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ABSTRACT
Motivated by the safety problem, several definitions of reach-

ability maps, for hybrid dynamical systems, are introduced. It is

well established that, under certain conditions, the solutions to

continuous-time systems depend continuously with respect to ini-

tial conditions. In such setting, the reachability maps considered in

this paper are locally Lipschitz (in the Lipschitz sense for set-valued

maps) when the right-hand side of the continuous-time system

is locally Lipschitz. However, guaranteeing similar properties for

reachability maps for hybrid systems is much more challenging.

Examples of hybrid systems for which the reachability maps do

not depend nicely with respect to their arguments, in the Lipschitz

sense, are introduced. With such pathological cases properly iden-

tified, sufficient conditions involving the data defining a hybrid

system assuring Lipschitzness of the reachability maps are formu-

lated. As an application, the proposed conditions are shown to be

useful to significantly improve an existing converse theorem for

safety given in terms of barrier functions. Namely, for a class of safe

hybrid systems, we show that safety is equivalent to the existence

of a locally Lipschitz barrier function. Examples throughout the

paper illustrate the results.
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1 INTRODUCTION
The reachable or attainable set for a dynamical system over a

finite window of time can be seen as a set-valued map that maps

each initial condition and time window to the set of points reached

by the solutions from that initial condition during that time window

[1, 2]. Reachable sets are very useful, for example, in finite-horizon

prediction and optimization problems [3]. One important property

of reachable sets (when seen as set-valued maps) is their continuous

dependence on their arguments – in particular, Lipschitz continuity.

Indeed, for continuous-time systems such properties are nowadays

considered as well-known facts, see, e.g., [4, 5]. The Lipschitz conti-

nuity of the reachability maps is key, for example, when analyzing

continuous-time systems via their discretized version [6, 7]. Fur-

thermore, continuity of reachability maps is shown in [8] to be very

useful when studying the converse safety problem using barrier

functions [9]. Indeed, the objective in the converse safety problem

is to show the existence of a barrier function when the system is

safe; namely, when the solutions starting from a given initial set

never reach a given unsafe set [10, 11]. Such a barrier certificate

is show in [8] to inherit the regularity properties of the reachable

sets.

In the context of hybrid systems modeled according to the frame-

work in [12], there are several possible definitions of reachable sets,

see [12, Section 6.3.2], [13], and [8]. This flexibility in the formu-

lation of reachable sets is due to the solutions being defined on a

hybrid time domain indexing both the duration of the continuous-

time evolution (the flow) as well as the amount of jumps. In such

a context, and to the best of our knowledge, the continuous de-

pendence of the reachability maps on there arguments is not fully

documented in the literature. Moreover, extending the existing re-

sults for continuous-time systems is not straightforward. Indeed,

in the general case of hybrid systems, even when the dynamics are

defined by single-valued smooth maps, reachability maps can fail

to be continuous with respect to their arguments. Such a pathology

is mainly due to the evolution of the solutions to hybrid systems

being constrained by the so-called flow and jump sets. This fact is

illustrated in [8, Example 4.4] for a canonical hybrid system, the

bouncing ball. This challenge motivates the work in this paper

about identifying the tightest possible regularity on the data of the

hybrid system that allow the best possible regularity properties for

the considered reachability maps.

In this paper, we first reconsider the two reachability maps, de-

noted R and R̂, introduced in [8]. The map R provides the set of

points reached by the solutions starting from a given initial condi-

tion xo during a given flow time window and without exceeding a

given number of jumps J . The map R̂ is a prolongation of R using

the solutions to the system. The map R̂ includes not only the ele-

ments reached without exceeding the given flow time window and

the given number of jumps J , but also the elements reached while

exceeding the given flow time window until J jumps are achieved,

if possible (without exceeding J jumps). In the particular case of

https://doi.org/10.1145/3365365.3382215
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continuous-time systems, the maps R and R̂ coincide and reduce to

the one in [1]. In [8], semicontinuity and boundedness properties

of both R and R̂ are analyzed in the context of well-posed hybrid

systems. Here, we also introduce the maps Rb and R̂b that include

the elements in R and R̂, respectively, that are the last to reach by

each maximal solution starting from xo . For continuous-time sys-

tems, the maps Rb and R̂b coincide and reduce to the reachability

map studied in [4, 6, 14]. Using these definitions, this paper makes

the following contributions:

• In the first and main part of this paper, we analyze the local

Lipschitzness of the proposed reachability maps after han-

dling the pathologies preventing such regularity via a set of

conditions on the data of the hybrid system.

• In the second part of this paper, the aforementioned study

is used to improve the converse safety result in [8]. For this

purpose, we use the fact that the barrier function used in [8]

inherits the regularity properties of the reachability map R̂.
As a result, for the considered class of hybrid systems, we

show that safety is equivalent to the existence of a locally

Lipschitz barrier function satisfying sufficient infinitesimal

conditions for safety.

The rest of the paper is organized as follows. Preliminaries are

in Section 2. The considered reachability maps are in Section 3. The

pathologies preventing the Lipschitz continuity of the considered

maps are in Section 4. The main results are in Section 5. Finally, the

application to the converse safety problem is in Section 6.

Due to space constraints, the proofs are omitted and will be

published elsewhere.

Notation. Let R≥0 := [0,∞) and N := {0, 1, . . . ,∞}. For x ,
y ∈ Rn , x⊤ denotes the transpose of x , |x | the Euclidean norm

of x , |x |K := infy∈K |x − y | defines the distance between x and the

nonempty set K , and ⟨x,y⟩ = x⊤y denotes the scalar product be-

tween x andy. For a setK ⊂ Rn , we use int(K ) to denote its interior,

∂K to denote its boundary, cl(K) to denote its closure, and U (K)

to denote any open neighborhood of K . For a set O ⊂ Rn , K\O
denotes the subset of elements of K that are not in O . By B, we
denote the closed unit ball in Rn centered at the origin. Finally,

F : Rm ⇒ Rn denotes a set-valued map associating each element

x ∈ Rm into a set F (x ) ⊂ Rn .

2 PRELIMINARIES
2.1 Set-Valued and Nonsmooth Analysis

We start this section by recalling the following semicontinuity

and boundedness notions [15, 16].

Definition 1 (Semicontinuous set-valued maps). Consider a
set-valued map F : Rm ⇒ Rn .

• The map F is said to be outer semicontinuous at x ∈ Rm if,
for all {xi }∞i=0

⊂ Rm and for all {yi }∞i=0
⊂ Rn with xi → x ,

yi ∈ F (xi ), and yi → y ∈ Rn , we have y ∈ F (x); see [12,
Definition 5.9].

• The map F is said to be lower semicontinuous (or, equivalently,
inner semicontinuous) at x ∈ Rm if, for each ϵ > 0 and for each
yx ∈ F (x ), there existsU (x ) such that, for each z ∈ U (x ), there
exists yz ∈ F (z) such that |yz − yx |≤ ϵ ; see [17, Proposition
2.1].

• The map F is said to be upper semicontinuous at x ∈ Rm if,
for each ϵ > 0, there existsU (x) such that, for each y ∈ U (x),
F (y) ⊂ F (x ) + ϵB; see [15, Definition 1.4.1].

• The map F is said to be continuous at x ∈ Rm if it is both
upper and lower semicontinuous at x .

Furthermore, the map F is said to be upper, lower, outer semicon-
tinuous, or continuous if it is upper, lower, outer semicontinuous, or
continuous for all x ∈ Rm , respectively. •

Definition 2 (Semicontinuous single-valued maps). Con-
sider a scalar function B : Rm → R.

• The scalar function B is said to be lower semicontinuous at
x ∈ Rm if, for every sequence {xi }

∞
i=0

⊂ Rm such that
limi→∞ xi = x , we have lim infi→∞ B(xi ) ≥ B(x ).

• The scalar function B is said to be upper semicontinuous at
x ∈ Rm if, for every sequence {xi }

∞
i=0

⊂ Rm such that
limi→∞ xi = x , we have lim supi→∞ B(xi ) ≤ B(x ).

• The scalar function B is said to be continuous at x ∈ Rm if it
is both upper and lower semicontinuous at x .

