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Abstract— The problem of synchronizing multiple
continuous-time linear time-invariant systems connected over a
complex network, with intermittently available measurements
of their outputs, is considered. To solve this problem, we
propose a distributed observer-based feedback controller
that utilizes a local hybrid observer to estimate neighboring
states only from output measurements at such potentially
nonperiodic isolated event times. Due to the inherent continuous
and discrete dynamics emerging from coupling the impulsive
measurement updates and the interconnected networked
systems, we use hybrid systems to model and analyze the

resulting closed-loop system. The problem of synchronization
and state estimation is then recast as a set stabilization
problem, and, utilizing a Lyapunov-based analysis for hybrid
systems, we provide sufficient conditions for global exponential
stability of the synchronization and zero estimation error set.
A numerical example is provided to illustrate the results.

I. INTRODUCTION

Synchronization of multiagent networked systems is the

natural tendency of distributed agents to self-organize to

evolve together over time. Synchronization has a wide range

of applications over a variety of modalities of science and

engineering. In fact, synchronization is a natural phenomena

seen in spiking neurons [1], [2], and in engineering applica-

tions such as formation control and flocking maneuvers [3],

and satellite and aerial formation design [4].

In this paper, we are interested in the topic of syn-

chronization of continuous-time linear time-invariant (LTI)

systems interconnected over a general graph where each

agent can only measure the output of its neighbors at

some isolated time instant. We aim to design a distributed

observer-based control algorithm to drive the agents to each

other when output measurements between the agents are not

continuously or even periodically available. The problem

space of communicating networked systems comes with

many challenges. One such challenge comes from the agents’

output measurements arriving at isolated and non-periodic

(namely, intermittent) times.

The wide applicability of synchronization in science and

engineering has promoted a rich set of theoretical results

for a variety of classes of dynamical systems. The study of
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convergence and stability of synchronization comes through

the use of systems theory tools such as Lyapunov functions

[5], [6], contraction theory [7], and incremental input-to-

state stability [8]. Results for asymptotic synchronization

with continuous coupling between agents exist in both the

continuous-time domain and the discrete-time domain; see,

e.g., [9], [10], where the latter reference is a detailed survey

about coordination and consensus of integrator dynamics.

Synchronization in continuous-time systems where com-

munication coupling occurs at discrete events, also called

sampled-data systems, is an emergent area of study [11].

An observer-based event policy was developed in [12] for

a network of linear time-invariant systems where commu-

nication events occur when the distance between the local

state and its estimate is larger than a threshold. Using a

sample-and-hold self-triggered controller policy, a practical

synchronization result was established in [13] for the case of

first-order integrator dynamics.

The algorithm designed in this paper achieves synchro-

nization (in the limit, with stability) using only neighboring

output measurements. Moreover, measurements occur at iso-

lated, possibly nonperiodic, time instances. The main con-

tribution of this work lies on the establishment of sufficient

conditions for synchronization of multiagent systems with

intermittent output measurements. Our solution integrates

two components, namely, each agent contains both an ob-

server to estimate the state of its neighbors and an observer-

based control algorithm which utilizes this information to

drive the agents to synchronization, while simultaneously

accurately estimating the states of the agents. Each agent

only has access to their neighboring agents’ outputs at the

measurement times. Due to the fact that each agent contains

both continuous-time and discrete-time dynamics, we use

the hybrid system framework in [14] to model the closed-

loop multiagent system. We show that the proposed design

conditions guarantee that the states of each agent synchronize

and that the estimates converge at an exponential rate. Pre-

cisely, through an appropriate choice of coordinates and with

a Lyapunov-based analysis, we provide sufficient conditions

for global exponential stability of the synchronization and

zero estimation error set.

This work builds on and combines our previous work in

[15] and [16]. Namely, in [15], we consider a state estimation

problem of a single agent through a distributed sensor

network where information is exchanged between agents

asynchronously. In [16], we consider the synchronization

problem as in this work, however, each agent has full access

to the state of its neighbors. The main contribution of this



work is merging these algorithms since, as it turns out,

each agent must have numerous local states to generate the

estimates of the state of its neighbors. In this paper, we

combine these strategies and develop a distributed observer-

based feedback controller for each agent to generate an

estimate of their neighboring states to drive themselves (in

a distributed way) to synchronization.

