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Abstract— We analyse the properties of the inter-event times
for planar linear time-invariant systems controlled by an event-
triggered state-feedback law. The triggering rule is given by
the relative threshold strategy and we assume that the tunable
triggering parameter is small. Several cases are distinguished
depending on the nature of the eigenvalues of the (continuous-
time) closed-loop system matrix in absence of sampling. When
these eigenvalues are real, it is shown that the inter-event times
lie in a neighborhood of a given constant for all positive times
or converge to the neighborhood of a given constant as time
grows. When the eigenvalues are complex conjugates, the inter-
event times oscillate with a varying period for which we give
an estimate. Moreover, the values taken by the inter-event
times over this varying period are approximately the same for
all initial conditions. As a consequence, one can run a single
simulation over a given interval of time to infer properties of the
inter-event times for all initial conditions and all positive times.
Numerical simulations are provided to support the presented
theoretical guarantees. These results help to understand the
behaviour of the inter-event times, instead of solely relying on
numerical simulations, and can be exploited to evaluate the
performance of the considered triggering condition in terms of
average inter-transmission times.

I. INTRODUCTION

Event-triggered control is a sampling paradigm, which
consists in generating transmissions between the plant and
the controller using a state-dependent criterion, which is
continuously monitored [12]. The basic idea is to adapt
plant-controller communication based on the current system
needs, and not (solely) based on the time elapsed since
the last transmission as in traditional time-triggered control.
Event-triggered control is relevant in scenarios where the
control system is subject to communication or computation
constraints, as in networked control systems or embedded
systems.

While various event-triggered control techniques are avail-
able in the literature, see e.g. [1], [4], [8], [10], [16], [18]–
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[23] to mention a few, very little is known about the actual
behavior of the inter-event times. In most cases, the analysis
of the inter-event times only ensures the existence of a dwell-
time also sometimes called a “minimum inter-event time”,
that is a (uniform) strictly positive amount of time (away
from zero) between any two successive transmissions. This
property guarantees the absence of the Zeno phenomenon
and is required by practical hardware limitations. Besides
the existence of a dwell-time, we generally do not know
how the inter-event times behave. Numerical simulations
are thus often carried out to figure out the amount of
transmissions generated by the particular event-triggered
control strategies in a case-by-case manner, and how these
depend, for instance, on the system initial conditions. Excep-
tions exist though. For instance, the works on discrete-time
systems in, e.g., [5], [6], which rely on model predictive
control techniques, provide analytical guarantees about the
average inter-event times. When the plant dynamics evolve
in continuous-time, event-triggered control techniques using
model-based holding functions [17] can also be employed
to derive properties on the inter-event times as advocated in
[3], [14] for fixed threshold policies. On the other hand, the
results in [15] provide conditions under which the inter-event
times grow larger as the solution converges to the origin.
More precise information about the inter-event times can be
deduced for the dynamic event-triggered control technique
proposed in [20, Section V.B]. In this case, the inter-event
times converge to a constant value as time grows, which
can be computed by analyzing the dynamics of an auxiliary
variable around the origin.

Besides the few aforementioned works, our understanding
of the inter-event times remains limited, while it is a key
characteristic of the event-triggered controlled system.
Because the problem is very challenging, we focus in
this paper on plant dynamics given by two-dimensional
continuous-time linear time-invariant systems. The controller
is a static state-feedback law and the triggering rule is
given by [21], which is one of the most popular triggering
conditions in the field that is at the core of many other
techniques, see e.g., [1], [7], [8], [10]. This triggering law
relies on the condition |x− x̂| ≥ σ|x|, where x is the current
plant state, x̂ is the plant state at the last transmission
instant, and σ > 0 is a tunable parameter. Our results
require σ to be small, which is typically the case, see
[21]. Depending on the nature of the eigenvalues of the
state matrix of the continuous-time closed-loop system,
we prove that the inter-event times either (i) converge
to a neighborhood of a given constant as time tends to



infinity, (ii) lie in a neighborhood of a given constant for
all positive times, (iii) or oscillate with a given period and
take value, which are almost insensitive to the considered
initial conditions. Simulation results are provided, which
confirm and show the strengths of the obtained theoretical
guarantees. The proofs are omitted for space reasons.

