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Hybrid Control for Robust and Global Tracking on

Smooth Manifolds
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Abstract—n this paper, we present a hybrid control strategy
that allows for global asymptotic tracking of reference trajec-
tories evolving on smooth manifolds, with nominal robustness.
Two different versions of the hybrid controller are presented:
one which allows for discontinuities of the plant input and
a second one that removes the discontinuities via dynamic
extension.n this paper, we present a hybrid control strategy that
allows for global asymptotic tracking of reference trajectories
evolving on smooth manifolds, with nominal robustness. Two
different versions of the hybrid controller are presented: one
which allows for discontinuities of the plant input and a second
one that removes the discontinuities via dynamic extension.I that
live in the given manifold. By taking an exosystem approach,
we provide a general construction of a hybrid controller that
guarantees global asymptotic stability of the zero tracking error
set. The proposed construction relies on the existence of proper
indicators and a transport map-like function for the given
manifold. We provide a construction of these functions for the
case where each chart in a smooth atlas for the manifold maps
its domain onto the Euclidean space. We also provide conditions
for exponential convergence to the zero tracking error set. To
illustrate these properties, the proposed controller is exercised
on three different compact manifolds – the two-dimensional
sphere, the unit-quaternion group and the special orthogonal
group of order three – and further applied to the problems of
obstacle avoidance in the plane and global synchronization on
the circle.

I. INTRODUCTION

A. Background and Motivation

In this paper, we consider the problem of designing

a controller that performs asymptotic tracking of a given

reference trajectory for a dynamical system evolving on a

smooth manifold without boundary, robustly with respect to

small measurement noise and globally with respect to initial

conditions. The design of such controllers is particularly

relevant in robotics, because there are several mechanical sys-

tems that have components whose movement is constrained

to a manifold. For example, spacecraft, aircraft, rotorcraft

and underwater vehicles are described as rigid-bodies whose

orientation in three dimensional space is represented by a
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3 × 3 nonsingular matrix R satisfying R⊤ = R−1 and

det(R) = 1 which defines a compact manifold of dimen-

sion 3 and together with matrix multiplication forms the

special orthogonal group of order three SO(3) (c.f. [1], [2]).

Vectored-thrust vehicles are aerial vehicles with full torque

actuation and a single force direction (thrust) which often

resort to controllers for asymptotic tracking on the sphere,

denoted by S2, in order to steer the thrust vector in a desired

direction (see e.g. [3], [4], [5]). Surface vessels are rigid-body

vehicles that move on the plane and have a single rotational

degree of freedom, hence their attitude can be represented

by an element of the circle, denoted by S
1 (see e.g. [6],

[7]). Robotic manipulators are composed of a series of links

connected by joints whose state can be described as an

element of S1, S2 or SO(3) depending on the particular kind

of joint (c.f. [8]). Naturally, control problems that involve

one or more of these robots are described partly in compact

manifolds. For example, spacecraft docking and formation

control require the synchronization of multiple rigid-body

vehicles and the dynamical system that characterizes the rel-

ative orientation between vehicles also evolves on a compact

manifold (see [9] and [10]). Obstacle avoidance is another

important and longstanding problem in robotics that reflects

the need to drive mechanical systems from one place to

another while avoiding any number of obstacles in its way,

which constrains the state space to a submanifold of the

original space. Several solutions to this problem have been

proposed over the last few decades as highlighted in [11].

Designing controllers that guarantee robust and global

tracking for manifolds is challenging and, generally, an

unsolved problem. In the next section, we revisit existing

control strategies that could potentially be used to tackle the

problem at hand and highlight their limitations.

B. Related Work

It was shown in [12] that asymptotic controllability implies

feedback stabilizability of the origin of a nonlinear dynamical

system

ẋ = f(x, u)

with state x ∈ M and input u ∈ U, where M is a smooth

manifold that is embedded in a higher dimensional Euclidean

space and U a locally compact metric space. In other words,

one needs only to verify controllability, that the existence of a

stabilizing feedback law immediately follows. Unfortunately,

the aforementioned result is not constructive, hence, to find

control synthesis procedures, one has to look into particular

classes of nonlinear systems.
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In the particular case of control affine systems of the form

ẋ = f(x) + g(x)u

with smooth functions f : Rm → Rm and g : Rn → Rm×k

satisfying f(0) = 0, the work reported [13] proposes a static

state feedback law k : Rm → Rk that renders the origin of the

closed-loop system globally asymptotically stable, provided

that there exists a smooth control Lyapunov function, i.e.,

a positive-definite function V whose derivative is strictly

negative everywhere but the origin for some input value. The

work in [14] addresses the problem of trajectory tracking

for a dynamical system evolving on a Riemannian manifold,

under the assumption that there exists a transport map that

is compatible with an error function on the manifold. The

transport map transfers the velocity of the reference trajectory

to the tangent space at the current location, allowing for

a direct comparison between the current and the reference

velocities. These works follow a Lyapunov approach which is

at the heart of nonlinear control design: if a control Lyapunov

function exists, then it is possible to construct a feedback law

(see, e.g., [15] and [16]). However, finding control Lyapunov

functions is not a trivial endeavor and it relies heavily on

the experience of the control practitioner. Moreover, even

when found, one may not know the basin of attraction for

the closed-loop dynamical system, that is, the set of points

from which solutions converge.

In this regard, asymptotic stabilization on compact Lie

groups, for example, is much simpler. It was shown in [2]

that if there exists a Morse function on the given compact

Lie group, then it is possible to almost globally stabilize its

minimum by gradient descent, in the sense that all trajectories

to the closed-loop system converge to the minimum of the

function, except for solutions starting on a set of measure

zero. Since smooth Morse functions are dense on the space

of functions on a manifold [17], it is fairly easy to construct

a controller for setpoint stabilization on a Lie group whose

basin of attraction is almost the entire state space. The

work in [2] has had a profound impact in some of the

applications that are mentioned in Section I-A, such as:

attitude control [18], tracking for robotic manipulators [8],

spacecraft stabilization [19] and, more recently, PID control

for systems evolving on Lie groups [20]. In addition, geomet-

ric controllers for almost global asymptotic stabilization on

Lie groups can be smoothly projected onto manifolds that

lack the group structure and a natural configuration error

(see e.g. [21]). However, these strategies are hindered by

a fairly well-known limitation of continuous feedback that

has been explicitly stated in [22] as follows: “a continuous

dynamical system on a state space that has the structure of a

vector bundle on a compact manifold possesses no globally

asymptotically stable equilibrium.” It is possible to tackle

this limitation by means of nonsmooth feedback, as done

in [23] and [24] for the stabilization of a rigid-body and the

3-D pendulum, respectively. However, even if it is possible

to globally asymptotically stabilize a setpoint for systems

evolving on compact manifolds by means of discontinuous

feedback, this approach is not robust to small measurement

noise, as discussed in [25]. In addition, it was shown in [26]

that a state space that is punctured with spherical obstacles

is also plagued with topological obstructions that preclude

global asymptotic stabilization of a setpoint by continuous

feedback.

In summary, the main challenges to solve the problem of

robust and global trajectory tracking for systems evolving on

smooth manifolds are the following:

(L1) The existence of topological obstructions to global

asymptotic stabilization on compact manifolds by con-

tinuous feedback – the results available in the literature

only apply to specific cases of the systems considered

here;

(L2) Lack of robustness to measurement noise of smooth and

nonsmooth feedback – the unavoidable nonsmoothness

of any global stabilizer and the much desired robustness

requires the use of advanced hybrid control techniques,

which, to date, have been only applied to systems on

manifolds with very specific dynamics and manifold

structure;

(L3) Constructive controller synthesis for general dynamical

systems on manifolds – a “universal” (hybrid or not)

control construction for robust and global stabilization

of a point or reference of a wide class of systems on

manifolds is not available in the literature;

A particular control synthesis tool that emerged to ad-

dress (L1) and (L2) consists on hybrid control through

synergistic potential functions (see e.g. [27], [28], [29] and

references therein). These are collections of functions with

the following property: for each unstable equilibrium point

of the gradient vector field of a given function, there exists

another function in the family that has a lower value. By

monitoring the difference between the value of the current

function and the lowest possible value among all functions

in the collection, it is possible to globally asymptotically

stabilize a given reference by switching between gradient-

based vector fields whenever a given amount is exceeded.

This novel hybrid control technique spawned a plethora

of contributions on global asymptotic stabilization on com-

pact manifolds, including, most notably, the two-dimensional

sphere [30], the three-dimensional sphere [31] and the special

orthogonal group [32], [33]. It has also found applications

in attitude stabilization [34], rigid-body vehicle stabilization

and tracking [35], tracking for quadrotor vehicles [36] and

obstacle avoidance [37].

While the aforementioned hybrid control strategies address

the limitations that are pointed out in (L1) and (L2), they only

apply to very specific examples and are built on a case-by-

case basis which depends on the particular application under

consideration. One of the contributions of the present paper is

precisely the construction of a broad scope controller that can

not only be applied to these particular examples, but also to

more complex control tasks, possibly while guaranteeing ex-

ponential convergence to a reference trajectory, as discussed

in the next section.

C. Contributions

Let M denote a smooth manifold of dimension n without
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boundary that is properly embedded in a higher dimensional

Euclidean space R
m. In this paper, we design a hybrid

controller that globally asymptotically tracks a reference

trajectory for the dynamical system

ẋ = Π(x)ω (1a)

ω̇ = u (1b)

where x ∈ M ⊂ Rm, ω ∈ Rk, u ∈ Rk denotes the input of

the system and Π : Rm → Rm×k is a smooth matrix-valued

function that satisfies TxM = Im(Π(x)) for each x ∈ M ,

where TxM denotes the tangent space to M at x and

Im(Π(x)) := {y ∈ R
m : y = Π(x)v for some v ∈ R

k}
is the image of Π at x. Under the previous assumptions, the

dimension of the subspace Im(Π(x)) is n for each x ∈ M ,

therefore the system (1) is a controllable driftless dynamical

system (c.f., [1]).

