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We present new results on up to sixth-order cumulants of net baryon-number fluctuations at small values

of the baryon chemical potential, μB, obtained in lattice QCD calculations with physical values of light and

strange quark masses. Representing the Taylor expansions of higher-order cumulants in terms of the ratio of

the two lowest-order cumulants, MB=σ
2
B ¼ χ

B
1
ðT; μBÞ=χB2 ðT; μBÞ, allows for a parameter-free comparison

with data on net proton-number cumulants obtained by the STAR Collaboration in the Beam Energy Scan

at RHIC. We show that recent high-statistics data on skewness and kurtosis ratios of net proton-number

distributions, obtained at a beam energy
ffiffiffiffiffiffiffiffi

sNN

p ¼ 54.4 GeV, agree well with lattice QCD results on

cumulants of net baryon-number fluctuations close to the pseudocritical temperature, TpcðμBÞ, for the
chiral transition in QCD. We also present first results from a next-to-leading-order expansion of fifth- and

sixth-order cumulants on the line of the pseudocritical temperatures.

DOI: 10.1103/PhysRevD.101.074502

I. INTRODUCTION

The phase diagram of strong-interaction matter at non-
zero temperature and nonzero baryon-number density
is being explored intensively through numerical calcula-
tions performed in the framework of lattice-regularized
quantum chromodynamics (QCD) [1], as well as through
ultrarelativistic heavy-ion collisions with varying beam
energies [2]. At vanishing and small values of the chemical
potentials for conserved charges [baryon number (μB),
electric charge (μQ), strangeness (μS)] it is well established

that the transition from the low-temperature hadronic
region to the quark-gluon plasma at high temperature is
a smooth transition [3] characterized by a pseudocritical

temperature, TpcðμBÞ [4–7]. At larger values of the baryon
chemical potential it, however, is generally expected that a
first-order phase transition line exists, which ends in a
second-order critical point [8,9]. This elusive critical
point is searched for in the Beam Energy Scan (BES)
performed at the Relativistic Heavy Ion collider (RHIC) at
Brookhaven National Laboratory [10]. However, its exist-
ence as a fundamental property of the theory of strong
interactions (QCD) still awaits confirmation.

The pseudocritical line, TpcðμBÞ, which distinguishes the
low- and high-temperature regimes of strong-interaction

matter as described by QCD, has been determined quite

accurately in lattice QCD calculations for baryon chemical

potentials up to about twice the pseudocritical temperature,

μB ≲ 2Tpcð0Þ ≃ 300 MeV [4–7]. In our recent analysis we

found [7]

TpcðμBÞ ¼ T0
pc

�

1 − κ
B
2

�

μB

T

�

2

þOðμ4BÞ
�

; ð1Þ
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with T0
pc ¼ ð156.5� 1.5Þ MeV and κ

B
2
¼ 0.012ð4Þ with a

Oðμ4BÞ correction that vanishes within errors. At μB ¼ 0 the

pseudocritical temperature turns out to be in good agree-

ment with the freeze-out temperature determined by the

ALICE Collaboration at the LHC [11] and the pseudoc-

ritical line, TpcðμBÞ, is also consistent with freeze-out

temperatures determined by the STAR Collaboration dur-

ing the first BES at RHIC (BES-I) [12], albeit these

temperatures have larger statistical errors.

The experimental determination of the freeze-out para-

meter is based on a measurement of particle yields, i.e., first

moments of particle distributions, which in turn are closely

related to first-order cumulants of net charge fluctuations.

The proximity of freeze-out temperatures and the pseu-

docritical temperature determined in QCD suggests that

the higher-order moments of net charge fluctuations also

reflect properties of a thermal medium close to the

pseudocritical line. This, however, is not at all well

established and many caveats have been discussed sug-

gesting that the relation of higher-order cumulants, mea-

sured experimentally, to cumulants of conserved charge

fluctuations, calculated in equilibrium QCD thermodynam-

ics, is not at all straightforward [10,13].

Higher-order cumulants of net conserved charge fluctu-

ations are obtained as derivatives of the logarithm of the

QCD partition functions with respect to the chemical

potentials of conserved charges, μ⃗ ¼ ðμB; μQ; μSÞ,

χ
X
n ðT; μ⃗Þ ¼

1

VT3

∂n lnZðT; μ⃗Þ
∂μ̂nX

; X ¼ B;Q; S; ð2Þ

with μ̂≡ μ=T. These higher-order derivatives become

increasingly sensitive to long-range correlations and large

fluctuations in the vicinity of a critical point. At least from

the theoretical point of view higher-order cumulants thus

are ideally suited to search for a possible critical point in the

QCD phase diagram [14–16]. The BES at RHIC aims at

finding evidence for such a critical point through the

analysis of e.g., higher-order cumulants of net proton-

number fluctuations which are considered to be good

proxies for cumulants of net baryon-number fluctuations.

Results, obtained with BES-I at RHIC, indicate that

qualitative changes in the behavior of net proton-number

fluctuations occur at beam energies
ffiffiffiffiffiffiffiffi

sNN

p
∼ 20 GeV

[17,18]. This may hint at the existence of a critical point

for large values of the baryon chemical potential.

While the finding of nonmonotonic behavior of higher-

order cumulants of net proton-number fluctuations generated

well-justified excitement [17,18], we still need to establish

that this behavior is caused by thermal fluctuations in the

vicinity of a critical point and that these higher-order

cumulants indeed probe thermal conditions at the time of

freeze-out.Aspointedout inRef. [19] at least for small values

of the baryon chemical potential the first four cumulants of

net baryon-number fluctuations, i.e.,mean [MB ≡ χ
B
1
ðT; μ⃗Þ],

variance [σ2B ¼ χ
B
2
ðT; μ⃗Þ], skewness [SB ¼ χ

B
3
ðT; μ⃗Þ=

χ
B
2
ðT; μ⃗Þ3=2] and kurtosis [κB ¼ χ

B
4
ðT; μ⃗Þ=χB

2
ðT; μ⃗Þ2] are

predicted inQCDequilibrium thermodynamics to be related.

