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Tidal effects have important imprints on gravitational waves (GWs) emitted during the final stage of the
coalescence of binaries that involve neutron stars (NSs). Dynamical tides can be significant when NS
oscillations become resonant with orbital motion; understanding this process is important for accurately
modeling GW emission from these binaries and for extracting NS information from GW data. In this paper,
we use semianalytic methods to carry out a systematic study on the tidal excitation of fundamental modes
(f-modes) of spinning NSs in coalescencing binaries, focusing on the case when the NS spin is antialigned
with the orbital angular momentum—where the tidal resonance is most likely to take place. We first expand
NS oscillations into stellar eigenmodes, and then obtain a Hamiltonian that governs the tidally coupled
orbit-mode evolution. (Our treatment is at Newtonian order, including a gravitational radiation reaction at
quadrupole order.) We then find a new approximation that can lead to analytic expressions of tidal
excitations to a high accuracy, and are valid in all regimes of the binary evolution: adiabatic, resonant, and
postresonance. Using the method of osculating orbits, we obtain semianalytic approximations to the orbital
evolution and GW emission; their agreements with numerical results give us confidence in our
understanding of the system’s dynamics. In particular, we recover both the averaged postresonance
evolution, which differs from the preresonance point-particle orbit by shifts in orbital energy and angular
momentum, as well as instantaneous perturbations driven by the tidal motion. Finally, we use the Fisher
matrix technique to study the effect of dynamical tides on parameter estimation. We find that, for a system
with component masses of (1.4, 1.4) Mg at 100 Mpc, the constraints on the effective Love number of the
(2,2) mode at Newtonian order can be improved by a factor of 3 ~ 4 if spin frequency is as high as 500 Hz.
The relative errors are 0.7 ~ 0.8 in the Cosmic Explorer, and they might be further improved by post-
Newtonian effects. The constraints on the f-mode frequency and the spin frequency are improved by
factors of 5 ~ 6 and 19 ~ 27, respectively. In the Cosmic Explorer case, the relative errors are 0.2 ~ 0.4 and
0.7 ~ 1.0, respectively. Hence, the dynamical tides may potentially provide an additional channel to study
the physics of NSs. The method presented in this paper is generic and not restricted to f-mode; it can also

be applied to other types of tides.

DOI: 10.1103/PhysRevD.101.123020

I. INTRODUCTION

The detection of gravitational waves (GWs) and their
electromagnetic counterparts from binary neutron star
(BNS) coalescence GW 170817 [1-4], as well as the recent
event GW190425 [5], has started a new approach to study
the physics of NSs. The observations have already provided
new constraints on tidal deformabilities [6-9], the maxi-
mum mass [7,10-13], radii [6,9], and f-mode frequencies
[14] of NSs. With the improvement of detector sensitivity,
more BNS coalescence detections are expected for the near
future [15-18]. Furthermore, 3G detectors, like the Einstein
Telescope (ET) [19,20] and the Cosmic Explorer (CE) [21],
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are being planned for operation in the 2030s. These 3G
detectors may increase neutron star black-hole and BNS
detection rates by 3—4 orders of magnitude [22]. As a result,
accurately modeling NSs in binary systems is necessary
and timely.

During the inspiral process, NSs in binaries are distorted
due to the tidal field of their companions. Tidal coupling
between compact objects in binaries allows the equation of
state (EOS) of these objects to leave an imprint on GW
signals, both during the early inspiral stage [23] and during
the late inspiral stage [24,25]. Under the equilibrium-tide
approximation, the effect of tidal interaction can be
characterized by the relativistic tidal Love number.
Hinderer et al. studied the effect of equilibrium tide on
gravitational waveforms, both using polytropic [23,26] and
more realistic EOS [27]. They found that 3G detectors are
likely able to probe the clean tidal signatures from the early
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stage of inspirals. The post-Newtonian (PN) [28-32] tidal
effects were studied by Vines and Flanagan [33], who
explicitly obtained equations of motion with quadrupolar
tidal interactions up to 1PN order. They pointed out that
spin-orbit coupling must be included at this order in order
to conserve angular momentum. The spin-tidal couplings
and higher PN orders were studied later by Abdelsalhin
et al. [34].

In the late stage of an inspiral, the binary’s orbital
frequency sweeps through from hundreds of Hz to thou-
sands of Hz. As the tidal driving frequency comes close to a
normal mode frequency of the NS, internal stellar oscil-
lations can be excited—giving rise to dynamical tide (DT).
Exchanges of energy and angular momentum between
orbital motion and stellar oscillations cause changes in
orbital motion, leading to additional features in the gravi-
tational waveform.

The tidal excitation of f-modes of stars was first
investigated by Cowling [35]. Later, several authors studied
the DTs of nonspinning stars in the context of Newtonian
physics [36-38], and in the context of general relativity
(incorporating gravitational radiation reaction and treating
the NS relativistically) [39—42]. In particular, Lai (hereafter
L94) [36] split the whole process into three regimes: the
adiabatic, resonant, and postresonance regimes. The first
one is described by the well-known adiabatic approxima-
tion to a high accuracy. At the postresonance stage, they
assumed that each stellar mode oscillates mainly at its own
eigenfrequency; by factoring out the eigenfrequency, the
motion can then be described by a slowly varying ampli-
tude. This allowed them to obtain a simple form of
postresonance tidal amplitude with the stationary-phase
approximation (SPA), which further leads to changes in the
orbital separation, energy, angular momentum, and the
phase of GWs. They found that the amount of energy
transfer due to resonance and the induced GW phase shift
are negligible, since the coupling between the g-mode and
tidal potential is weak. They also pointed out that f-mode
frequency is too high for resonance to take place.

As it turns out, the effect of DT can be strengthened by
stellar rotation' [43,44] and orbital eccentricity [45-48]. In
this paper, we mainly focus on the significance of stellar
rotation. It is conventionally believed that a high rotation
rate is unlikely when binaries enter the LIGO band, since
such systems usually have had enough time to evolve and
spin down. For example, recent events, GW170817 [1] and
GW190425 [5], are all consistent with low spin configu-
rations. The fastest spinning pulsar observed in BNS is PSR
J0737-3039A, which spins at 44 Hz [49]. Andersson et al.
[50] estimated that it will spin down to 35 Hz as it enters the
LIGO band. However, high spin rate is still physically

'In the inertial frame, mode frequencies are shifted by the spin
frequency to a lower value. As a result, those modes become
easier to be excited. See Fig. 2 for more details.

allowed. In such systems, retrograde rotation (with respect
to the orbit) drags the mode frequency to a lower value in
the inertial frame. This makes the tidal resonance take place
earlier. The energy and angular momentum transfers due to
DTs in spinning stars were calculated in Ref. [43]. Ho and
Lai [44] found that the resonance of the dominant g-mode is
enhanced by spin if the star rotates faster than 100 Hz, and
it can induce a phase shift of ~0.05 rad in the waveform.
Additionally, f-mode resonance can produce a significant
phase shift if the spin frequency is higher than 500 Hz
(depending on the EOS).

However, Ref. [43] was based on a configuration-space
decomposition of the stellar oscillation, which does not use
an orthonormal basis for a spinning star. This problem can
be fixed by a phase-space mode expansion method [51].
Within this formalism, Lai and Wu [52] investigated
the effect of the inertial modes® and found that the phase
shift is of order 0.1 rad when the spin frequency is lower
than 100 Hz. The exception is the m = 1 mode, which
can be excited at tens of Hz for nonvanishing spin-orbit
inclinations, and hence, generate a large phase shift in the
GW phase.

Accurate theoretical templates are needed in order to
extract tidal information from GWs. Although extensive
work has been done on adiabatic tide (AT), the study on
DTs still requires improvements. For example, 1.94 [36]
only estimated the changes of several parameters due to
DTs. Their work did not explicitly treat the effect of tidal
backreaction on the orbit. The treatment did not provide
detailed time evolution near the resonance, either. One
approximate model was provided by Flanagan and Racine
(hereafter FRO7) [53]. They approximated the postreso-
nance orbit by a point-particle (PP) trajectory, since the
energy and angular momentum transfers only take place
near the resonance. After that, the NS is treated as freely
oscillating without interacting with the orbit. This model
averages the dynamics over the tide-oscillation timescale
and therefore does not describe the tidal perturbation at
shorter timescales.

More recently, Hinderer et al. (hereafter, H + 16) [54,55]
incorporated DT, in particular, the resonance of the f-mode
in nonspinning NS, into the effective-one-body (EOB)
formalism. A frequency domain model was developed
later in Ref. [56]. In these works, DT is described by
the effective Love number

E;QY
EklEkl ’

Aett = (1)
where E;; is the tidal field induced by the companion and
QU is the quadrupole moment of the NS. To evaluate this

Inertial modes, or generalized r-modes, are a class of modes
in spinning NSs that are not purely axial when spin frequency
goes to 0, whereas r-modes are axial in this limit.
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quantity, they expanded the NS’s response function near
resonance and described the evolution of DT by Fresnel
functions in the resonant regime. They then used asymp-
totic analyses to piece adiabatic expressions and Fresnel
functions together to obtain a single formula. The formula
is precise prior to resonance. But it does not describe the
phasing of the postresonance regime. This is not a big issue
for slowly spinning NSs, since in this case the mode is not
excited until the end of coalescence and postresonance
dynamics is extremely short. Furthermore, because current
detections are all consistent with low spin configuration
[1,5], this model is accurate enough for current data
analysis. However, this method cannot describe rapidly
spinning NSs [57]; given the fact that rapidly spinning NSs
are physically allowed, an accurate GW model for these
systems is still necessary. In this paper, we extend H + 16
[54,55] to arbitrary spin by deriving new analytic formulas
to describe the entire process of DT, which is accurate
throughout the adiabatic, resonant, and postresonance
regimes. The formulas agree with numerical integrations
to high accuracies. We then carry out a systematic study on
the postresonance dynamics by using the tidal response
formulas and the method of osculating orbits. Finally,
we analyze the impact of DT on parameter estimations
by Fisher information matrices formalism. In order to
more optimistically illustrate a best-case scenario in which
f-mode DT might bring more information, we will be
assuming high NS spin frequencies and stiff EOS.
However, as we will discuss later, the qualitative features
of DT shown in this paper do not depend on the specific
properties of NSs.

This paper is organized as follows. In Sec. II A, we
introduce the EOS used in this paper, and construct
approximations for the spin’s effect on mode frequencies
using the Maclaurin spheroid model. In Sec. II B we derive
equations of motion using the phase-space mode expansion
method and a Hamiltonian approach. With these at hand,
we give a comprehensive discussion on DT in Secs. III and
IV. In Sec. III, we mainly work on the stellar part. We first
review previous studies on DT in Sec. III A and propose our
new approach in Sec. III B, where we also compare these
models with numerical integrations. In Sec. IV, we use our
new formulas and the method of osculating orbits to study
postresonance orbital dynamics. We get a set of first order
differential equations to describe the time evolution of
osculating variables (e.g., the Runge-Lenz vector, angular
momentum, and orbital phase). These equations can
provide rich information of the orbit near resonance, as
discussed in Sec. IV C. Then in Sec. IV D, we compare our
osculating equations with numerical integrations and pro-
vide a new way to obtain the postresonance averaged orbit
over the tide-oscillation timescale, which agrees with FRO7
[53] to the leading order in of tidal interaction. By
combining our new method and FRO7 [53], we obtain
an analytic expression for the time of resonance. Section V

mainly focuses on GWs. We first quantify the accuracy of
several models by the mismatch between waveforms. Then
in Sec. V B we use the Fisher information matrix formalism
to discuss the influence of DT on parameter estimation.
Finally, in Sec. VI we summarize our results.

Throughout this paper we use the following conventions
unless stated otherwise. We use the geometric units with
G =c=1. We use Einstein summation notation, i.e.,
summation over repeated indexes.

I1. BASIC EQUATIONS OF DYNAMICAL TIDES

This section will provide equations of motion of the
system undergoing DT. In Sec. Il A, we construct approxi-
mations on the spin’s influence on f-mode frequencies,
based on the Maclaurin spheroid model. In Sec. II B we use
the phase-space mode expansion method and a Hamiltonian
approach to obtain the coupled equations of motion.