The solution to this problem relies on the following key

observations. Given a finite collection {Uh}h∈N of open

subsets of M that cover the entire manifold and a collection

of functions Vh that are radially unbounded on Uh, we switch

from Vh to Vh′ , if the value of Vh exceeds the value of Vh′ at

a point by an amount that is greater or equal to some δ > 0.

Since Vh approaches infinity near the boundary of Uh due

to radial unboundedness, another function Vh′ is guaranteed

to exist because the collection {Uh}h∈N covers the entire

manifold. The combination between this switching logic

and gradient-based feedback renders the reference trajectory

globally asymptotically stable, which constitutes the first

contribution of the work presented in this paper. Figure 1

represents the proposed controller architecture. The proposed

controller is not subject to the topological obstructions that

hinder continuous feedback and, since the closed-loop system

is shown to satisfy the hybrid basic conditions [38, Assump-

tion 6.5], the global asymptotic stability property is robust

to small measurement noise. We also show that, if each

potential function Vh and gradient are bounded from above

and below, respectively, by quadratic functions of the norm

of the tracking error, then the trajectories of the closed-loop

system converge exponentially fast to the reference trajectory.

Note that, switching between local coordinate charts renders

the control input discontinuous and, to solve this issue, we

also propose a dynamical extension to the controller that

removes the discontinuities from the control input, possibly

at the expense of exponential convergence.

The collection of functions {Vh}h∈N plays a fundamental

role in the controller design process and each function Vh
in the collection must satisfy two very important properties:

its gradient is zero only if the tracking error is zero and

there exists an associated transport map in the same sense

as in [14]. However, unlike the work in [14], we do provide

a construction of the collection {Vh}h∈N satisfying these

properties for any smooth manifold M based on a given

smooth atlas for the manifold.

Remark 1. Each smooth manifold can be properly em-

bedded in a higher dimensional Euclidean space ( [39,

Whitney’s Embedding Theorem]) and every compact manifold

ẋ = Π(x)ω
ω̇ = u

q

(x, ω)

Hybrid

Controller

Control law

ξ := (x, ω, r)

r

u

Fig. 1. Structure of the controller presented in Section III-B. The hybrid
controller generates a twice differentiable reference trajectory r and updates
the logic variable h according to the switching logic given in (8). The control
law is given in (12).

has a finite smooth atlas. However, it may not be clear to the

practitioner which representations to use. For example, the

Special Orthogonal group of order three can be embedded

in a 9-dimensional Euclidean space in the form of rotation

matrices, but it can also be embedded in 6-dimensional and

even 5-dimensional spaces (c.f. [40]). Moreover, there are

multiple finite smooth atlas of SO(3), but the particular

choice must be made by the practitioner, depending on the

application at hand.

In addition, we illustrate the application of the proposed

controller to the cases of dynamical systems evolving on the

sphere, the unit-quaternion group and the special orthogonal

group of order 3. Moreover, we show that the proposed

strategy can be also used for global obstacle avoidance in

the plane and for global synchronization on the circle which,

to the best of our knowledge, constitutes a novel contribution

of this paper.

A preliminary version of this paper was presented at the

56th IEEE Conference on Decision and Control (c.f. [41]),

without the exponential convergence result, the dynamic

extension, the application of the proposed controller to ref-

erence tracking on the sphere nor the unit-quaternion group.

D. Organization

In Section II, we present the notation and definitions

that are used throughout the paper. Section III presents the

controller design and it is split into 5 subsections. The most

important results of Section III can be found in Sections III-A

through III-C, including the problem setup and the proof

of global asymptotic stability for the zero tracking error

set. Section III-C presents an exponential convergence result

under additional conditions on the Lyapunov function. Sec-

tion III-E presents an extension to the main controller design

of Sections III-A through III-C that moves discontinuities

of the control signal from the input to internal variables

of the controller and Section III-F presents a construction

of potential functions and transport maps that satisfies the

conditions of the hybrid controllers that are presented in the

preceding sections. In Section IV, we present the application

of the proposed controller to trajectory tracking on the 2-

dimensional sphere, the unit-quaternion group and the special

orthogonal group of order 3, and we illustrate the behavior
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of the closed-loop systems by means of simulations. In

Sections IV-D and IV-E, we present the application of the

proposed control strategy to the problems of obstacle avoid-

ance and global synchronization on the circle, respectively. In

Section V, we end the paper with some concluding remarks.

II. NOTATION & PRELIMINARIES

A. Notation

In this paper, R
n denotes the n-dimensional Euclidean

space equipped with the norm |x| :=
√
x⊤x for each x ∈ Rn.

The symbol N denotes the set of natural numbers and zero,

the symbol Rm×n denotes the set of m×n matrices over the

field R and R≥0 denotes the set of nonnegative real numbers.

We define the operator vec : Rm×n → Rmn as follows:

vec(A) := (Aen1 , . . . , Ae
n
m) for each A ∈ Rm×n and making

use of the convention (u, v) =
[
u⊤ v⊤

]⊤
for each u ∈ Rk

and v ∈ Rℓ for some k, ℓ ∈ N. The n × n identity matrix

is denoted by In and the n-dimensional vector of ones is

denoted by 1n ∈ Rn. The derivative of a differentiable matrix

function with matrix arguments F : Rm×n → Rk×ℓ is given

by

DXF (X) :=
∂ vec(F (X))

∂ vec(X)⊤
. (2)

for each X ∈ Rm×n. We omit the subscript in (2) when

the derivative is taken with respect to all arguments of the

function F . For the particular case of a scalar function

V : Rn → R, we make use of the more standard notation

∇xV(x) := (DxV(x))
⊤ for each x ∈ Rn.

B. Hybrid Systems

A hybrid system H with state space Rn is defined as

follows:
ξ̇ ∈ F(ξ) ξ ∈ C

ξ+ ∈ G(ξ) ξ ∈ D

where ξ ∈ Rn is the state, C ⊂ Rn is the flow set,

F : Rn
⇒ Rn is the flow map, D ⊂ Rn denotes the

jump set, and G : Rn
⇒ Rn denotes the jump map. A

solution ξ to H is parametrized by (t, j), where t denotes

ordinary time and j denotes the jump time, and its domain

dom ξ ⊂ R≥0 × N is a hybrid time domain: for each

(T, J) ∈ dom ξ, dom ξ∩([0, T ]×{0, 1, . . .J}) can be written

in the form ∪J−1
j=0 ([tj , tj+1], j) for some finite sequence of

times 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ , where Ij := [tj , tj+1]
and the tj’s define the jump times. A solution ξ to a hybrid

system is said to be maximal if it cannot be extended by flow-

ing nor jumping and complete if its domain is unbounded.

The projection of solutions onto the t direction is given by

ξ↓t(t) := ξ(t, J(t)) where J(t) := max{j : (t, j) ∈ dom ξ}.
Further details on the hybrid systems framework that we

use in this paper can be found in [38]. The distance of

a point ξ ∈ Rn to a closed set A ⊂ Rn is given by

|ξ|A := infy∈A |y − ξ| and A is said to be: stable for H
if for every ǫ > 0 there exists δ > 0 such that every solution

ξ to H with |ξ(0, 0)|A ≤ δ satisfies |ξ(t, j)|A ≤ ǫ for all

(t, j) ∈ dom ξ; globally attractive for H if each maximal

solution ξ is complete and limt+j→∞ |ξ(t, j)|A = 0; globally

asymptotically stable for H if it is both stable and globally

attractive for H.

III. CONTROLLER DESIGN

A. Reference Trajectories and Basic Assumptions

Given the system (1), the main goal of the controller

proposed in this section is to track a reference trajectory

that is bounded and sufficiently smooth, as specified in the

following definition.

Definition 1. A Cn-reference trajectory on U ⊂ M with

n ∈ N\{0} is a smooth path t 7→ (y(t), υ(t)) ∈ U × Rk

satisfying
ẏ(t) = Π(y(t))υ(t)

υ(n−1)(t) ∈MB
(3)

for all t ≥ 0 for some M ≥ 0.

Next, we make an adaptation to the definition of a proper

indicator given in [38] which will be useful in stating the

assumptions of the controller design.

Definition 2. Given an open subset U of M , a continuous

function V : U ×U → R≥0 is a proper indicator on U if, for

each y ∈ U, the following holds:

1) V(x, y) = 0 if and only if x = y;

2) V(xi, y) → +∞ when i → ∞ if either |xi| → ∞ or

xi → bd(U) for each y ∈ U.

Next, equipped with the notions of Cn-reference trajec-

tories on M and proper indicators, we list the remaining

assumptions of the controller design.

Assumption 1. Given a finite set N with cardinality N > 0
and a collection of open subsets {Uh}h∈N of M satisfying

∪h∈N Uh = M , for each h ∈ N , there exists a C2-reference

trajectory on Uh, denoted by t 7→ (yh(t), υh(t)), and a

compact subset Rh of M × Rk which is forward invariant

for (3).

Moreover, the following holds for each h ∈ N :

1) there exists a continuously differentiable proper indica-

tor Vh on Uh such that

Π(x)⊤∇xVh(x, yh) = 0 (4)

if and only if yh = x;

2) if υh(t) 6= 0 for some measurable subset of R≥0,

then there exists a continuously differentiable function

(x, yh) 7→ Th(x, yh) such that

∇yh
Vh(x, yh)

⊤Π(yh) =
−∇xVh(x, yh)

⊤Π(x)Th(x, yh),
(5)

for each (x, yh) ∈ Uh × Uh. Otherwise, we consider

Th(x, yh) = 0 for each (x, yh) ∈ Uh × Uh.

