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We present new results on up to sixth-order cumulants of net baryon-number fluctuations at small values
of the baryon chemical potential, s, obtained in lattice QCD calculations with physical values of light and
strange quark masses. Representing the Taylor expansions of higher-order cumulants in terms of the ratio of
the two lowest-order cumulants, Mg/c% = x5 (T, ug)/ x5 (T, ug), allows for a parameter-free comparison
with data on net proton-number cumulants obtained by the STAR Collaboration in the Beam Energy Scan
at RHIC. We show that recent high-statistics data on skewness and kurtosis ratios of net proton-number
distributions, obtained at a beam energy /syy = 54.4 GeV, agree well with lattice QCD results on
cumulants of net baryon-number fluctuations close to the pseudocritical temperature, T ,.(uz), for the
chiral transition in QCD. We also present first results from a next-to-leading-order expansion of fifth- and
sixth-order cumulants on the line of the pseudocritical temperatures.
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I. INTRODUCTION temperature, T ,.(up) [4-7]. At larger values of the baryon
chemical potential it, however, is generally expected that a
first-order phase transition line exists, which ends in a
second-order critical point [8,9]. This elusive critical
point is searched for in the Beam Energy Scan (BES)
performed at the Relativistic Heavy Ion collider (RHIC) at
Brookhaven National Laboratory [10]. However, its exist-
ence as a fundamental property of the theory of strong
interactions (QCD) still awaits confirmation.

The pseudocritical line, 7', (u5), which distinguishes the

The phase diagram of strong-interaction matter at non-
zero temperature and nonzero baryon-number density
is being explored intensively through numerical calcula-
tions performed in the framework of lattice-regularized
quantum chromodynamics (QCD) [1], as well as through
ultrarelativistic heavy-ion collisions with varying beam
energies [2]. At vanishing and small values of the chemical
potentials for conserved charges [baryon number (up),
electric charge (1), strangeness (ug)] it is well established - k > .
that the transition from the low-temperature hadronic low- and hlgh—Femperature regimes of strong—l.nteractlf)n
region to the quark-gluon plasma at high temperature is ~ Matter as described by QCD, has been determined quite
a smooth transition [3] characterized by a pseudocritical accurately in lattice QCD calculations for baryon chemical

potentials up to about twice the pseudocritical temperature,
up S 2T e (0) 2~ 300 MeV [4-7]. In our recent analysis we
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with 79, = (156.5 £ 1.5) MeV and % = 0.012(4) with a

O(u3) correction that vanishes within errors. At ug = 0 the
pseudocritical temperature turns out to be in good agree-
ment with the freeze-out temperature determined by the
ALICE Collaboration at the LHC [11] and the pseudoc-
ritical line, T,.(ug), is also consistent with freeze-out
temperatures determined by the STAR Collaboration dur-
ing the first BES at RHIC (BES-I) [12], albeit these
temperatures have larger statistical errors.

The experimental determination of the freeze-out para-
meter is based on a measurement of particle yields, i.e., first
moments of particle distributions, which in turn are closely
related to first-order cumulants of net charge fluctuations.
The proximity of freeze-out temperatures and the pseu-
docritical temperature determined in QCD suggests that
the higher-order moments of net charge fluctuations also
reflect properties of a thermal medium close to the
pseudocritical line. This, however, is not at all well
established and many caveats have been discussed sug-
gesting that the relation of higher-order cumulants, mea-
sured experimentally, to cumulants of conserved charge
fluctuations, calculated in equilibrium QCD thermodynam-
ics, is not at all straightforward [10,13].

Higher-order cumulants of net conserved charge fluctu-
ations are obtained as derivatives of the logarithm of the
QCD partition functions with respect to the chemical
potentials of conserved charges, i = (ug, pg. is),

1 o"InZ(T,f)
1% L

xn(T.ji) = ., X=B0.S (2

with fi =pu/T. These higher-order derivatives become
increasingly sensitive to long-range correlations and large
fluctuations in the vicinity of a critical point. At least from
the theoretical point of view higher-order cumulants thus
are ideally suited to search for a possible critical point in the
QCD phase diagram [14-16]. The BES at RHIC aims at
finding evidence for such a critical point through the
analysis of e.g., higher-order cumulants of net proton-
number fluctuations which are considered to be good
proxies for cumulants of net baryon-number fluctuations.
Results, obtained with BES-I at RHIC, indicate that
qualitative changes in the behavior of net proton-number
fluctuations occur at beam energies /syy ~ 20 GeV
[17,18]. This may hint at the existence of a critical point
for large values of the baryon chemical potential.