Furthermore, B is said to be upper, lower semicontinuous, or contin-
uous if it is upper, lower semicontinuous, or continuous for all x ∈ Rm ,
respectively. •

Definition 3 (Locally Lipschitz maps). The set-valued map
F : M(⊂ Rm ) ⇒ Rn is said to be locally Lipschitz around x ∈ M if
there existU (x) and k > 0 such that, for all (x1, x2) ∈ (U (x) ∩M) ×

(U (x ) ∩M),

F (x1) ⊂ F (x2) + k |x1 − x2 |B. (1)

Furthermore, the set-valued map F : M ⇒ Rn is said to be locally
Lipschitz on M ′ ⊂ M if so is the map F : M ′ ⇒ Rn around each
x ∈ M ′. •

The proximal normal cone of a set K ⊂ Rn at x ∈ cl(K) is given

by

N P
K (x ) :=

{
ζ ∈ Rn : ∃t > 0 such that |x + tζ |K= t |ζ |

}
. (2)

Furthermore, according to the same reference, the proximal subdif-
ferential of a lower semicontinuous function B : Rn → R, denoted
by ∂PB, evaluated at x ∈ Rn is a subset of the normal proximal

cone N P
epiB

((x,B(x ))), where epiB is the epigraph of B; namely,

epiB :=

{
(x, r ) ∈ Rn × R : r ≥ B(x )

}
. (3)

Definition 4. The proximal subdifferential of a lower semicon-
tinuous function B : Rn → R is the set-valued map ∂PB : Rn ⇒ Rn

defined for all x ∈ Rn as

∂PB(x ) :=

{
ζ ∈ Rn : [ζ⊤ − 1]

⊤ ∈ N P
epiB (x,B(x ))

}
. (4)

Moreover, each vector ζ ∈ ∂PB(x ) is said to be a proximal subgradient
of B at x . •

2.2 Hybrid Systems
Following the framework proposed in[12], a hybrid dynamical

system H = (C, F ,D,G) is modeled as

H :

{
x ∈ C Ûx ∈ F (x )

x ∈ D x+ ∈ G(x ),
(5)

with the state variable x ∈ Rn , the flow set C ⊂ Rn , the jump set

D ⊂ Rn , and the flow and the jump set-valued maps, respectively,

F : Rn ⇒ Rn and G : Rn ⇒ Rn .
A hybrid arc ϕ is defined on a hybrid time domain denoted

domϕ ⊂ R≥0 × N. The hybrid arc ϕ is parametrized by an ordi-

nary time variable t ∈ R≥0 and a discrete jump variable j ∈ N. Its
domain of definition domϕ is such that for each (T , J ) ∈ domϕ,
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domϕ ∩ ([0,T ] × {0, 1, . . . , J }) = ∪
J−1

j=0

(
[tj , tj+1] × {j}

)
for a se-

quence

{
tj
} J+1

j=0
, such that tj+1 ≥ tj and t0 = 0.

Definition 5 (Concept of solution to H ). A hybrid arc ϕ :

domϕ → Rn is a solution toH if

(S0) ϕ(0, 0) ∈ cl(C) ∪ D;
(S1) for all j ∈ N such that I j := {t : (t, j) ∈ domϕ} has nonempty

interior, t 7→ ϕ(t, j) is locally absolutely continuous and

ϕ(t, j) ∈ C for all t ∈ int(I j ),
Ûϕ(t, j) ∈ F (ϕ(t, j)) for almost all t ∈ I j ;

(6)

(S2) for all (t, j) ∈ domϕ such that (t, j + 1) ∈ domϕ,

ϕ(t, j) ∈ D, ϕ(t, j + 1) ∈ G(ϕ(t, j)). (7)

•

A solutionϕ toH is said to be maximal if there is no solutionψ to

H such thatϕ(t, j) = ψ (t, j) for all (t, j) ∈ domϕ with domϕ a proper

subset of domψ . It is said to be trivial if domϕ contains only one

element. The systemH is said to be complete if the domain of each

maximal solution is unbounded. It is said to be pre-complete if the

domain of each maximal solution is closed. Finally, we use
ˆSH (xo )

to denote the set of solutions to H starting from xo ∈ cl(C) ∪ D.
Finally, we use reach(xo ) to denote the set generated by themaximal

solutions starting from xo ∈ cl(C); namely,

reach(xo ) :=

{
ϕ(t, j) : (t, j) ∈ domϕ, ϕ ∈ ˆSH (xo )

}
. (8)

A hybrid arc ϕ is a backward solution to H if there exists a

solution ψ to the hybrid system H−
such that domϕ = − domψ

andψ (t, j) = ϕ(−t,−j) for all (t, j) ∈ domψ , where

H−
:

{
x ∈ C Ûx ∈ −F (x )

x ∈ G(D) x+ ∈ G−1

D (x )
(9)

and G−1

D : G(D) ⇒ Rn is the reciprocal map of the jump map G
restricted to the set D; namely,

G−1

D (y) := {x ∈ D : y ∈ G(x )} . (10)

Furthermore, for each x ∈ cl(C) ∪D, we introduce the set ˆS−
H

(x )

as:

• The set of backward solutions to H starting from x if x ∈

cl(C) ∪ (G(D) ∩ D).

• The trivial hybrid arc starting from x , otherwise.

According to [12], a hybrid inclusion H = (C, F ,D,G) is said to

satisfy the hybrid basic conditions if the following conditions are

satisfied.

(A1) The sets C and D are closed.

(A2) The flow map F : Rn ⇒ Rn is outer semicontinuous and lo-

cally bounded relative toC , and F (x ) is nonempty and convex

for all x ∈ C .
(A3) The jump mapG : Rn ⇒ Rn is outer semicontinuous relative

to D and G(x ) is nonempty for all x ∈ D.
(A4) The jump map G : Rn ⇒ Rn is locally bounded relative to D.

Remark 1. The hybrid basic conditions (A1)-(A4) are shown in

[12] to guarantee very useful structural properties for the set of

solutions to H . Due to this, H satisfying (A1)-(A4) is said to be

well posed. •

2.3 Minimal-Time Functions for Constrained
Differential Inclusions

In this section, we recall from [18] the definition of the minimal-

time function with respect to a closed the set K ⊂ C for the contin-

uous dynamics of H given by

Hf : Ûx ∈ F (x ) x ∈ C . (11)

Similar to the notion of solutions toH , a solutionϕ toHf is defined

as a solution toH that never jumps and domϕ ⊂ R≥0.

Definition 6. The minimal-time function tmin
K : cl(C) → R≥0

with respect to a closed the set K ⊂ cl(C) and for a constrained system
Hf = (C, F ) is given by

tmin
K (xo ) :=



+∞ if reach(xo ) ∩ K = ∅

0 if xo ∈ K

min

ϕ(t ) ∈ K
t ∈ domϕ

ϕ ∈ ˆSHf (xo )

t otherwise. (12)

•

The minimal-time function tmin
K in Definition 6 provides the

first time that a solution to Hf starting from xo ∈ cl(C) reaches

the set K . If all the solutions starting from xo never reach the set

K , the minimal-time function is set to infinity. In [18, Theorem

1], we proposed necessary and sufficient conditions such that the

minimal-time function tmin
K introduced in Definition 6 is locally

Lipschitz on the set Smin
K defined by

Smin
K :=

{
x ∈ cl(C) : tmin

K (x ) < +∞
}
. (13)

The proposed conditions in [18] are infinitesimal; i.e., they involve

only the sets K and C , and the map F .
Furthermore, given a closed setK ⊂ cl(C), we define the function

tK : cl(C) → R≥0 as

tK (xo ) :=


tmin
K (xo ) if xo ̸∈ K or

ˆSHf (xo ) is trivial,

inf

ϕ∈ ˆSHf (xo )

lim inf

t→0
+

tmin
K (ϕ(t )) otherwise.

(14)

The only difference between tK and tmin
K is that, when xo ∈ K and

the maximal solutions starting from xo immediately leave the set

K , tK (xo ) provides the next time, after the initial time, at which a

maximal solution from xo reaches the set K . The latter is captured
by the "otherwise" piece in (14).

Lipschitz continuity of the function tK can be deduced, in some

cases, from to Lipschitz continuity of the minimal-time function

tmin
Ka

with respect to a subset Ka ⊂ K as shown in [18].

The following example illustrates this point.

Example 1. [Bouncing ball] The continuous dynamics of the

bouncing ball hybrid model is given by Hf := (C, F ), where F (x ) :=

[x2 −γ ]
⊤
for eachC :=

{
x ∈ R2

: x1 ≥ 0

}
, and the constant γ > 0

is the gravity acceleration. Furthermore, we consider the (jump) set

D :=

{
x ∈ R2

: x1 = 0, x2 ≤ 0

}
⊂ ∂C . (15)

Next, we consider the sets (K,Ka ) = (∂C,D) and we show that

t∂C (x) = tmin
D (x) for each x ∈ C . Indeed, it is easy to see that the
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solutions to Hf starting from D are trivial. Furthermore, the set

D is closed and is a subset of ∂C . Hence, for all x ∈ D, t∂C (x) = 0.

Furthermore, for all x ∈ ∂C\D, t∂C (x) > 0 since the solutions

starting from ∂C\D flow immediately in int(C) and they remain in

int(C) until they reach the set D. �

The Lipschitz continuity of tK on the set

SK := {x ∈ cl(C) : tK (x ) < ∞} (16)

will play a key role when analyzing the Lipschitz continuity of the

reachablity maps for hybrid systems.