In Assumption 1, we require that the reference trajectory

be sufficiently smooth, so that feedforward terms can be

computed and injected into the control input. Also, we require

it to be bounded, so that invariance principles can be used

in the proof of asymptotic stability. More importantly, note
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that the gradient of each proper indicator must be zero if and

only if the tracking error is zero and there must be a function

(x, y) 7→ Th(x, y) satisfying (5), similar to the transport map

in [14]. In Section III-F, we provide functions that satisfy the

aforementioned conditions, but the controller design follows

next under the assumption of a general finite collection of

functions {Vh}h∈N .

B. General Hybrid Controller and its Main Properties

Letting

r := (y1, υ1, . . . , yN , υN) ∈ R := R1 × . . .× RN (6)

represent all reference trajectories under Assumption 1, we

define

ξ := (x, ω, r) ∈ Ξ := M × R
k × R.

It follows from Assumption 1 that R ⊂ (M × Rk)N is

compact. Using ω̃(h, ξ) := ω − Th(x, yh)υh as the velocity

tracking error for each (h, ξ) in

W := {(h, ξ) ∈ N × Ξ : (yh, x) ∈ Uh × Uh}, (7)

we define the hybrid controller

ḣ = 0 (h, ξ) ∈ C := {(h, ξ) ∈ N × Ξ : µ(h, ξ) ≤ δ}
h+ ∈ g(ξ) := arg min{W (h, ξ)|h ∈ N }

(h, ξ) ∈ D := {(h, ξ) ∈ N × Ξ : µ(h, ξ) ≥ δ}
(8)

with δ > 0 and

µ(h, ξ) :=W (h, ξ)− min
p∈N

W (p, ξ) (9)

for each (h, ξ) ∈ N × Ξ, where

W (h, ξ) :=

{
Vh(x, yh) +

1
2 |ω̃(h, ξ)|

2
if (h, ξ) ∈ W

+∞ otherwise
(10)

for each (h, ξ) ∈ N × Ξ.

We make use of the following two intermediary results

to show that the controller is endowed with some regularity

properties that are pivotal for well-posedness of the closed-

loop hybrid system and asymptotic stability of the set of zero

tracking error, given by

A := {(h, ξ) ∈ N × Ξ : x = yh, ω = Th(x, yh)υh}. (11)

Lemma 1. Under Assumption 1, the following hold:

1) The function (h, ξ) 7→W (h, ξ) in (10) is continuous;

2) minp∈N W (p, ξ) < +∞ for each ξ ∈ Ξ;

3) The function µ in (9) is continuous;

4) The function g in (8) is outer semicontinuous.

Proof. It follows from Assumption 1 that Vh and Th are

continuous on Uh × Uh for each h ∈ N . Hence, W is

continuous on W in (7) because it is the composition of

continuous functions in this domain.

Note that

(N × Ξ)\W = {(h, ξ) ∈ N × Ξ : (yh, x) 6∈ Uh × Uh}
= {(h, ξ) ∈ N × Ξ : x 6∈ Uh}

because (yh, υh) belongs to a compact subset Rh of Uh×Rk,

by assumption. Therefore, each sequence {(hi, ξi)}i∈N ⊂ W

converging to (N × Ξ)\W , satisfies xi → bd(Uhi
) when

i → ∞. From Assumption 1, we have that Vh is proper

indicator on Uh for each h ∈ Uh, hence Vhi
(xi, yhi

) → +∞
when i → ∞. The fact that W (h, ξ) ≥ Vh(x, yh) for all

(h, ξ) ∈ W , implies that W (hi, ξi) → +∞ when i → ∞,

which proves the continuity of (10) on N × Ξ.

Since
⋃

h∈N
Uh = M and (yh, υh) ∈ Rh ⊂ Uh × Rk

for each h ∈ N by assumption, it follows that, for each

(h, ξ) 6∈ W , there exists p ∈ N such that (p, ξ) ∈ W

and, consequently, W (p, ξ) < +∞. We conclude that

minp∈N W (p, ξ) < +∞.

Given a sequence {ξi}i∈N ⊂ Ξ that converges to ξ ∈ Ξ,

the continuity of ξ 7→ ̺(ξ) := minp∈N W (p, ξ) is demon-

strated by showing that {̺(ξi)}i∈N converges to ̺(ξ). In this

direction, let {pi}i∈N ⊂ N represent a sequence satisfying

W (pi, ξi) = ̺(ξi) for each i ∈ N. Since N is compact

by assumption, there exists a subsequence {pi(k)}k∈N that

converges to some p ∈ N . If there exists p⋆ ∈ N such

that W (p⋆, ξ) < W (p, ξ), then, by continuity of W , there

exists K ∈ N such that W (p⋆, ξi(k)) < W (pi, ξi(k)) for

all k > K , which is a contradiction, since pi ∈ g(ξi) :=
arg min{W (p, ξi)|p ∈ N }. We also conclude that p ∈ g(ξ),
from which the outer semicontinuity of g follows.

We define the control law as follows

κ(h, ξ, υ̇) := −Π(x)⊤∇xVh(x, yh)−Ψ(ω̃(h, ξ))
+ θ1(h, ξ, υ̇)

(12)

for each (h, ξ, υ̇) ∈ W × RNk, where υ̇ := (υ̇1, . . . , ˙υN ) ∈
RNk,

θ1(h, ξ, υ̇) := D(Th(x, yh)υh)




Π(x)ω
Π(yh)υh
υ̇h


 (13)

for each (h, ξ, υ̇) ∈ N × Ξ × RNk and Ψ : Rk → Rk is

a strongly passive function, i.e., it is a continuous function

y⊤Ψ(y) ≥ 0 for each y ∈ Rk, where the equality is verified

only when y = 0.

Lemma 2. Let Assumption 1 hold. Then, the function κ
in (12) is continuous.

Proof. The function Π is a smooth matrix-valued function

on M by assumption and Ψ is continuous by construction.

It follows from Assumption 1 that Vh and Th are continuously

differentiable for each h ∈ N , thus κ is continuous because

it consists of a combination of these function through sums

and multiplications.

C. Closed-loop System and its Main Properties

The interconnection between the plant (1) and the hybrid

controller (8) with the input of the plant assigned to (12), is

the closed-loop hybrid system H := (C,F,D,G) given by

(ḣ, ξ̇) ∈ F(h, ξ) (h, ξ) ∈ C

(h+, ξ+) ∈ G(h, ξ) (h, ξ) ∈ D
(14)
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where C and D are given in (8) and

F(h, ξ) :=








0
Π(x)ω
κ(h, ξ, υ̇)
Fr(r, υ̇)


 : υ̇ ∈ (MB)N





∀(h, ξ) ∈ C

(15a)

G(h, ξ) := (g(ξ), ξ) ∀(h, ξ) ∈ D
(15b)

with Fr(r, υ̇) := (Π(y1)υ1, υ̇1, . . . ,Π(yN )υN , ˙υN), for each

(r, υ̇) ∈ (M × Rk)N × RNk represents the dynamics of the

reference trajectories.

We show next that the closed-loop hybrid system satisfies

the hybrid basic conditions [38, Assumption 6.5], which

ensure nominal robustness to small measurement noise, fol-

lowed by the main result of this section: the global asymptotic

stability of A in (11) for the closed-loop hybrid system (14).

Lemma 3. Let Assumption 1 hold. Then, the closed-loop

hybrid system (14) satisfies:

1) C and D are closed;

2) F is outer semicontinuous relative to C, locally bounded

relative to C and F(h, ξ) is convex for each (h, ξ) ∈ C;

3) G is outer semicontinuous relative to D and locally

bounded relative to D.

Proof. The sets C and D are closed because µ is continuous,

as shown in Lemma 1. Since µ(h, ξ) < +∞ for each

(h, ξ) ∈ W , it follows that C ⊂ W . From Assumption 1,

we have that Uh is open for each h ∈ N , hence W is an

open neighborhood of C.

Since MB is compact and convex, we conclude that

(h, ξ) 7→ MB is outer semicontinuous relative to C, locally

bounded relative to C and convex for each (h, ξ) ∈ C. To

show that the set-valued map

(h, ξ) 7→ {(κ(h, ξ, υ̇) : υ̇ ∈ (MB)N} (16)

is outer semicontinuous relative to C, let {(hi, ξi)}i∈N ⊂
C denote a sequence converging to (h, ξ) ∈ C and let

{zi}i∈N denote a sequence converging to z that satisfies

zi ∈ {κ(h, ξ, υ̇) : υ̇ ∈ (MB)N} for each i ∈ N. There

exists ai ∈ (MB)N such that zi = κ(hi, ξi, ai) for each

i ∈ N. Since ai ∈ (MB)N for each i ∈ N, then there exists

a convergent subsequence {aij}j∈N of {ai}i∈N whose limit

point a belongs to (MB)N due to the closeness of this set.

It follows that

lim
i→∞

zi = z ⇐⇒ lim
i→∞

κ(ξi, hi, ai) = z

⇐⇒ lim
j→∞

κ(ξij , hij , aij ) = z

⇐⇒ κ(ξ, h, a) = z

because κ is continuous on W (as shown in Lemma 2) and

W is a neighborhood of C. Since a ∈ (MB)N , we conclude

that z ∈ {κ(h, ξ, υ̇) : υ̇ ∈ (MB)N}, which proves outer

semicontinuity of (16) relative to C.

The map (16) is locally bounded relative to C because

κ is continuous on C and it is convex for each (h, ξ) ∈ C
because it is an affine function on a convex set. The remaining

components of the flow map are single-valued continuous

functions on C, thus the properties of outer semicontinuity,

local boundedness and convexity also hold.

