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Abstract— In this paper, we define solutions for hybrid
systems with pre-specified hybrid inputs. Unlike previous work
where solutions and inputs are assumed to be defined on the
same domain a priori, we consider the case where intervals
of flow and jump times of the input are not necessarily
synchronized with those of the state trajectory. The proposed
approach relies on reparametrizing the jumps of the input
in order to write it on a common domain. The solutions
then consist of a pair made of the state trajectory and the
reparametrized input. Our definition generalizes the notions
of solutions of continuous and discrete systems with inputs.
We provide an algorithm that automatically performs the
construction of solutions for a given hybrid input. Examples
illustrate the notions and algorithm.

I. INTRODUCTION

A significant part of control theory consists of studying
systems with inputs, whether it be for tracking control,
output regulation, or estimation. In fact, dynamical properties
relating inputs, outputs, and the state of single and multiple,
interconnected systems are widely used for analysis and
design of feedback control systems, which are naturally
interconnected. Notions such as input-to-state stability [1],
[2], have been rendered useful to study interconnection of
continuous-time systems via small gain theorems. Similarly,
the so-called output-to-state stability notion is convenient
to bound the solutions by a function of the output of the
system [3]. Input-output-to-state stability combines these two
properties to provide bounds that depend on the inputs and
outputs of the single and multiple systems [4].

Defining solutions to continuous-time systems with contin-
uous inputs or to discrete-time systems with discrete inputs
does not raise any critical problems, besides perhaps making
sure that, when the domain of the input is bounded, the state
trajectory is defined at least over that interval of time. On
the other hand, defining solutions to hybrid systems with
hybrid inputs is much more challenging since, in principle,
the domain of the input does not necessarily match that of
the resulting state trajectory. In previous works involving
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hybrid systems with inputs (see, e.g., [5], [6]), the notion of
solution assumes that the domain of the input and of the state
trajectory are the same. In the case of state feedback, namely,
when the input is a function of the state, the input inherits the
domain of the state trajectory and the assumption made in the
cited references is justified. It is also justified when designing
a controller or an observer for a hybrid (or impulsive) system
with jump times that are synchronized with the plant [7], [8],
[9], [10], and assumed known. Therefore, the definition of
solutions in those cases is straightforward.

The assumption that the domain of the input and of the
state trajectory coincide relies on a pre-processing stage of
the hybrid input signal to make the domains match. However,
when such an assumption is applied to interconnections of
hybrid systems, it requires altering the domain of the output
of another hybrid system. As pointed out in [11] such a
modification is far from trivial. In fact, serious difficulties
appear when the jumps of the system are not synchronized
with those of the input, leading to very important questions
yet to be answered:

• Assume a hybrid system is flowing and its input jumps
before the state reaches its jump set: under which con-
ditions should we allow the state to jump and continue
evolving, and how should this jump be defined?

• Now, conversely, assume that the state of the system
reaches its jump set and cannot continue flowing, while
the input is such that it can continue to flow: do we stop
the solution or do we allow the system to jump and the
input to continue flowing afterwards?

• Combining those two questions, consider an intercon-
nection/cascade of hybrid systems: how to define a
unified notion of solution if the jumps of both systems
do not occur at the same time?

These problems appear, for instance, in the context of ref-
erence tracking when the reference is a hybrid trajectory. In
[12], the reference is a trajectory of the system itself and the
problem of reconciling the domains is done by designing
an extended “closed-loop” system which naturally puts the
reference and the system on the same domains. The issues
mentioned above also arise in the context of observer design
(and, more generally, output-feedback), where the input of
the hybrid observer is the output of the hybrid plant we
want to observe. In [13], the analysis is done thanks to a
timer which is used to model the jumps of the input and by
building a closed-loop system containing the timer.

In this paper, we propose to define solutions to hybrid
systems when the input is a hybrid arc with its own do-



main, which does not necessarily match the one of the
produced system trajectory. This is done in Section II via
a reparametrization of the input jumps. Then, we provide
in Section III an implementable algorithm to produce such
solutions. We finally illustrate those notions in examples in
Section IV.