While the finding of nonmonotonic behavior of higher-
order cumulants of net proton-number fluctuations generated
well-justified excitement [17,18], we still need to establish
that this behavior is caused by thermal fluctuations in the
vicinity of a critical point and that these higher-order
cumulants indeed probe thermal conditions at the time of
freeze-out. As pointed outin Ref. [19] at least for small values
of the baryon chemical potential the first four cumulants of
net baryon-number fluctuations, i.e., mean [Mg = ¥ (T, ji)],

variance [o% = yB(T,[i)], skewness [Spz = y2(T,j)/
Z5(T,ji)*?] and kurtosis [kg = yB(T,j)/x5(T,}i)*] are
predicted in QCD equilibrium thermodynamics to be related.
For ug = pp = 0 one finds

2 3
KBo-B < SBGB/MB,

Qxff(T, i) x3(T.j)
B T = B T -\
X5(T i) xi (T, j)

(3)

This relation, which is only slightly violated in strangeness
neutral systems, has been established in lattice QCD calcu-
lations using next-to-leading-order (NLO) Taylor expansions
of the first four cumulants of net baryon-number fluctuations
[19]. The data on cumulants of net-proton number fluctua-
tions, obtained by STAR during BES-I [18] at beam energies
\/m > 19.6 GeV are, on average, consistent with this
finding [19]. However, statistical errors are large and, for
instance, data obtained at ,/syy = 62.4 GeV violate the
above relation. Results at several other beam energies are
inconclusive due to the large statistical errors on the fourth-
order cumulant ratio kzc3. To this extent recent high-
statistics data obtained by the STAR Collaboration at
V/Swv = 54.4 GeV [20] are encouraging. As will be dis-
cussed in Sec. IV, these data fulfill the above inequality and
the difference of the cumulant ratios given in Eq. (3) agrees
with lattice QCD results even on a quantitative level.

We will present here new results on the density depend-
ence of up to sixth-order cumulants of net baryon-number
fluctuations. We calculate Taylor series at nonzero values of
the baryon-number, electric-charge and strangeness chemi-
cal potentials that involve up to eighth-order cumulants. We
perform these expansions for the case of strangeness
neutral systems, ng = 0, with a ratio of electric charge
to baryon number, n,/np = 0.4, that is representative of
the conditions met in heavy-ion collisions. This allows to
construct Taylor expansions for nth-order cumulants,'
xn (T, pi), up to O(ug™).

For the case of the skewness and kurtosis ratios,
Sgoy/Mp and kpok, respectively, we thus can extend
earlier NLO calculations and perform next-to-next-to-
leading-order (NNLO) expansions that allow to better control
truncation effects in the Taylor series. We also present, for the
first time, results from NLO calculations for the hyper-
skewness and hyper-kurtosis (fifth- and sixth-order cumu-
lants) ratios x5 (T, up)/ 47 (T, ug) and x¢ (T, up)/ x5 (T, u)-
We show that these ratios are expected to be negative at
V/Syn = 54.4 GeV, in contrast to the preliminary findings
for sixth-order cumulants of net proton-number fluctuations
reported by the STAR Collaboration [20].

'Rather than specifying in the argument of y2 all three
chemical potentials, i, we give in the strangeness neutral case
only the baryon chemical potential.
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This paper is organized as follows. In the next section we
briefly present our calculational setup, the new statistics
collected on lattices of size 32 x 8 and 48% x 12 and the
general fitting ansatz used for fits at fixed values of N, = 8
and 12, joint fits of these data as well as continuum limit
estimates. In Sec. III we present results for Taylor expan-
sions of cumulants of net baryon-number fluctuations that
use up to eighth-order cumulants. We compare these results
with experimental data for cumulants of net proton-number
fluctuations in Sec. IV. Section V contains our conclusions.
Explicit expressions for the first four Taylor expansion
coefficients of net baryon-number cumulants are given in
the Appendix.

II. CALCULATIONAL SETUP

Up to fourth-order cumulants of net baryon-number
fluctuations have been calculated previously [19,21,22]
in a next-to-leading-order Taylor expansion. In particular,
we performed calculations [19] with the highly improved
staggered quark [23] discretization scheme for (2 4+ 1)-
flavor QCD with a physical strange quark mass and two
degenerate, physical light quark masses. Here we extend
these calculations by increasing the number of gauge field
configurations generated on lattices of size 323 x 8 and
483 x 12 by a factor of 3-5 in the transition region and at
least a factor of 2 at other values of the temperature. This
allows us to calculate up to eighth-order cumulants of net
baryon-number, net strangeness and net electric-charge
fluctuations, including also their correlations, at vanishing
values of the chemical potentials. These cumulants provide
expansion coefficients in Taylor series for net baryon-
number cumulants yZ (T, ji). We calculate NLO expansions
for fifth- and sixth-order cumulants and obtain NNLO
results for third- and fourth-order cumulants. In the case of
first- and second-order cumulants, i.e., the mean and
variance of net baryon-number distributions, we even
obtain next-to-NNLO (NNNLO) results. The set of gauge
field ensembles, which has been used in this analysis, and
the number of gauge field configurations per ensemble on
lattices with temporal extent N, = 8 and 12 are summa-
rized in Table L.

