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Abstract— We analyse the properties of the inter-event times
for planar linear time-invariant systems controlled by an event-
triggered state-feedback law. The triggering rule is given by
the relative threshold strategy and we assume that the tunable
triggering parameter is small. Several cases are distinguished
depending on the nature of the eigenvalues of the (continuous-
time) closed-loop system matrix in absence of sampling. When
these eigenvalues are real, it is shown that the inter-event times
lie in a neighborhood of a given constant for all positive times
or converge to the neighborhood of a given constant as time
grows. When the eigenvalues are complex conjugates, the inter-
event times oscillate with a varying period for which we give
an estimate. Moreover, the values taken by the inter-event
times over this varying period are approximately the same for
all initial conditions. As a consequence, one can run a single
simulation over a given interval of time to infer properties of the
inter-event times for all initial conditions and all positive times.
Numerical simulations are provided to support the presented
theoretical guarantees. These results help to understand the
behaviour of the inter-event times, instead of solely relying on
numerical simulations, and can be exploited to evaluate the
performance of the considered triggering condition in terms of
average inter-transmission times.

I. INTRODUCTION

Event-triggered control is a sampling paradigm, which
consists in generating transmissions between the plant and
the controller using a state-dependent criterion, which is
continuously monitored [12]. The basic idea is to adapt
plant-controller communication based on the current system
needs, and not (solely) based on the time elapsed since
the last transmission as in traditional time-triggered control.
Event-triggered control is relevant in scenarios where the
control system is subject to communication or computation
constraints, as in networked control systems or embedded
systems.

While various event-triggered control techniques are avail-
able in the literature, see e.g. [1], [4], [8], [10], [16], [18]-
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[23] to mention a few, very little is known about the actual
behavior of the inter-event times. In most cases, the analysis
of the inter-event times only ensures the existence of a dwell-
time also sometimes called a “minimum inter-event time”,
that is a (uniform) strictly positive amount of time (away
from zero) between any two successive transmissions. This
property guarantees the absence of the Zeno phenomenon
and is required by practical hardware limitations. Besides
the existence of a dwell-time, we generally do not know
how the inter-event times behave. Numerical simulations
are thus often carried out to figure out the amount of
transmissions generated by the particular event-triggered
control strategies in a case-by-case manner, and how these
depend, for instance, on the system initial conditions. Excep-
tions exist though. For instance, the works on discrete-time
systems in, e.g., [5], [6], which rely on model predictive
control techniques, provide analytical guarantees about the
average inter-event times. When the plant dynamics evolve
in continuous-time, event-triggered control techniques using
model-based holding functions [17] can also be employed
to derive properties on the inter-event times as advocated in
[3], [14] for fixed threshold policies. On the other hand, the
results in [15] provide conditions under which the inter-event
times grow larger as the solution converges to the origin.
More precise information about the inter-event times can be
deduced for the dynamic event-triggered control technique
proposed in [20, Section V.B]. In this case, the inter-event
times converge to a constant value as time grows, which
can be computed by analyzing the dynamics of an auxiliary
variable around the origin.

Besides the few aforementioned works, our understanding
of the inter-event times remains limited, while it is a key
characteristic of the event-triggered controlled system.
Because the problem is very challenging, we focus in
this paper on plant dynamics given by two-dimensional
continuous-time linear time-invariant systems. The controller
is a static state-feedback law and the triggering rule is
given by [21], which is one of the most popular triggering
conditions in the field that is at the core of many other
techniques, see e.g., [1], [7], [8], [10]. This triggering law
relies on the condition |x — Z| > o|z|, where x is the current
plant state, & is the plant state at the last transmission
instant, and ¢ > 0 is a tunable parameter. Our results
require o to be small, which is typically the case, see
[21]. Depending on the nature of the eigenvalues of the
state matrix of the continuous-time closed-loop system,
we prove that the inter-event times either (i) converge
to a neighborhood of a given constant as time tends to



infinity, (ii) lie in a neighborhood of a given constant for
all positive times, (iii) or oscillate with a given period and
take value, which are almost insensitive to the considered
initial conditions. Simulation results are provided, which
confirm and show the strengths of the obtained theoretical
guarantees. The proofs are omitted for space reasons.