It follows from Lemma 1 that g is outer semicontinuous,

thus G is outer semicontinuous relative to D. It is locally

bounded relative to D because g takes values over a finite

discrete set, thus concluding the proof.

Next, we present the main result of this section.

Theorem 1. Let Assumption 1 hold. Then, the set A in (11)

is globally asymptotically stable for the closed-loop hybrid

system (14).

Proof. The derivative of (10) on W is given by

DW (h, ξ)f = ∇Vh(x, yh)⊤
[
Π(x)ω
Π(yh)υh

]

+ ω̃(h, ξ)⊤(κ(h, ξ, υ̇h)− θ1(h, ξ, υ̇)),

for each f ∈ F(h, ξ) and (h, ξ) ∈ W . It follows from (5)

and (12) that

DW (h, ξ)f = −ω̃(h, ξ)⊤Ψ(ω̃(h, ξ))

for each f ∈ F(h, ξ) and (h, ξ) ∈ W . As shown in the proof

of Lemma 3, W is an open neighborhood of C, thus the

growth of W is upper bounded during flows by

uc(h, ξ) :=

{
−ω̃(h, ξ)⊤Ψ(ω̃(h, ξ)) if (h, ξ) ∈ C

−∞ otherwise
,

for each (h, ξ) ∈ N ×Ξ. By construction of the jump set, we

have that the growth of W is upper bounded during jumps

by

ud(h, ξ) :=

{
−δ if (h, ξ) ∈ D

−∞ otherwise

for each (h, ξ) ∈ N × Ξ. Since W is continuous and (14)

satisfies the hybrid basic conditions, as proved in Lemmas 1

and 3, respectively, it follows from [38, Theorem 8.2] that

each precompact solution approaches the largest weakly

invariant subset of

V −1
h (c) ∩ cl(u−1

c (0)) (17)

for some c ∈ R, which is A. To see this, note that each

solution φ in the largest weakly invariant set of (17) satisfies

ω̃(t, j) := ω̃(h(t, j), ξ(t, j)) = 0 for each (t, j) ∈ domφ,

hence, for each j ∈ N such that Ij := {t : (t, j) ∈ domφ}
has nonempty interior, the following holds

d

dt
ω̃(t, j) = 0 (18)

for almost all t ∈ Ij . From (18), (14) and (12), it follows

that

Π(x(t, j))⊤∇xVh(t,j)(x(t, j), yh(t,j)(t, j)) = 0

for all (t, j) ∈ domφ. It follows from Assumption 1 that

x(t, j) = yh(t,j)(t, j) for all (t, j) ∈ domφ.

Global pre-asymptotic stability of A for (14) follows

from [38, Theorem 8.8] because A is compact and W is pos-

itive definite relative to A. Completeness of solutions follows
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from [38, Proposition 6.10], because: the Viability Condition

(VC) is verified, the condition [38, Proposition 6.10.b)] is not

verified because every sublevel set of W is bounded and for-

ward invariant and condition [38, Proposition 6.10.c)] is not

verified because C∪D = N ×Ξ, thus G(D) ⊂ C ∪D.

Since the closed-loop hybrid system satisfies the hybrid

basic conditions, it is possible to show that the asymptotic

stability of A is endowed with robustness to perturbations and

measurement noise using the tools that are provided in [38,

Chapter 7].

D. Guaranteeing Semiglobal Exponential Convergence by

Design

Global asymptotic stability, however, fails to supply infor-

mation about the rate of convergence to the desired reference,

since the zero tracking error of a solution φ to (14) is

only achieved as t + j → +∞ with (t, j) ∈ domφ. We

also show that, if the the following properties are satisfied,

then there exists a Lyapunov function that converges to zero

exponentially fast.

Assumption 2. Assumption 1 holds and, for each h ∈ N

and each compact set Λ ⊂ Uh×Uh, there exist b̄, b > 0 such

that
∣∣Π(x)⊤∇xVh(x, y)

∣∣2 ≥ bVh(x, y) (19a)

|∇xVh(x, y)|2 ≤ b̄Vh(x, y) (19b)

for each (x, y) ∈ Λ.

Proposition 1. Given ǫω > 0, let Ψ(ω̃) := ǫωω̃ for each

ω̃ ∈ R
k and suppose that Assumption 2 holds. Then, for

each compact set Ω ⊂ M × Rk, there exist λ, ǫ > 0 such

that, for each maximal solution φ to the closed-loop hybrid

system (14) from N × Ω× R, the following hold:

1) If φ(0, 0) ∈ C, then

Wǫ(φ(t, j)) ≤Wǫ(φ(0, 0)) exp(−λt) (20)

for each (t, j) ∈ domφ;

2) Otherwise,

Wǫ(φ(t, j)) ≤Wǫ(φ(0, 1)) exp(−λt) (21)

for each (t, j) ∈ domφ\{(0, 0)};

where

Wǫ(h, ξ) :=W (h, ξ) + ǫω̃(h, ξ)⊤Π(x)⊤∇xVh(x, yh) (22)

for each (h, ξ) ∈ N × Ξ.

Proof. If φ(0, 0) 6∈ C, then φ(0, 0) ∈ D, because C ∪ D =
N × Ξ. Since φ is a maximal solution to (14), it follows

that (0, 1) ∈ domφ. Since G(D) ⊂ C\D, it suffices to

show point number 1. It follows from Theorem 1 that, for

each initial condition φ(0, 0) ∈ C, rgeφ ⊂ ΩW (W (φ(0, 0)))
where

ΩW (ℓ) := {(h, ξ) ∈ N × Ξ :W (h, ξ) ≤ ℓ}
for each ℓ ∈ R. Since W (φ(0, 0)) < +∞ for each φ(0, 0) ∈
C, it follows from the assumption that Vh is a proper indicator

on Uh for each h ∈ N that ΩW (W (φ(0, 0))) is compact.

Note that

Wǫ(h
+, ξ+) ≤Wǫ(h, ξ)− δ + ǫ∆(φ(0, 0)) (23)

for each (h, ξ) ∈ ΩW (W (φ(0, 0)))∩D and each (h+, ξ+) ∈
G(h, ξ) with

∆(φ(0, 0)) := max{ω̃(h, ξ)⊤Π(x)⊤∇xVp(x, yp)

− ω̃(h, ξ)⊤Π(x)⊤∇xVh(x, yh) :

(h, ξ) ∈ ΩW (W (φ(0, 0))), p ∈ g(ξ)}.
for each φ(0, 0) ∈ C ∩ (N × Ω× R). It follows from (23)

that selecting ǫ > 0 satisfying

ǫ ≤ min

{
δ

∆(φ(0, 0))
: φ(0, 0) ∈ C ∩ (N × Ω× R)

}

(24)

implies that Wǫ is nonincreasing during jumps for each

solution with initial condition φ(0, 0) in C ∩ (N ×Ω×R).
It remains to show that for each solution φ from C∩(N ×

Ω×R), there exists a positive definite matrix P ∈ R2×2 such

that, for each j ∈ N for which Ij := {t : (t, j) ∈ domφ}
has nonempty interior, we have that

DWǫ(φ(t, j))
d

dt
φ(t, j) ≤

−
[√

Vh(t,j)(x(t, j), yh(t,j))
|ω̃(t, j)|

]⊤
P

[√
Vh(t,j)(x(t, j), yh(t,j))

|ω̃(t, j)|

]

(25)

for almost all t ∈ Ij . To show this, we start by computing the

derivative of the cross term in (22) using the derivation rules

in [42, Theorem 9] and the flow map definition in (15a), as

follows

D
(
ω̃(h, ξ)⊤Π(x)⊤∇xVh(x, yh)

)
f =

∇xVh(x, yh)
⊤Π(x)(κ(h, ξ, υ̇h)− θ1(h, ξ, υ̇h))

+ ω̃(h, ξ)⊤
[
(∇xVh(x, yh)

⊤ ⊗ Ik)D(Π(x)⊤)Π(x)ω

+Π(x)⊤(Dx(∇xVh(x, yh))Π(x)ω

+Dyh
(∇xVh(x, yh))Π(yh)υh)

]

(26)

for each (h, ξ) ∈ C and each f ∈ F(h, ξ), where ⊗ de-

notes the Kronecker product. Next, we split the computation

into different parts that correspond to different components

of (26), in order to match the construction in (25).