Results for up to eighth-order diagonal net baryon-
number susceptibilities, y2 = y8(T,0), are given in
Fig. 1. For the quadratic fluctuations, y5, we also show
results for lattices with temporal extent N, = 6, which were
already used in Ref. [7]. For the eighth-order cumulant, )(g,
we only show our results for N, = 8 as statistical errors on
the N, = 12 data are still too large. The bands shown in
these figures give a continuum extrapolation for x5 (7T)
using data from calculations for three different lattice
spacings (aT = 1/N,) and a continuum estimate for
x5(T) based on N, = 8 and 12 data sets. For y5(T) and
x8(T) we only show spline interpolations of the data
obtained on the 32°x 8 lattices. Results for these

TABLE I. Number of gauge field configurations on lattices of
size 32% x 8 and 483 x 12 used in the analysis of up to eighth-
order Taylor expansion coefficients. The values of the gauge
coupling as well as the strange and light quark mass parameter at
these temperature values are taken from Ref. [24], where details
on the statistics available on the 243 x 6 lattices were also given.
All configurations are separated by 10 time units in rational
hybrid Monte Carlo simulations [24].

N, =38 N, =12
T [MeV] No. of conf. T [MeV] No. of conf.
134.64 1275380 134.94 256 392
140.45 1598 555 140.44 368 491
144.95 1559003 144.97 344010
151.00 1286603 151.10 308 680
156.78 1602 684 157.13 299 029
162.25 1437436 161.94 214671
165.98 1186523 165.91 156 111
171.02 373 644 170.77 144 633
175.64 294 311 175.77 131248

cumulants, obtained from calculations within a noninter-
acting hadron resonance gas (HRG) model that use
resonances from the Particle Data Tables [25] (PDG-
HRG) as well as additional resonances calculated within
the quark model [26,27] (QM-HRG) are given by lines. The
latter list contains additional resonances not (yet) observed
experimentally.

We determine the expansion coefficients, 75 ok (T), for
Taylor series of nth-order cumulants,

bt

max

(1), (4)
0

)(E(T’/"B) =

»
i

for the case of vanishing net strangeness density,
ng =0, and an electric-charge to baryon-number ratio,
ng/np = 0.4. Explicit expressions for the NLO expansion
coefficients of up to sixth-order net baryon-number cumu-
lants are given in Ref. [19]. The explicit form of the higher-
order expansion coefficients are given in the Appendix.
Using the Taylor series for nth-order cumulants, Eq. (4),
we construct cumulant ratios with polynomials of order

[kmax ’ lmax} 4

kmax Ykl 7
)(E(TvﬂB) o Zkzl Zﬁk@)ﬂ]fe

RS, = = :
am(Tops) S ! (T)idy

In order to control systematic effects arising from the
truncation of the Taylor series expansion for the cumulant
ratios R5,,, we calculate these ratios using different orders
of the Taylor expansion for the cumulants appearing in the
numerator and denominator of these ratios. We analyzed
the polynomial ratios for different [k, [max] as well as
Taylor expansions of the ratios themselves. We find that the
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FIG. 1. Cumulants of net baryon-number fluctuations from
second to eighth order (top to bottom) evaluated at upz = 0 on lat-
tices of size N> x N, with N, = 4N . For further details see text.

former are more stable at large pp/T. In the following we
will use the ratios of polynomials with [k, [nax] corre-
sponding to identical orders (LO, NLO, NNLO, NNNLO)
of expansions in the cumulants appearing in the numerator
and denominator, respectively.

We fit cumulant ratios using a rational polynomial
ansatz,

Z:llr:aan(ﬁB)Tn h T_ T 6
Minax > Tm’ Wlt — 7 ( )
> m=0 b (iig)T Ty

where T, is some arbitrary scale. When using this rational
polynomial ansatz for fits at nonzero up we allow for a
quadratic up dependence of all expansion coefficients,
a,(fig) = a,o + a,,i% and similarly for b,(fiz). When
performing joint fits of data on lattices with different sizes
and lattice spacings, a, we allow for O(a?) cutoff correc-
tions that are parametrized in terms of the temporal lattice
extent N, = 1/aT, e.g.,

f(T.hp) =

ST o) = WT ) +359(T ). ()

with ¢(T, jig) and h(T, jig) being rational polynomials of
the type given in Eq. (6).