A. Neutron star equations of state and properties

In this paper, we shall use, as input for our studies,
properties of spinning neutron stars such as values of
f-mode frequencies and tidal Love numbers.

Properties of nonspinning NSs have been studied exten-
sively. In this paper we use two of them for comparison
purposes. One is the H4 model [27], which gives dimen-
sionless Love number k, = 0.104 for a NS with mass
Mys = 1.4 Mg and radius Ryg = 13.76 km. Here k, is
defined as [23]

3

k — A s
> T 2R3

(2)

where 4 is the value of A in the equilibrium limit [Eq. (1)].
The other one is a I' = 2 polytrope with Mys = 1.4 My
and Ryg = 14.4 km, which has k, = 0.07524. The latter
model is the same as the one used in H + 16 [54,55]. Their
f-mode frequencies are 2z x 1.51 kHz and 27z x 1.55 kHz,
respectively, consistent with the universal relation of NS
properties [58—61]. We want to note that H4 is a stiff
EOS that is not favored by GW 170817 [7], yet our focus is
on exploring what information DT might bring, hence the
H4 EOS will be more “optimistic,” since it leads to stronger
tidal features than the softer, more compact EOS.

For spinning NSs, f-mode frequencies will split, and the
Love number will also change. Unlike the nonspinning
case, there is not yet a systematic parametrization of
spinning NS properties, depending on the EOS. For the
Love number, we shall simply use their nonspinning
values; we will justify the validity of this treatment later
[below Eq. (35)]. On the other hand, since the f-mode
frequency split is important for bringing down the orbital
frequency required for resonance, we will need more
accurate input. Oscillation of spinning NSs has been
studied extensively in different limits, such as the (post-)
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Newtonian limit [62—-68], the slow-rotation limit [69-73],
and the Cowling approximation [74-77] (see Sec. 8.6.1 of
Ref. [78] and references therein). The case of full relativ-
istic NSs with an arbitrary high rotation rate has also been
studied, for example, by Zink et al. [79], by using nonlinear
time-evolution code. In this paper, for simplicity, we shall
use the features of the Maclaurin spheroid to construct an
approximation on how spin influences f-mode frequencies.

The Maclaurin spheroid describes a self-gravitating,
rigidly rotating body of uniform density in Newton’s
theory. In the coordinate system (x',y’, z'), which corotates
with the NS, the NS surface in hydrostatic equilibrium is
described by [80]

x/2+y/2 7z
Z &

=1, (3)

where we assume that the spin vector is along the 7’ axis.
The spheroid’s semiaxes in the x'(y") and 7’ directions are
denoted by a; and as, respectively. They are related to the
eccentricity e, of the star by

W

e, =4/1 o (4)

—

Note that the NS surface is oblate due to the spin (a3 < a;),
so the stellar eccentricity is always smaller than 1.
Hydrostatic equilibrium leads to a one-to-one mapping
between the spin angular frequency €2, and the stellar
eccentricity e, [80]

2
— P (1—e)12(3-2e2)sin"" e, —3e,(1-¢2)],  (5)

€

QZ

where p is the mass density of the star. For a Maclaurin
spheroid, f-mode frequencies are specified in terms of the
stellar eccentricity e,, which is further determined by p and
Q,. In this paper we mainly focus on the (j = 2,k = +2)
and (j =2,k =0) modes. Here (j,k) are the angular
quantum numbers of the multipole expansion, see
Sec. IIB 1 for more details. Their mode frequencies (in
the corotating frame) are given by [see Eq. (32) of Ref. [81]
and Egs. (12)—(13) of Ref. [82]]

) )
w; 1+ ) 12¢0(1 = parccotly)
— = 1-9 , (6
Q2 1+34 ( €0)+(1 +3¢3)arccotdy — 3¢, (6)
Dok _ 14 |1- 4Ry "
Q (3 —2¢?)sin"le; —3e (1 —e2)!/?

(6b)
where ¢, = \/1 — e2/e, and

3 1/2 o) p )
A ; 2 —1
1 —e? : e
. [arcsm [ —m} .
_ 10e§ —7e3 —3 34 8e? —8ef

arcsine,. (7)

+
8e3y/1 —e2 8ey

It is straightforward to see that each mode has two
frequencies with opposite signs. The positive (negative)
one corresponds to the prograde (retrograde) mode. The
absolute value of two (2,2) mode eigenfrequencies splits
due to the spin, and this is an analogue to the Zeeman split.
Equations (5)—(7) are valid for any 0 < e, < 1.} In the
small-eccentricity (low-rotation) regime, we have

8xp

2 3
i e+ 0(E). ()

Q:
* 15

——e, + O(ed), R, =

As a result, wy,./Q, in Eq. (6) diverge when e, — 0.
However, mode frequencies o, themselves converge to
finite values, which are given by

B [167p ISLp 5
Wry = + 15 15 € + O(es)’ (93)
16
%:w]?+a 2), (9b)

where the leading term +/167p/15 is the mode frequency
of a nonspinning NS. But it turns out that this prediction
differs from the true f-mode frequencies for a realistic
EOS, if we use the mean density of the star as p. This is due
to the assumption of homogeneity and incompressibility in
the Maclaurin case. We refer the interested readers to
Ref. [69] for a comprehensive comparison between the
Maclaurin spheroid and the relativistic NS in the slow-
rotation limit. Therefore, one should not directly use
Eq. (6). To obtain the f-mode frequency for a NS with
generic spin, we define an effective density pg, such that

\/167p/15 coincides with the f-mode frequency of a
nonspinning NS with realistic EOS (H4 EOS or I'=2
polytropic EOS). Meanwhile, we still assume the func-
tional dependence of the mode frequencies @ ,. on €, and
Pttt to be the same as Eq. (6). With such approximation,
f-mode frequencies for nonspinning NSs can be extended
to NSs with generic spins. In Fig. 1, we plot @y, |w,| as
functions of € with both H4 EOS and I' = 2 polytropic
EOS. Results agree qualitative with previous studies [see
Fig. 5 of Ref. [79]].

*Maclaurin spheroids become unstable as e; > 0.813 corre-
sponds to ~900 Hz. Such a high rotation rate, however, is not of
our interest.
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FIG. 1. The dependence of f-mode frequencies (in the corotat-
ing frame) on spin for NS with mass 1.4 M, following our
prescription. The H4 EOS, represented by solid lines, gives
g, |@y+| = 27 x 1.51 Hz for nonspinning NS, while the I' = 2
polytrope gives 2z x 1.55 Hz. The frequencies of prograde
(black line) and retrograde (blue line) modes split due to spin.

B. Equations of motion

Using the same convention as Ref. [44], we consider a
BNS system with individual masses M; and M, moving in
the x-y plane, whose orbital angular momentum is along
the z axis. For simplicity, we assume that only M is tidally
deformed. We still use (x,y’,z’) as the body coordinate
system that corotates with M. Two coordinate planes, x'-y’
and x-y, intersect at the line . The angle between the z axis
and the 7’ axis is §§ and the angle between ¢ and the y axis is
a. And let y be the angle that the star rotates about 7z’ axis.
Therefore, two coordinate systems are related by Euler
angles (a, B,y = Q,1).

1. The evolution of stellar oscillation

In the corotating frame, the oscillation of the rotating star
is governed by" [44,51]

O0PE 19,3
— 2420 x = E=-V 1
8t2+ SxatJng U, (10)

where & is the Lagrangian displacement of fluid elements,
and C is a self-adjoint operator. The external gravita-
tional potential U can be expanded in terms of spherical
harmonics

“Throughout this paper we ignore the effect of dissipation. For
f-modes, the most significant dissipation comes from the GW
radiation of the mode itself, with a damping timescale of ~0.03 s
[83], which is much longer than the mode period in the corotating
frame. Shear and bulk viscosity due to electron scattering [36],
as well as Urca reactions [84], have even more negligible
effects on the dynamics. Therefore, we also assume that the
background star’s spin is unaffected by the tidal interaction (see
also Ref. [85]).

Wl rl —im
U= _GMZZ rl~mH *emimdl) Ylm(e’ l)!
Im

w 7 ) .
_ _GMZZ rllr-f;fs e~ im(1)+im QstYlm’ (0/’ II)DEy?m(a’ ﬁ)’

Imm’

(11)

where r is the separation between the two stars, ¢ (1) is the
orbital phase, and r; = r, = \/x* + y* + 22 is the distance
of fluid element to the origin. Here (/,m) are the angular
quantum numbers of multipole expansion; for example,
[ =0, 1 are the monopole and dipole pieces, which do not
couple to NS internal oscillations, while tidal effects start
from [ = 2. Variables 0, 1 are the angular coordinates of
fluid elements in the inertial (unprimed) coordinate system;
and @, 1 are in the corotating (primed) coordinate system.
We should note that Qg is always positive in our con-
vention. The quantity W, is given by [86]

4r 172
(1 —m)!
S () m).]

FEHERT e

which is nonvanishing only when / + m = even. We have
used the Wigner D functions to transform spherical
harmonics between the unprimed and primed coordinate
systems.

Using the phase-space mode expansion method devel-
oped in Ref. [51], the Lagrangian displacement and its time
derivative can be expressed as

gl L) o

where modes are labeled by o = (j,k,v=+). The
angular quantum numbers j and k are integers with
k==+j,+£(j—1)...0. In our case, the mode functions
with negative k are related to the positive ones by complex
conjugate (up to a constant); therefore, we restrict ourselves
to k > 0. The label v stands for the propagation direction of
modes, as mentioned in Sec. IT A.

The modes in Eq. (13) are normalized by the condition

(Ear8a) = 1. (14)

where the inner product is defined by

Wi = |

€,.8) = / PAp()E; - £.. (15)

The amplitudes c,(r) satisfy the equation

o) +ione,l) = =~ €.V0). (16

o
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where b, depends on the structure of the star

= (£5:2iQ x &;) + 20,(8,.&5). (17)

Henceforth, we restrict our discussions to systems where
the spin is antialigned with the orbital angular momentum,
with (a, #) = (0, ). In this case, the Wigner D functions

@) 5, and Eq. (11) becomes

reduce to Dm,m
w
_ _GMZZ lm S

Im

—im(p+€Q t) 1

(0.0, (18)

Here we focus on (j =2,k = 2,0) modes coupled to the
gravitational fields labeled by (I =2,m = -2,0), since
they are the leading order terms in Ryg/r, and give the
strongest effects

The amplitudes of these modes are denoted by c, ¢; .,
and ¢, _, where we have suppressed the mode index j. The
equations of motion of these amplitudes are given by

Co + iwgcy = fo, (19a)

= f2,w (19b)

C'l2,1/ + iw2,1/62,v
with the driving force f,, and f, given by the rhs of
Eq. (16). In particular, for the f-mode of the Maclaurin
spheroid we know [44,81]

E20 = (" +iy"). i(x" +iy"). 0], (20a)

1
V2L,

&0 =1V

(20b)
@y

where the coefficients V and I}, = I, + I, are determined
by the normalization condition equation (14). Here

I, and I, are the components of the moment of inertia
L= [ pxix;dV'. We do not provide the expressions of V

and 13, since they are not needed in the future—in the final
equations of motion, these quantities will be absorbed into
the tidal Love number and f-mode frequency of the NS; see
Egs. (34), (35), and the text around them. Then we get

L, 3M,

= 2i(+ Q1) 21a

foz )+ + Q4273 (21a)
_iM, Q

=—0"—. 21b

fo P 4Vw} (21b)

In fact, Eq. (21) is not limited to the Maclaurin spheroid.
For a non-Maclaurin NS with low spin, we have [based on
the definition of (j = 2,k = 2) mode]

& = ho(r)VY(0',1), (22)

where hy,(r,) depends on the EOS. This always leads to

1 ..
for~— 21 +Q1) (23)
P
with the coefficient eventually absorbed into tidal Love
numbers. For larger spins, the NS’s j =2 modes will
couple to the j # 2 tidal gravity field (which are weaker),
and we ignore this coupling in this paper.