The remainder of this work is organized as follows. In

Section II, we introduce the main notation and some prelim-

inaries on graph theory used in this work. In Section III, we

formulate the problem under consideration and provide our

proposed controller and observer design. Section IV models

the closed loop system as a hybrid system and gives the main

results. In Section V, we provide a numerical simulation

showcasing our results.

II. NOTATION AND

PRELIMINARIES ON GRAPH THEORY

A. Notation

Given two vectors u, v ∈ R
n, |u| :=

√
u⊤u and notation

[u⊤ v⊤]⊤ is equivalent to (u, v). The set Z≥1 denotes

the set of positive integers, i.e., Z≥1 := {1, 2, 3, . . .}.

N denotes the set of natural numbers including zero, i.e.,

N := {0, 1, 2, 3, . . .}. Given a symmetric matrix P , λ(P ) :=
max{λ : λ ∈ eig(P )} and λ(P ) := min{λ : λ ∈ eig(P )}.

Given matrices A,B with proper dimensions, we define the

operator He(A,B) := A⊤B + B⊤A; A ⊗ B defines the

Kronecker product; diag(A,B) denotes a 2× 2 block matrix

with A and B being the diagonal entries. Given N ∈ Z≥1,

IN ∈ RN×N defines the identity matrix, 1N is the vertical

vector of N ones, and 0N ∈ RN×N is the zero matrix. A

function β : R≥0×R≥0 → R≥0 is a class-KL function, also

written β ∈ KL, if it is nondecreasing in its first argument,

nonincreasing in its second argument, limr→0+ β(r, s) = 0
for each s ∈ R≥0, and lims→∞ β(r, s) = 0 for each

r ∈ R≥0. The graph of a set-valued mapping G : Rn → R
n

is defined as gph G = {(x, y) : x ∈ Rn, y ∈ G(x)}.

B. Preliminaries on Graph Theory

A directed graph (digraph) is defined as Γ = (V , E ,G).
The set of nodes of the digraph are indexed by the elements

of V = {1, 2, . . . , N}, and the edges are the pairs in the

edge set E ⊂ V × V . Each edge directly links two nodes,

i.e., an edge from i to k, denoted by (i, k), implies that

agent i can receive information from agent k. The adjacency

matrix of the digraph Γ is denoted by G ∈ RN×N , where

its (i, k)-th entry gik is equal to one if (i, k) ∈ E and

zero otherwise. A digraph is undirected if gik = gki for

all i, k ∈ V . Without loss of generality, we assume that

gii = 0 for all i ∈ V . The in-degree and out-degree of agent

i are defined by dini =
∑N

k=1 gik and douti =
∑N

k=1 gki.

The in-degree matrix D is the diagonal matrix with the i-th

diagonal entry equal to dini for each i ∈ V . The Laplacian

matrix of the graph Γ, denoted by L ∈ RN×N , is defined as

L = D−G. The set of indices corresponding to the neighbors

that can send information to the i-th agent is denoted by

N (i) := {k ∈ V : (i, k) ∈ E}. A digraph is undirected if

communication between every distinct node is bidirectional,

namely, for each edge (i, k) in the edge set E , the edge

(k, i) is also in E . Let the digraph be strongly connected

and λ1 ≤ λ2 ≤ · · · ≤ λN be the eigenvalues of L.1 Then,

λ1 = 0 is a simple eigenvalue of L associated with the

eigenvector 1N ; L is positive semi-definite and, therefore,

there exists an orthonormal matrix Ψ ∈ RN×N such that

ΨLΨ⊤ = diag(λ1, λ2, . . . , λN ). The digraph is undirected

if and only if the Laplacian is symmetric. According to [18],

if the Laplacian is symmetric then we have the following

properties. We define Ψ̃ = (ψ2, ψ3, . . . , ψN ) ∈ RN×N−1

with ψi = (ψi1, ψi2, . . . , ψiN ) being the orthonormal eigen-

vector corresponding to the nonzero eigenvalue λi, i ∈
{2, 3, . . . , N}, which satisfies

∑N

k=1 ψik = 0. Moreover, Ψ̃
satisfies the following:

Ψ̃Ψ̃⊤ =
1

N




N − 1 −1 . . . −1
−1 N − 1 . . . −1

...
...