Notation. Let R be the set of real numbers, R> := [0, c0),
R := (0,00), Reg := (—00,0), Z be the set of integers,
Zso = {0,1,2,...} and Zs( := {1,2,...}. Given a set
E C R™ with n € Zsg, we use E* to denote E\{0}. The
notation (z,y) stands for [z, y"]T, where * € R" and
y € R™. For a right-continuous f : R>o — R"™ and ¢ > 0,
we write f(t1) to denote limy~ f(t').

II. PROBLEM STATEMENT

Consider the planar system

& = Ax+ Bu, (1)
where © € R? is the state, v € R™ is the control input,
m € Zso, and (A, B) is stabilizable. The control input u is
given by the feedback law

Kz, 2)

where the matrix K € R™*2 is such that A+ BK is Hurwitz;
such a matrix does exist since (A, B) is stabilizable.

We study the scenario where controller (2) is implemented
on a digital platform and communicates with system (1) at
time instants ¢;, ¢ € Z :={j € Z>o : j < N} with N €
Z~o U {oo}. Between two successive transmission instants,
the control input is held constant, and it is updated at every
t;, © € I, which leads to
Kz 3)

u =
with

for all t € (¢;,ti41)

@H =0 @

) = a(ty).

The overall system is

g‘c
a(t

;Eg i 8455(’5) + BKi(t) for all t € (t;,t;41)
igi; = ig; for all i € T.

&)
To obtain a solution to (5) in the Carathéodory sense, for
each i € Z, we flow on [t;,¢;4+1) and we jump at ¢,,1, and
SO on.

The transmission instants t;, ¢ € Z, are defined implicitly
by a state-dependent triggering rule. We use the criterion of
[21] to define these instants, that is, a transmission occurs
whenever

[2(t) —=()] = ofz(®)], (6)

where o > 0 is selected to ensure that the origin of system
(5) is uniformly globally exponentially stable!, see [21]. In
particular, the construction of (6) in [21] and the stability
proof are based on the existence of a quadratic, positive
definite (thus radially unbounded) function V' : R? — R
such that

(VV(z),Axr + BK%) < —alz|?,
@)

|2 — 2| <olz| =

where a > 0 depends on o.

We assume that a transmission occurs at ¢ = 0, so that
to = 0 and z(0) = Z(0). Since after a transmission £ = x
in view of (5), the next inter-event time is the time it takes
for | — x| to grow from 0 to o|z|. We denote this time
as 7,(x(t;)) for i € Z. Tt is equal to 7,(&(t)) for all
t € [ti,tix1), © € I, since & is constant between two
successive events in view of (5). As in [2], the inter-event
time is defined, for zy € R?, as

inf {n > 0 : |20 — ¢(n; 0)| = old(m; o)}

®)
where ¢(n; zo) is the solution? to & = Az + BKx at time
n > 0, initialized at xg.

Remark 1: Note that we consider the time from n =0 in
(8), and not from n = t; with ¢+ € Z, which is without loss
of generality as system (5) is time-invariant and satisfies the
semi-group property. ]

It is shown in [21] that there exists a uniform almost global
strictly positive lower bound on the minimum inter-event
times for system (5), in the sense that there exists € > 0
such that 7, (zg) > € for any 2o € R?*. The objective of this
study is to go further in the analysis of the function 7,: we
aim at providing analytical characterizations of the behaviour
of 7,(&(t)) along the solutions to (5). The presented results
apply for small ¢ in (6) and are validated on an example
in Section V. First, we establish properties of 7, for this
purpose.

To(x0) =

III. PROPERTIES OF T,

We first need to make sure that 7, cannot be equal to co.
In other words, we want to guarantee that 7,(R?) C R>,.
This is ensured by the next lemma.

Lemma 1: For any xo € R?, 7,(z0) € [0, 00). O

Lemma 1 implies that T = Zx>q, i.e. N = oo in the
definition of Z, for any 2o € R2. We also have that 7,(0) =
0, which means that an infinite number of jumps occurs in
finite time at the origin®. This potential issue is clarified
when writing the overall system using the hybrid formalism

IStrictly speaking, the uniform global asymptotic stability of {(z, %) :
x = 0} is proved in [21]. The uniform global asymptotic stability of x =
& = 0 is established in [20, Section V.C], and the exponential property
follows from the linearity of the system under consideration and (6). Also,
we consider Carathéodory solutions in this work, which leads to a slight
inconsistency because the solution initialized at the origin is trivial, as it can
not flow. This issue is overcome when modeling the overall system using
the hybrid formalism of [11], see [20]. We nevertheless show in Section III
that we can exclude the origin in the forthcoming analysis.