II. SOLUTIONS TO HYBRID DYNAMICAL SYSTEMS
WITH INPUTS

For starters, the definition of a solution to a continuous-
time system with inputs of the form ẋ = f(x, u) requires
the following data: an initial state x0 and an input signal
t 7→ u(t) (typically satisfying basic regularity properties).
Then, a solution to the system is typically given by an
absolutely continuous function t 7→ φ(t) such that φ(0) = x0
and φ̇(t) = f(φ(t), u(t)) is satisfied on the domain of
definition of u and φ, which typically coincide or a domain
truncation is performed a priori. A notion of solution for
discrete-time systems with inputs can be defined similarly.

As pointed out in Section I, the definition of a solution to
a hybrid system with inputs is more intricate when we do
not rely on the assumption that the domain of the input and
of the state trajectory coincide. In this section, we define a
notion of solution for hybrid systems with a hybrid arc as
input. Due to the likely mismatch between the jump times
of the given input u and of the actual state trajectory φ to be
generated, the proposed notion jointly parametrizes u and φ
in what we refer to as a j-reparametrization.

We first recall the following definitions and notations.

Definition 2.1 (hybrid time domain): A set E ⊆ R≥0 ×
N is a hybrid time domain if for each (T ′, J ′) ∈ E, the
truncation E ∩ ([0, T ′]× {0, 1, . . . , J ′}) can be written as⋃J−1
j=0 ([tj , tj+1], j) for some finite sequence of times 0 =

t0 ≤ t1 ≤ t2 . . . ≤ tJ and J ∈ N.

Definition 2.2 (hybrid arc): A function φ : domφ → Rn
is a hybrid arc if domφ is a hybrid time domain and for
each j ∈ N, t 7→ φ(t, j) is locally absolutely continuous on
{t : (t, j) ∈ domφ }.

Notation For a set S, cl(S) will denote its closure, and
cardS its cardinality (possibly infinite). For a hybrid arc
(t, j) 7→ φ(t, j) defined on a hybrid time domain domφ,
we denote domt φ (resp.domj φ) its projection on the time
(resp. jump) axis, and for a positive integer j, tj(φ) the time
stamp associated to jump j (i.e., the only time satisfying
(tj(φ), j) ∈ domφ and (tj(φ), j − 1) ∈ domφ), and Ij(φ)
the largest interval such that Ij(φ)×{j} ⊆ domφ. We define
also T (φ) = {tj(φ) : j ∈ domj φ∩N>0} as the set of jump
times, T (φ) = sup domt φ ∈ R≥0 ∪ {+∞} the maximal
time of the domain, J(φ) = sup domj φ ∈ N ∪ {+∞} the
total number of jumps, and, for a time t in R≥0, Jt(φ) =
{j ∈ N>0 : tj(φ) = t} the set of jump counters associated
to the jumps occurring at time t. It follows that cardJt(φ)
is the number of jumps of φ occurring at time t.

A. j-reparametrization of hybrid arcs

We define a j-reparametrization of a hybrid arc as follows.

Definition 2.3: Given a hybrid arc φ, a hybrid arc φr is a
j-reparametrization of φ if there exists a function ρ : N→ N
such that

ρ(0) = 0 , ρ(j + 1)− ρ(j) ∈ {0, 1} ∀j ∈ N (1)

and

φr(t, j) = φ(t, ρ(j)) ∀(t, j) ∈ domφr . (2)

The hybrid arc φr is a full j-reparametrization of φ if

domφ =
⋃

(t,j)∈domφr

(t, ρ(j)) , (3)

or, equivalently, domt φ = domt φ
r and J(φ) = ρ(J(φr)).

We will say that ρ is a j-reparametrization map from φ to
φr.