. . .
...

−1 −1 . . . N − 1


 =: U (1)

Ψ̃⊤Ψ̃ = I , U2 = U , Λ := Ψ̃⊤LΨ̃ = diag(λ2, λ3, . . . , λN ).
Note that Ψ̃ does not contain the eigenvector associated to

the zero eigenvalue of the Laplacian. We denote L̄ as a fat

matrix which takes the rows of the Laplacian ℓi for each

i ∈ V as blocks and builds it into a diagonal block matrix,

namely, L̄ := diag(ℓ1, ℓ2, . . . , ℓN ).

III. PROBLEM FORMULATION AND APPROACH

We are interested in the problem of synchronizing the

states of N identical LTI systems (referred to as agents)

connected over a intermittently available network, where

agent can measure their neighbors’ output measurements.

Each agent in the network satisfies the following dynamics:

ẋi = Axi +Bui (2)

for each i ∈ V := {1, 2, . . . , N}, where xi ∈ R
n is the state

and ui ∈ Rm is the input for the i-th agent. The agents are

able to intermittently measure the output of their connected

neighbors yik at isolated time events where k ∈ N (i).
More specifically, each agent measures itself and receives

the output measurement from its connected neighbors at time

instances given by the sequence of increasing times {ts}∞s=1,

where s ∈ N \ {0} is the measurement time instance index;

i.e., at each such s, each i-th agent measures its output and

the output of neighboring agents given by

yik(ts) = Hxk(ts)

where k ∈ N (i). The sequence of times {ts}∞s=1 are

constrained to satisfy

T1 ≤ ts+1 − ts ≤ T2 ∀s ∈ {1, 2, . . . , },
t1 ≤ T2

(3)

where the positive scalars T2 ≥ T1 are the time parameters

that define the lower and upper bounds, respectively, of the

1See [17] for more information on algebraic graph theory.



time allowed to elapse between consecutive measurement

event times2. Note that this formulation considers the case

when no information is known a priori for each agent and

the first measurement is received at time t1 for all agents.

Our goal is to design an observer-based feedback con-

troller, that, using local measurements, drives each agent to

synchronization, asymptotically with stability; namely, for

each i, k ∈ V ,

lim
t→∞

|xi(t)− xk(t)| = 0 (4)

while also rendering the set of points xi = xk stable.

In the following sections, we introduce the observer-based

feedback controller in two parts, namely, the distributed

hybrid observer and the synchronizing controller. The dis-

tributed hybrid observer uses neighboring information to

update a dynamic state which drives the estimate towards the

true state value, and the synchronizing controller leverages

the accuracy of the estimates to drive the states of the

controllers towards synchronization asymptotically.

A. Distributed Hybrid Observer

Due to the fact that we do not have perfect and con-

tinuously available knowledge of the state, we propose a

distributed hybrid observer to estimate the state of the

neighboring agents. Each hybrid observer runs locally, at the

i-th agent, to generate an estimate of the state xk of the k-th

agent xk . To achieve this, the observer utilizes two dynamic

states, the state estimate x̂ik ∈ Rn and an auxiliary state ηik
to capture the updated information at event times. Inspired

by [15], each observer features an auxiliary state ηik that

captures the local output estimation error. In between update

times, the observer states are each continuously updated as

˙̂xik = Ax̂ik + ηik,

η̇ik = Πηik
(5)

for each i ∈ V , where Π is a real matrix of appropriate

dimensions to be designed. Note that, in between events,

the observer operates open loop as there is no external

information affecting the dynamics of the pair (x̂ik , ηik).
At measurement event times {ts}∞s=1, each agent receives

measurements from their neighbors that can be used to

update the state of their local observer. This leads to the

following discrete update for the pair (x̂ik, ηik):

x̂+ik = x̂ik,

η+ik = L(Hx̂ik − yik)
(6)

where L is a real matrix that is to be designed. Note that

the construction of the observer is such that the state of the

local agent is not used; only a function of the state is used

(i.e., the output).