2We abandon in the following the notation ¢ to denote a solution, and
use instead directly x (or ).

3See the last part of footnote 1 on page 2.



[11], see [9] and [20, Section IV.B] for more details. Now,
any (maximal) solution to system (5) initialized at (z, )
with g # 0 will never reach the origin and is complete,
as formalized in the next lemma. We therefore exclusively
consider 7, on R%* in the rest of this study.

Lemma 2: For any o € R?®*, any solution (z,%) to
system (5) initialized at (xo,xo) verifies x(t) # 0 and
Z(t) # 0 for all t > 0. O

We also recall a homogeneity property of 7,, which
follows from [2, Theorem 4.11 and Remark 4.12].

Lemma 3: For any g € R** and u € R*, 7,(z0) =
T (o). O

Lemma 3 means that 7, is constant along lines passing
through the origin (excluding the origin).

Finally, the next proposition provides an expression of
T, () for any 2o € R%*, when parameter o in (6) is small.

Proposition 1: There exist 7 : R? x (0,1) = R, ¢, > 0
and o7 € (0, 1] such that for any o € (0,07) and any x €

R%**, 1,(1g) = J|IL|1$0| | + r(z0,0) and |r(xg,0)| < c.02,
cZo
where A, := A+ BK. O
Proposition 1 means that 7, (zg) is well approximated by
|o]

for small 0 > 0, for any zy € R2*. The fact

 [Aeao]
that the constant c,., which appears in the upper-bound of
the norm 7, is independent of x( (and o), is crucial in the
following. Note that Proposition 1 can be used to derive
lower and upper bounds on 7, (xg).

It is important to note that the results of this section do not
exploit the fact that system (1) is of dimension two. In other
words, these results hold when z is of dimension n € Z~.
This will no longer be the case in the next section, with the
exception of Theorem 1.

IV. MAIN RESULTS

Lemma 3 reveals an important feature of the inter-event
time function: it only depends on which line passing through
the origin Z lies and not on its actual value. To analyse
T5(Z(t)) along the solutions to (5), we can therefore study
the argument (or, angle) of Z(¢) and then exploit the results
of the previous section. We recall that the argument* of
x = (z1,22) € R** can be defined as

arg : R%* — [, 7

o

arctan(32) when z; > 0
X

arctan(72) +
when 7 < 0 and z5 > 0
arctan(2) — 7
1
when z1 < 0 and 25 <0
when 1 =0 and 25 > 0

when 1 = 0 and zo < 0.

9

o =

x> arg(z) =

jus
2

_
2

We distinguish in the following different cases according
to the type of eigenvalues of A, = A + BK, which are
denoted \; and \s.

4Often, the argument is defined as arg(z) = arctan(i—f) but this is
only true when x1 > 0.

A. When A1 and Xy are real, equal and of geometric
multiplicity two

The next theorem follows from Proposition 1 and the
properties of A; and As.

Theorem 1: When A\; = Ay < 0 and their geometric
multiplicity is two, there exist ¢, > 0 and o} € (0, 1] such
that for any initial condition (¢, zo) with 7y € R** and any
o € (0, 07), the corresponding solution (z, ) to (5) verifies
To(Z(t)) = % +r(2(t),0) with |r(2(t),0)] < c.0?. O

1

Theorem 1 ensures that, for any initial condition (z, x¢)

with 2y € R?*, the inter-event times are close to — for all
1
positive times when A1 = Ay and their geometric multiplicity

is two. Hence, the considered event-triggering rule essentially
leads to periodic sampling, when o is small. The proof of
Theorem 1 does not exploit the fact that the state = is of
dimension two: the results apply to any dimension. Also,
function r and constants c,, o] are the same as in Proposition
1, which explains why the same notation is used.

When the geometric multiplicity of Ay = Ay is one,
different proof techniques are needed, which are not provided
in this paper.

B. When \i and )\> are real and distinct

We assume without loss of generality that 0 > A; > Aa.
The next lemma characterizes the (asymptotic) behaviour of
the argument of % along the solutions to (5).