In other words, φr takes at each time t the same values as
φ, but maybe associated to a different jump index, because
φr may have trivial jumps added to its domain. If the whole
domain of φ is spanned by φr, the reparametrization is said
to be full.

Example 2.4: Consider the hybrid arc φ defined on
domφ = R× {0} by

φ(t, j) = t ∀(t, j) ∈ domφ ,

and φr defined on domφr = {0} × N by

φr(t, j) = 0 ∀(t, j) ∈ domφr .

The hybrid arc φr is a j-reparametrization of φ with
reparametrization map ρ(j) = 0 for all j ∈ N. However, it
is not a full reparametrization of φ because all of its domain
is not spanned.

Now take φ defined on domφ = ([0, 1]×{0})∪ ([1, 2]×
{1}) by

φ(t, j) = t− j ∀(t, j) ∈ domφ .

In other words, φ flows for t ∈ [0, 1] from 0 until reaching 1,
then jumps back to 0, and flows again for t ∈ [1, 2]. Consider
φr defined on domφr = ([0, 1/2]×{0})∪ ([1/2, 1]×{1})∪
([1, 2]× {2}) by

φr(t, j) =

 t ∀(t, j) ∈ [0, 1/2]× {0}
∪([1/2, 1]× {1}),

t− 1 ∀(t, j) ∈ [1, 2]× {2}

Then, it is easy to check that φr is a full j-reparametrization
of φ with ρ such that ρ(0) = 0, ρ(1) = 0, ρ(2) = 1.

Actually, given φ, an infinite number of reparametrizations
can be obtained by limiting the domain or adding trivial
fictitious jumps, by changing ρ. 4



B. Solutions to hybrid systems with hybrid inputs

Consider the hybrid system

H


ẋ ∈ F (x, u) (x, u) ∈ C

x+ ∈ G(x, u) (x, u) ∈ D

y = h(x, u)

(4)

with state x taking values in Rdx , input u taking values in
Rdu , flow map F : Rdx × Rdu ⇒ Rdx , jump map G :
Rdx × Rdu ⇒ Rdx , flow set C ⊆ Rdx × Rdu and jump set
D ⊆ Rdx × Rdu . We adopt the following definition.

Definition 2.5: Consider a hybrid arc u. A pair φ =
(x, ur) is a solution to H with input u and output y if

1) domx = domur(= domφ)
2) ur is a j-reparametrization of u with reparametrization

map ρu, with cardJT (u)(φ) = cardJT (u)(u) if this
reparametrization is full.

3) for all j ∈ N such that Ij(φ) has nonempty interior,

(x(t, j), ur(t, j)) ∈ C ∀t ∈ int Ij(φ)
ẋ(t, j) ∈ F (x(t, j), ur(t, j)) for a.a. t ∈ Ij(φ)

4) for all t ∈ T (φ), denoting j0 = minJt(φ) and nu =
card Jt(u), we have

a) for all j ∈ Jt(φ) such that j < j0+nu, we have
ρu(j) = ρu(j − 1) + 1, and if j = j0 and t > 0,
- (x(t, j0 − 1), ur(t, j0 − 1)) ∈ C ∪D
- x(t, j0) ∈ G0

e(x(t, j0 − 1), ur(t, j0 − 1))

and otherwise,
- (x(t, j − 1), ur(t, j − 1)) ∈ cl(C) ∪D
- x(t, j) ∈ Ge(x(t, j − 1), ur(t, j − 1))

with

G0
e(x, u) =

x if (x, u) ∈ C \D
G(x, u) if (x, u) ∈ D \ C
{x,G(x, u)} if (x, u) ∈ D ∩ C

Ge(x, u) =

x if (x, u) ∈ cl(C) \D
G(x, u) if (x, u) ∈ D \ cl(C)
{x,G(x, u)} if (x, u) ∈ D ∩ cl(C)

b) for all j ∈ Jt(φ) such that j ≥ j0+nu, we have
ρu(j) = ρu(j − 1) and
- (x(t, j − 1), ur(t, j − 1)) ∈ D
- x(t, j) ∈ G(x(t, j − 1), ur(t, j − 1))

5) for all (t, j) ∈ domφ,

y(t, j) = h(x(t, j), ur(t, j)) .