Notation. Let R be the set of real numbers, R≥0 := [0,∞),
R>0 := (0,∞), R<0 := (−∞, 0), Z be the set of integers,
Z≥0 := {0, 1, 2, . . .} and Z>0 := {1, 2, . . .}. Given a set
E ⊆ Rn with n ∈ Z>0, we use E∗ to denote E\{0}. The
notation (x, y) stands for [x>, y>]>, where x ∈ Rn and
y ∈ Rm. For a right-continuous f : R≥0 → Rn and t ≥ 0,
we write f(t+) to denote limt′↘t f(t

′).

II. PROBLEM STATEMENT

Consider the planar system

ẋ = Ax+Bu, (1)

where x ∈ R2 is the state, u ∈ Rm is the control input,
m ∈ Z>0, and (A,B) is stabilizable. The control input u is
given by the feedback law

u = Kx, (2)

where the matrix K ∈ Rm×2 is such that A+BK is Hurwitz;
such a matrix does exist since (A,B) is stabilizable.

We study the scenario where controller (2) is implemented
on a digital platform and communicates with system (1) at
time instants ti, i ∈ I := {j ∈ Z≥0 : j ≤ N} with N ∈
Z>0 ∪ {∞}. Between two successive transmission instants,
the control input is held constant, and it is updated at every
ti, i ∈ I, which leads to

u = Kx̂ (3)

with

˙̂x(t) = 0 for all t ∈ (ti, ti+1)
x̂(t+i ) = x(ti).

(4)

The overall system is

ẋ(t) = Ax(t) +BKx̂(t)
˙̂x(t) = 0

}
for all t ∈ (ti, ti+1)

x(t+i ) = x(ti)
x̂(t+i ) = x(ti)

}
for all i ∈ I.

(5)
To obtain a solution to (5) in the Carathéodory sense, for
each i ∈ I, we flow on [ti, ti+1) and we jump at ti+1, and
so on.

The transmission instants ti, i ∈ I, are defined implicitly
by a state-dependent triggering rule. We use the criterion of
[21] to define these instants, that is, a transmission occurs
whenever

|x̂(t)− x(t)| ≥ σ|x(t)|, (6)

where σ > 0 is selected to ensure that the origin of system
(5) is uniformly globally exponentially stable1, see [21]. In
particular, the construction of (6) in [21] and the stability
proof are based on the existence of a quadratic, positive
definite (thus radially unbounded) function V : R2 → R≥0
such that

|x̂− x| ≤ σ|x| ⇒ 〈∇V (x), Ax+BKx̂〉 ≤ −a|x|2,
(7)

where a > 0 depends on σ.
We assume that a transmission occurs at t = 0, so that

t0 = 0 and x(0) = x̂(0). Since after a transmission x̂ = x
in view of (5), the next inter-event time is the time it takes
for |x̂ − x| to grow from 0 to σ|x|. We denote this time
as τσ(x(ti)) for i ∈ I. It is equal to τσ(x̂(t)) for all
t ∈ [ti, ti+1), i ∈ I, since x̂ is constant between two
successive events in view of (5). As in [2], the inter-event
time is defined, for x0 ∈ R2, as

τσ(x0) := inf {η > 0 : |x0 − φ(η;x0)| = σ|φ(η;x0)|} ,
(8)

where φ(η;x0) is the solution2 to ẋ = Ax+BKx0 at time
η ≥ 0, initialized at x0.