Remark 3.1: Note that the estimate of xk generated at

agent i, namely, x̂ik does not reset when new measurements

are available, but instead only the auxiliary state ηik as-

sociated to this agent is updated. In between updates, ηik

2If T2 = T1, then the outputs are measured at periodic times.

is injected in the continuous dynamics of x̂ik to drive the

estimate x̂ik to the true value of xk.

B. Distributed Synchronizing Controller

Since the actual states are not available to the agents,

but rather linear functions of them, we propose a feedback

controller that utilizes estimates generated from the hybrid

observer to achieve synchronization. At each agent xi, we

assign the input ui to a function of the estimates x̂ik of the

states of the agents’ neighbors. This feedback law is given

by

ui = K
∑

k∈N (i)

(x̂ii − x̂ik) (7)

where K is a real matrix that is to be designed.

IV. HYBRID MODELING AND MAIN RESULTS

A. Hybrid Modeling

Due to the impulsive and non-periodic nature of the

measurement events over the network, we employ the time

triggering model proposed in [19]. More precisely, we use a

decreasing timer τ to capture the sequence of events times

{ts}∞s=1. The timer decreases with ordinary time and, upon

reaching zero, is impulsively reset to a point within the

interval [T1, T2]. To model this mechanism and the closed-

loop system, we employ the hybrid systems framework3 in

[14], where a hybrid system with state ξ ∈ Rn is denoted

by H = (C, f,D,G) and is written in the compact form

H : ξ ∈ R
n

{
ξ̇ = f(ξ) ξ ∈ C

ξ+ ∈ G(ξ) ξ ∈ D
. (8)

Using this framework, the evolution of the timer τ is given

by the following dynamics:

τ̇ = −1 τ ∈ [0, T2],
τ+ ∈ [T1, T2] τ = 0.

(9)

Note that any sequence of times {ts}∞s=1 that satisfies (3) is

captured by the timer model in (9).

Inspired by [19], for each i, k ∈ V , consider the change

in coordinates

eik = x̂ik − xk,

θik = L(Hx̂ik − yik)− ηik.
(10)

The quantity eik defines the estimation error between the

local estimate of agent k held at agent i. The quantity θik is

the difference between the output estimation error multiplied

by L and the auxiliary state ηik. Let e = (e1, e2, e3, . . . , eN ),
ei = (ei1, ei2, . . . , eiN ), θ = (θ1, θ2, θ3, . . . , θN ),
θi = (θi1, θi2, . . . , θiN ), x = (x1, x2, . . . , xN ), η =
(η1, η2, . . . , ηN ), and ηi = (ηi1, ηi2, . . . , ηiN ). Then, with

the change of variables in (10), the closed-loop hybrid system

3A hybrid system is given by four objects (C, f,D,G) defining its data:
the flow set is a set C ⊂ Rn specifying the points where the continuous
evolution (or flows) is possible; the flow map is a single-valued map f :
Rn

→ Rn defining the flows; the jump set is a set D ⊂ Rn specifying
the points where the discrete evolution (or jumps) is possible; and the jump

map is a set-valued map G : Rn
⇒ Rn defining the value of the state after

jumps.



H comprises the agents’ dynamics (2), the observer design

in (5) and (6), the synchronizing controller in (7), and

the timer dynamics in (9) triggering measurement events.

Using the error coordinates, the state of H is defined as

ξ = (z, τ) ∈ (RnN × RnN2 × RnN2

) × [0, T2] =: X where

z = (x, e, θ). The continuous dynamics of x are

ẋ = Ãx+ B̃K̃x+ B̃K̄e (11)

where Ã = IN ⊗ A, B̃ = IN ⊗ B, K̃ = L ⊗ K , and

K̄ = L̄ ⊗K with L and L̄ defined in Section II. From the

observer design in (5) and (6) and the dynamics of the agents

in (2), it follows that the error state eik satisfies the following

dynamics

ėik = Aeik −BK
∑

r∈N (k)

(ekk − ekr) + ηik

−BK
∑

r∈N (k)

(xk − xr)

Then, we have that the error dynamics e can be written

compactly as

ė = IN ⊗ Ãe+ η − 1N ⊗ B̃K̄e− 1N ⊗ B̃K̃x.