2. Orbital evolution

By coupling the orbital motion to the NS modes, one can
write the Hamiltonian of the whole system as [53]

o P¢ _ UM,

" Ty (wo|col* + ifoch — ifco)
ZbZ,v w2.l/|c2,l/|2 + if2,zxc;.u - if;ucll/)’ (24)
v==+

where p is the reduced mass and M, is the total mass.
The generalized coordinates of the system consists of
(r, ¢, co, c4), and the conjugate momenta (p,, pg,
ibycy, iby c5 ). From Hamilton’s equations we obtain
the equations of motion

. . M. 3ib
P = =R (o — eof)
3ib,y, , |, .
+ Z 2 (C2,yf2$b - CZ.uf2,y>1 (253)
v==+ Hr
i . ZbZ,V * *
rg+2ip =" p (3o fa0 + Couf5). (25b)

v==%

Equation (19) together with Eq. (25) are a complete set
of equations that describe the conservative evolution of the
inspiraling BNS system. To include the effect of gravita-
tional radiation, we add the Burke-Thorne dissipation term
to the orbital evolution [23]

2 dS Total

G TS s (26)

where Qiijal is the total quadrupole moment of the system
in the inertial frame, which consists of the orbital part and
the stellar part, i.e., Q7™ = Q;; + u(x;x; — r*6;;/3). For
simplicity, we neglect the effect of the radiation reaction on
the mode evolution.

To express Q;; in terms of the mode amplitudes, we start
from the definition of the stellar quadrupole moment in the
corotating frame

. | .
Q/lj:/dSX/p<x/lx/]_§r/26l])‘ (27)
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The unperturbed quadrupole moment vanishes under the
axisymmetric assumption. To linear order in perturbation,
we get5 [87]

5Q/ij:/d3x/5p<x/ixlj_%r/26ij>
o1 .
+/d3x’V- {p&(x”x’f —gr’zﬁ’/>]

o C2r
:/d3x/p<x/z§/j+xljgu_Tr§/r5u>, (28)

where we have used &p =—V . (p€) to simplify the
expression. The tensorial components of symmetric trace-
free tensors are related to their harmonic components g,
through Clebsch-Gordan coefficients. The transformation
can be expressed in a compact form [88]

80" = Ty, (292)

dp = (J3)*8Q", (29b)

where we suppress the index [ of ¢’ since we only consider
[ = 2 components, and

: 1 ¢ 0
Jiz:‘]z:E l —1 O N
0 0 O
| -1 0 O
Jo=——7| 0 -1 0
0 \/6 0

Combining Egs. (20), (28), and (29b), we obtain

4% = g5 = /2B (crs + 1), (30a)
2 V(l)o %
qp = \/;—QS (cot +€o4)- (30b)

Note that the harmonic component ¢, is a linear
combination of retrograde and prograde modes, which
oscillates at two different mode frequencies. So one can
expect that ¢} satisfies a second order differential equation.

So far the expressions are in the corotating frame; to
transform them to the inertial coordinate system, one can
use the relationship between tensor components in the two
frames

Qij — RinR{lQ/mn’

>The symbol 6 on the rhs represents Eulerian perturbation;
however, the symbol on the lhs only means the perturbation of the
integral.

where the operator R first rotates Q""" along the 7’ axis by
—Q,t, and does the other rotation along the new x axis by z,
i.e.,

cosQ it —sinQt 0
R=| —sinQ;t —cosQ;t O
0 0 -1
This results in
g = ¥g, (31a)
90 = qo- (31b)

Plugging Egs. (30) and (31) into Eq. (25), we finally get

. M, 3M, /3 oM 1 2d¢!
. 2 t 2 7 2 qO
—rt = - =g - A4+ —4/=
e rr o 2urt \/;610 2urt 5 \/; dr "

2r o , u d’r?
—2i¢p —2i€ R
‘—“%45“?‘ﬂ 15 a7 "
& .
_ " Re |:€—2t¢? (rzeluﬁ)} (32a)

g Moy 2
rep + 21 ¢ e 5 m

3M2 2}"
e
dr

5
—2i(/)d(qlze—2i9\.z):|

A .
e S | (320)
ih = 2iw3ds + w3qh
2
_ é w3A M, P2 +2iQ1 _ 3M, p2i+2iQ 1
2 273

2 .
0354, (Qy — w3) . T

20 +2Q; —wy +3i— ], (32
Q2 - 2Q.w3 — @3 ¢ s @A (32¢)

. 3 a)gloMz
gy + w3qh = —\/; ot

(32d)

where we have defined two real variables A and B as
ghe 22U = A+ iB. (33)

In Eq. (32), A is proportional to the radial force while B to
the azimuthal torque. We have also defined

by = Iy /3, (34)
j'0 = (Iiy + 4112)/(3603)' (35)
It is straightforward to identify these two quantities as the
Love numbers of the (2,2) and (2,0) modes, respectively.

When deriving Eq. (32), we have assumed the star is
described as a Maclaurin spheroid. Nonetheless, this affects
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only the values of the coupling constants, A, and 4,. The
form of Eq. (32) holds generically [as we discussed in
Egs. (22) and (23)]. To generalize the result to a realistic
EOS, one only needs to replace the values of 4, and 4,
accordingly—our equation of motion is an effective theory
for the evolution of binary systems (without relativistic
corrections). Under the assumption of homogeneity and
incompressibility, the Love numbers become Ay =41, =
R3/2 for a nonspinning NS. This leads to k, = 3/4 [see
Eq. (2) and Ref. [89]]. However, this value differs
significantly from those obtained from a more realistic
EOS (cf. numbers provided in Sec. Il A). Hence in this
paper, we obtain values of 4, and 1, by inserting values of
Rys and k, from H4 and I = 2 polytropic EOS into Eq. (2),
and we ignore the spin corrections to them. As a result, our
calculations do not rely on the expressions of the auxiliary
variables we introduced in Eq. (20).

The two frequency parameters @, and w5 in Eq. (32) are
given by

W5 =~ 0;_, (36)
wy = =2 (37)

The minus sign appears in Eq. (36) because w,, have
opposite signs. As discussed in the last subsection, we
assume the mode frequencies dependence on €2, given in
Egs. (6), is still valid, which implies

w3 = L, (38)

and the second term on the rhs of Eq. (32c) vanishes in
our case.

We can see that Eq. (32) reduces to the conventional
mode-orbit equations when Q; — 0 [cf. Eq. (6) of
Ref. [23]]. As discussed by Ref. [23], high order time
derivatives in the radiation-reaction terms can be lowered
by repeatedly replacing the second time derivatives by
contributions from the conservative part alone. In this way,
Eq. (32) becomes a set of second order ordinary differential
equations.

III. MODEL OF DT: STELLAR OSCILLATIONS

As we have discussed in the Introduction, both .94 [36]
and FRO7 [53] focused on the total change in the orbital
phase when the system evolves through a DT resonance.
This is because for g- and/or r-modes that have weak tidal
couplings, only the resonant regime plays a significant role
in affecting the orbital evolution. On the other hand,
H+ 16 [54,55] proposed an EOB formalism to study
the strongly tidal-coupled f-mode by introducing an
effective Love number, which works well when the driving
frequency is comparable yet still less than the eigenfre-
quency of the f-mode. In this and the next sections, we will

use semianalytic methods to carry out a systematic study of
DT, and provide an alternative way to describe the full
dynamics of DT, including both stellar and orbital evolu-
tions. This section mainly focuses on the stellar part, where
we extend H 4 16 [54,55] and find analytic solutions of
stellar evolution that are valid in all regimes (adiabatic,
resonant, and postresonance) and for arbitrary spins. With
the new analytic expressions, we can have a better under-
standing on DT. We first review the approximations
presented in L94 [36] and H + 16 [54,55] in Sec. III A,
and then in Sec. III B we propose our new approximations
and compare them with numerical integrations. In the
next section (Sec. IV), we will apply our approximation
to describe tidal backreaction.

A. Previous studies on DT

As studied in L94 [36], the (2,2) mode ¢5 in a non-
spinning NS can be treated as a harmonic oscillator driven
by tidal force

3w3M, .
. 2 _ 222 o
B+ oy =5—"73"e v, (39)
When the orbital frequency Q < w,, the NS adiabatically
follows the tidal driving, with its main time dependence
given by e?¢. Therefore it is appropriate to define a variable
b = ghe %, which satisfies

2

b+ 4iQb + (w? — 4Q2)b = §w2i§M 2. (40)
Here we have ignored the time derivative of orbital fre-
quency since its rate of change due to GW radiation is small
compared with other variables. Note that the quantity
A + iB we defined in the last section reduces to b when
the spin vanishes. Since the major time dependence e~ has
been factored out, we have b < 4Qb < (w3 — 4Q%)b, and it
is safe to ignore 5 and b, leading to the well-known adiabatic
approximation

b 3asaM, 1
23 @i —4Q%

(41)

As Q approaches w, /2, the mode gets resonantly excited.
L94 [36] assumed that near resonance, the mode mainly
oscillates at its natural frequency w,, so they defined
a slowly varying complex amplitude ¢ = ghe™®', which
satisfies®

3wi,My .
¢ + 2l602C = EMethﬁ—lwzt‘ (42)

=

®The other term proportional to ghe'®?’ doesn’t contribute to
SPA in Eq. (44).
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Similarly, by neglecting ¢, this equation can be solved as

3 t(l)%ﬂzMz 2id —iwnt
= — 270 Z plidf iyt dt, 43
¢ 4iw, / P (43)

which can in turn be evaluated with SPA, giving the
postresonance amplitude:

3 C()%lez T
= | 44
lc| yy— ’/Qr (44)

Hereafter, we use the subscript r to refer to the point of
resonance. As we can see, the treatment in L94 [36] is
piecewise: they separated out distinct time dependence in
different regimes. This is enough for evaluating the energy
and angular momentum transfers from orbital motion to the
NS mode since they only depend on the postresonance
amplitude. However, neither the detailed time evolution of
the mode nor the orbital dynamics in the resonant regime
were provided.

L94 [36] was improved by H + 16 [54,55], who solved
Eq. (39) with the Green function, obtaining

3 [ta3oM, 5.,
= 2—/ %7,232&“’5 sinw,(t—¢)df'.  (45)
) r

(1)
Near resonance, Eq. (45) reduces to Eq. (43) if one writes
sinw, (1 — ') = £ [¥2(1=") — ¢=2i@2(1=")] and neglects the
term that does not contribute to SPA. However, Eq. (45) is
exact in all regimes. This lays the foundation to obtain a
single continuous function to represent the stellar motion
during DT. Instead of using SPA to get the final amplitude
of the mode, H 4 16 [54,55] expanded the integrand in
Eq. (43) near resonance

2 .
= 3 0)2/123M2 /[ eiQr<t/_tr)2t/, (46)

a 410)2 r,
which becomes a Fresnel function. This approximation is
accurate within the duration of the resonance 7y,

|t - tr| < Tdur’ (47)

where Ty = \/QZ They then asymptotically matched

Eq. (46) to Eq. (41). More specifically, they first observed
that Eq. (41) diverges as (t—1t,)"! as Q — w,/2

o 3 eZi(/),—imzt
80)2"; Qr(t - tr)

H + 16 [54,55] used the rhs of Eq. (48) as a counterterm:
they added the adiabatic solution in Eq. (41) and the
resonant one in Eq. (46) up and then subtracted the
counterterm. In this way, the divergence is cured, and

the sum has the correct asymptotic behavior in both the
adiabatic and resonant regimes. This new solution cannot
describe the postresonance evolution, as is expected
because the asymptotic behavior in that regime was not
yet considered. As pointed out in the Introduction, this
approximation is sufficient for nonspinning NS if the
postresonance regime is short. However, for highly spin-
ning systems, we must extend this method to the post-
resonance regime.

B. New approximation and numerical comparisons

Let us start from the equation that governs the (2,2) mode
[Eq. (32¢)]. By defining x = ghe™™', it becomes

3wiM, .. .
§4Px = sz r23 2 QA+ (49)
where
=02+ wi. (50)

Note that the second term on the rhs of Eq. (32¢) vanishes
because w3 = Q [Eq. (38)]. The resonance is determined
by the condition

=9, = : (51)

Under the assumed w, — €, relation, ¢ can be simplified to
(0, —w_)/2, then we have

éﬁ:Qr:_Qs_%’ (52)
but here we keep ¢ for generality. Equation (52) shows that
only the retrograde mode is excited. The dependence of Q,
on € is shown in Fig. 2.