2.4 Monotonicity Along Solutions to
Constrained Differential Inclusions

In this section, we recall from [19] necessary and sufficient in-

finitesimal conditions such that a lower semicontinuous function

B : Rn → R satisfies the following monotonicity property:

(⋆) The function B is nonincreasing along the solutions to Hf =

(C, F ); namely, for every solution t 7→ ϕ(t ), the map t 7→

B(ϕ(t )) is nonincreasing. Equivalently, B(ϕ(t1)) ≤ B(ϕ(t2)) for

all (t1, t2) ∈ domϕ × domϕ with t1 ≥ t2.

To do so, we consider the following assumptions:

(a1) F : Rn ⇒ Rn is locally Lipschitz.

(a2) F (x ) is convex and closed for all x ∈ C .
(a3) For every nontrivial solution ϕ starting from xo ∈ ∂C , there

exists ϵ > 0 such that ϕ((0, ϵ], xo ) ⊂ int(C).

(a4) B is continuous on ∂C ∩ C̃ , where

C̃ :=

{
xo ∈ cl(C) : ∃ϕ ∈ ˆSH (xo ), domϕ ̸= {0}

}
. (17)

Furthermore, we consider the following infinitesimal condition:

⟨ζ ,η⟩ ≤ 0 ∀ζ ∈ ∂PB(x ), ∀η ∈ F (x ), ∀x ∈ int(C). (18)

Lemma 2.1. [19, Corollary 4.13] Consider a constrained system
Hf = (C, F ) such that (a1)-(a2) hold and let B : Rn → R be a lower
semicontinuous function. Then,

• (⋆) ⇒ (18).
• When C̃ is open or when (a3)-(a4) hold, (⋆)⇔ (18).

3 REACHABILITY MAPS FOR HYBRID
SYSTEMS

In this section, we introduce the reachability maps studied in

this paper. In the case of hybrid systems, different definitions of

reachability maps are available in the literature [12, Section 6.3.2].

In this paper, the maps we propose are those we find the most

helpful to study the converse safety problem in Section 6 in the

sense that they allow useful continuity properties with respect to

their arguments.

Given xo ∈ cl(C) ∪ D, T ∈ R≥0, J ∈ N, and T (T , J ) := [0,T ] ×

{0, 1, . . . , J }. Similar to [8], we define the reachabilitymapR : R≥0×

N × (cl(C) ∪ D) ⇒ cl(C) ∪ D ∪G(D) as

R(T , J , xo ) :=

{
ϕ(t, j) : ϕ ∈ ˆSH (xo ), (t, j) ∈ domϕ ∩ T (T , J )

}
.

(19)

The map R(T , J , xo ) provides the set reached by the solutions start-

ing from the initial condition xo during the interval of flow [0,T ]

and without exceeding J number of jump.

Furthermore, given xo ∈ cl(C) ∪ D, T ∈ R≥0, J ∈ N, and
T (T , J ) := [0,T ] × {0, 1, . . . , J }, we define the reachability map

Rb : R≥0 × N × (cl(C) ∪ D) ⇒ cl(C) ∪ D ∪G(D) as

Rb (T , J , xo ) :=

{
ϕ(t, j) : ϕ ∈ ˆSH (xo ), (t, j) ∈ domϕ ∩ T (T , J ),

̸∃ (t ′, j ′) ∈ domϕ ∩ T (T , J ) s.t. t ′ + j ′ > t + j
}
. (20)

The map Rb (T , J , xo ) contains the elements of R(T , J , xo ) that are

the last to reach by the maximal solution starting from xo .
We also recall the reachability map introduced in [8]. Given

xo ∈ cl(C)∪D,T ∈ R≥0, and J ∈ N, the map R̂ : R≥0 ×N× (cl(C)∪

D) ⇒ cl(C) ∪ D is defined as

R̂(T , J , xo ) :=

{
ϕ(t, j) : ϕ ∈ ˆSH (xo ), (t, j) ∈ domϕ ∩ Tϕ (T , J )

}
,

(21)

where

Tϕ (T , J ) := [0,T + δϕ (T , J )] × {0, 1, . . . , J } , (22)

δϕ (T , J ) :=
min{δ ≥ 0 : (T + δ , Jϕ (J )) ∈ domϕ} if I Jϕ (J ) ∩ [0,T ] = ∅

0 otherwise,
(23)

Jϕ (J ) := max{j ≤ J : ∃t ≥ 0 : (t, j) ∈ domϕ}, (24)

and

I Jϕ (J )
:=

{
t ∈ R≥0 : (t, Jϕ (J )) ∈ domϕ

}
. (25)

The reachability map R̂(T , J , xo ) includes not only the elements

reached by the maximal solutions starting from xo over the hybrid

window T (T , J ), but also the elements reached by each maximal

solution ϕ starting from xo after time T until the jump Jϕ (J ) ≤ J
happens, if the latter happens after time T . The value of Jϕ (J ) is
the last jump that the maximal solution ϕ achieves on the hybrid

interval R≥0 × {0, 1, . . . , J }.
Finally, given xo ∈ cl(C)∪D,T ∈ R≥0, and J ∈ N, the reachability

map R̂b : R≥0 × N × (cl(C) ∪ D) ⇒ cl(C) ∪ D ∪G(D) is defined as

R̂b (T , J , xo ) :=

{
ϕ(t, j) : ϕ ∈ ˆSH (xo ), (t, j) ∈ domϕ ∩ Tϕ (T , J ),

̸∃ (T ′, J ′) ∈ Tϕ (T , J ) ∩ domϕ s.t. T ′
+ J ′ > T + J

}
. (26)

The map R̂b (T , J , xo ) contains the elements of R̂(T , J , xo ) that are

the last to reach by the maximal solutions starting from xo .

Remark 2. When there is a unique solution ϕ toH starting from

xo ∈ cl(C) ∪ D, we conclude that, for all (T , J ) ∈ R≥0 × N,

R̂(T , J , xo ) = R(T + δϕ (T , J ), J , xo )

and

R̂b (T , J , xo ) = Rb (T + δϕ (T , J ), J , xo ).

•

The different reachability maps introduced above are illustrated

in the following example:

Example 2. Consider the hybrid dynamical system modeling

the bouncing ball with the following data:

F (x ) := [x2 − γ ]
⊤ ∀x ∈ C :=

{
x ∈ R2

: x1 ≥ 0

}
,

G(x ) := [0 − λx2]
⊤ ∀x ∈ D :=

{
x ∈ R2

: x1 = 0, x2 ≤ 0

}
.

The constants γ > 0 and λ ∈ [0, 1] are the gravity acceleration and

the restitution coefficient, respectively. Let xo := [xo1 xo2]
⊤ ∈
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int(C)\D (i.e., xo1 > 0) and let ϕ be the (unique) maximal solu-

tion starting from xo . Furthermore, let To ≥ 0 be the time at

which the solution ϕ achieves the first jump, which is given by

To =

xo2+

√
x 2

o2
+2γ xo1

γ . Now, for each T ∈ (0,To ), the reachabil-

ity map in (19) results in R(T , 1, xo ) = R(T , 0, xo ) = ϕ([0,T ], 0) =⋃T
s=0

{[
− 1

2
γs2

+ xo2s + xo1 − γs + xo2

]⊤}
and the the reachabil-

ity map in (20) results in Rb (T , 1, xo ) = Rb (T , 0, xo ) = ϕ(T , 0) =[
− 1

2
γT 2

+ xo2T + xo1 − γT + xo2

]⊤
. Now, using the definitions

in (21) and (26), we compute R̂(T , 1, xo ) and R̂b (T , 1, xo ) for the same

initial condition xo and forT ∈ (0,To ). Using (23), we conclude that

δϕ (T , 1) = To −T . Hence, we obtain

R̂(T , 1, xo ) = R(To, 1, xo ) = ϕ([0,To], 0)

⋃
{ϕ(To, 1)}

= ϕ([0,To], 0) ∪ {G(ϕ(To, 0))}

=

To⋃
s=0

{[
−γs2/2 + xo2s + xo1 − γs + xo2

]⊤}
∪

{[
0 λ

(
x2

o2
+ 2γxo1

) 1

2

]⊤}
and

R̂b (T , 1, xo ) = Rb (To, 1, xo ) = ϕ(To, 1) = G(ϕ(To, 0))

=

[
0 λ

(
x2

o2
+ 2γxo1

) 1

2

]⊤
.

Finally, we notice that, for all T ≥ To ,

R̂(T , 1, xo ) = R(T , 1, xo ) and R̂b (T , 1, xo ) = Rb (T , 1, xo ).