III. CUMULANTS OF NET
BARYON-NUMBER FLUCTUATIONS

A. Mean and variance of net
baryon-number fluctuations

We have calculated the ratio of the mean, My =
2B(T, up), and variance, 6% = y5(T,pup), of net baryon-
number fluctuations,

B

RE(T pip) = =%

Op
for systems with vanishing net strangeness, ng = 0, and a
net electric-charge to net baryon-number density n,/np =
0.4 on lattices with temporal extent N, = 8 and 12. Using
up to eighth-order Taylor expansion coefficients, we can
construct Taylor series up to order O(2}) and O(f5) for
X8(T,ug) and yB(T,ug), respectively. Truncating these
series at k., and [, = knax — 1, respectively, we con-
struct the [Kyax, Imax] polynomial ratios which provide
leading-order ([1, 0]), next-to-leading-order ([3, 2]) etc.,
approximations for the ratio of the mean and variance of the
distribution for net baryon-number fluctuations, R%,=
Mg/c%. Results for different [kpay, lmax] are shown in
Fig. 2. The figure shows results obtained on lattices with
temporal extent N, =8 and 12 at a temperalture2 T~
157 MeV which is close to the pseudocritical temperature
at Hp = 0.

We find that cutoff effects are negligible for pup/T < 1
and remain comparable to the statistical errors for the

’As is evident from Table I the temperatures differ slightly
for the two lattice sizes: T = 156.76 MeV for N, =8 and
T = 157.13 MeV for N, = 12, respectively.
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FIG. 2. Expansion of R%, = My /o% at a fixed temperature
close to the pseudocritical line T,.(up) versus the baryon
chemical potential. Shown are results from up to NNNLO
expansions on lattices of size 323 x 8 and 483 x 12.

N, = 12 data at least up to ug/T ~ 1.2. This holds true in
the entire temperature range T € [135 MeV:175 MeV]|
analyzed by us. Differences in R¥, constructed from
NNLO and NNNLO Taylor series of the cumulants are
about 2% for uz/T = 1.

As the temperature dependence of R?, is weak in the
temperature range considered by us and also deviations of
the pp dependence from the leading order, linear behavior
are moderate we find that using [2, 3] rational polynomials
in both terms of the fit ansatz given in Eq. (7) are sufficient
for obtaining good fits to the data. We performed fits
separately for the NNLO and NNNLO data sets at fixed
values of T and ugz/T < 1.2. The resulting continuum
estimates for R%,, evaluated for several values of the
temperature in the vicinity of the pseudocritical temper-
ature, T,.(0), are shown in Fig. 3. We note that the
variation with temperature is small. As will be discussed
in Sec. IV the results obtained for R, at up < 125 MeV are
in good agreement with HRG model calculations. For
larger values of up we find, however, RfQ'QCD > REHRG
which reflects the large deviations of higher-order cumu-
lants, evaluated in QCD at up = 0, from the corresponding
HRG values.

’

RE,(T,ug)
0.8 - g
0.6 1
T=152 MeV
155 MeV
0.4 r 158 MeV ]
161 MeV
0.2 | |
O Il Il Il Il Il HB/-]— Il
0 0.2 0.4 0.6 0.8 1 1.2
FIG. 3. Continuum estimate for sz based on NNNLO ex-

pansion results obtained on lattices of size 323 x 8 and 483 x 12.

B. Skewness and kurtosis of net
baryon-number fluctuations

While the low-order cumulants Mg = y5(T, ug), 03 =
X5(T, ug) and their ratio are in good agreement with HRG
model calculations that use noninteracting, point-like
hadrons at and below T',,. (see also discussion in Sec. IV),
this clearly is not the case for higher-order cumulants. This is
apparent in calculations of the skewness and kurtosis ratios,

Sgoy 2 (T.u
RE (T ) = 2278 _ 25T 1n) )
Mp X1 (T pp)

RE,(T,up) = kpoy = .
TR (T )

which both are unity in noninteracting HRG model calcu-
lations, but are known to be significantly smaller in lattice
QCD calculations already in the vicinity of the pseudocritical
temperature, 7,.(0), at vanishing values of the baryon
chemical potential. Moreover, in contrast to the cumulant
ratio R%,, the ratios R, and R%, show a much stronger
temperature dependence and a milder dependence on pp. It
thus has been suggested that the ratio R%, is well suited to
determine the baryon chemical potential from experimental
data, while the ratios R%, and RZ, constrain the temper-
ature [21,28].

Using our results for up to eighth-order cumulants of
conserved charge fluctuations and correlations, we can
construct NNLO expansions for the third- and fourth-order
cumulants x%(T,ug) and x%(T,pup), where again the
electric-charge and strangeness chemical potentials have
been fixed by demanding ng = 0 and ny/ng = 0.4. With
this we determine up to NNLO results for the skewness and
kurtosis cumulant ratios R%, and R,.