The solution φ is said to be maximal if there does not exist
any other solution φ̃ such that

domφ ⊆ dom φ̃ , φ̃(t, j) = φ(t, j) ∀(t, j) ∈ domφ .

The set of maximal solutions to H initialized in X0 with
input u is denoted SH(X0;u).

Conditions 1) and 2) say that ur is a j-reparametrization
of u that is defined on the same domain as x, and that when
the whole domain of u is spanned (namely, ur is a full

reparametrization u), the solution stops evolving whenever
u does. Indeed, in that case, by Definition 2.3, domt φ =
domt u (in particular T (φ) = T (u)), and if T (u) ∈ domt φ,
the extra condition cardJT (u)(φ) = cardJT (u)(u) says that
φ jumps as many times as u at its final time, similarly to
solutions of discrete systems with input.

At a time t where the input does not jump (nu = 0), x
can jump according to its own jump map G if φ is in D
by Condition 4b). In that case, ur contains a trivial jump,
namely for all j ∈ Jt(φ),

ur(t, j) = ur(t, j − 1) , ρu(j) = ρu(j − 1) .

On the other hand, at a time t where the input jumps,
Condition 4a) says that:

- at the first jump if t > 0, φ must be in C ∪ D and x
is reset either trivially (via the identity) or to a point in
G(x, u) according to G0

e.
- for the remaining jumps of u, or if t = 0, those

conditions are relaxed, replacing C by cl(C).
After all the jumps of u have been processed, φ can carry on
jumping if it is in D, with x reset to a point of G(x, u) and
recording trivial jumps in ur according to Condition 4b).

The difference between G0
e and Ge in Condition 4a) is

that x is forced to jump according to G if φ is in D \ C
instead of D \ cl(C). This stricter condition at the first jump
of u after an interval of flow is to avoid the situation where φ
would leave C after flow and then be allowed to flow again
from the same point after the jump of u; namely it prevents
flows through a hole of C. This condition is already enforced
when the input does not jump (nu = 0) by conditions 3) and
4b). In other words, if φ leaves C after an interval of flow, it
either jumps according to G if it is in D or dies. Hence the
condition that φ should be in C ∪D instead of cl(C) ∪D.
This distinction disappears if C is closed. Note that more
generally, the solution stops if φ leaves cl(C) ∪D.

Remark 2.6: Condition 4) imposes that at a given time,
u performs all its jumps consecutively and right away. This
choice is important because it determines which value of
u is used in the jump map of x. It enables to recover the
definition of solutions of discrete systems with input if F ≡ ∅
and C = ∅. Removing this constraint would lead to a richer
set of solutions where x and u jump either simultaneously
or not, and with any ordering. In that case, Conditions 4)
would be replaced by :

4’) for all t ∈ T (φ) and for all j ∈ Jt(φ), either
(x(t, j − 1), ur(t, j − 1)) ∈ cl(C) ∪D
x(t, j) ∈ Ge(x(t, j − 1), ur(t, j − 1))

ρu(j) = ρu(j − 1) + 1

or 
(x(t, j − 1), ur(t, j − 1)) ∈ D
x(t, j) ∈ G(x(t, j − 1), ur(t, j − 1))

ρu(j) = ρu(j − 1)

,

with cl(C) replaced by C for j = j0 if t > 0. With this
alternate definition, it would no longer make sense to require



cardJT (u)(φ) = cardJT (u)(u) at the boundary of the time
domain in Condition 2), which would be simplified into

2’) ur is a j-reparametrization of u with reparametrization
map ρu.

This richer set of solutions is particularly relevant when
several jumps with a common time stamp model jumps
occurring very close in time. In this case, we do not know if
the jump of u truly happens before or after a possible jump
of x, and it makes sense to take any value of u at that time
in the jump map of x.