For μS ¼ μQ ¼ 0 one finds

κBσ
2
B < SBσ

3

B=MB;

⇔

χ
B
4
ðT; μ⃗Þ

χ
B
2
ðT; μ⃗Þ <

χ
B
3
ðT; μ⃗Þ

χ
B
1
ðT; μ⃗Þ : ð3Þ

This relation, which is only slightly violated in strangeness

neutral systems, has been established in lattice QCD calcu-

lations usingnext-to-leading-order (NLO)Taylor expansions

of the first four cumulants of net baryon-number fluctuations

[19]. The data on cumulants of net-proton number fluctua-

tions, obtained by STAR during BES-I [18] at beam energies
ffiffiffiffiffiffiffiffi

sNN

p
≥ 19.6 GeV are, on average, consistent with this

finding [19]. However, statistical errors are large and, for

instance, data obtained at
ffiffiffiffiffiffiffiffi

sNN

p ¼ 62.4 GeV violate the

above relation. Results at several other beam energies are

inconclusive due to the large statistical errors on the fourth-

order cumulant ratio κBσ
2
B. To this extent recent high-

statistics data obtained by the STAR Collaboration at
ffiffiffiffiffiffiffiffi

sNN

p ¼ 54.4 GeV [20] are encouraging. As will be dis-

cussed in Sec. IV, these data fulfill the above inequality and

the difference of the cumulant ratios given in Eq. (3) agrees

with lattice QCD results even on a quantitative level.

We will present here new results on the density depend-

ence of up to sixth-order cumulants of net baryon-number

fluctuations. We calculate Taylor series at nonzero values of

the baryon-number, electric-charge and strangeness chemi-

cal potentials that involve up to eighth-order cumulants. We

perform these expansions for the case of strangeness

neutral systems, nS ¼ 0, with a ratio of electric charge

to baryon number, nQ=nB ¼ 0.4, that is representative of

the conditions met in heavy-ion collisions. This allows to

construct Taylor expansions for nth-order cumulants,
1

χ
B
n ðT; μBÞ, up to Oðμ8−nB Þ.
For the case of the skewness and kurtosis ratios,

SBσ
3

B=MB and κBσ
2
B, respectively, we thus can extend

earlier NLO calculations and perform next-to-next-to-

leading-order (NNLO) expansions that allow to better control

truncation effects in the Taylor series.We also present, for the

first time, results from NLO calculations for the hyper-

skewness and hyper-kurtosis (fifth- and sixth-order cumu-

lants) ratios χB
5
ðT;μBÞ=χB1 ðT;μBÞ and χB6 ðT; μBÞ=χB2 ðT; μBÞ.

We show that these ratios are expected to be negative at
ffiffiffiffiffiffiffiffi

sNN

p ¼ 54.4 GeV, in contrast to the preliminary findings

for sixth-order cumulants of net proton-number fluctuations

reported by the STAR Collaboration [20].

1
Rather than specifying in the argument of χ

B
n all three

chemical potentials, μ⃗, we give in the strangeness neutral case
only the baryon chemical potential.
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This paper is organized as follows. In the next section we

briefly present our calculational setup, the new statistics

collected on lattices of size 323 × 8 and 483 × 12 and the

general fitting ansatz used for fits at fixed values of Nτ ¼ 8

and 12, joint fits of these data as well as continuum limit

estimates. In Sec. III we present results for Taylor expan-

sions of cumulants of net baryon-number fluctuations that

use up to eighth-order cumulants. We compare these results

with experimental data for cumulants of net proton-number

fluctuations in Sec. IV. Section V contains our conclusions.

Explicit expressions for the first four Taylor expansion

coefficients of net baryon-number cumulants are given in

the Appendix.

II. CALCULATIONAL SETUP

Up to fourth-order cumulants of net baryon-number

fluctuations have been calculated previously [19,21,22]

in a next-to-leading-order Taylor expansion. In particular,

we performed calculations [19] with the highly improved

staggered quark [23] discretization scheme for (2þ 1)-

flavor QCD with a physical strange quark mass and two

degenerate, physical light quark masses. Here we extend

these calculations by increasing the number of gauge field

configurations generated on lattices of size 323 × 8 and

483 × 12 by a factor of 3–5 in the transition region and at

least a factor of 2 at other values of the temperature. This

allows us to calculate up to eighth-order cumulants of net

baryon-number, net strangeness and net electric-charge

fluctuations, including also their correlations, at vanishing

values of the chemical potentials. These cumulants provide

expansion coefficients in Taylor series for net baryon-

number cumulants χBn ðT; μ⃗Þ. We calculate NLO expansions

for fifth- and sixth-order cumulants and obtain NNLO

results for third- and fourth-order cumulants. In the case of

first- and second-order cumulants, i.e., the mean and

variance of net baryon-number distributions, we even

obtain next-to-NNLO (NNNLO) results. The set of gauge

field ensembles, which has been used in this analysis, and

the number of gauge field configurations per ensemble on

lattices with temporal extent Nτ ¼ 8 and 12 are summa-

rized in Table I.

Results for up to eighth-order diagonal net baryon-

number susceptibilities, χ
B
n ≡ χ

B
n ðT; 0Þ, are given in

Fig. 1. For the quadratic fluctuations, χ
B
2
, we also show

results for lattices with temporal extentNτ ¼ 6, which were

already used in Ref. [7]. For the eighth-order cumulant, χB
8
,

we only show our results for Nτ ¼ 8 as statistical errors on

the Nτ ¼ 12 data are still too large. The bands shown in

these figures give a continuum extrapolation for χ
B
2
ðTÞ

using data from calculations for three different lattice

spacings (aT ¼ 1=Nτ) and a continuum estimate for

χ
B
4
ðTÞ based on Nτ ¼ 8 and 12 data sets. For χ

B
6
ðTÞ and

χ
B
8
ðTÞ we only show spline interpolations of the data

obtained on the 323 × 8 lattices. Results for these

cumulants, obtained from calculations within a noninter-

acting hadron resonance gas (HRG) model that use

resonances from the Particle Data Tables [25] (PDG-

HRG) as well as additional resonances calculated within

the quark model [26,27] (QM-HRG) are given by lines. The

latter list contains additional resonances not (yet) observed

experimentally.

We determine the expansion coefficients, χ̃
B;k
n ðTÞ, for

Taylor series of nth-order cumulants,

χ
B
n ðT; μBÞ ¼

X

kmax

k¼0

χ̃
B;k
n ðTÞμ̂kB; ð4Þ

for the case of vanishing net strangeness density,

nS ¼ 0, and an electric-charge to baryon-number ratio,

nQ=nB ¼ 0.4. Explicit expressions for the NLO expansion

coefficients of up to sixth-order net baryon-number cumu-

lants are given in Ref. [19]. The explicit form of the higher-

order expansion coefficients are given in the Appendix.