By incorporating spin into procedures discussed in
the previous subsection, H + 16’s result [54,55] can be

written as

A(t) - 3M2/12(U% 1 T 3M2/12(U% l
27 (@297 ¢ /o o3
3M2/12(l)% T

— [— 1 sin (?2 - f)
4ric \ 20,1 V2 4
2.\ . . 2, A
—-FC <\/:t> sin?> + FS (\/:t> cos tz] . (53a)
n n

3Myhya? 1./,
B(I)ZITZ;)Z zg[—sm<tz+ﬂ)

2\ . AN
—FC <\ﬁz> cos 2 —FS <\ﬁz> sin t2] ., (53b)
VA VA
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2Q,/(2n) (kHz)
5 N =

o
©
.

o
o

0 100 200 300 400 500
Qg/(2m) (kHz)

FIG. 2. The resonant GW frequency (29,) as functions of spin
frequency for two EOSs. We also plot the contact GW frequency
as a red dashed line for comparison. The retrograde mode
frequency is shifted by spin to a smaller value, which makes
DT possible during the inspiral.

where variables A and B are defined in Eq. (33). We can see
that the phase of A and B’s oscillations is governed by

P= -1, (54)

FC and FS in Eq. (53) are Fresnel functions defined as
[? o sins?ds=+/m/8[1+2FS(i\/2/x)] and [’ cos s’ds =
/7/8[1 +2FC(7+/2/x)].

To check the accuracies of these formulas, we compare
them with numerical integrations of Eq. (32). We choose
the H4 EOS and spin frequency of 550 Hz. This gives
eg =0.63, wyg=2nx171kHz, o, =27 x0.59 kHz,
and w_ = -2z x 1.69 kHz. Equation (51) indicates that
resonance happens at the orbital angular frequency
27 x 0.30 kHz. Using these numbers, we solve Eq. (32)
numerically with the following initial conditions:

‘ 1/3
PV =27Fy=2xx18Hz, rO= <.Mt ) ,

¢(0)2
3
'r<°>——%r/<%> : qéo)——leo\ér%,
© 7 o) 0) _ 3Mrh0) 1
B =3 G AT A 050 ta
rr 2r &= (29" +Qy)
A9V =0, BO=0, BY=0. (55)

The evaluation of Eq. (53) requires the information of
orbital evolution, like r(7), Q(), and Q,. Here we take them
from the numerical integrations (with tidal backreaction).
In Fig. 3, we plot the numerical solutions (red) versus
predictions of Eq. (53) (black). Dimensionless variables A
and B are defined by

| == Numerical i
— H+16 i
44 1
1
2 1
1
1
1
1
—~ 04 1
[ 1
5 1
— 1
g -2 !
1
1
—44 !
1
1
1
—6 1 U
1
1
1
—8 !
T T T - T T T
32.895 32,900 32,905 32910 32915  32.920
t(s)
1
= Numerical |
61 — H+16 !
4 i
1
1
2 i
'S 1
| 1
2 0 |
@ 1
]
-2 |
1
—4 4 :
1
]
61 | h
1
1
32.895 32.900 32.905 32.910 32.915 32.920
t(s)
FIG. 3. Dimensionless quadrupole moments [normalized

by Rys in Egq. (56)] induced by DT as functions of time.
Red curves are results from fully numerical evolution and black
curves are from Eqs. (53). The vertical dashed blue line denotes
the time of resonance. Equation (53) is accurate in the prereso-
nance regime, but fails to describe the phasing of postresonance
oscillation.

B—>

A= —. 56
2R G36)

2Ry

The vertical dashed line labels the time of resonance.
We can see that Eq. (53) can describe preresonance
evolutions of A and B to a high accuracy, despite
a small discrepancy in A at 7,. They smoothly connect
the adiabatic and resonant regimes. In the postresonance
regime, the formulas give the correct amplitude of
mode oscillation, same as 1.94 [36], but do not predict
the correct phasing of postresonance oscillation. Let us
attempt to improve the treatment in H + 16 [54.,55], in
several steps.

The postresonance oscillation can be viewed as trigo-
nometric functions modulated by Fresnel functions FC and
FS. In this regime, FC and FS both approach 1/2 when
1 — o0, Eq. (53) then predicts
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3M2/1260% /1 A T
~ W Er cos( 72 + 1) (57a)
3M2/12a)% VB A T
4r§§ a sin + 1 ( )
which lead to
_3Mylyar T miPin/as2ig i (58)
e\, '

However, as pointed out by L.94 [36], x should oscillate at its
eigenfrequency ¢ in the postresonance regime. Re-writing
the phase of x in Eq. (58) as (2¢p —{t+ Q,t —7%) +
{t— /4, it is straightforward to see that the term in the
bracket is supposed to vanish in order to meet this require-
ment. Therefore we can attempt to replace all 7 in trigono-
metric functions in Eq. (53) by
O =—y, —Ct+2¢ + Qt, (59)

where y, = 2¢, — {t, + Q,t,. The constant y, is chosen so
that @ is 0 at ¢, to match 7. Note that 7 is the leading order of
Taylor expansion of ® around ¢,. Figure 4 shows the result of
our new approximation, which gives the correct phasing in
the postresonance regime, but still fails to explain the
amplitude of the first cycle as well as the evolution in the
adiabatic regime.

These undesired features can be cured by making a
further change to the counterterm equation (48) and adding
a new term to B, resulting in

= Numerical
64 == Modification

——

32.8822 32.8892 32.8962 32.9032 32.9102 32.9172
t(s)

FIG. 4. Time evolution of dimensionless quadrupole moment
A. The black line represents the formula in Eq. (53) with 7> that
appears in trigonometric functions replaced by ® [Eq. (59)],
while the red line is from numerical integrations. The vertical
dashed line is the time of resonance. This modification gives the
correct postresonance phasing, but does not give accurate
postresonance amplitude or adiabatic evolution.

_ 3M21260% 1 3M212602 COS(t2 @)

3 2 2
2r - (2Q+ Q) 8 /& e !
2
+ 73M2/12‘a)2 - [— 1 sin (@ - f)
43¢, 20,1 V2 4
2, 2,
—FC(\/>>sm®+FS<\/>>cos®]
T /4

_ 3MyAw3 sin(i? — 0)

8r3C\/—‘ i

—3M2/12a)2 T [— L sin (@ + f)
20,1 V2 4

(60a)

4ri¢

({3 e

We refer the interested readers to the Appendix for
detailed derivations. The new expressions still need orbital
information as input. For example, one cannot obtain A(z)
and B(r) without the knowledge of €., 7, and so on. In the
next section, we will combine our new formulas with
orbital evolutions to give analytic estimations on these
parameters.

Results from Eq. (60) are plotted as blue dots in Fig. 5,
and compared with numerical solutions (red lines). We can
see that our new results are more accurate. In comparison
with H + 16 [54,55], the second term in the first line of
Eq. (60a) is multiplied by cos(#* — ®). The modification
can be understood as follows. The adiabatic term, i.e., the
first term in Eq. (60a), diverges as the system reaches
the resonance point. H + 16 [54,55] chose Eq. (48) as the
counterterm to cancel the undesired infinity. Our better
counterterm, cos(7> — ®)/%, not only diverges as 1/, but
also has the correct oscillatory behavior. This cures the
problems shown in Fig. 4. In B, we have a new term
~sin(#* — ©)/1 [the first line in Eq. (60b)], which vanishes
both as |f,| = oo and at ¢, (recall that lim,_ sinx*/x = 0
hence no infinity issue at ¢,), and therefore does not modify
the asymptotic behaviors of B in the adiabatic or in the
postresonance regimes.

In comparison with Fig. 4, changes in Fig. 5 not only
cancel the undesired features in the adiabatic regime, but
also move the first cycle of postresonance evolution
downward to match the amplitude. Prior to resonance, A
gradually grows while B remains 0. Approximately, the
resonance time is the local maximum of A, but the value of
A on resonance is less than its final amplitude, only
reaching it after one cycle. The evolution of B is similar
but lags behind A. Although Eq. (60a) predicts slightly
larger A in the resonant regime, they are accurate enough
for the purpose of studying the tidal backreaction onto the
orbital motion, as we shall see in the next section.

(60b)
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FIG. 5. Same as Fig. 3, but the numerical solutions are

compared with Egs. (60) and (61). The formula of B is already
accurate enough to fit the numerical results. While the formula of
A without higher order correction (blue dots) predicts larger value
near t,. The problem is fixed after the inclusion of Eq. (61), which
we plot as black triangles.

If one wants to obtain more accurate expressions,
especially to remove the discrepancy near resonance, a
higher order correction can be made by adding

3Myhra? sin(2 —©
aa( = Mot 5?0
16¢r34/<,

into Eq. (60a). Readers can find derivations in the
Appendix. The result is shown in Fig. 5 with black
triangles, where we can see the formula with higher order
correction gives a more accurate description on A near f,.

To quantify the accuracies of the analytic results, we
calculate the values of A and B at t,

(61)

3M2/12(1)% T 3 ’.‘r 1 szlza)%ﬂr

A, =" - . (62

"8n 2Q,+Q,Vr+C - 8¢ Q2 (622)
3M )

B, =-22% |7 (62b)
8Cry 2Q,

where the last term in A, comes from the higher order
correction equation (61). It is interesting to see that B, is
equal to half of the final amplitude [cf. Eq. (57b)]. For
completeness, we also list g, below

31
= —-M>Ap\/=—=, 63
90 2 O\/;r3 (63)

which comes from the adiabatic approximation. These
values are compared with numerical results in Table I,
which shows that our analytic results of A with higher order
corrections and B only differ from numerical results by
several percents. We can see the error decreases as spin
rises. We also compare the formula of A without the higher
correction Eq. (61); errors are around tens of percents.
Hence, the correction is important if we require high
accuracy around the resonance.

Finally, we want to note that discussions in this sub-
section may not be useful in practice, because one can get
tidal evolution by directly integrating Eq. (32). However,
the structure of Eq. (60) helps us gain more physical
insights, especially after combining with orbital dynamics
in the next section.

IV. MODEL OF DT: ORBITAL DYNAMICS
NEAR RESONANCE

In this section we will discuss the postresonance orbital
dynamics. As we will review in Sec. IV A, currently there
are mainly two analytic approximations to DTs: the method
of averaged PP orbit in FRO7 [53] and the method of the
effective Love number in H + 16 [54,55]. Here we provide
an alternative way to describe the postresonance dynamics.
In Sec. IV B, we derive a set of first order differential
equations for osculating variables: the Runge-Lenz vector
(whose magnitude is proportional to the eccentricity of the
orbit), angular momentum, and the orbital phase. These
equations, with our new formulas for A and B [Eq. (60)],
are self-contained except that they need Q, as input. But as
we will discuss in Sec. IV C, osculating equations lead to an
analytic expression (or more accurately, a quintic equation)
for Q, which is accurate for the systems we study.
Therefore, we do not need to use nontidal orbit as a prior

TABLE 1. Relative errors of Eqgs. (62) and (63) for different
spins, where “High” and “Low” means including and not
including the higher order correction equation (61), respectively.

|AA|/A (x1%)

Q,/(2x) |Agol/q0 |AB|/B
(Hz) (x0.1%) High Low (x1%)
550 0.2 0.2 13.1 1.4
450 1.3 1.1 14.0 0.6
350 4.0 2.2 14.4 0.1
250 8.7 32 14.4 0.8
150 15.1 4.0 14.4 1.4
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knowledge to feed into the formula of A and B. Then in
Sec. IV D, we compare our analyses and the method of the
effective Love number with fully numerical results. Finally
in Sec. IV E, we propose an alternative way to obtain the
postresonance PP orbit, which turns out to agree with FR07
[53] to the leading order in tidal interaction. By combining
our approach and FRO7 [53], we derive an analytic
expression for ¢,, i.e., the time of resonance.

A. Review of previous works

The model in FRO7 [53] is based on the fact that the
DT only causes significant energy and angular momentum
transfers to the star near resonance within the time

AL
At = —

—, (64)

Law
where AL is the angular momentum transfer from the orbit
to the star due to resonance and Lgy is the rate at which
angular momentum radiated in GWs [90]

. 32 Mp?