Lemma 4: When A1 > M\, there exist cCgisinee > 0 and
Olistinee. € (0,1] such that for any initial condition (zo,x¢)
with 29 € R%* and any o € (0, 0%e)s the corresponding
solution (z, &) to (5) verifies one of the following properties:

(i) There exists vy, a non-zero eigenvector of A, asso-
ciated with A, such that limsup,_, . |arg(Z(t)) —
arg(v1)| < cdistinet0-

(i) There exists vy, a non-zero eigenvector of A, asso-
ciated with Ay, such that |arg(@(t)) — arg(ve)| <
Caistincto for all ¢ > 0. O

Lemma 4 recovers the properties of the argument of
the solutions for the continuous-time closed-loop system in
the absence of sampling ©. = A.x. when 0 — 0, see
[13, Chapter 2.1]. Indeed, when A; and Ao are real and
distinct, either the argument of z. converges to arg(v;) for
v1 some non-zero eigenvector of A, associated with A\ if
the solution is not initialized on the eigenspace associated
to Ag, otherwise it is constant and equal to arg(vs) at all
times, with vy some non-zero eigenvector of A. associated
with Ao. Similar results are recovered in Lemma 4 up to a
perturbation of the order of ¢ due to sampling.

Properties of 7, (&) along solutions to (5) are established
next by exploiting Proposition 1 and Lemma 4.

Theorem 2: When Ay > Mo, there exist ¢1,co > 0 and
Oisinet € (0,1] such that for any initial condition (z, )
with 29 € R?* and any o € (0, 0%ue)s the corresponding
solution (z, &) to (5) verifies one of the following properties:
o

1

Ta(@(t)) - |T

S 010'2.

(1) limsup
t—o0



o
To(2(t) = 5
7 | Az
Theorem 2 states that, when the eigenvalues of A, are real
and distinct, the inter-event time of system (5) either tends
o o o ol
M~ Ao 0 Pl ~ ]
for all positive times, up to a perturbation of the order of o
in both cases.

(i) < coo? for all t > 0. O

to or it takes values close to

C. When M\ and )y are complex conjugates and non-real

We write A\ = A+ i and Ay = A — i where A\ < 0 and
B > 0. We first derive properties of 7, () along solutions to
(5).

Proposition 2: When \; and A, are non-real complex
conjugates, there exist Ceomplex > 0 and oy, € (0, 1] such
that for any initial condition (zg,zo) with o € R** and
any o € (0,0%,px)- the corresponding solution (z, %) to

(5) verifies the next property: For any ¢ > 0, there exists
0(t) € % — Ccomplex¥, % + Ccomp1ex0] such that 7, (z(t)) =

To(z(t + 0(t))). O
Proposition 2 states that for small o, any solution (z, &) to
(5) not initialized at the origin, is such that 7, (x(t)) oscillates

with a varying period close to —. Note that 7, (x(t)) takes

B

value of the order of o, thus (much) smaller than %,

according to Proposition 1.
The next proposition establishes that the set of values
taken by ¢ — 7, (x(t)) over any time interval of length larger
7r

than — + Ceomplexo is independent of the initial condition

(w0, w0), when o € R?*. Note that it suffices to show this
. . ™ . .
result for any time interval of length — + ccomplex in view of

Proposition 2. We define for this purpose’, for any zg € R**
and o € (0,1),

7—0(1‘0) = {Ta(l‘(t)) 1 te [0, % + UCcomplex}} C R,

(10)

where z is the corresponding component of the solution to

(5) initialized at (20, o), and ccomplex > 0 is as in Proposition
2.

Proposition 3: When A\; and Ay are non-real complex
conjugates, for any zo,zy € R**, 0 € (0,00 ,0e) With
Tomplex @S i Proposition 2, 75 (20) = To ().

We now show that the properties in Propositions 2 and 3
are approximately preserved for 7, (Z) along solutions to (5).

Theorem 3: When A; and Ay are non-real complex con-
jugates, there exist ¢, > 0, Cecomplex = Ccomplex Such that
for any initial condition (wg,z0) with oy € R?* and
any o € (0,0%pex)- the corresponding solution (z, %) to

(5) verifies the next property: For any ¢ > 0, there exist

. T T
e(t) € |:B — CcomplexT, B + Ceomplexo | and rcomplex(tv T, 0)
such that 7, (#(t)) = 7, (&(t + 0(t))) + Tcomplex (£, Z0, o) and

|rcomplex(t» Zo, U)‘ < ér0'2~ |

5The fact that T5(z9) C Rsg follows from Lemma 1 and [21,
Theorem III.1].