Using the Taylor series for nth-order cumulants, Eq. (4),

we construct cumulant ratios with polynomials of order

½kmax; lmax�,

RB
nm ¼ χ

B
n ðT; μBÞ

χ
B
mðT; μBÞ

¼
Pkmax

k¼1
χ̃
B;k
n ðTÞμ̂kB

Plmax

l¼1
χ̃
B;l
m ðTÞμ̂lB

: ð5Þ

In order to control systematic effects arising from the

truncation of the Taylor series expansion for the cumulant

ratios RB
nm, we calculate these ratios using different orders

of the Taylor expansion for the cumulants appearing in the

numerator and denominator of these ratios. We analyzed

the polynomial ratios for different ½kmax; lmax� as well as

Taylor expansions of the ratios themselves. We find that the

TABLE I. Number of gauge field configurations on lattices of

size 323 × 8 and 483 × 12 used in the analysis of up to eighth-

order Taylor expansion coefficients. The values of the gauge

coupling as well as the strange and light quark mass parameter at

these temperature values are taken from Ref. [24], where details

on the statistics available on the 243 × 6 lattices were also given.

All configurations are separated by 10 time units in rational

hybrid Monte Carlo simulations [24].

Nτ ¼ 8 Nτ ¼ 12

T [MeV] No. of conf. T [MeV] No. of conf.

134.64 1 275 380 134.94 256 392

140.45 1 598 555 140.44 368 491

144.95 1 559 003 144.97 344 010

151.00 1 286 603 151.10 308 680

156.78 1 602 684 157.13 299 029

162.25 1 437 436 161.94 214 671

165.98 1 186 523 165.91 156 111

171.02 373 644 170.77 144 633

175.64 294 311 175.77 131 248
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former are more stable at large μB=T. In the following we

will use the ratios of polynomials with ½kmax; lmax� corre-
sponding to identical orders (LO, NLO, NNLO, NNNLO)

of expansions in the cumulants appearing in the numerator

and denominator, respectively.

We fit cumulant ratios using a rational polynomial

ansatz,

fðT; μ̂BÞ ¼
Pnmax

n¼0
anðμ̂BÞT̄n

Pmmax

m¼0
bmðμ̂BÞT̄m

; with T̄ ¼ T

T0

; ð6Þ

where T0 is some arbitrary scale. When using this rational

polynomial ansatz for fits at nonzero μB we allow for a

quadratic μB dependence of all expansion coefficients,

anðμ̂BÞ ¼ an;0 þ an;2μ̂
2
B and similarly for bnðμ̂BÞ. When

performing joint fits of data on lattices with different sizes

and lattice spacings, a, we allow for Oða2Þ cutoff correc-
tions that are parametrized in terms of the temporal lattice

extent Nτ ¼ 1=aT, e.g.,

fðT; μ̂BÞ ¼ hðT; μ̂BÞ þ
1

N2
τ

gðT; μ̂BÞ; ð7Þ

with gðT; μ̂BÞ and hðT; μ̂BÞ being rational polynomials of

the type given in Eq. (6).

III. CUMULANTS OF NET

BARYON-NUMBER FLUCTUATIONS

A. Mean and variance of net

baryon-number fluctuations

We have calculated the ratio of the mean, MB ¼
χ
B
1
ðT; μBÞ, and variance, σ2B ¼ χ

B
2
ðT; μBÞ, of net baryon-

number fluctuations,

RB
12
ðT; μBÞ≡

MB

σ
2
B

¼ χ
B
1
ðT; μBÞ

χ
B
2
ðT; μBÞ

; ð8Þ

for systems with vanishing net strangeness, nS ¼ 0, and a

net electric-charge to net baryon-number density nQ=nB ¼
0.4 on lattices with temporal extent Nτ ¼ 8 and 12. Using

up to eighth-order Taylor expansion coefficients, we can

construct Taylor series up to order Oðμ̂7BÞ and Oðμ̂6BÞ for

χ
B
1
ðT; μBÞ and χ

B
2
ðT; μBÞ, respectively. Truncating these

series at kmax and lmax ¼ kmax − 1, respectively, we con-

struct the ½kmax; lmax� polynomial ratios which provide

leading-order ([1, 0]), next-to-leading-order ([3, 2]) etc.,

approximations for the ratio of the mean and variance of the

distribution for net baryon-number fluctuations, RB
12
≡

MB=σ
2
B. Results for different ½kmax; lmax� are shown in

Fig. 2. The figure shows results obtained on lattices with

temporal extent Nτ ¼ 8 and 12 at a temperature
2
T ≃

157 MeV which is close to the pseudocritical temperature

at μB ¼ 0.

We find that cutoff effects are negligible for μB=T ≤ 1

and remain comparable to the statistical errors for the

 0
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FIG. 1. Cumulants of net baryon-number fluctuations from

second to eighth order (top to bottom) evaluated at μB ¼ 0 on lat-

tices of size N3
σ × Nτ with Nσ ¼ 4Nτ. For further details see text.

2
As is evident from Table I the temperatures differ slightly

for the two lattice sizes: T ¼ 156.76 MeV for Nτ ¼ 8 and
T ¼ 157.13 MeV for Nτ ¼ 12, respectively.
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Nτ ¼ 12 data at least up to μB=T ≃ 1.2. This holds true in

the entire temperature range T ∈ ½135 MeV∶175 MeV�
analyzed by us. Differences in RB

12
constructed from

NNLO and NNNLO Taylor series of the cumulants are

about 2% for μB=T ¼ 1.

As the temperature dependence of RB
12

is weak in the

temperature range considered by us and also deviations of

the μB dependence from the leading order, linear behavior

are moderate we find that using [2, 3] rational polynomials

in both terms of the fit ansatz given in Eq. (7) are sufficient

for obtaining good fits to the data. We performed fits

separately for the NNLO and NNNLO data sets at fixed

values of T and μB=T ≤ 1.2. The resulting continuum

estimates for RB
12
, evaluated for several values of the

temperature in the vicinity of the pseudocritical temper-

ature, Tpcð0Þ, are shown in Fig. 3. We note that the

variation with temperature is small. As will be discussed

in Sec. IV the results obtained for RB
12
at μB ≲ 125 MeV are

in good agreement with HRG model calculations. For

larger values of μB we find, however, RB;QCD
12

> RB;HRG
12

,

which reflects the large deviations of higher-order cumu-

lants, evaluated in QCD at μB ¼ 0, from the corresponding

HRG values.