Low = ?/42 ﬁ (65)
We note that r, in Eq. (65) should be the actual separation
of the star at ¢,, instead of the one predicted by prereso-
nance PP orbit. After resonance, the NS is treated as freely
oscillating, with the interaction between the star and the
orbit neglected, and the postresonance orbit is another PP
trajectory. The pre- and postresonance orbital separations
are related by the time shift Ar

(1) = { )

PP (t + Atr)

t—t, < Tyurs

(66)
t—1t,> Ty,

where Ty, comes from the same reasoning that leads to
Eq. (47). We can see that this method is based on the
estimation of time shift At due to resonance, where the
nontide LGW is used. We will discuss these in details in
Sec. IVE.

A more detailed model was developed in H+ 16
[54,55], where the authors incorporated DT to the EOB
formalism by introducing an effective Love number A, as
defined in Eq. (1). This quantity is based on the nontidal
orbit as a prior knowledge, and does not incorporate the
imaginary part of gbe 24~ %! In fact, with the help of
Eq. (29), the effective Love number can be written in our
notation as

3 3

r o r
Aoip = ———Re(ghe 2220 — A 67
eff oM, e(qse ) oM, (67)

This term does not contain the full information of the NS
oscillation, since B is missing. By comparing this term with

the rths of Eq. (32), one can find that the effective Love
number only describes the radial force due to the star’s
deformation. The ignored part, which characterizes the
torque between the star and the orbit, actually plays an
important role, as we shall see in Sec. IV D. Furthermore,
their calculations of the effective Love number were
obtained from nontidal orbital evolution. This will cause
inaccuracy when the spin is large.

B. Osculating equations

Since the traditional method of osculating orbits
(cf. Ref. [90]) is singular for vanishing orbital eccentricity,
we need to adopt a special perturbation method here [91].
This method uses specific angular momentum /4, the Runge-
Lenz vector €, and the orbital phase ¢ as osculating variables.
Assume that the perturbation force F' is described by

F_ Whn + SA, (68)
u
where n is the unit vector along the radial direction and A
the unit vector along the azimuthal direction. YV and S are
the components of the acceleration. Equations of motion in
terms of the osculating variables are given by

dh

E:rXF,

d .
—€:Fxh+i‘xh,

dt

d¢p h

+_ 6
dt  r? (69)

Note that the magnitude of € is proportional to the orbital
eccentricity. In our case, only the z component of h,
denoted by £, and in-plane components of € = (e,,€,)
matter. The orbital separation r, and its rate of change 7, can
be expressed as

h2
r= , (70a)
M, +e,
. €y
=—— 70b
=t (700)

Equations of motion of the osculating variables can then
be rewritten as

%: % (71a)
%: rS, (71b)
% _ %e,ﬁ 28, (71¢)
%:—%er—Wh—i”rS. (71d)
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The perturbation forces S and WV can be separated into
radiation and tidal parts. The former comes from the Burke-
Thorne radiation-reaction potential. By neglecting tidal
corrections, they are given by

The tidal perturbation forces W4 and S;;4 are given by

M, (M, +¢,) [ 3
Wia = WIT 740~ 34 ), (73a)

) 3IM, (M, +¢,)*
Yoy 2 (2M7E M M Sia == B 5 (73b)
o =5H\ T3 r P a
For the time evolution of ¢, A, and B we use our analytic
formulas, as shown in Egs. (60) and (63). Here we do not
) M.b 3612 include the higher order correction to A in Eq. (61) since the
Sorp = =M, <_3’¢ + r2 ¢ — 24(})3)‘ (72b) leading order already turns out to be accurate enough. By
5 r r plugging Eq. (70) into the equations above we get
|
dp (M, +e,)’
E = ! h3 s (743)
dh 2 (M, +e¢,)? 2
== gM,,u R [8M,(M, + €,) + 36€5, — 24(M, +¢,)*] + msﬁd, (74b)
de, (M, + ¢,)? 4 (M, +¢,)*
dt = ZhStid + IT€¢ + EMI#IT [SM,(Mt + €r> + 366'35 - 24(Mt + €r)2], (74(:)
de he (M, +¢€,)* 2 (M, +¢,)’ [56M
d—f: —hWq +Ff€r5tid —€rtT+§ﬂMt€¢ ths 3 “(M+e,) +24(M, +¢,)* +44eg| . (74d)

Equations (72)—(74) are a complete set of equations of
@, h, €., and €, except that we are missing the value of Q,
that appears in the formulas of A and B. This will be
determined in Sec. IV C. With these at hand, one can obtain
the postresonance orbital dynamics without solving tidal
variables (e.g., go, A, and B) simultaneously.

In practice, we numerically evolve the system slightly
after the resonance point, i.e., t, + 5, to get rid of the
numerical infinity due to the term sin(7* — ®)/7 in B. In our
code, § = 10~® s. Two infinities in A (adiabatic term and
the counterterm) need more care. The cancellation of these
two infinities requires they have the exact the same
behavior near the resonance point, this is difficult to
achieve in practice, especially when there are osculating
variables in A. In our simulations, we approximate the first
divergence term by the following formula:

3M212(0% 1 - 3M22,2(U%
3 2 _ 2 : >
2r s (2Q+ Q) 8 /QrCr3[

where the denominator is expanded around f,. In this
manner, both divergence terms go to infinity as 1/7, so they
cancel each other nicely. In order to improve the accuracy,
one can include more terms of the Taylor expansion.
However, this only works well for low spin, since the

(75)

|

time for postresonance evolution should be short enough
such that the series converges. For high spin we only keep
the leading term.’

We should note that one can evolve the postresonance
system without knowing the value of ¢,, of which our
analytic estimations are not very accurate in some regimes
of spin (we will discuss the estimation on it in Sec. IV D),
since the formulas of A(¢) and B(¢) only depend on 7. One
can shift the time of resonance to = 0 and simultaneously
set t, = 0. Similarly, the orbital phase of the resonance ¢,
in Eq. (59) can be eliminated by an appropriate initial
condition for ¢, here we choose ¢, =0 and ¢© =0,
where ¢© is the initial value of ¢. Correspondingly, the
constant y, becomes 0. What remains unknown in the
osculating equations are €, and the initial conditions for
(€14 h. ). We will address them in the next subsection.

C. The applications of osculating equations

In this subsection, we will discuss the applications of
osculating equations introduced in the previous subsection.

"As we shall see in Sec. IVD, the orbital frequency is
oscillatory for high spin in the postresonance regime. Under this
situation, the leading term alone is more accurate than including
higher order corrections.
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1. Orbit at resonance
Let us first derive algebraic equations for Qr, 7,, and the
initial conditions of Eq. (74). The basic idea is that

variables like €, and 7, at resonance are determined by
the tidal variables A and B through the osculating equa-

tions. Conversely, A and B are governed by Q, in Eq. (62).

The relationship allows us to write down equations of Q,
and r,.

To calculate #, we start with Eq. (70a). In our cases, the
value of ¢, rises as the spin of the NS decrease, but it
remains a small number. So we can approximate r by

h*/M,. Using the equation of h [Eq. (74b)], we get

dr r
— = 2“—5. 76
drt M, (76)

For a quasicircular orbit, the radius and orbital frequency
approximately satisfy

M\ 1/3
r,_<Q—;> . (77)

In Table II we verify that the error of Eq. (77) is less than
0.4% within the regime we are concerned with. With this
observation, together with B, in Egs. (62), one can simplify
the expression of S into

S= Stid + Sorb

3My* 2303 [ 4 1852
== /E—l—gM,uQ, 7—892 . (78)

which is completely determined by 7, and €,. Substituting
this into Eq. (76) leads to an equation for 7, and €,

TABLEII. Comparisons between results from our formulas for
Q,, 7, €4 r and numerical integrations, where “Numerical
results” of AQ,/Q, are the results by numerical solving Eqgs. (79)
and (81); “Approximate results” are the results of Eq. (85). The
parameters of NSs are still the H4 EOS with component masses
(1.4,1.4) M. The relative error becomes large when the spin
decreases. The last column is the ratio of the nontidal Q, to the
realistic Q, when the orbital frequencies satisfy the resonance
condition in Eq. (51).

AQ,/Q,(x1072)

Q,/(2x) Numerical ~Approximate Ar/i Aey/ey  Ar/r
(Hz) results results  (x1072) (x1072) (x1072) gl—d
550 0.9 0.8 0.4 0.1 0.1 0.56
450 2.7 2.7 1.6 1.8 02 053
350 44 4.5 2.7 22 03 052
250 5.9 6.1 3.7 3.0 04 052
150 7.1 7.3 4.5 3.6 04 052

, 3M2 0,302 [7 8 1852
= [t SMpu(—L—8Q2). (79
ry Qr/tC 4rz ZQr + 5 M r% r ( )

In order to solve for these two variables, one can use
Egs. (71a) and (71b) to establish another equation

Q=—5-2—4h=—-20Q-", 80
T2 r r, "1, (80)
which gives

2r,Q, = =3Q,7,. (81)

This relation can also be directly obtained by differentiating
Eq. (77). Plugging Eq. (81) back into Eq. (79) gives a
quintic function for €. The calculation can be simplified
by the approximation 7,/r, < £,, so that the first term in
the bracket of Eq. (79) can be neglected. In this manner, we
obtain an explicit expression for Q,:

. u W2 1/3 u W2 3 1/3
Q == ——— — =\ — == , (82
’ (2 + 4 27> + (2 4 27> (82)

where

2IM,200? [z 96M 3.
=i [ v=— oy = 2 j 0 (83)

Equation (82) can be further simplified by Taylor expand-
ing in w, defined by

2173y

leading to

3
Q, =u*3|1+2%3w +w? —W?+ O(w“)} (85)

Recall that the duration of the resonance is Ty, = 1/ 7/ Q,
[Egs. (47) and (66)], Eq. (85) is in fact an analytic relation
between T 4, and the orbital time shift Az due to resonance.
The variable 7, is determined once €, is known. Finally,
the initial value of € is related to 7, through its definition in

Eq. (70b). With the values of Q, and r,, Eq. (60) for
A(r) and B(r) does not require input from numerical
integrations.

In Table II, we compare predictions of our formulas with
numerical results. The parameters of NSs are the H4 EOS
with component masses (1.4, 1.4) M. Results show that
the accuracies of our analyses are higher than 93%. We can
also see that accuracy is lower for low spins. Since H + 16

[54,55] used nontidal Q, in the effective Love number, we
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compare Qr of nontidal orbits with realistic ones. The ratios
of two quantities are shown in the last column of Table II;

we can see that Q™" is only half of QU Hence, the use of
Q1°" will cause inaccuracies.

2. Angular momentum and energy transfers
Another application of the osculating equations is to
calculate the angular momentum and energy exchange
between the star and the orbit. The transfer in L can be
directly calculated from Eq. (71b). Following the procedure
in Ref. [36], we get

r

B
AL:—ﬂh,:—/ﬂrStiddt:—/3M2 3dt

!, =2ip—=2iQt
— _Im / L, 2C
r

2
Mw%z
2 . .
= _m[ B — BA — (A% + B?)(Q, +2Q)],  (86)

2

Im / (L + 219 + wlql)di

where we have used Eq. (32¢). Assuming the deformation of
the star is small initially, this exact formula gives the angular
momentum deposited in the star. In fact, the quantity is the
generalization of the “tidal spin”, defined by (up to a
constant) € Q””Qjm for a nonspinning star [54].

By combining our formulas for A and B with the AL
shown above, one can obtain a lengthy expression of
angular momentum transfer as a function of time, but little
can be learned from it. To give a more useful description,
we follow the idea of FRO7 [53], who assumed the net
transfer only takes place near resonance. Within the
postresonance regime, AL is periodic and the net transfer
is zero. In fact, we can see this clearly with the asymptotic
behavior of A and B. From Eq. (60) we know

3M2},2(1)% T T
ANT‘:’C ErCOS ZV+€[_2¢_QSI_Z . (873)

3M21260% T . VA

B~2T22% [T B o W
T a sinf y, + &t —2¢p — Q,t 1) (87b)

where we have used the fact that the Fresnel functions go to
1/2 as 7 — oo. Plugging the above equations into Eq. (86)
and averaging over the orbital phase, we get the net angular
momentum transfer as

- 9M2271%20)%

- 88
8Q,r%¢ (88)

This formula reduces to the result in L94 [36] when spin
vanishes. The energy transfer is related to the angular
momentum transfer by

AE = Q,AL. (89)

By the expression of AL in Eq. (88), variables u and w
defined in Egs. (83) and (84) can be expressed as

C9Q2ALLYY, (2 Top L\ V3 (00)
T ARL, L, “\81araL)

with Ty, = 27€Q, and L, the orbital angular momentum at
resonance.