�

Remark 3. When H = (C, F , ∅,⋆), namely, H is a constrained

differential inclusion, we conclude that, for all (T , x ) ∈ R≥0 × cl(C),

R(T , J , x ) = R̂(T , J , x ) =: R̃(T , x ) ∀J ∈ N (27)

and

Rb (T , J , x ) = R̂b (T , J , x ) =: R̃b (T , x ) ∀J ∈ N. (28)

•

Remark 4. In [8], the continuity properties for the maps R and

R̂ are analyzed and it is shown that, when H satisfies the hybrid

basic conditions (A1)-(A4), the map R is outer semicontinuous and

locally bounded. The same statement holds for R̂ provided that an

extra condition is satisfied. This extra condition corresponds to the

assumption (M7X ) used below while replacing the set X therein

by Rn . It was also shown that the map R fails to be continuous

with respect to time, as opposed to R̂ which enjoys this property

provided that the latter extra condition is satisfied. •

4 PATHOLOGICAL CASES FOR
LIPSCHITZNESS OF THE REACHABILITY
MAPS

When the systemHf in (11) with C = Rn and locally Lipschitz

F such that (A2) holds, using the well-known Filippov Theorem [5,

Theorem 5.3.1], we are able to show that both maps Rb (≡ R̂b ) and

R(≡ R̂) are locally Lipschitz, see LemmaA.1. However, in the general

case of hybrid systems satisfying the hybrid basic conditions (A1)-

(A4), even when the system is pre-complete with F and G single

valued and smooth, the reachability maps (R,Rb , R̂, R̂b ) may not

be continuous at (To, J , xo ) ∈ R≥0 × N × (C ∪ D). Indeed, for the

canonical bouncing-ball system, it is shown in [8, Example 4.4]

that the maps R and Rb are continuous only at points (To, J , xo ) ∈

R≥0 × N × (C ∪ D) such that the following condition holds:

(⋆⋆) If To > 0 then each solution ϕ starting from xo is such that,

for each j ∈ {1, 2, ..., J }, its j-th jump does not occur at the

hybrid time (To, j − 1).

In the sequel, we present different pathological scenarios of

hybrid systems that, though satisfy (SA), their reachability maps R,

Rb , R̂, and R̂b are not locally Lipschitz.

4.1 When the Function t∂C : C → R≥0 is not
Locally Lipschitz on S∂C

This scenario is illustrated in the following simple example.

Example 3. Consider the constrained systemHf = (C, F ) with

F (x ) := [1 0]
⊤, C :=

{
x ∈ R2

: x1 ≤
√
|x2 | + 2

}
.

Note that F is single-valued and locally Lipschitz and that Hf is

pre-complete. Moreover,

t∂C (x ) = tmin
∂C (x ) ∀x ∈ C .

Furthermore, let (xao, xbo ) ∈ C ×C with xao := [1 0]
⊤
and xbo :=

[1 β]
⊤
, for some β ∈ [0, 1]. Let (ϕa,ϕb ) be the maximal solutions

starting from (xao, xbo ), respectively. After some computations, we

obtain that t∂C (xbo ) = tmin
∂C (xbo ) = 1 +

√
β , t∂C (xao ) = tmin

∂C (xao ) =

1, ϕb (t∂C (xbo ), 0) = [2 +

√
β β]

⊤
, and ϕa (t∂C (xao ), 0) = [2 0]

⊤
.

First, it is easy to see that the function t∂C is not locally Lipschitz

since |t∂C (xbo ) − t∂C (xao )|=
√
β and |xbo − xao |= β . Furthermore,

for T ∗
= 2, we obtain

R̃b (T ∗, xbo ) = ϕ2(t∂C (xbo ), 0)

and

R̃b (T ∗, xao ) = ϕ1(t∂C (xao ), 0).

The latter implies that x 7→ Rb (T ∗, x ) is not locally Lipschitz on C
since

|R̃b (T ∗, xbo ) − R̃b (T ∗, xao )|=

√
β + β2

and

|xbo − xao |= β .

�

4.2 When Solutions are Nontrivial After
Reaching ∂C

Suppose the existence of a solution ϕ starting from xo ∈ int(C)

such that 0 < t∂C (xo ) < ∞ and domϕ := [0,T ∗
] with T ∗ > t∂C .

In this case, it is possible to find an example where there exists a

sequence of initial conditions {xoi }
∞
i=0

⊂ int(C) with limi→∞ xoi =

xo such that each maximal solution ϕi staring from xoi satisfies
domϕi := [0, t∂C (xoi )] with t∂C (xoi ) ≤ t∂C (xo ) < T ∗

. Hence, in

such a scenario, the map x 7→ R̃b (T ∗, x ) fails to be locally Lipschitz

since, for each i ∈ N,

|R̃b (T ∗, xo )−R̃b (T ∗, xoi )|= |ϕ(T ∗, 0) − ϕi (t∂C (xoi ), 0)|.

In fact, the time mismatch in the right-hand side of the previous

equality will not allow the map R̃b to be locally Lipschitz, see

Example 4.
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Example 4. Consider the constrained systemHf with

F (x ) := [−1 0]
⊤, C := R2\

{
x ∈ R2

: x1 < 0, |x2 |< 1

}
.

It is easy to see that (SA) is satisfied. Furthermore, let ϕ be the

solution starting from xo := [1 1]
⊤
, and let ϕi be the solution

starting from xoi := [1 1− (1/i)]⊤. It is easy to see that t∂C (xoi ) =

t∂C (xo ) = 1, (t∂C is locally Lipschitz) and domϕi = [0, t∂C (xoi )] =

[0, 1] for all i ∈ N. However, domϕ = [0, +∞); hence, when T ∗
= 2

and for any i ∈ N,

|R̃b (2, xo )−R̃b (2, xoi )|= |ϕ(2, 0) − ϕi (1, 0)|

=|[−1 1]
⊤ − [0 1 − (1/i)]⊤ |> 1,

which shows that the map x 7→ R̃b (2, x ) is not locally Lipschitz. �

4.3 When Solutions Start From ∂C
Suppose the existence of xo ∈ ∂C such that a nontrivial solution

ϕ starting from xo exists; namely, domϕ = [0,T ∗
], for someT ∗ > 0.

In this case, the following two situations prevent the maps R and Rb

from being locally Lipschitz. The first situation is when there exists a

sequence of initial conditions {xoi }
∞
i=0

⊂ ∂C with limi→∞ xoi = xo
such that each maximal solution ϕi starting from xoi is trivial, i.e.,

domϕi = {0}. In such a scenario, the map x 7→ R̃b (T ∗, x ) fails to be

locally Lipschitz since

|R̃b (T ∗, xo ) − R̃b (T ∗, xoi )|= |ϕ(T ∗, 0) − ϕi (0, 0)|, (29)

and the time mismatch in the right-hand side of the previous equal-

ity will not allow the map to be locally Lipschitz. The following

example illustrate this case.

Example 5. Consider the constrained system Hf = (C, F ) in

Example 4 and let xo := [0 1]
⊤
and xoi := [0 1 − 1/(i + 1)]

⊤
for

all i ∈ N. It is easy to see in this case that (29) holds and reachability

maps are not locally Lipschitz. �

The second situation is when the solution ϕ starting from xo ∈

∂C remains in ∂C , its domain is unbounded, and there exists a se-

quence of initial conditions {xoi }
∞
i=0

⊂ ∂C with limi→∞ xoi = xo
such that each maximal solution ϕi starting from xoi is nontriv-
ial but its domain is bounded, i.e., domϕi = [0, t∂C (xoi )] and

supi ∈N {t∂C (xoi )} < ∞. In such a scenario, the map x 7→ R̃b (T ∗, x )

fails to be locally Lipschitz for sufficiently large T ∗ > 0 since

|R̃b (T ∗, xo ) − R̃b (T ∗, xoi )|= |ϕ(T ∗, 0) − ϕi (t∂C (xoi ), 0)|.

This issue is illustrated in the following example.

Example 6. Consider the constrained systemHf = (C, F ) with

F (x ) := [1 0]
⊤ ∀x ∈ C,

C := R2\
{
x ∈ R2

: x1 ∈ (1, 2), |x2 |> 0

}
.

Let xo := [0 0]
⊤
and let xoi := [0 1/(i + 1)]

⊤
for all i ∈ N. �

4.4 When the Function tD : C → R≥0 is Not
Locally Lipschitz on SD

Consider a compact set K ⊂ int(C) such that the following are

satisfied:

(1) Each solution ϕ starting from xo ∈ K reaches the set D after

a time tD (xo ) > 0, where tD is as introduced in (14). Hence,

K ⊂ SD .

(2) There exists T ∗ ∈ (0,∞) such that

T ∗ > sup

xo ∈K
tD (xo ).