Remark 1: Note that we consider the time from η = 0 in
(8), and not from η = ti with i ∈ I, which is without loss
of generality as system (5) is time-invariant and satisfies the
semi-group property. �

It is shown in [21] that there exists a uniform almost global
strictly positive lower bound on the minimum inter-event
times for system (5), in the sense that there exists ε > 0
such that τσ(x0) ≥ ε for any x0 ∈ R2,∗. The objective of this
study is to go further in the analysis of the function τσ: we
aim at providing analytical characterizations of the behaviour
of τσ(x̂(t)) along the solutions to (5). The presented results
apply for small σ in (6) and are validated on an example
in Section V. First, we establish properties of τσ for this
purpose.

III. PROPERTIES OF τσ

We first need to make sure that τσ cannot be equal to ∞.
In other words, we want to guarantee that τσ(R2) ⊆ R≥0.
This is ensured by the next lemma.

Lemma 1: For any x0 ∈ R2, τσ(x0) ∈ [0,∞). �
Lemma 1 implies that I = Z≥0, i.e. N = ∞ in the

definition of I, for any x0 ∈ R2. We also have that τσ(0) =
0, which means that an infinite number of jumps occurs in
finite time at the origin3. This potential issue is clarified
when writing the overall system using the hybrid formalism

1Strictly speaking, the uniform global asymptotic stability of {(x, x̂) :
x = 0} is proved in [21]. The uniform global asymptotic stability of x =
x̂ = 0 is established in [20, Section V.C], and the exponential property
follows from the linearity of the system under consideration and (6). Also,
we consider Carathéodory solutions in this work, which leads to a slight
inconsistency because the solution initialized at the origin is trivial, as it can
not flow. This issue is overcome when modeling the overall system using
the hybrid formalism of [11], see [20]. We nevertheless show in Section III
that we can exclude the origin in the forthcoming analysis.

2We abandon in the following the notation φ to denote a solution, and
use instead directly x (or x̂).

3See the last part of footnote 1 on page 2.



[11], see [9] and [20, Section IV.B] for more details. Now,
any (maximal) solution to system (5) initialized at (x0, x0)
with x0 6= 0 will never reach the origin and is complete,
as formalized in the next lemma. We therefore exclusively
consider τσ on R2,∗ in the rest of this study.

Lemma 2: For any x0 ∈ R2,∗, any solution (x, x̂) to
system (5) initialized at (x0, x0) verifies x(t) 6= 0 and
x̂(t) 6= 0 for all t ≥ 0. �

We also recall a homogeneity property of τσ , which
follows from [2, Theorem 4.11 and Remark 4.12].

Lemma 3: For any x0 ∈ R2,∗ and µ ∈ R∗, τσ(x0) =
τσ(µx0). �

Lemma 3 means that τσ is constant along lines passing
through the origin (excluding the origin).

Finally, the next proposition provides an expression of
τσ(x0) for any x0 ∈ R2,∗, when parameter σ in (6) is small.

Proposition 1: There exist r : R2 × (0, 1) → R, cr > 0
and σ?1 ∈ (0, 1] such that for any σ ∈ (0, σ?1) and any x0 ∈
R2,∗, τσ(x0) = σ

|x0|
|Acx0|

+ r(x0, σ) and |r(x0, σ)| ≤ crσ
2,

where Ac := A+BK. �
Proposition 1 means that τσ(x0) is well approximated by

σ
|x0|
|Acx0|

for small σ > 0, for any x0 ∈ R2,∗. The fact

that the constant cr, which appears in the upper-bound of
the norm r, is independent of x0 (and σ), is crucial in the
following. Note that Proposition 1 can be used to derive
lower and upper bounds on τσ(x0).

It is important to note that the results of this section do not
exploit the fact that system (1) is of dimension two. In other
words, these results hold when x is of dimension n ∈ Z>0.
This will no longer be the case in the next section, with the
exception of Theorem 1.