Using the fact that vec(ABC) = (C⊤ ⊗ A) vec(B) for

each group of matrices A,B,C whose product ABC is well-

defined, it follows that

(∇xVh(x, yh)
⊤ ⊗ Ik)D(Π(x)⊤)Π(x)ω

= Mk,m(D(Π(x)⊤)Π(x)ω)∇xVh(x, yh), (27)

for each (h, ξ) ∈ C, where Mk,m : Rkm → Rk×m is such

that vec(Mk,m(z)) = z for each z ∈ Rmn. From (12) and the

assumption that Ψ(ω̃) := ǫωω̃ for each ω̃ ∈ Rk, it follows

that

∇xVh(x, yh)
⊤Π(x)(κ(h, ξ, υ̇h)− θ1(h, ξ, υ̇h))

= −∇xVh(x, yh)
⊤Π(x)Π(x)⊤∇xVh(x, yh)

− ǫω∇xVh(x, yh)
⊤Π(x)ω̃(h, ξ) (28)
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for each (h, ξ) ∈ C. It follows from Assumption 1 that Vh
is twice differentiable, thus

Dyh
(∇xVh(x, yh))Π(yh)υh
= (Dx(∇yh

Vh(x, yh)Π(yh)υh))
⊤

for each (h, ξ) ∈ C. From (5) it follows that

Dx(Dyh
(Vh(x, yh))Π(yh)υh)

= − (Dx(∇x(Vh(x, yh)))Π(x)Th(x, yh)υh)⊤

− (Dx(Π(x)Th(x, yh)υh)∇xVh(x, yh))
⊤

(29)

for each (h, ξ) ∈ C. Replacing (27), (28) and (29) into (26)

yields

D
(
ω̃(h, ξ)⊤Π(x)⊤∇xVh(x, yh)

)
f

= −∇xVh(x, yh)
⊤Π(x)Π(x)⊤∇xVh(x, yh)

− ǫω∇xVh(x, yh)
⊤Π(x)ω̃(h, ξ)

+ ω̃(h, ξ)⊤Mk,m(D(Π(x))Π(x)ω)∇xVh(x, yh)

+ ω̃(h, ξ)⊤Π(x)⊤Dx(∇xVh(x, yh))Π(x)ω̃(h, ξ)

− ω̃(h, ξ)⊤Π(x)⊤Dx(Π(x)Th(x, yh)υh)∇xVh(x, yh)

for each f ∈ F(h, ξ) and (h, ξ) ∈ C. It follows from

Assumption 2 that, for each solution φ from C∩(N ×Ω×R),
(25) holds with

P :=

[
bǫ −

√
b̄
2 ǫγ12

−
√
b̄
2 ǫγ12 ǫω − ǫ |γ2|

]

with

γ12 := max{σmax(Mk,m(D(Π(x))Π(x)ω) − ǫωΠ(x)
⊤

−Π(x)⊤Dx(Π(x)Th(x, yh)υ) :
(h, ξ) ∈ ΩW (W (0, 0)), φ(0, 0) ∈ C ∩ (N × Ω× R)}

(30a)

γ2 := max{λmax(Π(x)
⊤Dx(∇xVh(x, yh))Π(x)) :

(h, ξ) ∈ ΩW (W (0, 0)), φ(0, 0) ∈ C ∩ (N × Ω× R)},
(30b)

where σmax(A) represents the highest singular value of a

matrix A and λmax(P ) represents the eigenvalue of P with

largest real part. Selecting ǫ satisfying (24) and

ǫ <
bǫω

b |γ2| + b̄
4γ

2
12

we have P positive definite, thus (20) holds with λ equal to

the lowest eigenvalue of P .

Remark 2. The property that is proved in Proposition 1 can

be referred to as semiglobal exponential convergence of A
for (14), because initial conditions are restricted to a compact

(but otherwise arbitrary) subset Ω of N × Ξ on which the

parameters ǫ and λ of (20) and (21) depend.

E. Smoothing the Control Input via Dynamic Extension

In order to the remove the discontinuities from the control

input, we add a new controller state θ̂ := (θ̂1, θ̂2, θ̂3) ∈

Rm+2k where θ̂1 ∈ Rm, θ̂2 ∈ Rk and θ̂3 ∈ Rk are estimates

of θ1 in (13),

θ2(h, ξ) := ∇xVh(x, yh) ∀(h, ξ) ∈ W (31a)

θ3(h, ξ) := Th(x, yh)υh ∀(h, ξ) ∈ W (31b)

respectively, with W given in (7). For the sake of compact-

ness, let

θ(z) := (θ1(z), θ2(h, ξ), θ3(h, ξ)),

defined for each z := (h, ξ, υ̇) ∈ N × Ξ × RNk ∈ W ×
RNk ⊂ N ×Ξ×RNk. The remainder of this section follows

closely the structure of Sections III-C with the exception that

the controller (8) needs to be modified in order to include a

slightly different jump logic as well as the estimator dynamics

˙̂
θ = F

θ̂
(θ̂, z, ϋ) := Dθ(z)Fz(θ̂, z, ϋ)

− Γ−1




ω̃(h, ξ)
Π(x)ω̃(h, ξ)
−Ψ(ω̃(h, ξ))


− Ψ̂(θ̂ − θ(z)),

(32)

defined for each (θ̂, z, ϋ) ∈ Rm+2k ×W ×RNk ×RNk, Γ ∈
R(m+2k)×(m+2k) is a positive definite matrix, v 7→ ΓΨ̂(v) is

a strongly passive function for each v ∈ Rm+2k,

Fz(θ̂, ξ, υ̇, ϋ) := (0,Π(x)ω, κ̂(θ̂, z), Fr(r, υ̇), ϋ) (33)

for each (θ̂, ξ, υ̇, ϋ) ∈ Rm+2k × Ξ× RNk × RNk and

κ̂(θ̂, x, ω) := θ̂3 −Ψ(ω − θ̂2)−Π(x)⊤ θ̂1

for each (θ̂, x, ω) ∈ Rm+2k × M × Rk.

Remark 3. Note that Fz in (33) does not depend on h,

because we removed the dependence of the control input

u ≡ κ̂(θ̂, x, ω) on the logic variable. However, the switching

is not removed from the controller, but rather moved to the

controller internal variables, as it will become clear in the

sequel.

It is possible to verify that Assumption 1 does not en-

force the differentiability requirements that are necessary to

compute (32), thus we replace Assumption 1 with the next

assumption for the purpose of the controller design presented

in this section.

Assumption 3. Given a finite set N with cardinality N > 0
and a collection of open subsets {Uh}h∈N of M satisfying

∪h∈N Uh = M , for each h ∈ N , there exists a C3-reference

trajectory on Uh, denoted by t 7→ (yh(t), υh(t), υ̇h(t)), and

compact subsets Rh of M × Rk and Vh of Rk such that

Rh × Vh is forward invariant for (3).

Moreover, the following holds for each h ∈ N :

1) there exists a continuously differentiable proper indica-

tor Vh on Uh such that (4) holds if and only if yh = x;

2) if υh(t) 6= 0 for some measurable subset of R≥0,

then there exists a continuously differentiable function

(x, yh) 7→ Th(x, yh) such that (5) holds for each

(x, yh) ∈ Uh×Uh. Otherwise, we consider Th(x, yh) =
0 for each (x, yh) ∈ Uh × Uh.
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Under Assumption 3, we define Ξ̂ := N ×M ×Rk × R̂,

where R̂ := R × (V1 × . . .× VN) with R given in (6), the

closed-loop system is given by

(
˙̂
θ, ż) ∈ F̂ (θ̂, z) (θ̂, z) ∈ Ĉ

(θ̂
+
, z+) ∈ Ĝ(θ̂, z) (θ̂, z) ∈ D̂

(34)

where

F̂ (θ̂, z) :=

{[
F
θ̂
(θ̂, z, ϋ)

Fz(θ̂, ξ, υ̇, ϋ)

]
: ϋ ∈ (MB)N

}

∀(θ̂, z) ∈ Ĉ := {(θ̂, z) ∈ R
m+2k × Ξ̂ : µ̂(θ̂, z) ≤ δ}

Ĝ(θ̂, z) := (θ̂, g(ξ), ξ, υ̇)

∀(θ̂, z) ∈ D̂ := {(θ̂, z) ∈ R
m+2k × Ξ̂ : µ̂(θ̂, z) ≥ δ}

(35)

with δ > 0,

µ̂(θ̂, z) := Ŵ (θ̂, z)− min
p∈N

Ŵ (θ̂, p, ξ, υ̇)

for each (θ̂, z) ∈ Rm+2k × Ξ̂ and

Ŵ (θ̂, z) :=W (h, ξ) +
1

2
(θ̂ − θ(z))⊤Γ(θ̂ − θ(z)). (36)

Theorem 2. Let Assumption 3 hold. Then, the set

Â := {(θ̂, z) ∈ R
m+2k × Ξ̂ : x = yh,

ω = Th(x, yh)υh, θ̂ = θ(z)}

is globally asymptotically stable for (35).

Proof. The proof of this result follows closely that of The-

orem 1, thus it will be abbreviated. The maps F̂ and Ĝ
are outer semicontinuous and locally bounded relative to

Ĉ and D̂, respectively. The set F̂ (θ̂, z) is convex for each

(θ̂, z) ∈ C. The growth of (36) is upper bounded during flows

by

ûc(θ̂, z) =





− (ω − θ̂2)
⊤Ψ(ω − θ̂2)

− (θ̂ − θ(z))⊤Ψ̂(θ̂ − θ(z))

if (θ̂, z) ∈ Ĉ

−∞ otherwise

.

The growth of (36) is upper bounded during jumps by

ûd(θ̂, z) :=

{
−δ if (θ̂, z) ∈ D̂

−∞ otherwise
.

Global pre-asymptotic stability of Â for (34) follows

from [38, Theorem 8.8] because Â is compact and Ŵ is

positive definite relative to Â. Completeness of solutions

follows from [38, Proposition 6.10].

Using the controller proposed in this section we are able

to smooth out the control input, at the expense of additional

controller dynamics and the guaranteed decay rate that is

proved in Proposition 1 under Assumption 2.

F. Constructing potential functions from maximal atlases

General as it may be, the controller design provided in the

previous sections does not address the construction of proper

indicators that satisfy Assumption 1. However, the result

provided next demonstrates that, under some mild conditions,

constructing functions of Vh and Th that satisfy Assumption 2

is fairly straightforward.

Proposition 2. Given a smooth atlas A := {(Uh, ψh)}h∈N

for M , if ψh(Uh) = R
n for each h ∈ N , then:

1) The function

Vh(x, y) :=
1

2
|ψh(x) − ψh(y)|2 ∀(x, y) ∈ Uh × Uh

(37)

is a proper indicator on Uh satisfying (4) and (19);

2) The function

Th(x, y) := (Dψh(x)Π(x))
†Dψh(y)Π(y)

∀(x, y) ∈ Uh × Uh
(38)

satisfies (5), where A† is the Moore-Penrose generalized

inverse of a matrix A as defined in [43, Section 6.1].