(3) After reaching the setD, each solutionϕ starting fromxo ∈ K
jumps back to the set int(C)\D.

(4) For every solution ϕ staring from xo ∈ K ,

[tD (xo ),T ∗
] × {1} ⊂ domϕ . (30)

We start noticing that

Rb (T ∗, 1, x ) = R̂b (T ∗, 1, x ) ∀x ∈ K

and (T ∗, 1, xo ) satisfies (⋆⋆) for all x ∈ K . Furthermore, if the

map x 7→ Rb (T ∗, 1, x) is locally Lipschitz on K , then there ex-

ists a constant λ > 0 such that, for any two initial conditions

(xo1, xo2) ⊂ K×K and two solutions (ϕ1,ϕ2) starting from (xo1, xo2),

respectively,

|Rb (T ∗, 1, xo1) − Rb (T ∗, 1, xo2)|≤ λ |xo1 − xo2 |. (31)

Now, using Lemma A.1 under (30), we conclude the existence of

λ1 > 0 such that

|Rb (T ∗, 1, xo1)−Rb (T ∗, 1, xo2)|≤ λ1 (|tD (xo1) − tD (xo2)|+

|ϕ1(tD (xo1), 1) − ϕ2(tD (xo2), 1)|) .

Next, since the jump map is locally Lipschitz, we conclude the

existence of λ2 > 0 such that

|ϕ1(tD (xo1), 1) − ϕ2(tD (xo2), 1)|≤ λ2 |ϕ1(tD (xo1), 0) − ϕ2(tD (xo2), 0)|;

hence,

|Rb (T ∗, 1, xo1)−Rb (T ∗, 1, xo2)|≤ λ1 |tD (xo1) − tD (xo2)|+

λ1λ2 |ϕ1(tD (xo1), 0) − ϕ2(tD (xo2), 0)|.

Finally, using Lemma A.1, we conclude the existence of λ3 such

that

|ϕ2(tD (xo2), 0) − ϕ1(tD (xo1), 0)|≤

λ3 (|tD (xo1) − tD (xo2)|+|xo1 − xo2 |) ;

hence,

|Rb (T ∗, 1, xo1)−Rb (T ∗, 1, xo2)|≤ λ1λ2λ3 |xo1 − xo2 |+

(λ1 + λ1λ2λ3)|tD (xo1) − tD (xo2)|.

In this particular scenario, when the minimal-time function tD
is locally Lipschitz on K , we conclude that so is the map x 7→

Rb (t∗, 1, x) on K . On the other hand, when the function tD is not

locally Lipschitz on K , it is possible to construct a counterexample

where x 7→ Rb (t∗, 1, x ) is also not locally Lipschitz, as shown in the

next example.

Example 7. Consider the hybrid system with the following data:

F (x ) := [1 0]
⊤ ∀x ∈ C :=

{
x ∈ R2

: x1 ≥
√
|x2 | + 2

}
,

G(x ) := [−x1 x2]
⊤ ∀x ∈ D := R2\int(C).

It easy to see that conditions (A1)-(A4) are satisfied, both F and G
are locally Lipschitz, and that the maximal solutions to the systems

are unique. Consider the compact set K given by

K :=

{
x ∈ R2

: x1 = 1, x2 ∈ [0, 1]

}
. (32)

Let (xo1, xo2) ∈ K × K with xo1 := [1 0]
⊤
and xo2 := [1 β],

β ∈ [0, 1]. After some computations, we obtain that

tD (xo2) = 1 +

√
β, tD (xo1) = 1
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and

ϕ2(tD (xo2), 0) = [2 +

√
β β]

⊤

and

ϕ1(tD (xo1), 0) = [2 0]
⊤.

First, it is easy to see that the function tD is not locally Lipschitz

since |tD (xo2) − tD (xo1)|=
√
β and |xo2 − xo1 |= β . Furthermore, it

is easy to see that T ∗
= 2; hence,

Rb (T ∗, 1, xo2) = [−1 + 2

√
β β]

⊤

and

Rb (T ∗, 1, xo1) = [−1 0]
⊤.

The latter fact allows to conclude that the map x 7→ Rb (T ∗, 1, x ) is

not locally Lipschitz since |Rb (T ∗, 1, xo2)−Rb (T ∗, 1, xo1)|=
√

4β + β2

and |xo2 − x1o |= β . �

4.5 From Pure Discrete to Pure Continuous
Behavior

Suppose the existence of a solution ϕ starting from an initial

condition xo ∈ C ∩ D that jumps one time then flows. We assume

further the existence of a sequence of initial conditions {xoi }
∞
i=0

⊂

D\C with limi→∞ xoi = xo such that each solution ϕi starting
from xoi is a purely discrete solution that ends after only one jump.

In this case, the possibility of flowing from G(xo ) is an emergent

behavior on the limit of the sequence {xoi }
∞
i=0

, which may allow

the solutions starting from xo to reach state values that are far

enough from those reached from the xoi ’s. As a consequence, the
reachability maps in this case can fail to be locally Lipschitz around

xo , as shown in the next example.

Example 8. Consider the hybrid system with the following data:

F (x ) :=[−x2 1]
⊤ ∀x ∈ C :=

{
x ∈ R2

: x1 ≥ 0

}
,

G(x ) :=[x1 − x2]
⊤ ∀x ∈ D := R≤0 × R≥0.

First, it easy to see thatRb (1, 1, x ) = R̂b (1, 1, x ) for all x ∈ D, and that
(1, 1, x ) satisfies (⋆⋆) for all x ∈ D. Furthermore, we will show that

the set-valued map x 7→ Rb (1, 1, x) is not locally Lipschitz around

the elements of the set C ∩ D :=

{
x ∈ R2

: x1 = 0, x2 ≥ 0

}
. Indeed,

let xo := [0 1]
⊤
and let the sequence {xoi }

∞
i=0

given by xoi :=

[−1/i 1]
⊤
. It is easy to see that Rb (1, 1, xoi ) =

{
[−1/i − 1]

⊤
}
for

all i ∈ N. Furthermore, the system admits a solution starting from

xo = [0 1]
⊤
given by ϕ(0, 1) = [0 − 1]

⊤
and ϕ(t, 1) = [(1/2)t2 −

t t − 1]
⊤
for all t ∈ [0, 1]. Hence, Rb (1, 1, xo ) = −[1/2 0]

⊤
.

Hence, we conclude that x 7→ Rb (1, 1, x) is not locally Lipschitz

since |Rb (1, 1, xoi )−R
b

(1, 1, xo )|> 1 and |xoi −xo |= 1/i for all i ∈ N.
�

4.6 From Pure Continuous to Pure Discrete
Behavior

Consider the solution ϕ starting from an initial condition xo ∈

C ∩ D. Assume further the existence of a sequence of initial condi-

tions {xoi }
∞
i=0

⊂ C\D with limi→∞ xoi = xo such that each solution
ϕi starting from xoi is either trivial or a pure continuous-time solu-

tion that never jump. In this case, the jump from xo is an emergent

behavior on the limit of the sequence {xoi }
∞
i=0

, which may allow

the solutions starting from xo to reach new elements that are far

enough from those reached from the xoi ’s. As a consequence, the
reachability maps, also in this case, can fail to be locally Lipschitz

around xo , as shown in the next example.

Example 9. Consider the hybrid system with the following data:

F (x ) := [−1 |x1 |]
⊤ ∀x ∈ C := R2\

{
x ∈ R2

: x1 < 0, x2 > 0

}
,

G(x ) := [0 x2 − 1]
⊤ ∀x ∈ D :=

{
x ∈ R2

: x2 = 0, x1 ≤ 0

}
.

First, it easy to see that Rb (1, 1, x ) = R̂b (1, 1, x ) for all x ∈ D and that

(1, 1, x ) satisfies (⋆⋆) for all x ∈ D. Furthermore, we will show that

the set-valued map x 7→ Rb (1, 1, x) is not locally Lipschitz around

the element xo = [0 0]
⊤ ∈ C ∩ D =

{
x ∈ R2

: x1 = 0, x2 ≥ 0

}
. In-

deed, let the sequence {xoi }
∞
i=0

given by xoi := [xoi1 xoi2]
⊤

:=

[1/(i + 1) 0]
⊤
. It is easy to see that Rb (1, 1, xoi ) = ϕi (t = xoi1, 0) =[

0 x2

oi1/2
]⊤

for all i ∈ N. Furthermore, the system admits a so-

lution starting from xo given by ϕ(0, 1) = [0 − 1]
⊤
and ϕ(t, 1) =

[−t − t2/2 − 1]
⊤
for all t ∈ [0, 1]. Hence, Rb (1, 1, xo ) = [−1 −

3/2]
⊤
, which implies that x 7→ Rb (1, 1, x) is not locally Lipschitz

around (1, 1, xo ) since |Rb (1, 1, xoi )−R
b

(1, 1, xo )|> 1 and |xoi −xo |=
1/(i + 1) for all i ∈ N. �

5 SUFFICIENT CONDITIONS FOR
LIPSCHITZNESS OF REACHABILITY MAPS

In this section, we investigate sufficient conditions onH guaran-

teeing that the reachability maps (R,Rb , R̂, R̂b ) are locally Lipschitz

(in the sense of Definition 3) in some regions within their domain.