B. Skewness and kurtosis of net

baryon-number fluctuations

While the low-order cumulants MB ¼ χ
B
1
ðT; μBÞ, σ2B ¼

χ
B
2
ðT; μBÞ and their ratio are in good agreement with HRG

model calculations that use noninteracting, point-like

hadrons at and below Tpc (see also discussion in Sec. IV),

this clearly is not the case for higher-order cumulants. This is

apparent in calculations of the skewness and kurtosis ratios,

RB
31
ðT; μBÞ ¼

SBσ
3
B

MB

¼ χ
B
3
ðT; μBÞ

χ
B
1
ðT; μBÞ

; ð9Þ

RB
42
ðT; μBÞ ¼ κBσ

2
B ¼ χ

B
4
ðT; μBÞ

χ
B
2
ðT; μBÞ

; ð10Þ

which both are unity in noninteracting HRG model calcu-

lations, but are known to be significantly smaller in lattice

QCDcalculations already in thevicinity of the pseudocritical

temperature, Tpcð0Þ, at vanishing values of the baryon

chemical potential. Moreover, in contrast to the cumulant

ratio RB
12
, the ratios RB

31
and RB

42
show a much stronger

temperature dependence and a milder dependence on μB. It

thus has been suggested that the ratio RB
12

is well suited to

determine the baryon chemical potential from experimental

data, while the ratios RB
31

and RB
42

constrain the temper-

ature [21,28].

Using our results for up to eighth-order cumulants of

conserved charge fluctuations and correlations, we can

construct NNLO expansions for the third- and fourth-order

cumulants χ
B
3
ðT; μBÞ and χ

B
4
ðT; μBÞ, where again the

electric-charge and strangeness chemical potentials have

been fixed by demanding nS ¼ 0 and nQ=nB ¼ 0.4. With

this we determine up to NNLO results for the skewness and

kurtosis cumulant ratios RB
31

and RB
42
.

We again first use our high-statistics data obtained on the

Nτ ¼ 8 lattices to analyze the effect of truncations of the

Taylor expansions at finite orders of μB. We used the fit

ansatz given in Eq. (6) and performed fits to LO, NLO and

NNLO results for the ratios RB
31

and RB
42

in the temperature

range ½135 MeV∶175 MeV� and for baryon chemical

potentials μB ≤ 160 MeV. Results from these fits are

shown in Fig. 4 for four values of the temperature in the

vicinity of the pseudocritical temperature Tpcð0Þ. The two
central T values, T ¼ 155 and 158 MeV, correspond to the

lower and upper end of the error band for the pseudocritical

temperature at μB ¼ 0. The lowest temperature, T ¼
152 MeV reflects the lowest T value reached on the

pseudocritical line TpcðμBÞ at μB=T ¼ 1. For clarity we

show in Fig. 4 the LO results, which are μB independent,

only for the lowest temperature. Of course, at all temper-

ature values the LO results coincide with the values of RB
31

and RB
42

at μB ¼ 0. We also note that in the range of

chemical potentials, 0 ≤ μB=T ≤ 1, the pseudocritical tem-

perature only varies slightly. The data shown in Fig. 4 thus

FIG. 2. Expansion of RB
12
≡MB=σ

2
B at a fixed temperature

close to the pseudocritical line TpcðμBÞ versus the baryon

chemical potential. Shown are results from up to NNNLO

expansions on lattices of size 323 × 8 and 483 × 12.

FIG. 3. Continuum estimate for RB
12

based on NNNLO ex-

pansion results obtained on lattices of size 323 × 8 and 483 × 12.
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cover the entire parameter range of relevance for the

calculation of these cumulant ratios on the pseudocritical

line for μB=T ≲ 1.

In Ref. [19] we showed that the skewness and kurtosis

ratios RB
31

and RB
42

are almost identical at leading order,

Oðμ0BÞ. The NLO correction to the kurtosis ratio RB
42
,

however, is about a factor of 3 larger than that for the

skewness ratio RB
31
. Figure 4 suggests that these relations

are still well respected by the NNLO results. The slope of

RB
42
ðT; μBÞ as a function of μ̂B at fixed T is significantly

larger than that of RB
31
ðT; μBÞ and, in fact, it is still

consistent with being about a factor of 3 larger. This is

shown in Fig. 5 where we compare the μB-dependent parts

of RB
31

and RB
42
=3. Also shown in this figure are the second

derivatives of RB
31
ðT; μBÞ and RB

42
ðT; μBÞ=3 with respect

to μB=T.

Compared to the lower-order ratio RB
12

higher-order

corrections in the Taylor expansion of RB
31

are significantly

larger. In the temperature range shown in Fig. 4 corrections

to the NLO results, arising from the NNLO, Oðμ5BÞ,
corrections in the Taylor expansions of the cumulants

χ
B
3
ðT; μBÞ, are about 5% at μB=T ¼ 0.8 and rise to about

10% at μB=T ¼ 1. Consequently truncation effects in RB
42

are about a factor of 3 larger.

In Fig. 6 we show results for the skewness and kurtosis

ratios RB
31
ðT; μBÞ and RB

42
ðT; μBÞ obtained at μB ¼ 0 on

lattices with temporal extent Nτ ¼ 8 and 12. Obviously

results for Nτ ¼ 12 are systematically below those for

Nτ ¼ 8. This is in accordance with the observed shift of the

pseudocritical temperatures [7] to smaller values with

increasing Nτ or, equivalently, decreasing lattice spacing

at fixed temperature aT ¼ 1=Nτ. When performing joint

fits to the Nτ ¼ 8 and 12 data, using the ansatz given in
FIG. 4. The cumulant ratios RB

31
ðT; μBÞ≡ SBσ

3
B=MB (top) and

RB
42
ðT; μBÞ≡ κBσ

2
B (bottom) versus μB=T for four different

values of the temperature calculated from LO, NLO and NNLO

Taylor expansions of the cumulants χ
B
n ðT; μBÞ on lattices with

temporal extent Nτ ¼ 8.

FIG. 5. The μB-dependent correction to RB
31

compared to one

third of the correction for RB
42
. The inset shows a comparison of

the second derivatives of RB
31

and RB
42
=3 with respect to μB=T.