Remark 2.7: Another way of building solutions to a hy-
brid system with a hybrid input u would be to look for
solutions that jump whenever u jumps. In other words, a
jump of u would force a jump of the state according to
its own jump map. However, this would significantly limit
the number of solutions since the state would need to be
in its jump set every time the input jumps. Besides, the
value of the input does not always contain the information
about its forthcoming jump, as illustrated in Section IV-B,
thus preventing the implementation of such an approach. In
particular, in the context of observer design, the hybrid input
is the output from the observed hybrid plant: the jumps of the
observer and of the plant cannot always be synchronized.

Remark 2.8: In the case where domx = domu is as-
sumed from the start as in [5], ur is equal to u and Conditions
1) and 2) in Definition 2.5 are automatically satisfied. Also,
in such a case, in Condition 4), the number of jumps of
u is equal to the number of jumps of x so that Condition
4b) holds vacuously. The only difference with the definition
of solutions in [5] is in the way we define the jumps in
Condition 4a). In [5], (x, u) would jump only in D and x
would always be reset to values in G(x, u). This case is
covered by the definition of G0

e (resp. Ge), but we also allow
trivial jumps of x when u jumps and (x, u) is in C (resp.
cl(C)) (see examples in Section IV).

III. AN ALGORITHM TO GENERATE SOLUTIONS TO
HYBRID SYSTEM WITH HYBRID INPUTS

The construction of a solution to a hybrid system with
hybrid input can be made explicit through an algorithm.
Before we introduce this algorithm, it is useful to define/build
solutions when the input is a continuous time function uCT :
R≥0 → Rdu .

Definition 3.1: Consider an interval Iu of R≥0 such that
0 ∈ Iu, and a function uCT : Iu → Rdu . The hybrid arc
(x, ur) is solution to H with continuous-time input uCT and
output y, if (x, ur) is solution to H as in Definition 2.5 with
hybrid input u and output y, where u is the hybrid arc defined
on Iu × {0} by

u(t, 0) = uCT (t) ∀t ∈ Iu .

In other words, ur is trivially given on domx by

ur(t, j) = uCT (t) ∀(t, j) ∈ domx ,

and x is simply characterized by

- domt x ⊆ Iu and if domt x = Iu, cardJT (u)(x) = 0.
- for all j ∈ N such that Ij(x) has non-empty interior,

(x(t, j), uCT (t)) ∈ C ∀t ∈ int Ij(x)
ẋ(t, j) ∈ F (x(t, j), uCT (t)) for a.a. t ∈ Ij(x)

- for all (t, j) ∈ domx such that (t, j − 1) ∈ domx,

(x(t, j − 1), uCT (t)) ∈ D
x(t, j) ∈ G(x(t, j − 1), uCT (t))

- domx = dom y and for all (t, j) in domx,

y(t, j) = h(x(t, j), uCT (t)) .

The solution x is said to be maximal if (x, ur) is maximal.
By abuse of notation, the set of maximal solutions to H
initialized in X0 with continuous-time input uCT is also
denoted SH(X0;uCT ).

Based on this definition, and on the observation that the
solutions are easily built when the input is a continuous-time
function, we now present Algorithm III.1 which constructs
maximal solutions to H with a hybrid input u according to
Definition 2.5.

Proposition 3.2: Consider a hybrid arc u. The hybrid arc
φ = (x, ur) is a maximal solution to H with input u and
output y if and only if x, ur, y and D are possible outputs
of Algorithm III.1 with input u.
The algorithm operates as follows.

1) The algorithm starts by defining Iu, the time interval to
elapse before reaching the next jump of u. The interval
is a singleton if u has an immediate jump.

2) over the time interval Iu, u evolves continuously and,
if possible (line 9), the algorithm builds (line 12) a
maximal hybrid solution x to system (4) starting from
x0 according to Definition 3.1. This gives Conditions
3) and 4b). x is appended to our solution x.