We again first use our high-statistics data obtained on the
N, = 8 lattices to analyze the effect of truncations of the
Taylor expansions at finite orders of pz. We used the fit
ansatz given in Eq. (6) and performed fits to LO, NLO and
NNLO results for the ratios R%, and R%, in the temperature
range [135 MeV:175 MeV| and for baryon chemical
potentials up < 160 MeV. Results from these fits are
shown in Fig. 4 for four values of the temperature in the
vicinity of the pseudocritical temperature T ,.(0). The two
central 7 values, T = 155 and 158 MeV, correspond to the
lower and upper end of the error band for the pseudocritical
temperature at pp = 0. The lowest temperature, 7 =
152 MeV reflects the lowest 7' value reached on the
pseudocritical line 7', (up) at ug/T = 1. For clarity we
show in Fig. 4 the LO results, which are up independent,
only for the lowest temperature. Of course, at all temper-
ature values the LO results coincide with the values of R%,
and R, at ug =0. We also note that in the range of
chemical potentials, 0 < ug/T < 1, the pseudocritical tem-
perature only varies slightly. The data shown in Fig. 4 thus
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R§1(T,HB)
09 T=152 MeV T
s ﬁg\
0.7 T=158 MeV
T=161 MeV
0.6 |
——
05| N¢=8 E
LO: [1,1]
0.4 | ' -
NLO: [3,3]
03} NNLO: [5,5] i
0.2 1 1 1 1 uB/T
0 0.2 0.4 0.6 0.8 1

0.6

0.5 N.=8
| LO: [0,0]
04 NLO: [2,2]
03k NNLO: [4,4]
0.2 L L
0 0.2 0.4 0.6 0.8 1

FIG. 4. The cumulant ratios R%, (T, up) = Szo3/Mp (top) and
RE,(T, up) = kgoy (bottom) versus ug/T for four different
values of the temperature calculated from LO, NLO and NNLO
Taylor expansions of the cumulants y2(T, uz) on lattices with
temporal extent N, = 8.

cover the entire parameter range of relevance for the
calculation of these cumulant ratios on the pseudocritical
line for ug/T < 1.

In Ref. [19] we showed that the skewness and kurtosis
ratios RS and R%, are almost identical at leading order,
O(u%). The NLO correction to the kurtosis ratio R%),
however, is about a factor of 3 larger than that for the
skewness ratio R%,. Figure 4 suggests that these relations
are still well respected by the NNLO results. The slope of
RE, (T, ug) as a function of fi at fixed T is significantly
larger than that of Rfl(T, ugp) and, in fact, it is still
consistent with being about a factor of 3 larger. This is
shown in Fig. 5 where we compare the uz-dependent parts
of R%, and R%, /3. Also shown in this figure are the second
derivatives of R%(T,up) and R%,(T,up)/3 with respect
to ug/T.

Compared to the lower-order ratio R?, higher-order
corrections in the Taylor expansion of R%, are significantly
larger. In the temperature range shown in Fig. 4 corrections
to the NLO results, arising from the NNLO, O(u3),
corrections in the Taylor expansions of the cumulants
X5(T, up), are about 5% at pup/T = 0.8 and rise to about
10% at ug/T = 1. Consequently truncation effects in R%,
are about a factor of 3 larger.

0.05 T B T T B T
R341(T,1p)-R31(T,0)
ok (RBa(T,u)-RE(T,0))/3 ]
N=8
005 | T=(155-158) MeV
d2RE, (T,up)/d(1g/T)?2
d?RE,(T, up)/d(up/T)%/3
01F
015 F -0.
02} O ]
0> 0 0.25 0.5 0.75 1
_0.25 1 1 ) \. .\ 1 1 1 1 uB/-r\
01 02 03 04 05 06 07 08 09 1

FIG. 5. The pg-dependent correction to R%, compared to one
third of the correction for R%,. The inset shows a comparison of
the second derivatives of RS, and R%,/3 with respect to ug/T.

In Fig. 6 we show results for the skewness and kurtosis
ratios R% (T, up) and RE,(T,up) obtained at ug =0 on
lattices with temporal extent N, = 8 and 12. Obviously
results for N, = 12 are systematically below those for
N, = 8. This is in accordance with the observed shift of the
pseudocritical temperatures [7] to smaller values with
increasing N, or, equivalently, decreasing lattice spacing
at fixed temperature aT = 1/N,. When performing joint
fits to the N, = 8 and 12 data, using the ansatz given in

1.2

R,(T,0) Tpe = 156.5(1.5) MeV
cont. est.
1 Ni=8 r—te—i |
12—
0.8 4
0.6 4
0.4 —
T [MeV]
02 Il Il Il Il
130 140 150 160 170 180
1.2 B T T
Ra2(T.0) Tpe = 156.5(1.5) MeV
1 cont. est.
N.=8 —A—
08 12 —B— |
RS, (T, 0) - R3; (T, 0)
T T -
0.6 [0.02 [ 4 B
" |
0.01 ¥ —
0.4 g
0 _i !i ! L N
140 160 180 T [MeV]
02 Il Il Il Il
130 140 150 160 170 180

FIG. 6. Continuum estimates for the skewness ratio, R3Bl =
So3/Mp (top), and Kurtosis ratio R%, = kzo% (bottom) at up =
0 based on results obtained on lattices of size 32° x 8 and
483 x 12, respectively. The inset in the bottom figure shows the
difference R%, — R, at up = 0 as function of 7.
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FIG. 7. Continuum estimates for the skewness (top) and

kurtosis (bottom) ratios obtained from joint fits to data obtained
on lattices with temporal extent N, = 8 and 12.