FIG. 6. Continuum estimates for the skewness ratio, RB
31
≡

SBσ
3
B=MB (top), and kurtosis ratio RB

42
≡ κBσ

2
B (bottom) at μB ¼

0 based on results obtained on lattices of size 323 × 8 and

483 × 12, respectively. The inset in the bottom figure shows the

difference RB
42
− RB

31
at μB ¼ 0 as function of T.
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Eq. (7), we find that within our current statistical errors on

the Nτ ¼ 12 data we cannot resolve any T or μB=T
dependence of cutoff effects. It thus suffices to use a

constant ansatz for the cutoff corrections, i.e., we use

gðT; μBÞ ¼ a0;0 and a [3, 4] rational polynomial for the

continuum limit result fðT; μBÞ. A joint fit to the Nτ ¼ 8

and 12 data yields a0;0 ¼ 3.2ð1.5Þ for RB
31
ðT; μBÞ and

a0;0 ¼ 3.2ð3.0Þ for RB
42
ðT; μBÞ. The resulting continuum

limit estimates at μB ¼ 0 are also shown in Fig. 6.

The inset in Fig. 6 (bottom) shows the continuum

estimate for the difference RB
42
− RB

31
at μB ¼ 0 as a

function of T. At temperatures below T ≃ 150 MeV this

difference is consistent with being zero. In the crossover

region, Tpcð0Þ ¼ 156.5ð1.5Þ MeV we find that the differ-

ence is slightly positive, RB
42
ðTpcÞ − RB

31
ðTpcÞ ¼ 0.008ð3Þ.

Continuum estimates for RB
31
ðT; μBÞ and RB

42
ðT; μBÞ at

two values of the temperature, corresponding to the current

error band for the pseudocritical temperature at μB ¼ 0 are

shown in Fig. 7.

C. Hyper-skewness and hyper-kurtosis

of net baryon-number fluctuations

The fifth- and sixth-order cumulants are related to the

corresponding fifth- and sixth-order standardized moments,

i.e., the hyper-skewness, SH, and hyper-kurtosis, κH. We

consider here the cumulant ratios for fifth- and sixth-order

cumulants of net baryon-number fluctuations,

RB
51
ðT; μBÞ≡

SHB σ
5

B

MB

¼ χ
B
5
ðT; μBÞ

χ
B
1
ðT; μBÞ

;

RB
62
ðT; μBÞ≡ κ

H
Bσ

4
B ¼ χ

B
6
ðT; μBÞ

χ
B
2
ðT; μBÞ

: ð11Þ

Unlike the ratios for skewness and kurtosis cumulants,

the corresponding ratios involving fifth- and sixth-order

cumulants are negative already at μB ¼ 0 in a broad

temperature interval in the vicinity of Tpcð0Þ and become

smaller with increasing μB. This reflects the properties of

the sixth- and eighth-order cumulants shown in Fig. 1.

The μB dependence of the cumulant ratios RB
51

and RB
62

follows a pattern similar to that of the skewness and kurtosis

ratios. In particular, at LO both ratios are almost identical

and the NLO correction to RB
62

is about a factor of 3 larger

than that for RB
51
. Like in the case of the corresponding

relations for the skewness and kurtosis ratios these relations

simply result from the structure of Taylor expansions for odd

and even cumulants [19]. The relations are exact for

expansions at vanishing μQ and μS and apparently they

are not much altered in the strangeness neutral case nS ¼ 0

with nQ=nB ¼ 0.4. A fit to the Nτ ¼ 8 lattice QCD results

for the difference RB
62
− RB

51
at μB ¼ 0 yields 0.029(9).

While statistical errors are strongly correlated between

the fifth- and sixth-order cumulants they are large for each

of these cumulants individually. For this reason we only

present results for these cumulants obtained on lattices with

temporal extent Nτ ¼ 8 and evaluate the NLO corrections

only for μB=T ≤ 0.8. NLO results for RB
51
ðT; μBÞ and

RB
62
ðT; μBÞ are shown in Fig. 8.

Obviously NLO corrections for these ratios are negative

and substantially larger than those in the skewness and

kurtosis ratios. In the vicinity of the pseudocritical temper-

ature the difference between LO and NLO results at

μB=T ¼ 0.8 is about an order of magnitude larger in

RB
51
ðT; μBÞ than in RB

31
ðT; μBÞ. This is also the case when

comparing RB
62
ðT; μBÞ with RB

42
ðT; μBÞ.

The magnitude and sign of the NLO corrections to fifth-

and sixth-order cumulants in relation to corresponding

results for the third- and fourth-order cumulants is evident

from the structure of the corresponding Taylor expansion

coefficients. It is easy to see this in Taylor expansions

performed at μQ ¼ μS ¼ 0. In this case one has, for

instance,

χ
B
4
ðT; μBÞ ¼ χ

B
4
þ χ

B
6

2

�

μB

T

�

2

þ χ
B
8

24

�

μB

T

�

4

þ � � � ; ð12Þ

χ
B
6
ðT; μBÞ ¼ χ

B
6
þ χ

B
8

2

�

μB

T

�

2

þ � � � ð13Þ

As can be deduced from Fig. 1, despite the large errors on

current results for χ
B
8
, the cumulants χ

B
6
and χ

B
8
are both

negative in the vicinity of the pseudocritical temperature;

however the absolute value of the eighth-order cumulant is

FIG. 7. Continuum estimates for the skewness (top) and

kurtosis (bottom) ratios obtained from joint fits to data obtained

on lattices with temporal extent Nτ ¼ 8 and 12.
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about an order of magnitude larger. This results in the much

larger NLO correction to the expansion of χ
B
6
ðT; μBÞ.

Although the expansions of all cumulants χ
B
n ðT; μBÞ will

have the same radius of convergence it is apparent that

expansions for higher-order cumulants will converge

more slowly. Higher-order corrections to χ
B
5
ðT; μBÞ and

χ
B
6
ðT; μBÞ will thus be needed to arrive at firm conclusions

on the behavior of these cumulants close to μB=T ≃ 1. For

μB=T ≃ 0.3; however, the NLO correction is about an order

of magnitude smaller and thus of similar magnitude as the

NNLO correction to χ
B
3
ðT; μBÞ and χ

B
4
ðT; μBÞ at μB=T ≃ 1.