3) If (line 20) x ends before reaching the end of the
interval Iu, or ends outside of cl(C)∪D (resp. C ∪D
after flow, namely if Tm > 0 for the first case of
Condition 4a)), the algorithm stops.

4) Otherwise, ju is incremented, Iu is updated to the next
interval of flow of u, and x jumps according to G0

e if
Tm > 0 (i.e. after flow), and Ge otherwise, to satisfy
Condition 4a).

Note that there are two sources of non uniqueness of solu-
tions in the algorithm: first, in the construction of solutions
with continuous input with Definition 3.1, and through the
set-valued jump maps G, G0

e and Ge.

IV. EXAMPLES

We consider here a series interconnection of two hybrid
systems H1 and H2, where the output of H1 is the input to
H2. Suppose we want to use the output of H1 to make H2

jump according to its jump map whenever H1 does. We will
consider two settings:
• “Jump triggering”: the information of the jumps of H1

is contained in the output of H1 before they happen,



Algorithm III.1 Maximal solution to H initialized in X0

with hybrid input u
1: D, x, y, ur, ρu ← ∅
2: j ← 0
3: tj ← 0
4: ju ← 0
5: x0 ∈ X0

6: Iu ← {t ∈ R≥0 (t, ju) ∈ domu}
7: while Iu 6= ∅ do
8: uCT (t− tj)← u(t, ju) ∀t ∈ Iu
9: if SH(x0;uCT ) = ∅ then

10: go to line 35
11: else
12: Pick x ∈ SH(x0;uCT ) with output y
13: Tm ← T (x)
14: jm ← J(x)

15: D ← D ∪
(
{(tj , j)}+ domx

)
16: x(tj + t, j + j)← x(t, j) ∀(t, j) ∈ domx
17: y(tj + t, j + j)← y(t, j) ∀(t, j) ∈ domx
18: ur(tj + t, j + j)← uCT (t) ∀(t, j) ∈ domx
19: ρu(j + j)← ju ∀j ∈ {0, 1, . . . , jm} ∩ N
20: if Tm /∈ domt x or jm = +∞ or Tm < T (uCT )

or (x(Tm, jm), uCT (Tm)) /∈ cl(C)∪D or (Tm > 0 and
(x(Tm, jm), uCT (Tm)) /∈ C ∪D) then

21: go to line 35
22: else
23: tj ← tj + Tm
24: j ← j + jm + 1
25: ju ← ju + 1
26: Iu ← {t ∈ R≥0 : (t, ju) ∈ domu}
27: if Tm > 0 then
28: x0 ∈ G0

e(x(Tm, jm), uCT (Tm))
29: else
30: x0 ∈ Ge(x(Tm, jm), uCT (Tm))
31: end if
32: end if
33: end if
34: end while
35: J ← supj D . Convention : sup ∅ = −∞
36: if J ∈ [0,+∞) then
37: ρu(j)← ρu(J) ∀j ∈ N : j ≥ J
38: end if
39: return x, y, ur, ρu

namely we would like to make H2 jump synchronously
with H1;

• “Jump detection”: the information of the jumps of H1

can be detected in the output of H1 after they have
happened, namely we would like to makeH2 jump right
after H1.

A. Jump triggering

We model the first situation with a resettable timer defined
by

H1


τ̇ = −1 τ ∈ C1 := [0, sup I] ∩ R

τ+ ∈ I τ ∈ D1 := {0}

y = τ

(5)

where I is a closed subset of R, containing the possible
lengths of flow interval between successive jumps. Because
no flow is possible from τ = 0, we know H1 is going to
jump when its output y reaches 0. Consider a hybrid system
H2 with input given by the hybrid output y of (5), namely

H2

{
ẋ ∈ F (x, y) (x, y) ∈ C2

x+ ∈ G(x, y) (x, y) ∈ D2
(6)

with

C2 = Rn × ((0, sup I] ∩ R)) , D2 = Rn × {0} . (7)