For starters, we assume

(SA) The systemH = (C, F ,D,G) is such that (A1) holds, F is single

valued and locally Lipschitz on C , and G is single valued and

locally Lipschitz on D. Furthermore,H is pre-complete and

has unique solutions.

These properties are easy to check. In particular, completeness

and uniqueness are satisfied when the flows of H do not escape

in finite time and the conditions in [12, Proposition 2.11] hold. It

is important to notice that the hybrid systems in the examples

presented in Section 4 do satisfy (SA). In addition to (SA), and to

avoid the scenarios in Sections 4.1-4.6, we consider the following

additional assumptions with respect to a given set X ⊂ Rn :

(M1X ) The setX is forward pre-invariant forH ; namely,ϕ(domϕ) ⊂

X for all ϕ ∈ ˆSH (X ).

(M2X ) The function t∂C defined in (14) is locally Lipschitz on S∂C∩
X , where S∂C is given in (16).

(M3X ) The flows ofH starting from xo ∈ X∩∂C , with xo reachable
by a flow starting from some point yo ∈ X\{xo }, are trivial.

(M4X ) For any xo ∈ ∂C ∩ X from which a nontrivial flow of H

exists, there exists U (xo ) ⊂ Rn such that the following

holds:

∀ψ ∈ ˆSH (U (xo ) ∩ X ∩ ∂C), ∃tψ > 0 : ψ ((0, tψ ], 0) ⊂ int(C). (33)

(M5X ) The function tD is locally Lipschitz on SD ∩ X .

(M6X ) For any xo ∈ C ∩ D ∩ X , the following hold:

(a) If G(xo ) ∈ C ∪ D, then there existsU (xo ) such that

G(x ) ∈ C ∪ D ∀x ∈ U (xo ) ∩ D ∩ X .

(b) There exists U (xo ) such that

tD (x ) < ∞ ∀x ∈ U (xo ) ∩ (C\D) ∩ X .

Remark 5. Assumptions (M1X )-(M6X ) are imposed in the re-

sults in this section to handle the pathological scenarios in Sections

4.1-4.6. In particular, when (M2X ) and (M5X ) hold, the scenarios
in Sections 4.1 and 4.4 cannot happen, respectively. Furthermore,
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when (M3X ) holds, the pathological behavior in Section 4.2 can-

not occur either. Also, when (M4X ) holds, the scenario in Section

4.3 cannot happen. Finally, when (M6X )(a) and (M6X )(b) hold, the
scenarios in Sections 4.5 and 4.6 cannot occur either, respectively. •

Remark 6. To verify (M2X ) and (M5X ), necessary and suffi-

cient infinitesimal conditions can be found in [18, Theorem 1].

Furthermore, Lemmas A.2 and A.3 provide sufficient infinitesimal

conditions to verify (M3X ) and (M4X ), respectively. •

5.1 Local Lipschitzness of R and Rb

In the following result, we show that for the class of hybrid sys-

tems satisfying (SA) and (M1X )-(M6X ) with respect to X ⊂ Rn , the

maps (T , x) 7→ Rb (T , J , x) and (T , x) 7→ R(T , J , x) are locally Lips-

chitz around each (To, J , xo ) ∈ R≥0×N× (X ∩ (C∪D)) provided that

condition (⋆⋆) given at the beginning of Section 4 holds. Condition

(⋆⋆) was used in [8] to show continuity of (T , x ) 7→ Rb (T , J , x ) and

(T , x ) 7→ R(T , J , x ) with respect to T around (To, J , xo ).

Theorem 5.1. Consider a hybrid system H = (C, F ,D,G) such
that (SA) holds and a set X ⊂ Rn such that (M1X )-(M6X ) hold. Then,
the maps Rb and R in (19) and (20), respectively, are locally Lipschitz
around each (To, J , xo ) ∈ R≥0 × N × (X ∩ (C ∪ D)) satisfying (⋆⋆).

5.2 Local Lipschitzness of R̂ and R̂b

When the following extra condition holds, we show that the

maps R̂b and R̂ are locally Lipschitz on R≥0 × N × (X ∩ (C ∪ D)):

(M7X ) If the (unique) maximal solution ϕ starting from xo ∈ C ∩X
never jumps, then, there exists U (xo ) such that, for every

yo ∈ U (xo ) ∩ X ∩C , the maximal solutionψ starting from

yo never jumps.

In the following example, to highlight the need of condition

(M7X ), we construct a hybrid system where (SA) and (M1X )-(M6X )

are satisfied with X = Rn but (M7X ) does not hold. Since the

conditions in Theorem 5.2 do not hold, the map x 7→ R̂b (To, 1, x ) is

not locally Lipschitz for some To > 0, as we show in the example.

Example 10. Consider the hybrid system H with the following

data:

F (x ) := [x2

1
1]

⊤ ∀x ∈ C :=

{
x ∈ R2

: |x1 |≤ 1, x2 ≥ 0

}
,

G(x ) := [−x1 x2]
⊤ ∀x ∈ D :=

{
x ∈ R2

: x1 = 1, x2 ≥ 0

}
.

The flows starting from initial conditions xo ∈ C\D are given by

ϕ2(t, 0) = xo2 + t, ϕ1(t, 0) =

xo1

1 − xo1t
. (34)

We notice that the solutions toH starting from

C1 :=

{
x ∈ R2

: x1 ∈ [−1, 0], x2 ≥ 0

}
never jump and the maximal solutions are complete. Furthermore,

the maximal solutions starting from

C2 :=

{
x ∈ R2

: x1 ∈ (0, 1], x2 ≥ 0

}
flow until reaching the set D, from which all the jumps take the

solutions instantaneously to the set C1. The latter fact implies that

the maximal solutions toH are complete and unique; hence, (SA)

is satisfied. In order to show that (M2X )-(M6X ) are satisfied, we
notice that SD = C2 and that tD (xo ) = (1/xo1) − 1 for all xo ∈ SD ,
which is a C1

function on SD ; thus, locally Lipschitz. Hence, (M5X )

is satisfied. Next, we notice that S∂C = C2 = SD and, for all

xo ∈ S∂C , t∂C (xo ) = tD (xo ) which is locally Lipschitz. Hence,

(M2X ) is satisfied. Furthermore, we notice that the solutions flow-

ing from int(C) and reaching ∂C , they also reach the set D at the

same time and can only jump from D. Hence, (M3X ) is satisfied.
Moreover, all the nontrivial flows starting from ∂C flow instan-

taneously to the interior of C according to (34). Hence, (M4X ) is
satisfied. Finally, we notice that C ∩ D =

{
x ∈ R2

: x1 = 1, x2 ≥ 0

}
and thatU (C ∩ D) ∩ (C\D) ⊂ C2 = SD ; hence, (M6X )(b) is satisfied.

Also, G(xo ) ∈ C\D for all xo ∈ D. Hence, (M6X )((a)) is satisfied.
On the other hand, we will show that (M7X ) is not satisfied. In-
deed, the maximal solution starting from xo = [0 0]

⊤
never jumps

and is complete. However, each solution in the sequence of so-

lutions {ϕi }
∞
i=1

, starting from {xoi }
∞
i=1

, respectively, with xoi :=

[1/(i + 2) 0]
⊤
for all i ∈ {1, . . . ,∞} and limi→∞ xoi = xo , jumps

at tD (xoi ) = (i + 1, 0). Furthermore, according to (26), we conclude

that R̂b (1, 1, xo ) = [0 1]
⊤
and that R̂b (1, 1, xoi ) = [1 1 + i]⊤.

Hence, |R̂b (1, 1, xo ) − R̂b (1, 1, xoi )|= |[1 i]|≥ 1, which shows that

x 7→ R̂b (1, 1, x ) is not locally Lipschitz around the origin. �

Theorem 5.2. Consider a hybrid system H = (C, F ,D,G) such
that (SA) holds and a set X ⊂ Rn such that (M1X )-(M7X ) hold. Then,
the maps R̂b and R̂ in (21) and (26), respectively, are locally Lipschitz
on R≥0 × N × (X ∩ (C ∪ D)).

5.3 Examples
In the following example, we illustrate Theorems 5.1 and 5.2 on

the bouncing ball hybrid model.