N .
The constants ccomplex and T complex 111 Theorem 3 are the

same as in Proposition 2. Theorem 3 implies that the inter-
event time function ¢t — 7,(Z(t)) describes an “almost”

periodic pattern of period 3 for any initial condition (x¢, x¢)
with 2o € R?*. Note that éompexo, Which is the order of
o, is negligible with respect to —. AlS0, Tcomplex(t; Z0, o) 18

of the order of 02 and is therefore negligible with respect
to 7, (2(t) + 6(t)), which is of the order of ¢ according to
Proposition 1.

Contrary to t — 7,(z(t)), we have no reason to think
that ¢t — 7,(Z(¢t)) takes exactly the same values over any

. T, . ..
interval of length — + Ccomplexo for any initial condition, as

illustrated later in Figure 4 in Section V. Nevertheless, the

initial conditions have a weak impact on the values taken by
. m A

t = 7,(z(t)) over any interval of length® — + CeomplexTs

as formalized in the next theorem. Similarly to (10), we
introduce for this purpose’, for any xp € R*>* and o € (0,1),
~ R T N

Tolwo) = {ro(@(t) : t € [0, + Ceompn0]} € Rog
where 7 is the corresponding component of the solution to
(5) initialized at (xo, o), and Ecomplex > 0 is as in Theorem
3.

Theorem 4: When A1 and A2 are non-real complex conju-
gates, for any zo, 2, € R** and o € (0, Oomplex)s To(20) €
7o (xh)+02[—2y, &), where O omplex and ¢, are as in Theorem
3. O

Theorem 4 implies that the values taken by ¢ — 7, (Z(t))
over any time interval of length larger than % + ComplexT are
the same for any initial condition, up to a negligible error of
the order of o2.

V. NUMERICAL EXAMPLE

To illustrate the results of Section IV, we consider the
same linear system as in [21, Section V], namely

b= (55 )er(9)e

The matrix K is designed such that the corresponding
matrix A + BK is Hurwitz, and three cases are considered
depending on the eigenvalues A;, A2 of A + BK being
(1) real and distinct, (ii) complex conjugates, (iii) real and
equal. To design the triggering rule as in [21], we have
taken the real, symmetric, positive matrix P such that
(A+ BK)"P+ P(A+ BK) = —1I. This leads to (6) with
1

2|PBK| )"

For each of these cases, we have studied numerically the
impact of o and the initial conditions on the inter-event
times.

(1)

o€ (0,

Case (i): K = [0 — 6], Ay = —1 and Ay = —2. Then
o € (0,0.1179). Figure 1 shows the inter-event times for

6 Again, it is enough to study the values of the inter-event times on a
. . . ™ ~ . . .
time interval of length E + Ceomplexo in view of Theorem 3.

"The same comment as in footnote 5 on page 4 applies.
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Fig. 1. Inter-event times (solid lines) and value of | (dashed line)

when (A1, A2) = (—1, —2) for different values of o : 0. 1178 (blue), 0.05
(green), 0.01 (yellow). The mismatch is the error percentage between the
limit value of the inter-event times and

IMI
0.02 ; ;
Ty = (17 1)—370 = (17 _2)_'7;0 = (1a -1

0.015

00 p———=——e————— = == ==
0.005

0 . . . .
0 2 4 6 8 10
t
Fig. 2. Inter-event times for different values of zo when (A1,A2) =

(=1,-2) : (1,1) (yellow), (1,—2) (green), (1,—1) (blue). The black
dashed line corresponds to I ;1\ , and the black dotted line to ﬁ

o € {0.1178,0.05,0.01}, and the initial condition (xq, z¢)
with 2o = (1,1). According to Theorem 2, the inter-event
times converge to a value close to /\L as the time tends
to infinity or is close to ol e i for all positive times. We see
that the inter-event times indeed converge to a constant close
to ﬁ in all the cases considered in Figure 1, and that the
mismatch between the limit value and I/{TTI is getting smaller
as we decrease o, which is in agreement with the statement
of Theorem 2.