Proof. Following the definition of a smooth atlas given

in [39], ψh is a diffeomorphism. Therefore, if ψh(x) =
ψh(y), then x = y. Moreover, |ψh(xi)| → ∞ when i → ∞
if xi is a sequence that satisfies |xi| → +∞ or xi → bd(Uh)
when i → ∞, thus Vh in (37) is a proper indicator on Uh.

To see that (4) holds, note that

Π(x)⊤∇xVh(x, y) = Π(x)⊤(Dψh(x))
⊤(ψh(x) − ψh(y)).

(39)

It follows from [43, Fact 2.10.14] that

rank(Dψh(x)Π(x)) = rank(Dψh(x))

+ dim(ker(Dψh(x)) ∩ Im(Π(x)))
(40)

for each x ∈ Uh, where ker(A) denotes the nullspace of a

matrix A and dimS denotes the dimension of a space S.

Since ψh is a diffeomorphism, Dψh(x) : TxM → Rn is bi-

jective, thus rank(Dψh(x)) = n and ker(Dψh(x))∩TxM =
{0}. By assumption, we have that Im(Π(x)) = TxM ,

hence ker(Dψh(x)) ∩ Im(Π(x)) = {0} and, consequently,

dim(ker(Dψh(x)) ∩ Im(Π(x))) = 0. It follows from (40)

that rank(Dψh(x)Π(x)) = rank(Π(x)⊤Dψh(x)
⊤) = n,

which is to say that Π(x)⊤Dψh(x)
⊤ has full column rank.

Therefore, since ψh is a diffeomorphism, (39) is equal to

zero if and only if x = y. The relation (5) follows from the

fact that Dψh(x)Π(x) is right invertible for each x ∈ Uh.

For each compact subset Λ of Uh × Uh, the function (37)

satisfies (19a) with

b := 2min{λmin(Dψh(x)Π(x)Π(x)
⊤Dψh(x)

⊤) :

(x, y) ∈ Λ},
where λmin(A) denotes the minimum eigenvalue of A and

satisfies (19b) with

b̄ := 2max{λmax(Dψh(x)Dψh(x)
⊤) : (x, y) ∈ Λ}

which is nonzero because Dψh(x) has full rank for each

x ∈ Uh.
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It is the construction proposed in Proposition 2 that we use

for the several simulations that we present in the following

sections.

IV. APPLICATIONS

A. Global tracking on the two-dimensional sphere

In this section, we apply the controller design of Section III

to the tracking of a circular trajectory on the two-dimensional

sphere, given by

S
2 := {x ∈ R

3 : x⊤x = 1}
which is a properly embedded submanifold of R3 with

dimension 2.

It follows from [39, Proposition 5.38] that the tangent

space to S2 at x is given by TxS
2 = ker(DΦ(x)) =

{v ∈ R3 : DΦ(x)v = 0}, with Φ(x) := x⊤x for each

x ∈ S2, hence Π in (1) is given by Π(x) = I3 − xx⊤ for

each x ∈ S2. The reference trajectory that we consider for

simulation purposes is the solution to

ẏ = Π(y)υ

ϋ = −Π(y)υ
(41)

with initial condition y0 = (1, 0, 0), υ0 = (0, 1, 0), and υ̇0 =
(−1, 0, 0) which is a circular trajectory around the equator.

The atlas A := {(Uh, ψh)}h∈N with Uh :=
S2\{(0, 0, h)} and

ψh(x) :=

(
x1

1− hx3
,

x2
1− hx3

)

for each x := (x1, x2, x3) ∈ Uh and h ∈ N := {−1, 1}.

This atlas satisfies the conditions of Proposition 2, hence

the functions (37) and (38) can be used together with the

reference (41) to meet Assumption 3.

Figure 2 represents the simulation results of the closed-

loop hybrid system, starting from x0 = (−1, 0, 0) with initial

velocity ω0 = (0, 0, 10), logic variable h0 = 1, kx = 1 and

Ψ(ω̃) = −ω̃ for each ω̃ ∈ R3. The initial estimator state is

set to zero and the initial state of the reference trajectory

produced by (41) is (yh0
, υh0

, ˙υh0
) := (e1, e2,−e1). The

high initial velocity ω0 is meant to shoot the state of the

system to the north pole (0, 0, 1) in order to induce controller

switching. The time stamps Ti for i ∈ {1, 2} identify the

times at which the snapshots in Figure 2 are taken.

The star shaped markers in Figure 2 indicate that a number

of controller jumps do occur within t ∈ [0 0.1]. The hybrid

controller with continuous input has some high frequency

switching in the beginning of the simulation while the hybrid

controller with discontinuous input only experiences a single

jump of the logic variable. The high frequency behavior

of the hybrid controller with continuous input is a result

of a combination of factors, including: high initial velocity

ω0, high initial estimator error and low convergence rate

of the estimator. The controller parameters can be tuned to

increase performance and reduce the chattering rate, but these

simulations demonstrate that stability is not compromised.

Moreover, it should be noted that this high frequency switch-

ing occurs on the internal variables of the controller rather

t
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∣∣∣
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Fig. 2. Simulation of the closed-loop hybrid systems resulting from the
interconnection of (1) and the controllers of Sections III-B and III-E for the
data provided in Section IV-A. The first row depicts a sequence of snapshots
of the state trajectories and reference trajectory at times T1 ≈ 0.21 and
T2 ≈ 5.00. The bottom figures represent the evolution of the tracking and
estimation errors with continuous time.

than the actuator. High frequency switching can be mitigated

by increasing the lower bound on the synergy gap δ that

triggers switching, possibly at the expense of higher control

authority.

Next, we compare the behavior of the closed-loop hybrid

systems of Sections III-B and III-E with the continuous

closed-loop system of [14, Lemma 8]. The latter controller

consists of a potential function V(x, y) := 1 − x⊤y and a

transport map T(x, y) := (x⊤y)I3+S(y×x), both of which

are defined for all (x, y) ∈ S2 × S2 with

S(x) :=




0 −x3 x2
x3 0 −x1
−x2 x1 0




for each x ∈ R3. Due to the fact that, V and T satisfy (5)

for all (x, y) ∈ S2 × S2, it follows that the set Ac :=
{(y, υ, x, ω) ∈ (S2×R3)2 : x = y, ω = υ} is almost globally

asymptotically stable for the interconnection between 1 and

u ≡ κc(y, υ, x, ω) := −Π(x)∇xV −Ψ(ω − T(x, y)υ)
+ θ1(x, y, υ)

for each (y, υ, x, ω) ∈ (S2 ×R3)2. However, if the actuation
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[14, Lemma 8]

is perturbed by (1 + σ)Π(x)∇xV(x, y) as follows

u ≡ κc(y, υ, x, ω) + (1 + σ)Π(x)∇xV(x, y)

for each (y, υ, x, ω) ∈ (S2 × R3)2, then the stabilization of

Ac is prevented, as shown in Figure IV-A. In this figure, it

is possible to verify that the magnitude of the disturbance

converges to 0 with time, but the position error tracking is

converging to a nonzero value when the continuous controller

is used. On the other hand, the tracking error under the hybrid

controllers is converging to 0 despite the influence of the

disturbance.

B. Rigid-body stabilization by hybrid unit-quaternion feed-

back

The stabilization of a rigid-body by hybrid feedback was

introduced in [31], but it is explored here nonetheless to

illustrate the application of the proposed strategy in the

stabilization of multiple points. The dynamics of a rigid-body

vehicle can be described by

Ṙ = RS(Ω)

JΩ̇ = S(JΩ)Ω + τ
(42)

where R ∈ SO(3) := {R ∈ R
3×3 : R⊤R = I3, det(R) =

1} represents the orientation of the vehicle, Ω ∈ R3 is the

angular velocity, τ ∈ R3 is the input torque.

Alternatively, the orientation can be represented by an unit-

quaternion

q := (η, ǫ) ∈ S
3 := {q ∈ R

4 : q⊤q = 1},
where η ∈ R and ǫ ∈ R3 are the scalar and vector

components of q ∈ S3, using the function

R(q) := I3 + 2ηS(ǫ) + 2S(ǫ)2 ∀q ∈ S
3. (43)

The set S3 and the function (43) constitute a double cover of

SO(3) because R(q) = R(−q) for each q ∈ S3. Moreover,

for each solution t 7→ (R(t),Ω(t)) to (44) for all t ≥ 0,

there exists q0 ∈ S3 satisfying R(q0) = R(0) such that the

solution t 7→ (q(t),Ω(t)) to

q̇ =
1

2

[
−ǫ⊤

ηI3 + S(ǫ)

]
Ω

JΩ̇ = S(JΩ)Ω + τ

(44)
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Fig. 3. Representation of the evolution of the rotation angle with time for
two different initial values of the logic variable h.

with initial condition q0 satisfies R(q(t)) = R(t) for all t ≥
0.