D. Comparisons with numerical results

In this subsection we will compare our approximations,
as well as the method of an effective Love number in
H + 16 [54,55], with fully numerical results, in the post-
resonance regime. We still choose the H4 EOS with spin
frequencies 300 and 550 Hz.

1. Validating osculating equations

We numerically solve Eq. (74) starting from t=6=10"8s,
where we have shifted the resonance time to 0 and set
t, = 0. The initial values of h,e,, and ¢, are from
Egs. (70b), (71a), (77), (79), and the resonance condition
in Eq. (51). In the absence of analytic estimations for €,, we
assume €, is 0 in Eq. (77), since it remains small within the
domain we are interested in.

In Fig. 6, we plot orbital separation r (left panels), orbital
frequency Q/(2x) (middle panels), and eccentricity e (right
panels) as functions of time, for NS spins 300 Hz (upper
panels) and 550 Hz (lower panels). For the low spin case,
we approximate the adiabatic term in Eq. (75) by both the
leading and subleading terms, while for the high spin case
we only keep the leading term. Predictions of our osculat-
ing equations agree well with the real postresonance orbital
dynamics. This again verifies that our formulas for A(#) and
B(t) are accurate enough to describe the star’s oscillation
and its backreaction on the orbit. Furthermore, in our
osculating equations we have only included the orbital part
of the radiation-reaction force. The comparison confirms
that the other part, i.e., the stellar radiation-reaction force,
can be safely ignored. One interesting feature of the
postresonance dynamics is the eccentricity of the orbit.
Once the oscillations of NSs are excited, the tidal torque
and the radial tidal force lead to energy and angular
momentum exchanges between the orbit and the star
periodically. As a result, the eccentricity of the orbit
increases and oscillates. Results show that the final eccen-
tricities are nearly 0.08 for both cases.

2. Deficiency of the method of the
effective Love number

According to the definition of the effective Love number
in Eq. (67), we first construct the nontidal binary orbit with
the same initial conditions in Eq. (55)
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FIG. 6. The separation r, orbital frequency Q/(2r), and the eccentricity e as functions of time. The initial time 7 = O represents the
location of resonance and the end point corresponds to the contact separation. Red lines are from fully numerical solutions and blue lines
are the results of osculating equations (74). The spin of the upper panel is 300 Hz, and the bottom one is 550 Hz. We keep both the
leading and the subleading terms in Eq. (75) in low spin case while keeping only the leading term in high spin case.

1 1
329 (2aM,Fy)"

256 5/8
X{]—[I—TtM,Zﬁ,u(ZﬂFo)g/ﬂ } (91a)

1/4
with initial value 7(*) obtained from Eq. (55). Following the

procedure in H + 16 [54,55], we use the PP orbit’s time of

resonance tﬁPP) and the time derivative of angular frequency

as the true ¢, and Qr. Substituting them and the formulas of
A and B into the equation of the effective Love number in
Eq. (67) gives the time evolution of the effective Love
number. In Fig. 7, we plot the results by using both H 4- 16
[54,55] and our new formulas of A and B. The dotted one
represents the resonance time from the full numerical
integrations, and the dash-dotted line is from the PP orbit.
We can see that the true resonance time is earlier than that
of the PP orbit. This is expected because the mode
excitation extracts energy and angular momentum from
the orbit, and accelerates the inspiraling process. The
amplitude of the two models decay at the same rate but
have different phases. Our formulas predict more oscil-
lation cycles.

By feeding k.(7) into the orbital dynamics, we obtain
the evolution of orbital separation r(¢) in Fig. 8. We can see
that neither formula could capture the feature of postreso-
nance dynamics. The similarity between two results show

p(1)

256nM 3

r(r) = <r‘°’4 5 (91b)

that it is the formalism of the effective Love number itself
that is inaccurate. Such inaccuracy mainly comes from the
fact that the torque is missing, and the orbit does not shrink
as fast as it should, as we have discussed around Eq. (67).

E. The averaged orbit in the postresonance regime

As discussed in FRO7 [53], there are three timescales in
the system’s dynamics, although their values in our case
may not be well separated. The shortest one is an orbital

0.5 1
O it w -
S
Q
v
_0.5.
—— This paper
— H+16
_1.0.
------- Num-con
Non-con
_1'5- T T T T l. T
32.82 32.84 32.86 32.88 32.90 32.92

t(s)

FIG. 7. The time evolution of the effective Love number based
on the PP orbit. The red line is from our new formulas of A and B
while the black one is from H + 16 [54,55]. As represented by
the horizontal dash line, the effective k asymptotically approaches
to k, = 0.104 in the adiabatic regime. The dotted vertical line
represents the real resonant time and the dash-dotted vertical line
is from the preresonance PP orbit.

123020-17



SIZHENG MA, HANG YU, and YANBEI CHEN

PHYS. REV. D 101, 123020 (2020)

16
14
121
=
o
109 —— This paper
— H+16
—— Num
8.
------- Num-res
Non-res
32.86 32.87 32.88 32.89 32.90 32.91 32.92

t(s)

FIG. 8. The orbital dynamics near the resonance, by means of
an effective Love number. The blue line is the result of fully
numerical integration. The red line is from our new formulas of
DT, while the black one is from H + 16 [54,55]. As with Fig. 7,
the dotted line and dash-dotted line represent the resonance
condition of numerical and PP evolution, respectively.

timescale, characterized by the orbital angular frequency €;
the middle one is the tidal timescale, characterized by the
angular frequency ~© = 2Q + Q, — ¢ [Eq. (59)]; and the
final one is the gravitational radiation-reaction timescale,
characterized by the frequency LGW/ L. The separation
between tidal and radiation-reaction timescales is shown
more clearly in Fig. 9, where we plot r(¢) near resonance
with Q; = 27 x 550 Hz. Let us first focus on the upper
panel, which is from FRO7 [53]. The vertical dashed line
indicates the time of resonance, and the horizontal dashed
line represents the actual separation of the system at
resonance. Both quantities are obtained from the numerical
integration. In the radiation-reaction timescale, the system
evolves as PP. The upper blue curve corresponds to the
nontidal quasicircular orbit with the same initial conditions
as our system. It intersects with the vertical and horizontal
dashed lines at “a” and “d.” We can see that there is little
difference between full orbit and the PP orbit in the
adiabatic regime. After resonance, the actual separation
oscillates around another PP orbit in the tidal timescale,
which is determined by Eq. (66) and shown as the lower
blue curve; this curve intersects with the vertical and
horizontal dash lines at “b” and “c.” The pre- and post-
resonance PP orbits are related by an instantaneous time
shift At [cf. Eq. (64)] when the preresonance PP orbit
satisfies the resonance condition equation (51), i.e., the
horizontal line between ¢ and d. We should note that the
regimes between “ad” and “cb” are not real evolution stages
that the system undergoes. This is only an effective way to

describe the resonance between two PP orbits. The time of

d, t;, is actually tﬁpp), which we used to construct the

effective Love number in Sec. IV D 2, and it is larger than

141
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FIG. 9. The orbital separation as a function of time, with NS
spinning at 550 Hz. The vertical dashed lines indicate the time of
resonance, and the horizontal dashed lines represent the actual
separation of the system at resonance. The red curves are from
numerical integrations, while the blue curves are predictions of
PP orbits. The upper blue curves have the same initial conditions
as the system we study. They intersect with the vertical and
horizontal dashed lines at a and d. The lower blue curves are
predictions of FRO7 [53] (upper panel) and our new method
(lower panel), which intersect with the vertical and horizontal
dash lines at b and c. To connect the pre- and postresonance PP
orbits, FRO7 [53] proposed the time jump At from d to c at the
fixed separation, while we use the angular momentum jump (or
equivalently, the separation jump) from a to b at the fixed time ¢,.

the actual resonance time ¢, because the tide effect accel-
erates the inspiral process and makes resonance earlier. We
can see that FRO7 [53] can track the postresonance PP orbit
to a high accuracy.

Here we provide an additional description on the
averaged orbit. As shown in the lower panel of Fig. 9,
instead of evolving the preresonance PP orbit to d and
making a jump in time at a fixed separation, we propose
that the orbit has an immediate jump in angular momentum
(or equivalently, separation) at the fixed time ¢,, i.e., the
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vertical line between ab. The jump can be determined as
follows. The orbital angular momentum at a is given by

a a)l/2
Lip = kM, g, (92)

while at b the angular momentum is determined by the
angular momentum transfer in Eq. (88),

Ly = Ly - AL, (93)

which leads to the orbital separation rl(f;)

b a AL\?
A0 (1 - F) . (04)
PP

Evolving the PP orbit with the above initial condition gives
the lower panel of Fig. 9. This method is very similar to
FRO7 [53]. However, it also has a disadvantage: since so far
we do not have an independent analytic estimation on the
time of resonance, we cannot know the value of rgfj) without
solving the full equations. Nevertheless, this method
provides us with an alternative understanding on the
postresonance PP orbit; i.e., it is related to the preresonance
PP orbit by an instantaneous jump in an angular momen-
tum, by contrast to a time shift Az at a fixed separation. In
fact, one can prove that two methods agree with each other
to the leading order in Ar. By expanding Eq. (94), we find
the jump between a and b to be

a b 2AL a . (a
S LRI
LPP

where the last equality comes from the fact that L  r'/?
and the relation between AL and At in Eq. (64). The result
is exactly the jump predicted by Eq. (66) if one expands
r(t, + Ar) — r(t,) to the leading order in Az. In fact, we can
work conversely. By imposing that the two methods predict
the same orbital separation for the postresonance PP orbit at
resonance, we get an analytic equation for ¢,

AL\?
) = r(t, + A1) = r(1,) (1 - L—> . (%)

where
L, = uM,"?r(1,)'2, (97)

and r(z) is shown in Eq. (91b). Equation (96) is an algebraic
equation for ¢,. In Table III, we show the accuracies of
results by calculating the ratio between At and |t; — t,],
where At is the difference between ¢, obtained from
Eq. (96) and the true ¢,, and |7, — 7,| is the time difference
between a and d in Fig. 9. The ratios are between 5%
and 20%.

TABLE 1IIIl. The comparisons between our analytic estimates
for ¢, in Eq. (96) and full numerical integrations. For reference,
the errors of results are compared with |z, —z,|, i.e., the time
difference between d and a in Fig. 9.

Q,/(2x) (Hz) 550 450 350 250 150
1aul (10-2) 203 53 5.4 13.6 20

|t —ta]

From the above discussion, we can see the method of
averaged orbit is qualitatively accurate. By connecting
two PP orbits with a jump, one can already extract some
information of the system (e.g., ¢,) without solving fully
coupled differential equations. However, this method has two
disadvantages. The first one is that it ignores the oscillation
on the top of the averaged orbit in the postresonance regime,
which carries the information of the f-mode. Second,
averaging is only valid when the spin is large. As shown
in Fig. 6, since the system does not undergo a full tidal
oscillation cycle when spin is 300 Hz or below, it is not
appropriate to discuss the averaged orbit in this case.

V. GRAVITATIONAL WAVEFORMS AND
EXTRACTION OF PARAMETERS

In the last two sections, we mainly discussed near-zone
dynamics. We obtained new formulas (60) for the tidal
deformation amplitudes A and B, obtained osculating
equations (74) for the orbit, and developed analytic treat-
ments that coupled stellar and orbital motions and carried
out comparisons between analytic and numerical results.

In this section, we will go to the far zone to study GWs.
We first quantify the accuracy of the method of the effective
Love number and the method of averaged PP orbit in the
framework of the match filtering. We then compute the
SNR of GWs emitted during and after resonance. Results
show that postresonance GWs may be strong enough to be
observed by future GW detectors. We finally show that DT
can provide more precise estimations on the parameters of
NSs. We want to emphasize again that the major goal of this
section is to provide a qualitative feature of impact of DT on
GW observations. As we have discussed above, the EOS
we used, as well as high spin rate, might be unlikely in
realistic scenarios.