From the definition of θik in (10), it follows that combining

θik to θ leads to

θ = L̃H̃e− η (12)

where L̃ = In2 ⊗ L and H̃ = In2 ⊗H which leads to

ė = IN ⊗ Ãe+ L̃H̃e− θ − 1N ⊗ B̃K̄e− 1N ⊗ B̃K̃x.

(13)

The continuous dynamics of θ are given by

θ̇ = L̃H̃ė − η̇.

From (5), (12) and (13), we have that

θ̇ = −L̃H̃(1N ⊗ B̃K̃)x − (L̃H̃ + Π̃)θ

+ (L̃H̃(IN ⊗ Ã+ L̃H̃ − 1N ⊗ B̃K̄)− Π̃L̃H̃)e
(14)

where Π̃ = IN2 ⊗ Π. Note that the dynamics of xi and

x̂ik for each i, k ∈ V are continuous and do not change

at measurement event times (e.g., when τ = 0). More

specifically, x+i = xi and x̂+ik = x̂ik , which leads to the

update in the error state to also be continuous, i.e., e+ = e.

Lastly, due to the definition of θik in (10) it follows that

θ+ik = L(Hx̂+ik − x+k )− η+ik = 0

due to the update of ηik to L(Hx̂ik − xk) for each i, k ∈ V .

This leads to an autonomous closed-loop hybrid system H
as in (8) with state ξ and dynamics given by

ξ̇ = (Fz,−1) τ ∈ [0, T2]
ξ+ = (Gz, [T1, T2]) τ = 0

(15)

where F and G are given by

F =




Ã+ B̃K̃ B̃K̄ 0

F21 F22 −InN2

L̃H̃F21 L̃H̃F22 − Π̃L̃H̃ −(L̃H̃ + Π̃)



 (16)

where F21 = −1N ⊗ B̃K̃ and F22 = IN ⊗ Ã+ L̃H̃−(1N ⊗
B̃K̄) and

G = diag(InN , InN2 , 0nN2). (17)

The matrix (16) captures the (linear) continuous-time evo-

lution of the hybrid system in the error coordinates between

event times and (17) captures the update at event times, i.e.,

when τ = 0.

In general, a solution φ to a hybrid system H in (8) is

parametrized by (t, j) ∈ R≥0 ×N, where t denotes ordinary

time and j denotes jump time. The domain dom φ ⊂ R≥0×
N is a hybrid time domain if for every (T, J) ∈ dom φ, the

set dom φ ∩ ([0, T ] × {0, 1, . . . , J}) can be written as the

union of sets
⋃J

j=0(Ij × {j}), where Ij := [tj , tj+1] for a

time sequence 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ+1. The time

instances tj’s with j > 0 define the time instants when the

state of the hybrid system jumps and j counts the number

of jumps. A solution to H is called maximal if it cannot be

extended, i.e., it is not a truncated version of another solution.

It is called complete if its domain is unbounded. A solution

is Zeno if it is complete and its domain is bounded in the t

direction.

Remark 4.1: Note that the jump set of the hybrid system

H in (15) is completely dependent on the timer state τ and

the jump map resets the value of τ to a point in the interval

[T1, T2]. Therefore, if we consider a maximal solution φ to

H, then the time instances tj satisfy the event times given

by the constraints in (3), namely,

T1 ≤ tj+1 − tj ≤ T2

t1 ≤ T2

for each (tj , j), tj+1, j) ∈ domφ.

With the definition of solutions to hybrid systems above,

we have the following result which implicitly removes the

possibility of Zeno solutions.

Lemma 4.2: Let 0 ≤ T1 ≤ T2 be given. Every maximal

solution φ to the hybrid system in (15) is complete and each

(t, j) ∈ domφ satisfies T1(j − 1) ≤ t ≤ (j + 1)T2.