For small values of the baryon chemical potential and

μS ¼ μQ ¼ 0 we thus may extend the result on the ordering

of cumulant ratios stated in Eq. (3) and also include results

for the fifth- and sixth-order cumulant ratios,

χ
B
6
ðT; μ⃗Þ

χ
B
2
ðT; μ⃗Þ <

χ
B
5
ðT; μ⃗Þ

χ
B
1
ðT; μ⃗Þ <

χ
B
4
ðT; μ⃗Þ

χ
B
2
ðT; μ⃗Þ <

χ
B
3
ðT; μ⃗Þ

χ
B
1
ðT; μ⃗Þ : ð14Þ

IV. BARYON-NUMBER FLUCTUATIONS ON THE

PSEUDOCRITICAL LINE AND THE CUMULANTS

OF NET PROTON-NUMBER FLUCTUATIONS

In this section we compare results on higher-order

cumulants of net proton-number fluctuations, obtained by

theSTARCollaboration duringBES-I at RHIC [18,20],with

our results for cumulants of net baryon-number fluctuations

calculated inQCDon the pseudocritical line given in Eq. (1).

The pseudocritical line shows only a rather weak depend-

ence on μB. TheOðμ4BÞ correction to TpcðμBÞ is found to be
zero within errors [19]. For μB ≤ Tpcð0Þ it changes from

T ¼ 156.5ð1.5Þ to 154.5(2.0) MeV. This range of temper-

atures is well covered by the results for cumulant ratios as a

function of μB evaluated at fixed values of the temperature

that have been shown in the previous section.

In Fig. 9 we show results for RB
12
ðTpcðμBÞ; μBÞ on the

pseudocritical line and compare with results obtained from

noninteracting HRG model calculations that utilize hadron

resonance gas spectra as listed in the Particle Data

Tables [25] as well as spectra calculated in quark models

[26,27]. As can be seen in Fig. 9HRGmodel calculations for

RB
12

agree well with QCD results obtained on the pseudoc-

ritical line up to about μB=T ≃ 0.8 or μB ≃ 125 MeV. This

suggests that the use of low-order HRG cumulants, in

particular the mean of hadron distributions (hadron yields)

that are used experimentally to determine freeze-out param-

eters, may be appropriate at small values of the baryon

chemical potential or small net baryon-number densities.

The HRG model estimates of freeze-out parameters

[12] suggest that the range of baryon chemical potentials

μB=T ≲ 1 corresponds to thermal conditions at freeze-out

generated in heavy-ion experiments at beam energies
ffiffiffiffiffiffiffiffi

sNN

p
≳ 27 GeV. Figure 9 suggests that below this value

of
ffiffiffiffiffiffiffiffi

sNN

p
HRG model determinations of baryon chemical

potentials differ from QCD determinations by more than

10%. It thus may be useful to eliminate μB in favor of a

directly accessible physical observable, e.g., RB
12
.

At least for μB ≲ 200 MeV truncation errors in the Taylor

expansion of the first two cumulants, the mean and variance,

as well as lattice discretization errors are small. The con-

tinuum limit extrapolation for RB
12
ðTpcðμBÞ; μBÞ, shown in

Fig. 9 thus does not suffer from truncation errors in the Taylor

FIG. 8. The cumulant ratios RB
51
ðT; μBÞ and RB

62
ðT; μBÞ versus

μB=T from LO and NLO Taylor expansions of the cumulants

calculated on lattices with temporal extent Nτ ¼ 8.

FIG. 9. The cumulant ratio RB
12
ðT; μBÞ evaluated on the

pseudocritical line TpcðμBÞ for the case nS ¼ 0 and nQ=nB ¼
0.4. Also shown is the corresponding result obtained in HRG

model calculations. In the latter case the width of the line reflects

differences resulting from using particle spectra for a noninter-

acting HRG listed in the Particle Data Tables as well as resulting

within quark model calculations.
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series at least up to μB=T ¼ 1.2. It is a monotonically rising

function
3
of μB. This allows to replace the chemical potential

in an analysis of higher-order cumulant ratios in favor ofRB
12
.

Wehave done so for the comparison of higher-order cumulant

ratios calculated in latticeQCDon the pseudocritical linewith

experimental data on cumulants of net proton-number fluc-

tuations. In Fig. 10we show the skewness and kurtosis ratios,

RB
31

and RB
42
, on the pseudocritical line as a function of RB

12
,

which also has been evaluated on the pseudocritical line.

Similar results for the hyper-skewness and hyper-kurtosis

ratios are shown in Fig. 11.

In Fig. 10 we show lattice QCD results up to RB
12

¼ 0.75,

which corresponds to μB ¼ TpcðμBÞ ≃ 154.5 MeV. The

width of the bands shown in the figure reflect the error

on TpcðμBÞ as given in Eq. (1) as well as the error on the

NNLO and continuum limit estimates for RB
31
and RB

42
. Note

that the upper ends of these error bands correspond to the

lower temperature, i.e., T ¼ 155 MeV at μB ¼ 0 and

T ≃ 152.5 MeV at μB=T ¼ 1.

Also shown in this figure are results for the skewness and

kurtosis ratios of net proton-number fluctuations obtained

by the STAR Collaboration [18,20]. These ratios are plotted

versus the measured ratio of the mean and variance of net

proton-number fluctuations, which is taken as a proxy for

the net baryon-number cumulant ratio
4
RB
12
.

As the experimentally determined skewness ratio of net

proton-number fluctuations has a rather weak dependence

on RP
12

and also the QCD result for RB
31

has a weak

dependence on RB
12
, it obviously is not of much importance

for the comparison of data and lattice QCD calculations

whether RP
12

equals RB
12

or only is a proxy within say

10–20%. More relevant is the question to what extent the

magnitude of RP
31
is a good approximation

5
for RB

31
. A direct

comparison between RP
31

and RB
31
, as shown in Fig. 10,

suggests that freeze-out happens in the vicinity of but below

the pseudocritical temperature. In fact, as can be seen in

Figs. 4 and 7, the ratios RB
31

and RB
42

are decreasing

functions of the temperature. Experimental data for RP
31

lying above the theoretical band for RB
31
, evaluated on the

pseudocritical line, thus suggest that freeze-out happens at

a lower temperature.