Eq. (7), we find that within our current statistical errors on
the N, =12 data we cannot resolve any T or ug/T
dependence of cutoff effects. It thus suffices to use a
constant ansatz for the cutoff corrections, i.e., we use
9(T.up) = ago and a [3, 4] rational polynomial for the
continuum limit result f(7, ug). A joint fit to the N, = 8
and 12 data yields ago = 3.2(1.5) for RE (T,up) and
apo = 3.2(3.0) for RE(T,up). The resulting continuum
limit estimates at ug = 0 are also shown in Fig. 6.

The inset in Fig. 6 (bottom) shows the continuum
estimate for the difference R, —RE at up =0 as a
function of 7. At temperatures below 7 ~ 150 MeV this
difference is consistent with being zero. In the crossover
region, T',.(0) = 156.5(1.5) MeV we find that the differ-
ence is slightly positive, R}, (T ,.) — R%, (T ,.) = 0.008(3).

Continuum estimates for R%, (T, up) and RE,(T, ug) at
two values of the temperature, corresponding to the current
error band for the pseudocritical temperature at g = 0 are
shown in Fig. 7.

C. Hyper-skewness and hyper-kurtosis
of net baryon-number fluctuations

The fifth- and sixth-order cumulants are related to the
corresponding fifth- and sixth-order standardized moments,
i.e., the hyper-skewness, S”, and hyper-kurtosis, k7. We
consider here the cumulant ratios for fifth- and sixth-order
cumulants of net baryon-number fluctuations,

RB T _SgU% )(5(T ﬂB)
(T pp) ==L, T,
B )(1( HB)
TMB)
RE (T, —KH04fZ6( 11
62( B) BYB ){ (T’,MB) ( )

Unlike the ratios for skewness and kurtosis cumulants,
the corresponding ratios involving fifth- and sixth-order
cumulants are negative already at pup =0 in a broad
temperature interval in the vicinity of T ,.(0) and become
smaller with increasing ug. This reflects the properties of
the sixth- and eighth-order cumulants shown in Fig. 1.

The up dependence of the cumulant ratios R%, and RZ,
follows a pattern similar to that of the skewness and kurtosis
ratios. In particular, at LO both ratios are almost identical
and the NLO correction to RS, is about a factor of 3 larger
than that for R§1- Like in the case of the corresponding
relations for the skewness and kurtosis ratios these relations
simply result from the structure of Taylor expansions for odd
and even cumulants [19]. The relations are exact for
expansions at vanishing u, and pg and apparently they
are not much altered in the strangeness neutral case ng = 0
with ny/np = 0.4. A fit to the N, = 8 lattice QCD results
for the difference RS, — R%, at ug = 0 yields 0.029(9).

While statistical errors are strongly correlated between
the fifth- and sixth-order cumulants they are large for each
of these cumulants individually. For this reason we only
present results for these cumulants obtained on lattices with
temporal extent N, = 8 and evaluate the NLO corrections
only for up/T <0.8. NLO results for RZ (T, up) and
RE,(T, ug) are shown in Fig. 8.

Obviously NLO corrections for these ratios are negative
and substantially larger than those in the skewness and
kurtosis ratios. In the vicinity of the pseudocritical temper-
ature the difference between LO and NLO results at
up/T = 0.8 is about an order of magnitude larger in
RE (T, pp) than in RE, (T, ug). This is also the case when
comparing RE,(T, ug) with RE,(T, ug).

The magnitude and sign of the NLO corrections to fifth-
and sixth-order cumulants in relation to corresponding
results for the third- and fourth-order cumulants is evident
from the structure of the corresponding Taylor expansion
coefficients. It is easy to see this in Taylor expansions
performed at pp = pug = 0. In this case one has, for

instance,
5 s Xe (kg 28 (np\*
X (T pug) = x4 +7<?> +ﬁ<_) +- (12)
8 (1>
26T ) = 4§ + 5 (73) e (13)

As can be deduced from Fig. 1, despite the large errors on
current results for %, the cumulants y2 and y& are both
negative in the vicinity of the pseudocritical temperature;
however the absolute value of the eighth-order cumulant is
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FIG. 8. The cumulant ratios R%, (T, up) and RE,(T, ug) versus
ug/T from LO and NLO Taylor expansions of the cumulants
calculated on lattices with temporal extent N, = 8.

about an order of magnitude larger. This results in the much
larger NLO correction to the expansion of y2(T,pup).
Although the expansions of all cumulants x5 (T, uz) will
have the same radius of convergence it is apparent that
expansions for higher-order cumulants will converge
more slowly. Higher-order corrections to y2(T,up) and
xB(T, up) will thus be needed to arrive at firm conclusions
on the behavior of these cumulants close to ug/T ~ 1. For
up/T ~0.3; however, the NLO correction is about an order
of magnitude smaller and thus of similar magnitude as the
NNLO correction to y5(T, ug) and y5(T, pup) at up/T ~ 1.