B. Synchronization and Estimation as a Set Stabilization

Problem

As mentioned in Section III, (global) synchronization

is characterized as every solution, starting from arbitrary

initial conditions, converges to the set of points x =
(x1, x2, . . . , xN ) such that x1 = x2 = · · · = xN , with stabil-

ity. In this section, we recast the synchronization problem as

a set stabilization problem. Namely, our goal is to stabilize

the set of points ξ = ((x, e, θ), τ) such that each component

of x is synchronized, and the estimation error e and the state

θ are driven to zero. The state τ will continue to evolve



within [0, T2] indefinitely; therefore, the set to stabilize will

allow τ to belong to [0, T2]. In particular, given a (maximal)

complete solution φ = (φx, φe, φθ, φτ ) to the hybrid system

H in (15), the goal is to ensure that limt+j→∞ |φxi
(t, j)−

φxk
(t, j)| = 0, limt+j→∞ |φx̂ik

(t, j) − φxk
(t, j)| = 0 and

limt+j→∞ φθ(t, j) = 0 for each i, k ∈ V . To determine such

a property, we recast our problem as a stabilization of the

hybrid system H in (15) to the following set of points:

A := {((x, e, θ), τ) ∈ X : xi = xk, eik = 0, θik = 0,

∀i, k ∈ V}. (18)

In the next section, we determine sufficient conditions that

yield this set globally exponentially stable for H.

Definition 4.3: Let a hybrid system H as in (8) be defined

on Rn. Let A be closed. The set A is said to be globally

exponentially stable (GES) for H if there exists k, α > 0
such that every maximal solution φ to H is complete and

satisfies

|φ(t, j)|A = k exp(−α(t+ j))|φ(0, 0)|A
for each (t, j) ∈ domφ.

C. Main Results

In this section, we establish a sufficient condition that

guarantees the synchronization and estimation properties via

stability analysis of the set A in (18) for the hybrid system in

(15). We establish such a result by using a Lyapunov function

candidate V : X → R≥0. An appropriate choice of V must

satisfy V (ξ) = 0 for each ξ ∈ A, and for any ξ ∈ X \ A,

V (ξ) > 0. We first define the Lyapunov function candidate

V (ξ) = x⊤ΨP1Ψ
⊤x+ e⊤P2e+ exp(στ)θ⊤P3θ (19)

where P1, P2, and P3 are positive definite symmetric matri-

ces, and Ψ = Ψ̃ ⊗ In, where Ψ̃ is defined in Section II-B.

The Lyapunov function V in (19) satisfies [20, Definition

3.16] which makes it a suitable Lyapunov function candidate

for stability analysis of A in (18). The following result

exploits the fact that, under certain conditions, V decreases

during flows and, at jumps, it does not increase. To guarantee

exponential stability, we leverage the proof of Proposition

3.24 in [14] which uses the fact that, since every solution

to H persistently flows and does not increase during jumps

then solutions must converge to the set A. The Lyapunov

function V in (19) is inspired by [16] where we focus

on synchronization with state feedback; in that case, the

Lyapunov function V also decreases during flows and does

not increase at jumps.

Theorem 4.4: Let the hybrid system H in (8) and positive

scalars T1 ≤ T2 be given. Let the graph Γ be undirected. If

there exist a scalar σ > 0, matrices K , h, L, and positive

definite matrices symmetric P1, P2 and P3 satisfying

P (ν)Ψ̄⊤FΨ̄ + Ψ̄⊤FΨ̄P (ν)− σP̄3(ν) < 0 (20)

for each ν ∈ [0, T2] where P (τ) =
diag(P1, P2, P3 exp(στ)), P̄3(τ) = diag(0, 0, P3 exp(στ)),
Ψ̄ = diag(Ψ, InN2 , InN2) and F is given in (16), then the

set A in (18) is globally exponentially stable for the hybrid

system in (15).

Note that the matrix inequality in (20) must be satisfied for

an infinite number of points, i.e., for each ν ∈ [0, T2]. To

alleviate this issue, we have the following result.