IV. MAIN RESULTS

Lemma 3 reveals an important feature of the inter-event
time function: it only depends on which line passing through
the origin x̂ lies and not on its actual value. To analyse
τσ(x̂(t)) along the solutions to (5), we can therefore study
the argument (or, angle) of x̂(t) and then exploit the results
of the previous section. We recall that the argument4 of
x = (x1, x2) ∈ R2,∗ can be defined as

arg : R2,∗→ [−π, π]

x 7→ arg(x) :=



arctan(x2

x1
) when x1 > 0

arctan(x2

x1
) + π

when x1 < 0 and x2 ≥ 0
arctan(x2

x1
)− π

when x1 < 0 and x2 < 0
π
2 when x1 = 0 and x2 > 0
−π2 when x1 = 0 and x2 < 0.

(9)

We distinguish in the following different cases according
to the type of eigenvalues of Ac = A + BK, which are
denoted λ1 and λ2.

4Often, the argument is defined as arg(x) = arctan(x2
x1

) but this is
only true when x1 > 0.

A. When λ1 and λ2 are real, equal and of geometric
multiplicity two

The next theorem follows from Proposition 1 and the
properties of λ1 and λ2.

Theorem 1: When λ1 = λ2 < 0 and their geometric
multiplicity is two, there exist cr > 0 and σ?1 ∈ (0, 1] such
that for any initial condition (x0, x0) with x0 ∈ R2,∗ and any
σ ∈ (0, σ?1), the corresponding solution (x, x̂) to (5) verifies
τσ(x̂(t)) =

σ

|λ1|
+ r(x̂(t), σ) with |r(x̂(t), σ)| ≤ crσ2. �

Theorem 1 ensures that, for any initial condition (x0, x0)

with x0 ∈ R2,∗, the inter-event times are close to
σ

|λ1|
for all

positive times when λ1 = λ2 and their geometric multiplicity
is two. Hence, the considered event-triggering rule essentially
leads to periodic sampling, when σ is small. The proof of
Theorem 1 does not exploit the fact that the state x is of
dimension two: the results apply to any dimension. Also,
function r and constants cr, σ?1 are the same as in Proposition
1, which explains why the same notation is used.

When the geometric multiplicity of λ1 = λ2 is one,
different proof techniques are needed, which are not provided
in this paper.

B. When λ1 and λ2 are real and distinct

We assume without loss of generality that 0 > λ1 > λ2.
The next lemma characterizes the (asymptotic) behaviour of
the argument of x̂ along the solutions to (5).

Lemma 4: When λ1 > λ2, there exist cdistinct > 0 and
σ?distinct ∈ (0, 1] such that for any initial condition (x0, x0)
with x0 ∈ R2,∗ and any σ ∈ (0, σ?distinct), the corresponding
solution (x, x̂) to (5) verifies one of the following properties:

(i) There exists v1, a non-zero eigenvector of Ac asso-
ciated with λ1, such that lim supt→∞ | arg(x̂(t)) −
arg(v1)| ≤ cdistinctσ.

(ii) There exists v2, a non-zero eigenvector of Ac asso-
ciated with λ2, such that | arg(x̂(t)) − arg(v2)| ≤
cdistinctσ for all t ≥ 0. �

Lemma 4 recovers the properties of the argument of
the solutions for the continuous-time closed-loop system in
the absence of sampling ẋc = Acxc when σ → 0, see
[13, Chapter 2.1]. Indeed, when λ1 and λ2 are real and
distinct, either the argument of xc converges to arg(v1) for
v1 some non-zero eigenvector of Ac associated with λ1 if
the solution is not initialized on the eigenspace associated
to λ2, otherwise it is constant and equal to arg(v2) at all
times, with v2 some non-zero eigenvector of Ac associated
with λ2. Similar results are recovered in Lemma 4 up to a
perturbation of the order of σ due to sampling.

Properties of τσ(x̂) along solutions to (5) are established
next by exploiting Proposition 1 and Lemma 4.

Theorem 2: When λ1 > λ2, there exist c1, c2 > 0 and
σ?distinct ∈ (0, 1] such that for any initial condition (x0, x0)
with x0 ∈ R2,∗ and any σ ∈ (0, σ?distinct), the corresponding
solution (x, x̂) to (5) verifies one of the following properties:

(i) lim sup
t→∞

∣∣∣∣τσ(x̂(t))− σ

|λ1|

∣∣∣∣ ≤ c1σ2.