For small values of the baryon chemical potential and
us = o = 0 we thus may extend the result on the ordering
of cumulant ratios stated in Eq. (3) and also include results
for the fifth- and sixth-order cumulant ratios,

(T.j)  AB(T.ha)  LB(T. i) AB(T.h)
B B BT :
1 ’ 2 1

(T.j) ~ AT ) ~ x

IV. BARYON-NUMBER FLUCTUATIONS ON THE
PSEUDOCRITICAL LINE AND THE CUMULANTS
OF NET PROTON-NUMBER FLUCTUATIONS

In this section we compare results on higher-order
cumulants of net proton-number fluctuations, obtained by
the STAR Collaboration during BES-Tat RHIC [18,20], with
our results for cuamulants of net baryon-number fluctuations

1
R%,(Tpc . Hp)
0.8 =
0.6 i
04l QcCD ,
HRG
0.2 + R
Hp [MexV]
0 1 1 1
0 50 100 150 200

FIG. 9. The cumulant ratio R (T,up) evaluated on the
pseudocritical line T,.(up) for the case ng =0 and ny/np =
0.4. Also shown is the corresponding result obtained in HRG
model calculations. In the latter case the width of the line reflects
differences resulting from using particle spectra for a noninter-
acting HRG listed in the Particle Data Tables as well as resulting
within quark model calculations.

calculated in QCD on the pseudocritical line given in Eq. (1).
The pseudocritical line shows only a rather weak depend-
ence on pg. The O(u}) correction to T, (up) is found to be
zero within errors [19]. For ug < T,.(0) it changes from
T = 156.5(1.5) to 154.5(2.0) MeV. This range of temper-
atures is well covered by the results for cumulant ratios as a
function of up evaluated at fixed values of the temperature
that have been shown in the previous section.

In Fig. 9 we show results for R}, (T ,.(up). pup) on the
pseudocritical line and compare with results obtained from
noninteracting HRG model calculations that utilize hadron
resonance gas spectra as listed in the Particle Data
Tables [25] as well as spectra calculated in quark models
[26,27]. As can be seen in Fig. 9 HRG model calculations for
R, agree well with QCD results obtained on the pseudoc-
ritical line up to about uz/T ~ 0.8 or g ~ 125 MeV. This
suggests that the use of low-order HRG cumulants, in
particular the mean of hadron distributions (hadron yields)
that are used experimentally to determine freeze-out param-
eters, may be appropriate at small values of the baryon
chemical potential or small net baryon-number densities.
The HRG model estimates of freeze-out parameters
[12] suggest that the range of baryon chemical potentials
up/T < 1 corresponds to thermal conditions at freeze-out
generated in heavy-ion experiments at beam energies
V/Swnv 2 27 GeV. Figure 9 suggests that below this value
of \/syy HRG model determinations of baryon chemical
potentials differ from QCD determinations by more than
10%. It thus may be useful to eliminate up in favor of a
directly accessible physical observable, e.g., R%,.

At least for up < 200 MeV truncation errors in the Taylor
expansion of the first two cumulants, the mean and variance,
as well as lattice discretization errors are small. The con-
tinuum limit extrapolation for R%,(T ,.(up), up), shown in
Fig. 9 thus does not suffer from truncation errors in the Taylor
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FIG. 10. The cumulant ratios (bands) R%, (T, ug) = Sgoy/Mp
and RZ(T,up) =xgoy versus RE(T,up) = Mpg/o% on the
pseudocritical line calculated from NNLO Taylor series. Data
are results on cumulant ratios of net proton-number fluctuations
obtained by the STAR Collaboration [18]. Also shown are
preliminary results obtained at /syy = 54.4 GeV [20]. Dashed
lines show joint fits to the data as described in the text.

series at least up to ug/T = 1.2. It is a monotonically rising
function® of up. This allows to replace the chemical potential
in an analysis of higher-order cumulant ratios in favor of R%,.
‘We have done so for the comparison of higher-order cumulant
ratios calculated in lattice QCD on the pseudocritical line with
experimental data on cumulants of net proton-number fluc-
tuations. In Fig. 10 we show the skewness and kurtosis ratios,
R%, and R%,, on the pseudocritical line as a function of R%,,
which also has been evaluated on the pseudocritical line.
Similar results for the hyper-skewness and hyper-kurtosis
ratios are shown in Fig. 11.