Example 11. [Bouncing ball] Let us reconsider the dynamical

hybrid model of the bouncing ball system in Example 2. It is easy

to see that the system’s solutions are unique, the flow and the

jump maps F and G are both single valued and locally Lipschitz,

and the system’s solutions are complete; hence, (SA) is satisfied.

Furthermore, we will show that the additional conditions (M3X ),
(M4X ), and (M6X ) are also satisfied for all X ⊂ Rn . However,
(M2X ) and (M5X ) are satisfied for all X ⊂ Rn\{0}. Indeed, we
start noticing that the nontrivial solutions flowing from ∂C are

only those starting from the set ∂C\D =

{
x ∈ R2

: x1 = 0, x2 > 0

}
.

Furthermore, since the setC is convex thus regular, using the second

statement in Lemma A.2, we conclude that the elements of the set

∂C\D from which a nontrivial flow exists cannot be reached by

the system’s flows that start from int(C); hence, (M3X ) is satisfied.
Next, the nontrivial solution ϕ starting from xo ∈ ∂C\D satisfies

ϕ(t ) = [− 1

2
γt2

+ xo2t − γt + xo2]
⊤
for all t ≥ 0, which implies

that ϕ1(t ) > 0 for all t ∈ (0, 2xo2/γ ); thus, ϕ(t ) ∈ int(C) for all

t ∈ (0, 2xo2/γ ), which satisfies (M4X ). Another way to verify (M4X ),

consists in using Lemma A.3. Indeed, the set C is regular and for

all xo ∈ ∂C\D, F (xo ) ∈ DC (xo ). Also, we notice that, for all xo ∈ D,
G(xo ) ∈ C ∪ D, which implies that (M6X )(a) is satisfied. Finally,
since for any initial condition xo ∈ C , tD (xo ) < ∞, (M6X )(b) is also

satisfied. Furthermore, note that ∂C =

{
x ∈ R2

: x1 = 0

}
and D ={

x ∈ R2
: x1 = 0, x2 ≤ 0

}
. Hence, using Definition 6, we conclude

that S∂C = SD = C . Indeed, from any element xo ∈ C , either there
exists a nontrivial solution to (11) that reaches ∂C and D at the

same time, otherwise, the solution starts from ∂C ∩ D is trivial.

Also, according to Definition 6 and after some easy computations,

we conclude that t∂C (xo ) = tD (xo ) =

(
xo2 +

√
x2

o2
+ 2γxo1

)
/γ for

all x ∈ C . Hence, t∂C and tD are C1
everywhere (thus, locally

Lipschitz) except at the origin, which implies that (M2X ) and (M5X )

hold for each X ⊂ Rn\{0}. The latter is confirmed in [18, Example
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4] using the infinitesimal conditions proposed in the latter reference.

Moreover, since the system’s maximal solutions cannot only flow,

then (M7X ) is trivially satisfied with respect to anyX ⊂ Rn . Finally,
since the origin cannot be reached by themaximal solutions starting

from an initial point different than the origin, we conclude that the

candidate set X := C\{0} is forward pre-invariant, i.e., it satisfies

(M1X ). As a result, Theorem 5.1 can be used to conclude that the

maps Rb and R are locally Lipschitz around each (To, J , xo ) ∈ R≥0 ×

N× (X ∩ (C ∪D)) satisfying (⋆⋆). Moreover, using Theorem 5.2, we

can also conclude that the maps R̂b and R̂ are locally Lipschitz on

R≥0 × N × (X ∩ (C ∪ D)). �

In many examples of hybrid systems encountered in applications,

the interior of the setC is empty. This is the case, for example, when

the state x contains discrete variables. For such a class of hybrid

systems, we notice that the statements in Theorems 5.1 and 5.2 are

not directly applicable as (M4X ) cannot be verified when int(C) = ∅.

However, it is possible to handle this situation by introducing an

extended hybrid systemHe = (Ce , F ,De ,G) where the discrete state

variables are allowed to have a continuous evolution. Furthermore,

we choose the set X such that the solutions toHe restricted to X
are the solutions to the original system H . By doing so, the set Ce
will have a nonempty interior and (M4X ) can be verified for He
with respect X and Theorems 5.1 and 5.2 become applicable. This

approach is illustrate in Example 12.

Example 12. [Thermostat] Consider the hybrid model of the

thermostat system proposed in [12, Example 1.9] and given by

H = (C, F ,D,G) with x := [q z]
⊤ ∈ R2

,

F (x ) := [0 − z + zo + z∆q]
⊤, C := ({0} ×C0) ∪ ({1} ×C1) ,

C0 := {z : z ≥ zmin } , C1 := {z : z ≤ zmax } ,

G(x ) := [1 − q z]
⊤, D := ({0} × D0) ∪ ({1} × D1) ,

D0 := {z : z ≤ zmin } , D1 := {z : z ≥ zmax } .

where z is the temperature of the room, zo represents the natural

temperature of the roomwhen the heater is not used, z∆ the capacity

of the heater to raise the temperature in the room by always being

on, and q the state of the heater, which is 1 (on) or 0 (off). We

want to keep the temperature between zmin and zmax satisfying

zo < zmin < zmax < zo + z∆. It is easy to see that the system’s

solutions flow only on the boundary of the set C; hence, (M4X )
cannot be verified. In order to handle this situation, we propose to

add more solutions to the hybrid modelH by modifying the sets

C and D and allowing the discrete variable q to have not only the

discrete values {0, 1}. That is, we introduce the extended hybrid

system He = (Ce , F ,De ,G) with the data

x := [q z]
⊤ ∈ R2, F (x ) := [0 − z + zo + z∆q]

⊤,

Ce := ([−ϵ, ϵ] ×C0) ∪ ([1 − ϵ, 1 + ϵ] ×C1) ,

G(x ) := [1 − q z]
⊤, De := ([−ϵ, ϵ] × D0) ∪ ([1 − ϵ, 1 + ϵ] × D1) ,

for ϵ > 0 sufficiently small. Furthermore, we consider the set X :=

{0, 1} × R. Note that the X is forward pre-invariant forHe and the

solutions toH starting fromX are solutions toHe . Hence, showing
that the proposed reachability maps forHe are locally Lipschitz on

R≥0 ×N× (X ∩ (Ce ∪De )) is enough to conclude that the reachbility

maps for H are locally Lipschitz on R≥0 × N × (C ∪ D). Hence,

it remains to show that (SA) and (M2X )-(M7X ) hold with respect

to X for the extended hybrid systemHe . Indeed, the solutions of
He starting from the set X are the solutions to H ; hence, they

are unique and complete. Moreover, it is clear that the system

He has unique solutions and is well posed, and both F and G are

locally Lipschitz; thus, (SA) is satisfied. Furthermore, we notice

S∂Ce ∩ K = SDe ∩ K = C , and

t∂Ce (x ) = tDe (x ) =

{
− log

zmin−zo
z−zo if x ∈ {0} ×Co

− log
zmax−zo−z∆

z−zo−z∆

if x ∈ {1} ×C1,

which is locally Lipschitz; hence, (M2X ) and (M5X ) hold with re-

spect to X . Next, since each solution starting from the set X jumps

once reaching ∂Ce and since the solutions are unique; hence, the

flow is not possible after reaching ∂Ce , we conclude that (M3X )
holds with respect to X . Moreover, (M4X ) holds trivially with re-

spect to X since the flows starting from ∂Ce ∩ X = ∅ are trivial.

Furthermore, Ce ∩ De ∩ X = {(1, zmax )} ∪ {(0, zmin )} and, for

all xo ∈ Ce ∩ De ∩ X , we can find U (xo ) nonempty such that

U (xo )∩D∩X = ∅; hence, (M6X )(a) is satisfied trivially with respect

toX . Moreover, sincewe have already shown thatCe∩X = C ⊂ SDe ,

it follows that (M6X )(b) holds with respect to X . Finally, using the

fact that Ce ∩ X = C ⊂ SDe , we conclude that all the maximal

solutions starting from X are not pure flows; hence, (M7X ) holds
trivially with respect to X .

Hence, Theorem 5.1 can be used to conclude that the maps Rb

andR are locally Lipschitz around each (To, J , xo ) ∈ R≥0×N×(C∪D)

satisfying (⋆⋆). Moreover, using Theorem 5.2, we can also conclude

that the maps R̂b and R̂ are locally Lipschitz on R≥0 ×N × (C ∪ D).