(ii)
∣∣∣∣τσ(x̂(t))− σ

|λ2|

∣∣∣∣ ≤ c2σ2 for all t ≥ 0. �

Theorem 2 states that, when the eigenvalues of Ac are real
and distinct, the inter-event time of system (5) either tends

to
σ

|λ1|
=

σ|v1|
|Acv1|

or it takes values close to
σ

|λ2|
=

σ|v2|
|Acv2|

for all positive times, up to a perturbation of the order of σ2

in both cases.

C. When λ1 and λ2 are complex conjugates and non-real

We write λ1 = λ+ iβ and λ2 = λ− iβ where λ < 0 and
β > 0. We first derive properties of τσ(x) along solutions to
(5).

Proposition 2: When λ1 and λ2 are non-real complex
conjugates, there exist ccomplex > 0 and σ?complex ∈ (0, 1] such
that for any initial condition (x0, x0) with x0 ∈ R2,∗ and
any σ ∈ (0, σ?complex), the corresponding solution (x, x̂) to
(5) verifies the next property: For any t ≥ 0, there exists

θ(t) ∈
[
π

β
− ccomplexσ,

π

β
+ ccomplexσ

]
such that τσ(x(t)) =

τσ(x(t+ θ(t))). �
Proposition 2 states that for small σ, any solution (x, x̂) to

(5) not initialized at the origin, is such that τσ(x(t)) oscillates
with a varying period close to

π

β
. Note that τσ(x(t)) takes

value of the order of σ, thus (much) smaller than
π

β
,

according to Proposition 1.
The next proposition establishes that the set of values

taken by t 7→ τσ(x(t)) over any time interval of length larger
than

π

β
+ ccomplexσ is independent of the initial condition

(x0, x0), when x0 ∈ R2,?. Note that it suffices to show this
result for any time interval of length

π

β
+ccomplexσ in view of

Proposition 2. We define for this purpose5, for any x0 ∈ R2,?

and σ ∈ (0, 1),

Tσ(x0) :=
{
τσ(x(t)) : t ∈ [0,

π

β
+ σccomplex]

}
⊆ R>0,

(10)
where x is the corresponding component of the solution to
(5) initialized at (x0, x0), and ccomplex > 0 is as in Proposition
2.

Proposition 3: When λ1 and λ2 are non-real complex
conjugates, for any x0, x

′
0 ∈ R2,?, σ ∈ (0, σ?complex) with

σ?complex as in Proposition 2, Tσ(x0) = Tσ(x′0). �
We now show that the properties in Propositions 2 and 3

are approximately preserved for τσ(x̂) along solutions to (5).
Theorem 3: When λ1 and λ2 are non-real complex con-

jugates, there exist ĉr > 0, ĉcomplex ≥ ccomplex such that
for any initial condition (x0, x0) with x0 ∈ R2,∗ and
any σ ∈ (0, σ?complex), the corresponding solution (x, x̂) to
(5) verifies the next property: For any t ≥ 0, there exist

θ̂(t) ∈
[
π

β
− ĉcomplexσ,

π

β
+ ĉcomplexσ

]
and rcomplex(t, x0, σ)

such that τσ(x̂(t)) = τσ(x̂(t+ θ̂(t))) + rcomplex(t, x0, σ) and
|rcomplex(t, x0, σ)| ≤ ĉrσ2. �

5The fact that Tσ(x0) ⊆ R>0 follows from Lemma 1 and [21,
Theorem III.1].

The constants ccomplex and σ?complex in Theorem 3 are the
same as in Proposition 2. Theorem 3 implies that the inter-
event time function t 7→ τσ(x̂(t)) describes an “almost”
periodic pattern of period

π

β
for any initial condition (x0, x0)

with x0 ∈ R2,?. Note that ĉcomplexσ, which is the order of
σ, is negligible with respect to

π

β
. Also, rcomplex(t, x0, σ) is

of the order of σ2 and is therefore negligible with respect
to τσ(x̂(t) + θ̂(t)), which is of the order of σ according to
Proposition 1.