Let us build solutions to H2 according to Definition 2.5.
Suppose first τ(0, 0) ∈ C1 \ {0}. Then H1 flows for
t ∈ [0, t1], with t1 > 0 and τ(t1, 0) = 0. Since y = τ ,
(x, y)(t, 0) ∈ C2 \D2 for t ∈ [0, t1), so H2 flows too, and
yr := y on [0, t1] × {0}. At t = t1, H1 jumps, with y
reset to a value in I: if this value is non-zero, H1 jumps
only once, namely Jt1(y) = {1} and ny = 1; otherwise,
consecutive jumps happen with Jt1(y) = {1, 2, . . .} until y
becomes non-zero. Since (x, y)(t1, 0) ∈ D2 \C2, H2 jumps
too: x is reset to a point in G(x(t1, 0), 0) according to G0

e in
the first part of Condition 4a) with j = 1 = j0 and t1 > 0.
We thus take yr := y on ([0, t1]×{0})∪ ({t1}×{1}). After
this first jump,
• either y(t1, 1) 6= 0, so that ny = 1, and H1 flows

for t ∈ [t1, t2], with t2 > t1 and y(t2, 1) = 0. Since
(x, y)(t1, 1) ∈ C2 \ D2, H2 cannot jump according to
Condition 4b) with j = 2 ≥ j0 + ny , so that H2 flows
and we start again with the same reasoning.

• or y(t1, 1) = 0 (if 0 ∈ I), so that ny ≥ 2, H1

jumps again, with y(t1, 2) ∈ I. Since (x, y)(t1, 1) ∈
D2 ∩ cl(C2), H2 jumps to x(t1, 2) ∈ {x(t1, 1)} ∪
G(x(t1, 1), 0) according to the second part of Condition
4a) with j = 2 < j0 + ny . We thus take yr := y on
([0, t1]×{0})∪ ({t1}×{1, 2}) and we then start again
with the same reasoning.

If now τ(0, 0) = 0, H1 starts with a jump. Since t = 0 and
(x, y)(0, 0) ∈ D2 ∩ cl(C2), the second part of Condition 4a)
with j = 1 = j0 says H2 jumps to x(0, 1) ∈ {x(0, 0)} ∪
G(x(0, 0), 0). Then, we carry on with the same reasoning in
the bullets above.

So we conclude that H2 jumps only when H1 jumps and
inherits the domain of y, so that yr = y. Besides, if 0 /∈
I, H2 jumps according to G every time H1 jumps, except
maybe at t = 0 where one trivial jump is allowed. To ensure
this, the first part of Condition 4a) was crucial to force x to
be reset to a point in G(x, 0) when (x, y) ∈ D2 \C2. If we
had used Ge instead of G0

e, trivial jumps would have been



allowed at (x, y) ∈ D2∩cl(C2). On the other hand, if 0 ∈ I
and H1 jumps several times consecutively, trivial jumps are
allowed by Ge after the first jump, thus losing the property
of jump triggering.

B. Jump detection

Now consider rather a timer defined by

H1


τ̇ = 1 τ ∈ C1 := [0, sup I] ∩ R

τ+ = 0 τ ∈ D1 := I

y = τ

(8)

It can create the same time domains as (5), but this time the
information of its jumps is encoded in the output only after
they have happened, namely when y has been reset to 0.

A first idea to make H2 jump according to G following
the jumps of H1, could be to define H2 as in (6) with
flow/jump sets defined in (7), but with input governed by
(8) instead of (5). Suppose τ(0, 0) ∈ C1 \ {0}, H1 flows
for t ∈ [0, t1] with τ(t1, 0) ∈ I and jumps at time t1. For
t ∈ [0, t1], (x, y)(t, 0) ∈ C2 \ D2, so H2 flows too, and
yr := y. At t = t1, H1 jumps, with y reset to 0. Since
(x, y)(t1, 0) ∈ C2 \ D2, H2 jumps too, with x(t1, 1) =
x(t1, 0) according to G0