Although errors on experimental results for the kurtosis

ratio RP
42

are large, they are thermodynamically consistent

with the data on the skewness ratio as pointed out already in

our earlier analysis [19]. This gets further support through

recent high-statistics
6

data obtained by the STAR

Collaboration at
ffiffiffiffiffiffiffiffi

sNN

p ¼ 54.4 GeV [20]. These data are

shown in Fig. 10 at RP
12

¼ 0.4672ð2Þ. For this value of the
beam energy the kurtosis ratio RP

42
is found to be smaller

FIG. 10. The cumulant ratios (bands) RB
31
ðT; μBÞ≡ SBσ

3

B=MB

and RB
42
ðT; μBÞ≡ κBσ

2
B versus RB

12
ðT; μBÞ≡MB=σ

2
B on the

pseudocritical line calculated from NNLO Taylor series. Data

are results on cumulant ratios of net proton-number fluctuations

obtained by the STAR Collaboration [18]. Also shown are

preliminary results obtained at
ffiffiffiffiffiffiffiffi

sNN

p ¼ 54.4 GeV [20]. Dashed

lines show joint fits to the data as described in the text.

FIG. 11. The cumulant ratios RB
51
ðT; μBÞ and RB

62
ðT; μBÞ versus

RB
12
ðT; μBÞ evaluated on the pseudocritical line. Data are pre-

liminary results for the cumulant ratio RP
62

of net proton-number

fluctuations obtained by the STAR Collaboration at
ffiffiffiffiffiffiffiffi

sNN

p ¼ 200

and 54.4 GeV for the 0–40% centrality class [20].

3
Note that this will no longer be the case when one comes

close to a critical point, where χ
B
2

is expected to diverge
and RB

12
ðTpcðμBÞ; μBÞ thus would approach zero.

4
In a noninteracting HRG with vanishing strangeness and

electric-charge chemical potential the ratios of the mean and
variance of net proton-number fluctuations and net baryon-
number fluctuations are identical. In the case of a strangeness
neutral (nS ¼ 0 with nQ=nB ¼ 0.4), noninteracting HRG, how-
ever, the latter is about 10% smaller.

5
Many caveats for a direct comparison between net baryon-

number fluctuations calculated in equilibrium thermodynamics
and net proton-number fluctuations measured in heavy-ion
collisions have been discussed in the literature [10,13]. The
lattice QCD results shown in Fig. 10 thus may be considered only
as a starting point for a more refined analysis of the experimental
data that may take into account effects arising from experimental
acceptance cuts, the small size of the hot and dense medium,
nonequilibrium effects etc.

6
The statistics at

ffiffiffiffiffiffiffiffi

sNN

p ¼ 54.4 GeV is a factor of 3.4 larger
than at

ffiffiffiffiffiffiffiffi

sNN

p ¼ 200 GeV and a factor of 17–30 larger than for

the other
ffiffiffiffiffiffiffiffi

sNN

p
data sets shown in Fig. 10.
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than RP
31
. The magnitude of this difference, RP

42
− RP

31
¼

−0.12ð5Þ, is in good agreement with the corresponding

lattice QCD result on the pseudocritical line. For the range

RB
12

¼ 0.45ð5Þ, which corresponds to μB ¼ 80–100 MeV,

or μB=T ¼ 0.57ð7Þ, we find from a fit to the difference ofRB
42

and RB
31
, RB

42
− RB

31
¼ −0.08ð3Þ. At these values of the

baryon chemical potential (or for RB
12
≃ 0.5) the NNLO

results for the skewness and kurtosis ratios, presented in the

previous section, seem to suffer little from truncation effects

in the Taylor expansions.

Also shown in Fig. 10 with dashed lines is a joint fit to

the experimental data on RP
31

and RP
42

[18] for
ffiffiffiffiffiffiffiffi

sNN

p
≥

19.6 GeV using a quadratic ansatz, already used in

Ref. [19],

RP
31

¼ S0 þ S2ðRP
12
Þ2;

RP
42

¼ K0 þ K2ðRP
12
Þ2; ð15Þ

withK0 ≡ S0. Including the new data at
ffiffiffiffiffiffiffiffi

sNN

p ¼ 54.4 GeV

yields a fit, consistent with Ref. [19], but further constrains

the parameters. One finds S0 ≡ K0 ¼ 0.761ð20Þ, S2 ¼
−0.077ð70Þ, and K2 ¼ −0.54ð22Þ. From the continuum

estimates of RB
31

and RB
42

at μB ¼ 0 shown in Fig. 6 one

finds that the value of S0 corresponds to a freeze-out

temperature of 153.5(2.0) MeV. This temperature range is

consistent with an earlier determination of the freeze-out

temperature that was based on a comparison of the mean-to-

variance ratio of net electric-charge and net proton-number

ratios obtained by the STAR and PHENIX collaborations

[29,30] with corresponding lattice QCD calculations for net

electric-charge and net baryon-number cumulant ratios [31].

We also note that the ratio of the curvature ofRB
42
andRB

31
on

the pseudocritical (freeze-out) line tends to be larger than 3,

which also has been noted in our previous analysis of the

skewness and kurtosis ratios [19].

While the experimental data on the skewness and kurtosis

cumulant ratios of net proton-number fluctuations, obtained

at
ffiffiffiffiffiffiffiffi

sNN

p
≥ 27 GeV, are consistent with results on net

baryon-number cumulants calculated within equilibrium

QCD thermodynamics, this is not the case for the prelimi-

nary data on sixth-order cumulants presented by the STAR

Collaboration [20]. The still preliminary data at
ffiffiffiffiffiffiffiffi

sNN

p ¼
200 and 54.4GeV, taken from the 0–40%centrality class, are

shown in Fig. 11 together with the NLO lattice QCD

calculations. At both values of
ffiffiffiffiffiffiffiffi

sNN

p
deviations from the

NLO lattice QCD results are large and of similar magnitude.

While it is conceivable that the NLO results at RB
12
≃ 0.5 (or

μB=T ≃ 0.6) will receive sizable corrections atNNLO, this is

not the case at RB
12
≃ 0.15 (or μB=T ≃ 0.3). It thus seems

impossible to describe both data points within QCD equi-

librium thermodynamics. We also note that a large positive

χ
B
10

is needed, for such a contribution to render the hyper-

kurtosis ratio positive at
ffiffiffiffiffiffiffiffi

sNN

p ¼ 54.4 GeV.

As pointed out in the previous section the NLO correc-

tions for the hyper-skewness ratio RB
51

are a factor of 3

smaller than those for the hyper-kurtosis ratio RB
62
.