�

6 APPLICATION TO SAFETY
6.1 Safety Analysis Using Barrier Functions

Given a hybrid system H = (C, F ,G,D) and two sets Xo ⊂

cl(C) ∪ D and Xu ⊂ Rn , the hybrid systemH is safe with respect

to (Xo,Xu ), with Xo ∩ Xu = ∅, if the solutions starting from Xo
never reach the set Xu ; namely, each maximal solution ϕ starting

from xo ∈ Xo satisfies ϕ(t, j) ∈ Rn\Xu for all (t, j) ∈ domϕ. The
points not in cl(C) ∪ D are considered unsafe, which implies that

Rn\(cl(C) ∪ D) ⊂ Xu . Furthermore, a barrier function candidate

with respect to the sets (Xo,Xu ) is defined as a scalar function

B : cl(C) ∪ D → R such that

B(x ) > 0 ∀x ∈ Xu ∩ (cl(C) ∪ D)

B(x ) ≤ 0 ∀x ∈ Xo .
(35)

A barrier function candidate B allows to conclude safety if it allows

to conclude that the set K := {x ∈ cl(C) ∪ D : B(x ) ≤ 0} is closed

and forward pre-invariant; namely, the maximal solutions to H

starting from K stay in K , see [20, Theorem 3.2]. In turn, the set

K is forward pre-invariant if the solutions starting from K do not

jump outside K ; namely, for all x ∈ K ∩ D,

G(x ) ⊂ cl(C) ∪ D and B(η) ≤ 0 ∀η ∈ G(x ) (36)

and the solutions flowing from the setK never leaveK . To conclude
the latter property, it is enough to show that condition (⋆) given in

Section 2.4 holds with the set C therein replaced by C\int(K ).

The converse safety problem consists in showing the existence

of a barrier function B such that the properties (35), (36), and (⋆) are
satisfied provided that the systemH is safe with respect to (Xo,Xu ).

One of the challenges when studying the converse safety problem

is to show the existence of a barrier function with the best possible

smoothness property. Indeed, the availability of a smooth barrier

function allows to characterize (⋆) using infinitesimal conditions

involving only the set C and the map F , as in Lemma 2.1, instead

of any knowledge about the solutions. It is shown in [9] that a
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safe differential equation with smooth right-hand side does not

guarantee the existence of a smooth autonomous barrier function

satisfying (35), (36), and (⋆) that is also continuous. As a conse-

quence, in [20] and [8], non-autonomous barrier-like functions are

introduced to assure that a hybrid system H that is safe with re-

spect to (Xo,Xu ) with Xo closed is equivalent to the existence of

B : R≥0 × N × (C ∪ D) → R satisfying properties, similar to (35),

(36), and (⋆), that are sufficient for safety.

6.2 Locally Lipschitz Barrier Functions for a
Class of Safe Hybrid Systems

The barrier function constructed in [8] for a safe, with respect

to (Xo,Xu ), hybrid system H = (C, F ,G,D) depends on the reacha-

bility map R̂ for the backward in time hybrid system

H−
= (C,−F ,G(D),G−

D ) and is precisely given by

B(T , J , x ) := inf

y∈R̂b (T , J ,x )

|y |Xo (37)

for all (T , J , x ) ∈ R≥0 × N × (cl(C) ∪ D), where

R̂b (T , J , x ) := R̂(−T ,−J , x ) ={
ϕ(t, j) : ϕ ∈ ˆS−

H
(xo ), (t, j) ∈ domϕ ∩ Tϕ (T , J )

}
, (38)

with Tϕ (T , J ) as introduced in (22),
ˆS−
H

as in Section 2.2, and R̂ as

in (21).

It is shown in [8, Theorem 5.4] that the barrier function B in

(37) is lower semicontinuous with respect to x and continuous

with respect to T (the ordinary (flow) time) provided that (A1)-(A2)

hold, H−
is pre-complete, the solutions to H−

satisfy (M7X ) (with

X = C ∪G(D)), and the reciprocal jump mapG−1

D : G(D) ⇒ Rn in

(10) is outer semicontinuous and locally bounded. In the following

result and for hybrid systems H such that H−
satisfies (SA) and

(M1X )-(M7X ) with respect to X ⊂ Rn , using Theorem 5.2, we

conclude that the barrier candidate B in (37) is locally Lipschitz

on R≥0 × N × (X ∩ (C ∪G(D))). Furthermore, the same holds on

R≥0 × N × (X ∩ (C ∪ D)) when, additionally,

cl(D\(C ∪G(D))) ∩ (C ∪ D) = ∅. (39)

We are now ready to present a new characterization of safety

for the class of hybrid systems considered in this paper.

Theorem 6.1. Consider a hybrid system H = (C, F ,D,G) such
that (39) holds. Suppose that H−

= (C,−F ,G(D),G−
D ) satisfies (SA)

and X ⊂ Rn is such that (M1X )-(M7X ) hold and C̃ ⊂ X with C̃ as in
(17). Then, the hybrid systemH is safe with respect to (Xo,Xu ), with
Xo closed, if and only if there exists a barrier function B : R≥0 ×N ×

(C ∪ D) → R that is locally Lipschitz on R≥0 × N × ((C ∪ D) ∩ X ),
and the following hold:

B(t, j, x ) ≤ 0 ∀(t, j, x ) ∈ R≥0 × N × Xo, (40)

B(t, j, x ) > 0 ∀(t, j, x ) ∈ R≥0 × N × (Xu ∩ (C ∪ D)), (41)

B(t, j + 1,η) ≤ 0 ∀η ∈ G(x ) and
∀(t, j, x ) ∈ K ∩ (R≥0 × N × D), (42)

G(x ) ⊂ C ∪ D ∀(t, j, x ) ∈ (R≥0 × N × D) ∩ K, (43)

where

K := {(t, j, x ) ∈ R≥0 × N × (C ∪ D) : B(t, j, x ) ≤ 0} , (44)

and, for all j ∈ N,

α j + ⟨ζj , F (x )⟩ ≤ 0 ∀[α j ζ
⊤
j ]

⊤ ∈ ∂PBj (t, x ),

∀(t, x ) ∈ R≥0 × int(C), (45)

where (t, x ) 7→ Bj (t, x ) := B(t, j, x ) for all (t, x ) ∈ R≥0 × int(C).

In the following example, we illustrate how the assumptions

used in Theorem 6.1 can be verified on a concrete example.

Example 13. [Bouncing ball] Let us reconsider the bouncing

ball hybrid model introduced in Example 2. We already showed

in Example 11 that the system H = (C, F ,D,G) satisfies (SA) and

(M1X )-(M7X ) with respect to X = C\{0}. The same properties can

be shown forH−
= (C,−F ,G(D),G−

D ) by exploiting the symmetry

between H and H−
. Indeed, note that G(D) = −D and G−

D ≡ −G.
Hence, H−

= (C,−F ,−D,−G). Furthermore, by using the change

of coordinates xe := [x1 −x2]
⊤
, we conclude that the systemH−

in the new coordinates, denotedHe , satisfiesH
−
e = (C, F ,D,G) =

H . Next, in order to verify (39), we notice that D ⊂ C; hence,
D\(C ∪ G(D)) = ∅. Finally, in order to conclude that C̃ ⊂ X , we
notice thatC is closed; hence, C̃ ⊂ C . Furthermore, sinceC = X∪{0}

and the solution starting from {0} is trivial, we conclude that C̃ ⊂ X .

�

7 CONCLUSION
In this paper, we proposed finite-horizon reachable sets for hy-

brid systems. Those reachable sets are viewed as set-valued maps

for which we established the Lipschitz continuity property with

respect to their arguments. The latter continuity property is shown

to hold after restricting the data of the hybrid system to satisfy a

set of conditions. Those conditions are made in order to handle

the pathologies preventing such a regularity property from being

always true. The usefulness of the latter study is illustrated when

improving some of the existing converse safety statements in terms

of barrier functions. As a future step, we propose to relax the pro-

posed assumptions on the data in order to cover the case of hybrid

systems with non-unique solutions.

A APPENDIX
Lemma A.1. Consider a differential inclusion Hf = (Rn, F ) which

is pre-forward complete and such that F is locally Lipschitz. Then, the
set-valued maps Rb and R are locally Lipschitz.

Lemma A.2. Consider a constrained system Hf = (C, F ) such that
the following holds.
(SA)f The set C is closed and F is single valued and locally Lipschitz

on C .
Condition (M3X ) is satisfied if, for any initial condition xo ∈ ∂C ∩X
such that S(xo ) is nontrivial, either F (xo ) = 0 or

−F (xo ) ̸∈ TC (xo ). (46)

Moreover, when C is regular, (46) can be relaxed to

F (xo ) /∈ T∂C (xo ). (47)

Lemma A.3. Consider a constrained system Hf = (C, F ) such that
(SA)f holds. Condition (M4X ) is satisfied if, for each xo ∈ ∂C ∩ X
such that S(xo ) is nontrivial,

F (yo ) ∈ DC (yo ) ∀yo ∈ U (xo ) ∩ ∂C . (48)

Moreover, if the set C is regular, condition (48) can be relaxed to

F (xo ) ∈ DC (xo ). (49)
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