Given a reference t 7→ (qr(t),Ωr(t)) =
(ηr(t), ǫr(t),Ωr(t)) satisfying

q̇r =
1

2

[
−ǫ⊤r

ηrI3 + S(ǫr)

]
Ωr

JΩ̇r = S(JΩr)Ωr + τr

for some t 7→ τr(t) for all t ≥ 0, we define the tracking error

x := qr. q
−1 (45)

with dynamics given by (1) and the group product given by

q1. q2 :=
(
η1η2 − ǫ⊤1 ǫ2, η1ǫ2 + η2ǫ1 + S(ǫ1)ǫ2

)

ω = q. ν(Ωr −Ω). q−1, ν(Ω) = (0,Ω) for each Ω ∈ R3, and

Π(x) :=
1

2




−x2 −x3 −x4
x1 −x4 x3
x4 x1 −x2
−x3 x2 x1




for each x = (x1, x2, x3, x4) ∈ S3, using the input torque

τ := R(q)⊤(J(Ω̇r + S(Ω)Ωr − u)− S(JΩ))Ω, (46)

where u ∈ R3 is the new virtual input. In this setting,

the tracking problem reduces to the problem of asymptotic

stabilization of either y−1 := (1, 0) or y1 := (−1, 0).
Similar to the construction in Section IV-A, a maximal

atlas of S3 is given by A := {(Uh, ψh)}h∈N with N :=
{−1, 1}, Uh := S

3\{(h, 0)} and

ψh(x) :=

(
x2

1− hx1
,

x3
1− hx1

,
x4

1− hx1

)

for each x := (x1, x2, x3, x4) ∈ Uh. Note that Assumption 1

is satisfied for the static reference trajectories y−1 := (1, 0)
or y1 := (−1, 0).

Noting that the rotation angle corresponding to the unit-

quaternion x ∈ S3 in (45) is given by θ(x) = 2 arccos(x1)
for each x ∈ S2, then Figure 3 represents the evolution

of the rotation angle for two simulations that correspond to

different initializations of the logic variable h with the same

initial condition x(0, 0) =
[
0 1 0 0

]⊤
, ω(0, 0) := 0,

which belongs to the set of rotations by an angle equal

to π. It is straightforward to verify that the trajectories of the

closed-loop system (14) converge to setpoints that map to the

identity element of SO(3) through (43) along two different

directions of rotation while the rotation axis remains constant.
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C. Rigid-body stabilization by hybrid rotation matrix feed-

back

In this section, we apply the hybrid control strategy

outlined in Section III to global asymptotic tracking of a

reference satisfying (42). Similarly to the quaternion-based

controller that was presented in Section IV-B, given a refer-

ence t 7→ (Rr(t),Ωr(t)) that satisfies

Ṙr = RrS(Ωr)

JΩ̇r = S(JΩr)Ωr + τr
(47)

for some t 7→ τr(t) for all t ≥ 0, we define the tracking error

as

x := vec(RrR
⊤) (48)

and aim to stabilize the static reference y := vec(I3).
To construct an atlas of SO(3) that satisfies Assumption 1,

we make use of the Cayley transform, which is the map C :
so(3) → SO(3) given by C(X) := (I3 −X)(I3 +X)−1, for

each X ∈ so(3) := {X ∈ R
3×3 : X⊤ = −X}, with inverse

C−1(R) := (I3 + R)−1(I3 − R), for each R ∈ U := {R ∈
SO(3) : R+I3 is nonsingular}. The set U corresponds to the

set of all rotation matrices minus the rotations by 180 deg. To

see this, let us introduce the Rodrigues’ rotation formula [44],

given by

R(v, θ) := exp(θS(v))

=I3 + sin(θ)S(v) + (1− cos(θ))S(v)2
(49)

for each (v, θ) ∈ S2 × [0, π]. Since the eigenvalues of a

rotation matrix have unitary norm, if R + I3 is singular,

then the eigenvalues of R are λ1 = 1 and λ2 = λ3 = −1,

which implies that tr(R) = −1. Using (49), it follows that

tr(R(v, θ)) = −1 if and only if cos θ = −1, thus we

conclude that

SO(3)\U := {R ∈ R
3×3 : R = 2vv⊤ − I3 for some v ∈ S

2}.

Using the Cayley transform, it is possible to construct a

smooth atlas for SO(3) which satisfies Assumption 3, as

shown next.

Proposition 3. Let U0 := U, Uh := {R ∈ R3×3 :
R(eh, π/2)R ∈ U} for each h ∈ {1, 2, 3}, and

ψ0(R) := S−1(C−1(R)) ∀R ∈ U0

ψh(R) := S−1(C−1(R(eh, π/2)R)) ∀R ∈ Uh

for each h ∈ {1, 2, 3}, then A := {(Ui, ψi)}i∈N with N :=
{0, 1, 2, 3} is a maximal atlas for SO(3) and ψh(Uh) = R3

for each h ∈ N .

Proof. It follows from the fact that C−1 and S−1 are dif-

feomorphisms from so(3) to SO(3) and from so(3) to R3,

respectively, that ψh(Uh) = R3 for each h ∈ N . The proof

that A is a maximal atlas for SO(3) follows closely the one

in [45]: it can be shown that the subset of SO(3) that does

not belong to U0 ∪ U1 is given by

SO(3)\(U0 ∪ U1) = {R ∈ R
3×3 : ∃v ∈ S

2

R = 2vv⊤ − I3, v
⊤e1 = 0}.
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Fig. 4. Evolution of the orientation and angular velocity errors.

Similarly, the subset of SO(3) that does not belong to U0 ∪
U1 ∪ U2 is given by

SO(3)\(U0 ∪ U1 ∪ U2) = {R ∈ R
3×3 : ∃v ∈ S

2

R = 2vv⊤ − I3, v
⊤e1 = v⊤e2 = 0},

which is a singleton SO(3)\(U0 ∪U1 ∪U2) = {2e3e⊤3 − I3}
that belongs to U3.

Defining Mm,n : Rmn → Rm×n as the function that

satisfies vecMm,n(x) = x for each x ∈ Rmn, it follows

from (42) and (47) that the evolution of the tracking error (48)

is described by (1) with ω = R(Ωr−Ω) and x→ Π(x) given

by

Π(x) :=
[
E1(M3,3(x)) E2(M3,3(x)) E3(M3,3(x))

]

for each x ∈ R9, with Ei(R) := − vec(RS(ei)) for each

i ∈ {1, 2, 3}, using the input transformation

τ := R⊤(J(Ω̇r + S(Ω)Ωr − u)− S(JΩ)Ω),

which is identical to (46).

Figure 4 represents the evolution of the orientation and

angular velocity errors for the initial condition x(0, 0) :=
vec(2n0n

⊤
0 − I3), ω(0, 0) := 0 for the closed-loop hybrid

system (14) with δ = 1.

D. Global Obstacle Avoidance on the Plane

In this section, let us consider the problem of global

asymptotic stabilization of the origin of

ż = ω, ω̇ = u (50)

with state (z, ω) ∈ R2×R2 and input u ∈ R2, in the presence

of an obstacle that is contained within a closed ball centered

at z0 ∈ R2 with radius ǫ > 0, denoted by z0 + ǫB := {z ∈
R2 : |z − z0| ≤ ǫ}, satisfying |z0| > ǫ so that it does not

contain the origin.

The presence of the obstacle implies that the state vari-

able z is constrained to R2\(z0 + ǫB) which is an open

submanifold of R2. The key to solve the given problem
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using the tools that are presented in this paper lies in the

observation that R
2\(z0 + ǫB) is diffeomorphic to R × S

1

with S1 := {x ∈ R2 : x⊤x = 1} through the diffeomorphism

f(z) :=



log(|z − z0| − ǫ)

z − z0
|z − z0|


 ∀z ∈ R

2\(z0 + ǫB).

Using x := f(z) as the new state variable, the dynamics of

the plant are given by

ẋ = Df(f−1(x))ω

ω̇ = u
(51)

which match (1) with Π(x) = Df(f−1(x)) for each x ∈
R × S1. In the sequel, we follow the controller design that

was presented in Section III-B using the construction of

Section III-F.

A smooth atlas A := {(Uh, ψh)}h∈N of R × S1 can be

built from the chart (R, id) for R where id is the identity

function and from the stereographic projection on the circle

as follows:

ψh(x) :=

(
x1,

x2
1 + hx3

)

for each x := (x1, x2, x3) ∈ Uh with h ∈ N := {−1, 1} and

Uh := {x ∈ R×S1 : x3 6= −h}. This smooth atlas is suitable

to the problem at hand provided that the center of the obstacle

z0 = (z0,1, z0,2) ∈ R2 does not satisfy z0,1 = 0. In that case,

a different stereographic projection must be selected. For the

simulation results presented in this section, we have selected

z0 = (1, 0) and ǫ = 1/2.

Figure 5 represents the two solutions to the closed-loop

system in z-coordinates starting from the same initial con-

dition for z, but different values of the logic variable. The

reference trajectory is a constant obtained from f as follows:

yh(t) = f(0) ∀t ≥ 0 (52)

for each h ∈ N and we have selected δ = 1 and Ψ(ω̃) = −ω̃
for each ω̃ ∈ R2. It is possible to verify that both trajectories

converge to the origin but the direction in which they circum-

vent the obstacle depends on the initialization of the hybrid

controller. The figure also depicts the region of the state

space where either control law can be selected depending on

the initialization of the controller and this region separates

the regions where only one of the control laws is allowed.

This prevents chattering due to arbitrarily small noise at the

expense of slightly larger rotations around the obstacle.

Remark 4. In this section, we have selected a constant ref-

erence trajectory (52) for illustration purposes. However, we

could consider more complex reference trajectories generated

by an exosystem given by a copy of the plant (50) with some

assigned input.

E. Global Synchronization on S1

Consider the dynamics of K agents belonging to S1 :=
{x ∈ R2 : x⊤x = 1}, given by

ẋi = SxiΩi, Ω̇i = wi

ǫ
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z
2
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Fig. 5. Representation in the z-plane of two solutions to the closed-loop
system resulting from the interconnection between (51) and the controller
proposed in Section IV-D for different initial values of the logic variable.
The sets C−1 and C1 represent the projection of the flow set onto the z-
plane for values of the logic variable h = −1 and h = 1, respectively. More
specifically, we have Ch := {z ∈ R2 : (f(z), h, 0) ∈ C} for each h ∈ N

and, to be perfectly clear, if z belongs to Ch\C−h then the control law
associated with h is selected. On the other hand, if z belongs to C−1 ∩C1

then either control law can be selected depending on the initial condition.

where S :=

[
0 −1
1 0

]
and xi ∈ S1, Ωi ∈ R, wi ∈ R

denote the position, velocity and input of the agent i ∈
{1, 2, . . . ,K}, respectively.