A. Accuracies of DT models

To the lowest order, GWs emitted by a system are related
to the near-zone dynamics through [90]
2 .
hi = D, [N (98)
where D; is the distance between the detector and the
source, which we choose as 100 Mpc. Q;; is the quarupole
moment of the system. The superscript “TT” stands for the
transverse-traceless components of the tensor. Amplitudes
of the two polarizations of the GW are given by [90]
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FIG. 10. The noise spectral densities of several ground-based
detectors.

he == g5HQu+ 0) 43 (14 Dez(Qus = 0,)

+ 5(1 + ¢7)52500y — 5:CiC5Qx, — 5:Ci550,

+ lszQZZ, (99a)
hy = _%ciSZ/}(Qxx = 0yy) +cicp0,y

+ 5550, — $iCp0y 2, (99b)

where ¢; = cos1, 5; = siny, ¢3 = cos 2f3, and 5,5 = sin 2f5.
The angle 1 is the inclination of the orbital plane with
respect to the line of sight toward the detector, and S is
azimuthal angle of the line of nodes. The detector measures
the linear combination of the two polarizations

h(t) =F h, + F h,, (100)
where the detector antenna pattern functions F | and F, are
given by

1
F, = 3 (1 + cos? 0) cos 2¢ cos 2y — cos O sin 2¢ sin 2y,
(101a)
1
F, = 3 (1 + cos? B) cos 2¢ sin 2y + cos @ sin 2¢) cos 2y,

(101b)

with € and ¢ the angular location of the source relative to
the detector, y the polarization angle [90].

In order to measure the similarity between two wave-
forms & and g, we define their match [92]

(hlg)

O X —————,
gl = 1y 519

(102)

10—1 J
10—2 d
S
1073
&
5 1074
=5 ] .
10 i
J 0 = Osc —A— Eff-new —*- Averaged
10-° « Eff-H+16
300 350 400 450 500 550
Qs/(2m)(Hz)
FIG. 11. The mismatches as functions of spin frequency. We

only use the signals with frequency higher than 2Q,./(2x)
because we only focus on the postresonance dynamics. The
fully numerical integrations are compared with four models, the
effective Love number with H + 16 [54,55] (blue dashed line),
effective Love number with our new DT formulas (red line), our
new averaged PP orbit (green line), and osculating equations
(black line). The mismatches of osculating equations are lower
than 1073, while the method of the effective Love number gives
~0.1-0.2 for spin higher than 370 Hz. This approach is
insensitive to which DT model we use. Our new averaged PP
orbit, on the other hand, is in the middle of two other approaches.
The worst mismatch is around 3 x 1072,

and mismatch 1 — O. The inner product (h|g) between two
waveforms is defined as

(hlg) _4Re/h (f)@(f)df

Su(f) 1o3)

with the superscript * standing for complex conjugation,
and S,(f) standing for the noise spectral density of the
detector. In Fig. 10, we plot the noise spectral densities of

101 4
a4
=2
)] 100 i
—e— allGO —— CE
1071 —e— Voyager —e— aVirgo
—e— Kagra ET-D
300 350 400 450 500 550
Qs/(2m)(Hz)

FIG. 12. The SNRs from the resonant part of GW signals, with
frequency higher than 2Q,/(2x). The faster the NS spins, the
higher the SNR. The SNR is around 0.3-3 for current detectors,
but ~10-50 for 3G detectors.
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TABLE IV. The SNRs of full GW signals within the band
[2F, 2F contact) for different detectors. The spin frequency of NS
is 300 Hz.

ET-D CE
3057 884.0

aLIGO  aVIRGO
31.6 254 314

KAGRA  Voyager
135.1

alLIGO [93,94], aVirgo [94,95], KAGRA [94,96], Voyager
[97], CE [98], and ET [99].

The fully numerical simulated waveforms can be com-
puted in the following way. We first numerically solve the
equations of motion equations (32), which gives the total
quadrupole moment of the system QI-T]-"tal = Qjj +px;x; —
ur*s;;/3 by Eq. (29). We then obtain the waveform h(1)
from Eq. (98). In this paper, we choose 1t =f =0 = ¢p =
yw = 0 for simplicity. We then sample the solutions in the
time domain with the rate 1/8192 s, and use the fast
Fourier transform algorithm to perform the discrete Fourier
transform on the sampled data. Following the procedure of
Ref. [100], we zero-pad the strain data on both sides to
satisfy the periodic boundary condition before fast Fourier
transform. Our choice of sample rate already ensures
that the Nyquist frequency is larger than the contact
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frequency. We define the frequency-domain waveform
within the frequency band [2F ), 2F .opac) @s the full signal
and [2Q,/(27),2F conwet] @S postresonance signal. Here
F contact 18 the orbital contact frequency and the factor of
2 comes from the correspondence between the orbital
frequency and GW frequency at quadrupole order.

In Fig. 11, we plot the mismatch between postresonance
waveforms obtained from different DT models, as func-
tions of spin frequency. One waveform is calculated from
the fully numerical integration; against this target wave-
form, we compare waveforms obtained from four different
models: the effective Love number with H + 16 [54,55]
(blue dashed line), effective Love number with our new
formulas (60) (red line), our new postresonance averaged
PP orbit defined in Eq. (94) (green line), and osculating
equations (black line). Here we do not include the averaged
orbit model in FRO7 [53] because it is very close to our
model. Since the match depends weakly on detector noise
curve, we shall use that of alLIGO. One can see that the
mismatches of all models are smaller that 10~ for spins
below 370 Hz, since in this case the postresonance signals
are very short, such that the phase mismatches do not
accumulate with frequency. The mean mismatches of our
osculating equations are around 10~#, with the worst one
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FIG. 13. Relative errors of 15, 14, @,, and € as functions of spin from Fisher analyses. The GW waveform is at the Newtonian order.
The vertical dotted line stands for the location where resonance happens. The system is optimally oriented at 100 Mpc, with component

masses (1.4 Mg, 1.4 Mg). The H4 EOS is used.
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still below 1073, Accordingly, this approach describes the
postresonance dynamics accurately. This confirms that our
new formulas of A and B are precise enough for describing
the tidal backreaction on the orbit. Methods that use the
effective Love number, on the other hand, give the large
mismatch of around 0.2 when the spin frequency reaches
~450 Hz. The fact that both versions lead to similar
mismatches, even with our accurate formulas for A and
B, shows that the formalism itself is imprecise. The
mismatch of our averaged PP-orbit treatment is less than
0.03 within the entire regime we study. Therefore this
approach gives a fairly accurate description of postreso-
nance GW signals.

B. Detectability and Fisher analyses

In Fig. 12, we plot the signal-to-noise ratios (SNRs) of
postresonance GW (within the band [2Q,/(27), 2F contact))
as functions of spin frequency Q. As expected, it grows
with spin frequency. For aLLIGO, € needs to be above
~425 Hz to lead to SNR > 1. For 3G detectors, SNRs are
around 4 for spin ~300 Hz. It can reach 50 if the spin is
around 500 Hz. For comparison, we also calculate the
SNRs of full signals within the band [2F, 2F copiaee] 0
Table IV. Since the full SNRs depend weakly on the spin
frequency, here we choose Qg = 2z x 300 Hz.
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Same as Fig. 13, except the polytropic EOS is used.

These results of SNRs show the potential to detect
postresonance signals with 3G detectors. This allows us
to extract more information from GW signals than AT. As
pointed out in Ref. [23], the Love number of nonspinning
NS is degenerate with mass ratio 2 = M,/M, at leading
order in the adiabatic regime. Only the effective 1 =
AZ(11Z + 1) can be constrained by GWs.® This degeneracy
persists for spinning NSs in AT. In this case, the phase of
GW during AT (up to leading tidal order of the Love
number) is given by

_ 24(=f)'8

b/ 3
‘I‘—2”flc—¢c—z+@(”/\/lf)_5/3{l JYEHE

11 A= 33
e+ —222 (14 2=)| L
“13 °+1—2sz§/w§( " )]}

Hence the tidal term is governed by the effective Love
number

(104)

.11 M=

33
= — 2 4+ —2— _(1+25).
3 °+1—2Q§/w§< T3 >

7 (105)

*We still assume only M, is tidally deformed.
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It is straightforward to see that 13 reduces to A in the
nonspinning limit. Note that our notation of 5 differs from
Ref. [23] by a factor of # = u/M,, since they used total
mass M, while we use the chirp mass M here. As Q
increases, the motion of (2,2) mode is resonantly getting
excited while (2,0) mode is not, their different reactions to
the tidal driving from the orbit lead to distinct effects on
GW emission, therefore the degeneracy is broken. To
describe this effect, we introduce another parameter

- WE 33
de=—2= (1425},
4 1—293/60’5( T )

i.e., the second part of Eq. (105). Accordingly, the nume-
rical waveforms are determined by a nine-dimensional
parameter 6 = {t,, .. D;, M,Z,Q,, w,, 13, A4}. Here we
ignore @, the mode frequency of (2,0) mode, since this
mode does not have DT and its mode frequency is almost
degenerate with other parameters.

Let us now turn to parameter estimation, using the Fisher
information matrix formalism. Suppose random noise n(¢)
in observed signal s(z) is stationary and Gaussian, the
conditional likelihood function of s given parameters @ can
be written as

(106)

p(s]0) o« e=G=hls=h)/2, (107)

where (0, 1) stands for the true waveform for parameter 6.
In the large-SNR approximation, the likelihood function
becomes Gaussian,

p(s5]0) x e Tul0'A0/2, (108)
where Fisher matrix I';; is given by
Oh| Oh

I =(=—|—. 109

S

Since waveforms are numerically calculated in our case
(from algorithms discussed in the previous subsection),
derivatives are computed numerically using the symmetric
difference quotient method. The inverse of the Fisher
matrix gives the covariance matrix. In particular, the
diagonal components are the variances of the estimated
parameters

AG; = /(T (110)
which are the projected constraints that we can put on
parameters from the observation.

We still use the H4 and the I' = 2 polytropic EOSs, with
M, =M, =14 M. The system is at D; = 100 Mpc and
optimally oriented. Projected constraints on several param-
eters as functions of spin frequency are shown in Figs. 13
and 14, where the vertical lines stand for values of spins for

which resonance takes place right on contact. We can see
that the two EOSs give similar results. The constraints
change with detectors since we have fixed the distance of
the source, and 3G detectors can benefit from large SNRs.
Among the six detectors, CE provides the best parameter
estimations because it is the most sensitive in the high
frequency band, where DT takes place. To quantify the
effect of DT, we list the projected constraints on several
parameters in Table V under two situations: (i) results
evaluated with spin frequencies when resonance takes place
right on contact and (ii) constraints with spin frequencies
500 Hz. The improvement factor, which is the ratio of
estimation accuracies between two situations, characterizes
the effect of DT.

Let us discuss each parameter more specifically. First, we
can see that for different detectors the relative errors on 1,
are of order ~0.4-20, which depend most weakly on spins
when compared to other parameters. The estimation error
even becomes worse when spins are high. This is because
this parameter is mainly estimated from AT, and the
constraints do not benefit from DT. When spins are high,

TABLE V. Projected constraints on As, 14, @5, and Q, with two
EOSs for six different detectors. Here we compare two situations:
(i) constraints with spins when resonance takes place right
on contact (Res) and (ii) constraints with NSs spinning at
500 Hz (7). The improvement factor is the ratio of Q} to
Res, which characterizes the effect of DT.