Proposition 4.5: Let the positive scalars T1 ≤ T2 be

given. The inequality in (20) holds if there exist, matrices

K , h, L, and positive definite symmetric matrices P1, P2,

and P3, and a scalar σ > 0 satisfying

P (0)Ψ̄⊤FΨ̄ + Ψ̄⊤FΨ̄P (0)− σP̄3(0) < 0 (21)

P (T2)Ψ̄
⊤FΨ̄ + Ψ̄⊤FΨ̄P (T2)− σP̄3(T2) < 0 (22)

where P (τ) = diag(P1, P2, P3 exp(στ)), P̄3(τ) =
diag(0, 0, P3 exp(στ)), Ψ̄ = diag(Ψ̃ ⊗ In, InN2 , InN2) and

F is given in (16).

Remark 4.6: Note that the matrices in (21) and (22)

involve nonlinear terms involvingK , Π, and L. The presence

of these terms in (16) makes the problem nonlinear and

difficult to solve numerically. However, it can be shown that

LMI conditions can be derived following ideas in [21].

In the next section, we give an example showcasing the

results in this section. Namely, we consider the synchroniza-

tion of four impulsively coupled ideal mass-spring systems

(such systems can also be considered to be linear oscillators

with unitary spring and mass coefficients). Such systems are

known to have cyclic behaviors if initialized away from the

origin. As we will show, we can use Proposition 4.5 to design

matrices K , Π, and L that yield global exponential stability

of the synchronization set A in (18).

V. SIMULATIONS

In this section, we present a simulation which illustrates

the main results. We consider the case of four agents con-

nected over a network defined by the graph

G =




0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


 (23)

The dynamics of each agent are governed by a continuous-

time linear oscillator with state x ∈ R2

ẋ =

[
0 1
−1 0

]
x+

[
0
1

]
u. (24)

Note that the eigenvalues of the system matrix in (24) are

±i implying strictly oscillatory behavior in open loop. The

agents can measure the output given by

y(ts) =
[
1 1

]
x(ts)

and that of their neighbors at events governed by the se-

quence of times {ts}∞s=1 satisfying (3) with

T1 = 0.001 T2 = 0.15.

In Figure 1, we show a particular numerical solution to
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Fig. 1. A numerical simulation of the closed-loop network system. (top) The
trajectory of the first component of the state of each agent. (middle) The
Lyapunov function V defined in (19) evaluated over the solution. (bottom)
The measurement times governed by the timer state τ occur when τ = 0.

this example. Namely, we found that for the gain matrices

K =
[
−0.5 −0.5

]

L =
[
−1 −2

]⊤

Π = −0.5

it is possible to find scalars σ > 0 and positive definite

matrices P1, P2, and P3 that satisfy the matrix inequalities

(21) and (22) implying global exponential stability. The

initial conditions of the states x are given by

x1 =
[
−5 1

]⊤
x2 =

[
−2 −3

]⊤

x3 =
[
5 −3

]⊤
x4 =

[
−10 4

]⊤
.

The initial conditions of both the estimation states x̂ik and

the local auxiliary state ηik were nonzero and, in fact, ran-

domly chosen in the interval [−5, 5]. From Figure 1, we can

see that the solutions converge to synchronization through the

convergence of the first component of the solution to xi1 to

each other. The middle plot of Figure 1 shows the Lyapunov

function in (19), converging exponentially to zero. Lastly,

the bottom plot in Figure 1 shows the points in time where

measurements occur, namely, when τ = 0 (indicated by the

dashed red lines which reset the timer randomly point inside

the bounds [0.1, 0.15]).

VI. CONCLUSION

In this paper, we provided a solution to the synchronization

problem where the measurements of neighboring agents are

not continuously available. We proposed a distributed local

observer-based feedback controller that impulsively updates

an auxiliary state at measurement event times to drive the

estimate of the observer to the true value of the state. The

static controller assigned to the input is based on the local

estimated states. Through modeling the closed-loop system

as a hybrid system, we recasted the synchronization problem

to a set synchronization problem and utilized Lyapunov sta-

bility tools. The main result was given in terms of sufficient

conditions for exponential stability of the synchronization set

in terms of matrix inequalities.
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