e in the first part of Condition 4a)
and we take yr(t1, 1) = y(t1, 1) = 0. At this point, H1

flows again with y leaving 0, and (x, y)(t1, 1) ∈ D2∩cl(C2).
Therefore,H2 can either flow into C2 according to Condition
3), or jump with x reset in G(x(t1, 1), 0) according to
Condition 4b). In that later case, a trivial jump is added in
yr, namely yr(t1, 2) = y(t1, 1) = 0, and H2 can still either
flow or jump. We conclude that with this definition H2 can
jump any number of times according to G(x, 0) after each
jump of H1. This is not what we want.

In fact, the problems we have met are twofold: 1) (x, yr)
should not be in cl(C2) after the jumps ofH1, otherwise flow
is allowed before H2 has jumped using G; 2) after a jump
of H2 using G, (x, yr) should no longer be in D2 unless H1

jumps again, otherwise further jumps of H2 are allowed. In
the case where min I > 0, a possible solution is to add a
state τ̂ to H2 in the following way:

H2


ẋ ∈ F (x, y) (x, τ̂ , y) ∈ C2

˙̂τ = 1

x+ ∈ G(x, y) (x, τ̂ , y) ∈ D2

τ̂+ = y

(9)

with

C2 =
{
(x, τ̂ , y) ∈ Rn × R≥0 × ([0, sup I] ∩ R) :

|τ̂ − y| ≤ ε

2

}
(10a)

D2 = {(x, τ̂ , y) ∈ Rn × R≥0 × ([0, sup I] ∩ R) :

|τ̂ − y| ≥ ε} (10b)

and 0 < ε < min I
2 . Assume H2 is initialized in C2. Then,

(x, τ̂ , y) remains in C2 \D2 defined in (10a)-(10b) as long
as H1 flows, so H2 flows too. At a time t1 ≥ 0, H1 jumps,
(x, τ̂)(t1, 1) = (x, τ̂)(t1, 0) and yr(t1, 1) = y(t1, 1) = 0

according to Condition 4a). Since yr(t1, 0) ∈ D1 = I,
|τ̂(t1, 1) − yr(t1, 1)| = |τ̂(t1, 1)| ≥ 2ε − ε

2 ≥ ε, so that
(x, τ̂ , yr)(t1, 1) ∈ D2 \ cl(C2). Therefore, H2 cannot flow
and from Condition 4b), (x, τ̂)(t1, 2) ∈ (G(x(t1, 1), 0), 0)
and yr(t1, 2) = y(t1, 1) = 0. Therefore, (x, τ̂ , yr)(t1, 2) ∈
C2 \ D2, both H1 and H2 flow, and we can apply again
the same reasoning. Assume now |τ̂(0, 0) − y(0, 0)| ≥ ε.
Then, (x, τ̂ , y)(0, 0) ∈ D2 \ cl(C2), so that H2 necessarily
jumps. Whether H1 jumps at t = 0 or not, (x, τ̂)(0, 1) ∈
(G((x, y)(0, 0)), y(0, 0)) and yr(0, 1) = y(0, 0) from Con-
dition 4). Therefore, we recover |τ̂(0, 1)−yr(0, 1)| ≤ ε

2 and
we can apply the previous reasoning from an initial condition
in C2. We conclude that H2 detects the jumps of H1 and
jumps according to G right after it, if 0 /∈ I.

Note that in the case where 0 ∈ I, such a detection
mechanism can also be built but the information of the jump
of H1 needs to be encoded in a discrete state q toggled at
each jump of H1, instead of the continuous τ , to prevent
(x, y) from being in cl(C2) after the jump of H1.

V. CONCLUSION

We have shown how solutions to hybrid system with inputs
can be defined when the input is an hybrid arc whose domain
does not match that of the solution. This work is instrumental
in defining cascade interconnections of hybrid systems, and
in particular, observers for hybrid systems.
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