Truncation errors for the former series are thus expected

to be less severe. Furthermore, this ratio will also be easier

to determine experimentally with smaller statistical errors.

It thus would be an important check on the thermodynamic

consistency of higher-order cumulants to compare exper-

imental data on RP
51

at
ffiffiffiffiffiffiffiffi

sNN

p
≥ 54.4 GeV with the NLO

lattice QCD calculations presented here.

V. SUMMARY AND CONCLUSIONS

We have presented new results on the μB dependence of

up to sixth-order cumulants using our latest results on up to

eighth-order cumulants calculated at vanishing chemical

potentials. Using simulation results obtained on lattices of

size 323 × 8 and 483 × 12 we further presented continuum

limit estimates for up to fourth-order cumulant ratios. For

this analysis we used results from NNLO expansions of

cumulants in the baryon chemical potential for strangeness

neutral systems, nS ¼ 0 at an electric-charge to baryon-

number ratio nQ=nB ¼ 0.4. Systematic effects arising from

the truncation of Taylor series for the skewness and kurtosis

ratios were shown to be small for μB=T ≤ 1, i.e., for the

range of chemical potentials that can be probed in heavy-ion

collisions in a range of beam energies
ffiffiffiffiffiffiffiffi

sNN

p
≥ 27 GeV. A

comparison of the results on ratios of up to fourth-order

cumulants of net baryon-number fluctuations calculated in

equilibrium QCD thermodynamics with corresponding

cumulants of net proton-number fluctuations yields quite

good agreement. This suggests that the latter are consistent

with reflecting the imprint of thermodynamical fluctuations

at a temperature close to but below the pseudocritical

temperatures TpcðμBÞ. The particularly good agreement

between lattice QCD calculations and the high-statistics

experimental data for up to fourth-order cumulants at
ffiffiffiffiffiffiffiffi

sNN

p
≥ 54.4 GeV suggests that this conclusion could be

further strengthened, if data with similarly high statistics

also becomes available at other beam energies in the

range
ffiffiffiffiffiffiffiffi

sNN

p
≥ 27 GeV.

We also presented first results from a NLO calculation of

fifth- and sixth-order cumulants and showed that the hyper-

skewness and hyper-kurtosis ratios RB
51

and RB
62

are

negative at low values of μB=T and temperatures in the

vicinity of TpcðμBÞ. This is at odds with preliminary data

obtained by the STAR Collaboration at
ffiffiffiffiffiffiffiffi

sNN

p
≥ 54.4 GeV

for the sixth-order cumulant ratio, RP
62
, of net proton-

number fluctuations, which was found to be positive and

close to unity. However, on the one hand corrections to the

LO result for these cumulants, calculated in lattice QCD,

are large already at μB ≃ 0.5. This makes a calculation of

NNLO corrections for these cumulants desirable. On the

other hand, the experimental determination of sixth-order

cumulant ratios is known to require high statistics and
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current experimental data may be statistics limited. We

pointed out that a measurement of ratios of fifth- and first-

order cumulants would be very helpful as this ratio can be

better controlled experimentally and suffers less from

truncation effects in NLO lattice QCD calculations.

All data from our calculations, presented in the figures of

this paper, can be found at https://pub.uni-bielefeld.de/

record/2941824 [32].
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APPENDIX: TAYLOR EXPANSION

COEFFICIENTS OF NET BARYON-NUMBER

CUMULANTS

We give here explicit expressions for the first four

expansion coefficients in the Taylor series for net

baryon-number cumulants in strangeness neutral systems

(nS ¼ 0) with a fixed ratio of electric-charge to baryon-

number densities (nQ=nB ¼ 0.4) as defined in Eq. (4).

These constraints determine the strangeness and electric-

charge chemical potentials (μS, μQ) in terms of the baryon

chemical potential μB [24],

μ̂QðT; μBÞ ¼ q1ðTÞμ̂B þ q3ðTÞμ̂3B þ q5ðTÞμ̂5B þ…;

μ̂SðT; μBÞ ¼ s1ðTÞμ̂B þ s3ðTÞμ̂3B þ s5ðTÞμ̂5B þ… ðA1Þ

Explicit expressions for the expansion coefficients qi and si
up to i ¼ 5 were given in Appendix B of Ref. [24]. Results

for i ¼ 7 can easily be generated following the procedure

outlined in that Appendix.

The expansion coefficients of the cumulant series

χ
B
n ðT; μBÞ defined in Eq. (4) are given in terms of the

expansion coefficients of the pressure series,

P

T4
¼

X

i;j;k

1

i!j!k!
χ
BQS
ijk μ̂

i
Bμ̂

j
Qμ̂

k
S: ðA2Þ

For n even, one obtains for the expansion coefficients χ̃B;kn ,

appearing in Eq. (4)

χ̃
B;0
n ¼ χ

BQS
n00 ;

χ̃
B;2
n ¼ ðχBQS

nþ2;00 þ s2
1
χ
BQS
n02 þ q2

1
χ
BQS
n20 þ 2s1 χ

BQS
nþ1;01 þ 2q1 χ

BQS
nþ1;10 þ 2q1s1 χ

BQS
n11 Þ=2;

χ̃
B;4
n ¼ ð24s1s3 χBQS

n02 þ s4
1
χ
BQS
n04 þ 24q3s1 χ

BQS
n11 þ 24q1s3 χ

BQS
n11 þ 4q1s

3

1
χ
BQS
n13 þ 24q1q3 χ

BQS
n20 þ 6q2

1
s2
1
χ
BQS
n22 þ 4q3

1
s1 χ

BQS
n31

þ q4
1
χ
BQS
n40 þ 24s3 χ

BQS
nþ1;01 þ 4s3

1
χ
BQS
nþ1;03 þ 24q3 χ

BQS
nþ1;10 þ 12q1s

2

1
χ
BQS
nþ1;12 þ 12q2

1
s1 χ

BQS
nþ1;21 þ 4q3

1
χ
BQS
nþ1;30

þ 6s2
1
χ
BQS
nþ2;02 þ 12q1s1 χ

BQS
nþ2;11 þ 6q2

1
χ
BQS
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BQS
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nþ3;10 þ χ

BQS
nþ4;00Þ=24;
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χ̃
B;6
n ¼ ð360s2

3
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1
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For the expansion coefficients of cumulants χ
B
n ðT; μBÞ, with n odd, one obtains
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