shows that this nominal controller
is not able to compensate for the presence of nonzero
disturbances 6 = (1, 1), since the state of the system leaves
the reasonably large boundaries of the boxed region we chose
to represent. On the other hand, the solutions to (11) and (19)
with initial conditions 6(0,0) = 0, (0, 0) = 0 and controller
parameters I'y = I'y = I, k,, = 10, are able to overcome the
presence of nonzero disturbanceg. In fact, in both of these
cases, the state of the estimator 6 converges to the value of
the disturbance 6. Finally, notice that the way in which the
system circumvents the obstacle depends on the initial value
of the logic variable g, but the objective of global asymptotic
stabilization of the origin is achieved regardless of the initial
conditions.

VII. CONCLUSIONS

In this paper, we modified the hybrid controller that is in-
duced by a Synergistic Lyapunov Function and Feedback pair
to achieve global asymptotic stabilization of a compact set in
the presence of matched uncertainties. We also showed that
the synergism property of the proposed adaptive feedback
can be preserved through backstepping without compromis-
ing the global asymptotic stabilization objective. We applied
the proposed controllers to the problem of obstacle avoidance
and we demonstrated this application by means of simulation
results. Future work will focus on the development of a
controller for global trajectory tracking in the presence of
exogenous disturbances and multiple obstacles.
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