We might wonder whether there are solutions for which
the inter-event times are close to m for all positive times,
which is allowed by Theorem 2. We have not been able
to find such solutions for this example. Figure 2 suggests
that the inter-event times converge to ™l /\ I for a given o,
independently of the initial condition. In partlcular, we have
taken for this set of simulations o = 0.01, o = (1,1) as
above, o = (1, —2), which lies in the eigenspace associated
to Ao, and zyp = (1,—1), which lies in the eigenspace
associated to A\;. We have selected a small value for o to
be sure we can distinguish whether the inter-event times

(ol [od
converge to L

Case (ii): K =[-3 =7, i =—-2+jand \g = —2 — j.
Then o € (0,0.0728). We have selected different values of
o, namely ¢ € {0.0725,0.03,0.01}, with initial condition
(z0,20) and zo = (1,1). The obtained inter-event times are
depicted in Figure 3. We observe a periodic-like behaviour
in each case and that the “pseudo” period is getting closer

-0 = 0.0725 (mismatch ~ 20.7%)
-0 = 0.03 (mismatch ~ 6.5%)
01 o = 0.01 (mismatch ~ 3.2%)

0.05

0 2 4 6 8 10

Fig. 3. Inter-event times for different values of o when (A1, A2) = (—2+
Jj,—2 — 7): 0.0725 (blue), 0.03 (green), 0.01 (yellow). The mismatch is
the error percentage between 7 and the observed period.

0.05
o = (1, 1)—:170 = (1, —2)—[170 = (1, —1)
0.04
0.03
0.02
0.01
0
0 2 4 6 8 10
t
Fig. 4. Inter-event times for different values of zo when (A1,A2) =

(=24j4,-2—7) : (1,1) (yellow), (1, —2) (green), (1,—1) (blue).

to 7 = 7 as o decreases, in agreement with Theorem 3.
We have then selected ¢ = 0.03 and studied the inter-
event times for different initial conditions (zq,xo) with
xo € {(1,1),(1,-2),(1,—1)}, see Figure 4. The inter-event
times describe similar though slightly different patterns of
very similar periods, in agreement with Theorem 4.
Case (iii): K = [-2 =7, \y = Ay = —2. Then ¢ €
(0,0.0858). Note that this case is not covered by our analysis
as the geometric multiplicity of the double eigenvalue is one,
see Section IV-A. We have considered the initial condition
(zo,x0) and zo = (1,1) and different values of o, namely
o € {0.085,0.04,0.01}, see Figure 5. We observe that
the inter-event times converge in all cases to a constant,
which is in a neighborhood of o and that the mismatch
reduces with o like in case (1) \BVe have also varied the
initial conditions for ¢ = 0.01. In particular, we have taken
xo = (1, —2), which is in the eigenspace associated with Ay,
and zo = (1,-1.9) and zo = (1, —2.1), which are, loosely
speaking, on both sides of the eigenspace of \;. Again, in
all cases the inter-event times converge to a constant close
to ﬁ see Figure 6. We may thus conjecture that, when
A1 = A2 < 0 and their geometric multiplicity is one, the
inter-event times (approximately) converge to IALH as time
2rows.

VI. CONCLUSION

We have analyzed the inter-event times for planar li—
near event-triggered control based on the relative threshold
technique of [21]. We have shown that these inter-event times
(approximately): (i) converge to or lie for all positive times in
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Fig. 5. Inter-event times for different values of o when A\ = Ao = —2:

0.085 (blue), 0.04 (green), 0.01 (yellow). The mismatch corresponds to the
error percentage between o Z- and the limit value of the inter-event times.
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Fig. 6. Inter-event times for different values of x¢p when A1 = Ao = —2

: (1,-2) (blue), (1,—2.1) (green), (1, —1.9) (yellow). The dashed line

corresponds to the value Jg.

a neighborhood of given constants when the eigenvalues of
the state matrix of the continuous-time closed-loop system in
absence of sampling are real and distinct, or real, equal and
of geometric multiplicity two; (ii) describe an almost periodic
pattern, when these eigenvalues are complex conjugates. In
the latter case, an estimation of the period is provided.
Importantly, these results apply mutatis mutandis to nonlinear
event-triggered control systems, whose linearization around
the origin is given by the considered linear model and
triggering rules.

We are currently working on the extension of these results
to output feedback control, as well as to other triggering
rules.
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