Detectors aVirgo KAGRA aLIGO Voyager ET-D CE

Res 184 13.4 5.7 2.1 06 04
Al QI 224 21.0 14.1 4.3 1.5 08
Imp 0.8 0.6 0.4 0.5 04 05

43

Res 81.8 724 41,6 135 43 25
A, Q" 230 211 14.1 43 14 08
“ Imp 3.6 3.4 3.9 3.1 3.0 32

Ha Res 432 41.2 27.0 82 28 14
Aoy QI 8.6 7.8 5.1 1.6 05 04
“” Imp 5.0 53 52 52 52 40
Res 5757 5429 346.6 1064 356 194
AQ, Q299 27.1 17.7 54 1.8 1.0
= Imp 193 20.1 19.6 19.6 195 199
Res 17.9 14.0 6.3 23 07 04
AL QF 181 17.2 11.4 35 1.2 0.6
4 Tmp 1.0 0.8 0.6 07 06 0.6
Res 95.8 81.6 46.8 15.1 49 28
Ay QF 195 18.1 11.6 3.6 1.2 0.7
“ Imp 4.9 4.5 4.0 42 41 42
Poly

Res 39.7 36.5 24.8 13 25 13
Awy  QIF 6.0 5.6 3.6 1.1 04 02
Imp 6.6 6.6 6.9 6.6 69 6.6

Res 5334 496.0 3325 99.2 339 18.1
A2, om 202 18.7 12.0 3.7 12 0.7
Imp 264 26.5 27.8 26.7 27.6 265
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adiabatic waveforms become relatively short; hence, the
project constraints become worse. By contrast, estimation
error of the other Love number 14, which describes the (2,2)
mode, improves with spin. This is expected since DT
introduces the dependence of waveforms on 1. The
constraints on this quantity can be improved by a factor
of 3-5, depending on the EOS and detectors. In the CE
case, the relative error of /~14 can finally decrease to ~0.8 as
spins are around 500 Hz. However, this parameter is still
degenerate with the mass ratio Z. One needs to take into
account PN corrections to break such degeneracy.

DT also helps us put more stringent constraints on the
(2,2) mode frequency, since the oscillations of NSs can
react back to orbits and influence GW waveforms. As
shown in Table V, the averaged improvement factors are
around 6.6-6.9 for the polytropic EOS, while ~5 for the
H4 EOS. The current detector, like alLIGO, cannot constrain
this parameter well, giving relative errors ~5. However,
itis improved to 0.2 in the CE case. We have also calculated
the effect of DT on constraining spin frequencies. The
improvements on spin are the largest among parameters we
discuss, since this parameter determines the location of
resonance in the time (frequency) domain. The improve-
ments are around 20-27 for both EOSs. In the CE case, the
relative errors are ~0.7-1 when spins reach 500 Hz.

VI. CONCLUSIONS AND DISCUSSION

We have systematically studied the (2,2) f-mode DT of
spinning NSs in coalescencing binaries. In particular, the
spin is assumed to be antialigned with the orbital angular
momentum, in which case the effect of DT is the most
pronounced. We began by deriving a complete set of
coupled equations for mode oscillation and orbital evolu-
tion, with the aid of the phase-space mode expansion
method and the Hamiltonian approach. We then extended
H + 16’s model [54,55] for f-mode excitation to spinning
NSs and obtained a new approximation which can describe
the full dynamics of systems to a high accuracy. One
application of this approximation is to study the postreso-
nance orbital dynamics, where we used the method of
osculating orbits and obtained the time evolution of the
osculating variables. This framework allowed us to obtain
analytic estimations on the orbital information at resonance

(e.g., i, ©,). We also obtained a simple formula of angular
momentum transfer due to DT, which is an extension of
L94 [36] to the spinning case. Based on this result, we
derived the averaged postresonance orbits over the tide-
oscillation timescale in an alternative way. The result of our
averaged treatment turns out to agree with that of FRO7
[53], to the leading order in angular momentum transfer
time At [Eq. (64)]. By combining the two treatments, we
obtained an algebraic equation for 7,. We then compared
several DT models by computing the mismatches of
waveforms. Finally, we carried out a Fisher matrix analysis

to estimate the effect of DT on parameter estimation, with
current and 3G detectors.

We summarize our main conclusions as follows. (i) The
(2,2) f-mode in the spinning NS, by defining a new variable
x [Eq. (49)], can still be treated as a harmonic oscillator,
which is oscillating at its eigenfrequency ¢ in the post-
resonance regime. (ii) The reason that H + 16 [54,55]
cannot describe the postresonance evolution is twofold.
First, their phasing 7> is not accurate and should be replaced
by © [Eq. (59)]. Second, their counterterm equation (48)
does not contain phase information. (iii) The picture of the
averaged orbit over the tide-oscillation timescale is accurate:
the true pre- and postresonance orbital motion can be tracked
accurately by PP orbits. These PP orbits are related by
energy and angular momentum transfers, and hence a jump
in the orbital separation at ¢,. Within the spin range we
studied, the match of GW signals between the prediction
using the averaged orbit and numerical integration (post-
resonance part) is as high as 99%. Therefore, the additional
tidal perturbation is a small effect. However, such a
description requires that the postresonant signal is long
enough (i.e., large spin) so that the system can undergo
several tidal oscillation cycles. Looking at the full orbit, we
found that there is an extra oscillation on top of the averaged
trajectory. We also found that the eccentricity of the orbit is
induced by the tidal interaction and can grow to ~0.08 at the
end of inspiral, the numbers depend weakly on the spin.
(iv) The method of the effective Love number is not accurate
to describe the f-mode when spin is large and when DT is
significant: this method essentially ignores the torque
between the orbit and the star. The mismatch of GW signals
between this formalism and numerical integrations increases
to 0.2 when the spin frequency is larger than 450 Hz, even
when accurate models for tidal amplitudes A and B are used;
therefore, it is the method itself that is inaccurate. (v) We
found that DT leads to little improvement on estimating 15 in
Eq. (105), for which constrains are mainly from AT. In our
study, they even become worse since the adiabatic part is
relatively short when the spin is large. For a system with
component masses (1.4, 1.4) My at 100 Mpc, the relative
errors of /5 are around 5 for aLIGO and 0.4 for CE. However,
DT does break the degeneracy between 15 and 44, because
the oscillations of (2,2) mode are excited while those of (2,0)
mode are not; hence, they contribute differently to GWs. The
constraints on 4, can be improved by factor of 3 ~ 4. In the
CE case, the relative errors are 0.7 ~ 0.8 when the spin
frequency is 500 Hz. We also calculated the constraints on
the mode frequency @, and the spin €2,. We found that they
improve by factors of 5 ~ 6 and 19 ~ 27, respectively. In the
CE case, the relative errors of the mode frequency are around
0.2 ~ 0.4 while for spin, the numbers are 0.7 ~ 1.0. Hence,
DT potentially provides an alternative channel for people to
study the physics of NSs.

Throughout the paper, we have assumed that the NS is in
the normal-fluid state, whereas in reality the core of a cold
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NS is expected to be in the superfluid state [101]. Thus, a
two-fluid formalism should be used to capture the new
degree of freedom associated with the superfluidity [102],
and the f-mode, in particular, should split into a doublet
[103]. However, as shown in Ref. [103], the new f-mode
due to the superfluid degree of freedom typically has a
much higher frequency than the ordinary one (i.e., the f-
mode we considered here) and consequently we do not
expect it to significantly change the results we have here.

In addition to the ignorance of the superfluidity, there are
three caveats we would like to note. First, the H4 EOS has
been shown to be less likely based on the observation of
GW170817 [7]. Second, the spin modifications to mode
frequencies through the Maclaurin spheroid is merely a toy
model and might be too simple for the real situation.
Finally, the NS spin frequency should be high enough
(~500 Hz) for DT to have significant effects. Such a high
frequency is unlikely in astrophysical binaries. However,
we here mainly aim to use semianalytic methods to provide
qualitative understandings on DT, different EOSs will give
similar results. This is because the equations of motion in
Eq. (32) are generic. The EOS only affects the values of 4,
and wq,3. On the other hand, our derivations of tidal
excitations A and B [Eq. (60)] are valid for any systems
which couple a harmonic oscillator to a Kepler orbit with a
dissipative force in the long timescale. The framework
presented in the paper is generic and can be applied to other
types of DTs. One possible avenue for future work is to use
our discussions to study excitations of r-modes with more
realistic EOSs, since they only require NS to spin at tens of
Hz, and are more likely to take place in BNS systems.

All of the calculations in this paper are at the Newtonian
order, which has allowed us to reveal the insufficiency of the
effective Love number approach, and the possibility of
gaining further information on neutron stars—in the regime
where the NS has substantial spin, antialigned with the orbital
angular momentum. This information must still be comple-
mented by contributions from PN corrections. For instance,
at the Newtonian order { and Q are partially degenerate
since they mainly enter equations through the combination
{-Q;. By introducing the PN effect, like spin-orbit and spin-
spin couplings, spin will be more constrained, which could
break the degeneracy, and consequently, put more stringent
constraints on mode frequencies. This is also true for the
degeneracy between the mass ratio and Love number. In our
case, the mass ratio is still badly constrained and degenerate
with the Love number. By including 1PN effect, we could get
more accurate estimations on these quantities.

Second, the universal relation for NS is also an important
fact to break degeneracy. For example, the universality
between the Love number and f-mode frequencies was
observed in Ref. [58]. With such additional information,
constraints on parameters should be improved.

Finally, it is interesting to compare our analytic analyses
with recent numerical simulations in Ref. [57]. To do so,

one needs to append the tidal Hamiltonian Eq. (24) to the
EOB Hamiltonian, and jointly evolve the orbital motion
and the stellar oscillation, to obtain faithful predictions of
waveforms.
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APPENDIX: THE DERIVATION OF MODE
OSCILLATION FORMULAS

In this section, we will give a detailed derivation for our
new DT formulas of A and B, following Ref. [104]

As we have shown in Eq. (49), the stellar oscillation
during DT can be described by a harmonic oscillator
after a transformation. Its general solution is the sum of
a homogeneous solution and the particular solution. Here
we assume that there are no free oscillations in the NS
initially; hence, the solution can be expressed in terms of
the retarded Green function and tidal driving

13M5A )
C/ 2 2“’2 ) sin ¢ (1 — ¢)df. (Al
By integration by part, we get
(t) 3M2/1260% é’eig“’+2i¢ 1
x(t) = —
20 [P -(Q+29)P
) 1 O i +2ip(1) il
+e"5’/ ¢ sz dr’
(Q, +2Q +¢)*r”?
' 1 Q) i +2ip (1) il
_etCt/ ¢ - 3dt/ , (A2)
(Q 29 -0

where we have ignored r. However, the method fails once
the resonance happens. There is a stationary point within
the integration domain. L.94 [36] and H + 16 [54,55]
expanded ¢(7) in Eq. (Al) around 7, and estimated the
integral with SPA. Our treatment is slightly different. In
order to incorporate both the adiabatic and resonant
regimes, we start from Eq. (A2) instead of (Al), where
the adiabatic term is separated out initially. At resonance,
this adiabatic term goes to infinity. Hence, there should be a
counterterm arising from the integration, to cancel out such
infinity. H 4 16 [54,55] chose Eq. (48) as the counterterm.
Here we derive a better counterterm by studying the
integration in Eq. (A2).
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Since there is no stationary point in the second term on
the rhs of Eq. (A2), it can be ignored. Expanding the
integrand of the third term around the resonance point, and
neglecting the time derivatives of Q and r, the integration
becomes

t ei)(,-+iQr(t]_tr)2
/ e
4739,(1" - tr)z

ei)(,Jrif el
43 /O 2r V 29.
2 2 |
—FS(4/=t) +iFC( /=1 ) ——=e™™*|. (A3
d (@ﬂ ()]

The terms in the bracket are same as H + 16 [54,55].
However, we have a new counterterm

ei;(,ﬂ'?z 1
v
4r\/ Q,

which contains the phase y, + 72. As we have discussed in
Sec. III B, the real part of this term gives rise to a
contribution to A that is proportional to cos(?* — ®)/7,
which reduces to H+ 16’s [54,55] if we neglect

(A4)

cos(#? — ©). This term cancels the infinity caused by the
adiabatic term. On the other hand, the imaginary part of

Eq. (A4) does not diverge, since

in(7> - ©
lim S =0) (A5)
t—t,

Performing the integration by part again on the third term
of Eq. (A2), we get the next order correction

/t Q/eiQSl/JrZi(/)(t/)—i{t/ ”

(Qs +29/ _C)Zr/3
B Qeith+2i¢—i§t +/,6QIZeiQ,‘.t’+2i¢/)(t/)—i§z’
Ci(Q+2Q-0)3 i(Q+2Q = )4

dr.  (A6)

Following the same procedure, we obtain a higher order
corrections as

lez 30)% Sin(’l\’z - @)

Al = ¢ 1enQl? P

(A7)

The correction term contributes a finite value as t — ¢,. As
shown in Table I, this term reduces the error of A, from tens
of percents to <4% in the situations we consider.
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