Contrary to t 7→ τσ(x(t)), we have no reason to think
that t 7→ τσ(x̂(t)) takes exactly the same values over any
interval of length

π

β
+ ĉcomplexσ for any initial condition, as

illustrated later in Figure 4 in Section V. Nevertheless, the
initial conditions have a weak impact on the values taken by
t 7→ τσ(x(t)) over any interval of length6 π

β
+ ĉcomplexσ,

as formalized in the next theorem. Similarly to (10), we
introduce for this purpose7, for any x0 ∈ R2,? and σ ∈ (0, 1),
T̂σ(x0) :=

{
τσ(x̂(t)) : t ∈ [0,

π

β
+ ĉcomplexσ]

}
⊆ R>0

where x̂ is the corresponding component of the solution to
(5) initialized at (x0, x0), and ĉcomplex > 0 is as in Theorem
3.

Theorem 4: When λ1 and λ2 are non-real complex conju-
gates, for any x0, x′0 ∈ R2,? and σ ∈ (0, σ?complex), T̂σ(x0) ⊆
T̂σ(x′0)+σ2[−ĉr, ĉr], where σ?complex and ĉr are as in Theorem
3. �

Theorem 4 implies that the values taken by t 7→ τσ(x̂(t))
over any time interval of length larger than π

β + ĉcomplexσ are
the same for any initial condition, up to a negligible error of
the order of σ2.

V. NUMERICAL EXAMPLE

To illustrate the results of Section IV, we consider the
same linear system as in [21, Section V], namely

ẋ =

(
0 1
−2 3

)
x+

(
0
1

)
u. (11)

The matrix K is designed such that the corresponding
matrix A + BK is Hurwitz, and three cases are considered
depending on the eigenvalues λ1, λ2 of A + BK being
(i) real and distinct, (ii) complex conjugates, (iii) real and
equal. To design the triggering rule as in [21], we have
taken the real, symmetric, positive matrix P such that
(A+ BK)>P + P (A+ BK) = −I. This leads to (6) with

σ ∈
(
0,

1

2|PBK|

)
.

For each of these cases, we have studied numerically the
impact of σ and the initial conditions on the inter-event
times.

Case (i): K = [0 − 6], λ1 = −1 and λ2 = −2. Then
σ ∈ (0, 0.1179). Figure 1 shows the inter-event times for

6Again, it is enough to study the values of the inter-event times on a
time interval of length

π

β
+ ĉcomplexσ in view of Theorem 3.

7The same comment as in footnote 5 on page 4 applies.



Fig. 1. Inter-event times (solid lines) and value of σ
|λ1|

(dashed line)
when (λ1, λ2) = (−1,−2) for different values of σ : 0.1178 (blue), 0.05
(green), 0.01 (yellow). The mismatch is the error percentage between the
limit value of the inter-event times and σ

|λ1|
.

Fig. 2. Inter-event times for different values of x0 when (λ1, λ2) =
(−1,−2) : (1, 1) (yellow), (1,−2) (green), (1,−1) (blue). The black
dashed line corresponds to σ

|λ1|
, and the black dotted line to σ

|λ2|
.

σ ∈ {0.1178, 0.05, 0.01}, and the initial condition (x0, x0)
with x0 = (1, 1). According to Theorem 2, the inter-event
times converge to a value close to σ

|λ1| as the time tends
to infinity or is close to σ

|λ2| for all positive times. We see
that the inter-event times indeed converge to a constant close
to σ
|λ1| in all the cases considered in Figure 1, and that the

mismatch between the limit value and σ
|λ1| is getting smaller

as we decrease σ, which is in agreement with the statement
of Theorem 2.