We say that the agents are synchronized if xi = xj for

all i, j ∈ {1, 2, . . . ,K}, thus they remain synchronized by

collective rotations; i.e., for each R ∈ SO(2) := {R ∈ R2×2 :
R⊤R = I2, det(R) = 1}, if xi = xj , then Rxi = Rxj . This

suggests that the synchronization problem is best described

in the quotient manifold (S1)K/SO(2), which is derived

from the action of SO(2) on (S1)K and has the properties

presented next.

Lemma 4. The left Lie group action of SO(2) on (S1)K is

given by

R · x := (Rx1, Rx2, . . . , RxK) ∀(R, x) ∈ SO(2)× (S1)K

(53)

with x := (x1, . . . , xK) and it acts smoothly, freely and

properly on (S1)K−1.

Proof. The Lie group action (53) is smooth and free because

the isotropy group is trivial for each x ∈ (S1)K . It follows

from [39, Corollary 21.6] that it is proper.

It follows directly from Lemma 4 and from [39, The-
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orem 21.10] that (S1)K/SO(2) is a (K − 1)-dimensional

smooth manifold with a unique smooth structure that renders

the quotient map πR a smooth submersion, where

πR : (S1)K → (S1)K/SO(2) (54)

maps each point x ∈ (S1)K to its equivalence class [x] ∈
(S1)K/SO(2) under the action (53). This corresponds to the

orbit of x, denoted by SO(2) · x, and given by π−1
R ([x]) =

SO(2) · x := {R · x : R ∈ SO(2)}.
Furthermore, suppose that each agent corresponds to a

vertex in V of a connected and undirected tree graph G :=
(V,E) such that each edge in E represents the communi-

cation constraints between agents in the network. Given an

orientation σ of G1, the incidence matrix B of the oriented

graph Gσ := (V,Eσ) is a matrix with rows and columns

indexed by the vertices and edges of G, respectively, such

that the ij-entry of B is equal to 1 if the vertex i is the

head of the edge j, −1 if it is the tail of j, and 0 otherwise

(c.f. [46, Chapter 8.3]). It turns out that the incidence matrix

is instrumental in the characterization of the tangent space to

(S1)K/SO(2).

Lemma 5. Let πR denote the quotient map given in (54).

Given a connected and undirected graph G := (V,E) and an

orientation σ of G, we have that

Im(Π(x)) = TπR(x)

(
(S1)K/SO(2)

)

for each x ∈ (S1)K , where Π(x) := S(x)B with

S(x) :=




Sx1 0 . . . 0

0 Sx2
. . .

...
...

. . .
. . . 0

0 . . . 0 SxK




(55)

for each x ∈ (S1)K , and B ∈ RK×(K−1) denotes the

incidence matrix of the oriented graph Gσ .

Proof. The tangent space to SO(2) · x is given by

Tx(SO(2) · x) = {a(Sx1, . . . , SxK) : a ∈ R}.

We have that

[
(Sx1)

⊤ . . . (SxK)⊤
]
Π(x) = −1⊤KB = 0

where 1K is a K-dimensional vector of ones, hence

Tx(SO(2) · x) is orthogonal to Im(Π(x)). Noting that

Im(S(x)) = Tx(S
1)K , it follows that

Im(Π(x)) = Tx(S
1)K/Tx(SO(2) · x)

= TπR(x)

(
(S1)K/SO(2)

)
.

because Tx(SO(2) · x) is the nullspace of DπR(x) (c.f. [39,

Proposition 5.38]).

1An arc is an ordered pair of adjacent vertices of a graph G and an
orientation σ is a function that maps each arc to {−1, 1} such that, if
(u, v) is an arc of G, then σ(u, v) = −σ(u, v). If σ(u, v) = 1, then u is
the tail of the edge and v is its head.

Global synchonization on the circle is then defined as the

global asymptotic stabilization of

A := {(h, x, ω) ∈ N × (S1)K × R
K−1 : ω = 0,

xi = xj for each i, j ∈ {1, 2, . . . ,K}} (56)

for a closed-loop hybrid system resulting from the intercon-

nection of a hybrid controller with state h ∈ N and the

dynamical system (1) with Π(x) := S(x)B and S given

in (55). Note that the mismatch between the dimensions in

the states x and ω has to do with the fact that there are K
vertices in G but only K − 1 edges.

The design of the hybrid controller follows the construction

that was presented in Section III-F. In this direction, we resort

to an atlas that is adapted to the SO(2) action on (S1)K . Such

an atlas is comprised of cubical charts (Up ∩ Uh, (αp, ψh))
with coordinate function (αp(x), ψh(x)) ∈ R ×RK−1, such

that each orbit intersects Up∩Uh either in the empty set or a

single slice where ψh is constant (c.f. [39, Theorem 21.10]).

The collection {(Up, αp)}p∈Np
can be taken as an atlas for

S1 that identifies the position of a single agent such as, for

example: Up := {x ∈ (S1)K : x1 6= −p}, αp(x) = x1,1/(1+
px1,2) for each x ∈ (S1)K with x1 := (x1,1, x1,2) and Np :=
{−1, 1} which identifies the position of x1. The collection

{(Uh, ψh)}h∈N identifies the position of each agent relative

to each other and can be constructed from G as follows: let

M : Eσ → {1, . . . ,K− 1} denote a bijective map that labels

each edge of Gσ , then for each (i, j) ∈ Eσ , we define

ψk
h(x) :=

x⊤i xj
1 + hkx⊤i Sxj

∀x ∈ Uh

with k = M(i, j) and h := (h1, . . . , hK−1) ∈ N :=
{−1, 1}K−1 and

Uh := {x ∈ (S1)K : x⊤i Sxj 6= −hk, k =M(i, j)

for some (i, j) ∈ E
σ}.

Letting ψh(x) := (ψ1
h(x), . . . , ψ

K−1
h (x)), we have that

(αp(x), ψh(x)) is a smooth bijective function from Up ∩Uh

to R
K with smooth inverse and, consequently,

{(Up ∩ Uh, (αp(x), ψh(x)))}(p,h)∈Np×N

is a smooth atlas adapted to the SO(2) action on (S1)K

and, more importantly, A := {(Uh, ψh)}h∈N is a smooth

atlas for (S1)K/SO(2) (c.f [39, Theorem 21.10]). Using

the smooth atlas A for (S1)K/SO(2), it is possible to use

the construction in Section III-F to globally asymptotically

stabilize the set (56).

Noting that ψh(y) = 1K−1 for each h ∈ N and

considering that the reference trajectory y is a constant

corresponding to the equivalence class x satisfying xi = xj
for all i, j ∈ {1, 2, . . . ,K}. It is relevant to point out that the

degree of freedom corresponding to the collective rotations

of the agents is not controlled with this strategy.

To illustrate the controller proposed in this section through

simulation results, we resort to a network of three agents

represented by a graph G := (V,E) with V := {1, 2, 3} and

E := {{1, 2}, {2, 3}}. Using the orientation σ defined by
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Fig. 6. Evolution of the distance between the agents in G.

σ(1, 2) = 1 and σ(2, 3) = 1 the incidence matrix of Gσ is

given by

B :=



−1 0
1 −1
0 1


 .

In this particular case, the atlas A := {(Uh, ψh)}h∈N

adapted to the SO(2) action on (S1)K is given by

ψh(x) :=

(
x⊤1 x2

1 + h1x⊤1 Sx2
,

x⊤2 x3
1 + h1x⊤2 Sx3

)
∀x ∈ Uh

with h := (h1, h2) and

Uh := {x ∈ (S1)K : x⊤1 Sx2 6= −h1, x⊤2 Sx3 6= −h2}.
Figure 6 represents the evolution of the distance between

the agents in G for a particular simulation of the closed-loop

system using the controller proposed in Section III-B using

the construction of Section III-F. The initial conditions for

this simulation are

x1(0, 0) = x2(0, 0) = (1, 0) x3(0, 0) = (0, 1)

h1(0, 0) = h2(0, 0) = 1 ω(0, 0) = 0

and we select δ = 1 and Ψ(ω̃) = −ω̃ for each ω̃ ∈ R2.

The initial conditions were selected so as to generate a jump

at the beginning of the simulation and, due to the lack of

exogenous disturbances, the solution is not subject to further

jumps during agent synhronization.

V. CONCLUSION

In this paper, we presented a hybrid control strategy for the

global asymptotic tracking of a reference defined on a smooth

manifold. The proposed strategy relies on the switching

between local coordinates using a switching logic that guar-

antees convergence to the desired trajectory. We illustrated

the proposed strategy with its application to three different

examples: the two-dimensional sphere, the unit-quaternion

group and the special orthogonal group. In addition, we also

applied the proposed controller to the problems of obstacle

avoidance on the plane and synchronization on the circle.
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pliquées, vol. 1, no. 5, pp. 380–440, 1840.

[45] E. W. Grafarend and W. Kühnel, “A minimal atlas for the rotation
group SO(3),” International Journal on Geomathematics, vol. 2, no. 1,
pp. 113–122, 2011.

[46] C. Godsil and G. F. Royle, Algebraic Graph Theory. Graduate Texts
in Mathematics, Springer New York, 2001.

Pedro Casau is a Research Assistant at the
SCORE Lab of the Faculty of Science and Technol-
ogy, University of Macau and a Junior Researcher
at the Institute for Systems and Robotics, Lis-
bon, Portugal. He received received the B.Sc. in
Aerospace Engineering in 2008 from Instituto Su-
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