We might wonder whether there are solutions for which
the inter-event times are close to σ

|λ2| for all positive times,
which is allowed by Theorem 2. We have not been able
to find such solutions for this example. Figure 2 suggests
that the inter-event times converge to σ

|λ1| for a given σ,
independently of the initial condition. In particular, we have
taken for this set of simulations σ = 0.01, x0 = (1, 1) as
above, x0 = (1,−2), which lies in the eigenspace associated
to λ2, and x0 = (1,−1), which lies in the eigenspace
associated to λ1. We have selected a small value for σ to
be sure we can distinguish whether the inter-event times
converge to σ

|λ1| or σ
|λ2| .

Case (ii): K = [−3 − 7], λ1 = −2 + j and λ2 = −2 − j.
Then σ ∈ (0, 0.0728). We have selected different values of
σ, namely σ ∈ {0.0725, 0.03, 0.01}, with initial condition
(x0, x0) and x0 = (1, 1). The obtained inter-event times are
depicted in Figure 3. We observe a periodic-like behaviour
in each case and that the “pseudo” period is getting closer

Fig. 3. Inter-event times for different values of σ when (λ1, λ2) = (−2+
j,−2 − j): 0.0725 (blue), 0.03 (green), 0.01 (yellow). The mismatch is
the error percentage between π and the observed period.

Fig. 4. Inter-event times for different values of x0 when (λ1, λ2) =
(−2 + j,−2− j) : (1, 1) (yellow), (1,−2) (green), (1,−1) (blue).

to π
|β| = π as σ decreases, in agreement with Theorem 3.
We have then selected σ = 0.03 and studied the inter-

event times for different initial conditions (x0, x0) with
x0 ∈ {(1, 1), (1,−2), (1,−1)}, see Figure 4. The inter-event
times describe similar though slightly different patterns of
very similar periods, in agreement with Theorem 4.
Case (iii): K = [−2 − 7], λ1 = λ2 = −2. Then σ ∈
(0, 0.0858). Note that this case is not covered by our analysis
as the geometric multiplicity of the double eigenvalue is one,
see Section IV-A. We have considered the initial condition
(x0, x0) and x0 = (1, 1) and different values of σ, namely
σ ∈ {0.085, 0.04, 0.01}, see Figure 5. We observe that
the inter-event times converge in all cases to a constant,
which is in a neighborhood of σ

|λ1| , and that the mismatch
reduces with σ like in case (i). We have also varied the
initial conditions for σ = 0.01. In particular, we have taken
x0 = (1,−2), which is in the eigenspace associated with λ1,
and x0 = (1,−1.9) and x0 = (1,−2.1), which are, loosely
speaking, on both sides of the eigenspace of λ1. Again, in
all cases the inter-event times converge to a constant close
to σ
|λ1| , see Figure 6. We may thus conjecture that, when

λ1 = λ2 < 0 and their geometric multiplicity is one, the
inter-event times (approximately) converge to σ

|λ1| as time
grows.

VI. CONCLUSION

We have analyzed the inter-event times for planar li–
near event-triggered control based on the relative threshold
technique of [21]. We have shown that these inter-event times
(approximately): (i) converge to or lie for all positive times in



Fig. 5. Inter-event times for different values of σ when λ1 = λ2 = −2:
0.085 (blue), 0.04 (green), 0.01 (yellow). The mismatch corresponds to the
error percentage between σ π

2
and the limit value of the inter-event times.

Fig. 6. Inter-event times for different values of x0 when λ1 = λ2 = −2
: (1,−2) (blue), (1,−2.1) (green), (1,−1.9) (yellow). The dashed line
corresponds to the value σ π

2
.

a neighborhood of given constants when the eigenvalues of
the state matrix of the continuous-time closed-loop system in
absence of sampling are real and distinct, or real, equal and
of geometric multiplicity two; (ii) describe an almost periodic
pattern, when these eigenvalues are complex conjugates. In
the latter case, an estimation of the period is provided.
Importantly, these results apply mutatis mutandis to nonlinear
event-triggered control systems, whose linearization around
the origin is given by the considered linear model and
triggering rules.

We are currently working on the extension of these results
to output feedback control, as well as to other triggering
rules.
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