In Fig. 10 we show lattice QCD results up to R%, = 0.75,
which corresponds to pp = T ,.(up) ~ 154.5 MeV. The
width of the bands shown in the figure reflect the error
on T (ug) as given in Eq. (1) as well as the error on the
NNLO and continuum limit estimates for R%, and R%,. Note
that the upper ends of these error bands correspond to the
lower temperature, i.e., T =155 MeV at up =0 and
T ~152.5 MeV at up/T = 1.

Also shown in this figure are results for the skewness and
kurtosis ratios of net proton-number fluctuations obtained
by the STAR Collaboration [18,20]. These ratios are plotted
versus the measured ratio of the mean and variance of net
proton-number fluctuations, which is taken as a proxy for
the net baryon-number cumulant ratio* RE,.

*Note that this will no longer be the case when one comes
close to a critical point, where x5 is expected to diverge
and RY,(T . (up). pp) thus would approach zero.

In a noninteracting HRG with vanishing strangeness and
electric-charge chemical potential the ratios of the mean and
variance of net proton-number fluctuations and net baryon-
number fluctuations are identical. In the case of a strangeness
neutral (ng = 0 with ny/ng = 0.4), noninteracting HRG, how-
ever, the latter is about 10% smaller.

s\2 [GeV]: 200 62.4 54.4 39 27
2

NLO, RE,(Tpe)
1 Rgz(Tpc)
STAR preliminary: RE, &

B _| 2
N S . e L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FIG. 11. The cumulant ratios R, (T, ug) and RE,(T, ug) versus
RE (T, pup) evaluated on the pseudocritical line. Data are pre-
liminary results for the cumulant ratio RY, of net proton-number
fluctuations obtained by the STAR Collaboration at /sy = 200
and 54.4 GeV for the 0-40% centrality class [20].

As the experimentally determined skewness ratio of net
proton-number fluctuations has a rather weak dependence
on RY, and also the QCD result for R%, has a weak
dependence on R%,, it obviously is not of much importance
for the comparison of data and lattice QCD calculations
whether Rf, equals R%, or only is a proxy within say
10-20%. More relevant is the question to what extent the
magnitude of R%) is a good approximation” for R%,. A direct
comparison between R%, and R%, as shown in Fig. 10,
suggests that freeze-out happens in the vicinity of but below
the pseudocritical temperature. In fact, as can be seen in
Figs. 4 and 7, the ratios R%, and R%, are decreasing
functions of the temperature. Experimental data for Rf,
lying above the theoretical band for R%,, evaluated on the
pseudocritical line, thus suggest that freeze-out happens at
a lower temperature.

Although errors on experimental results for the kurtosis
ratio RY, are large, they are thermodynamically consistent
with the data on the skewness ratio as pointed out already in
our earlier analysis [19]. This gets further support through
recent high—statistics6 data obtained by the STAR
Collaboration at /syy = 54.4 GeV [20]. These data are
shown in Fig. 10 at RY, = 0.4672(2). For this value of the
beam energy the kurtosis ratio R, is found to be smaller

> Many caveats for a direct comparison between net baryon-
number fluctuations calculated in equilibrium thermodynamics
and net proton-number fluctuations measured in heavy-ion
collisions have been discussed in the literature [10,13]. The
lattice QCD results shown in Fig. 10 thus may be considered only
as a starting point for a more refined analysis of the experimental
data that may take into account effects arising from experimental
acceptance cuts, the small size of the hot and dense medium,
nonequilibrium effects etc.

SThe statistics at VSyy = 54.4 GeV is a factor of 3.4 larger
than at /syy = 200 GeV and a factor of 17-30 larger than for
the other /syy data sets shown in Fig. 10.
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than Rf|. The magnitude of this difference, R}, — R%, =
—0.12(5), is in good agreement with the corresponding
lattice QCD result on the pseudocritical line. For the range
R%, = 0.45(5), which corresponds to ug = 80-100 MeV,
orug/T = 0.57(7), we find from a fit to the difference of R%,
and R%, RE — RE = —0.08(3). At these values of the
baryon chemical potential (or for R%, ~0.5) the NNLO
results for the skewness and kurtosis ratios, presented in the
previous section, seem to suffer little from truncation effects
in the Taylor expansions.

Also shown in Fig. 10 with dashed lines is a joint fit to
the experimental data on RY, and Rf, [18] for \/syy >
19.6 GeV using a quadratic ansatz, already used in
Ref. [19],

RY) = Sy + S2(RP,)%
RY, = Ko + K5(R{,)?, (15)

with Ky = . Including the new data at /sy = 54.4 GeV
yields a fit, consistent with Ref. [19], but further constrains
the parameters. One finds S, = K, = 0.761(20), S, =
—0.077(70), and K, = —0.54(22). From the continuum
estimates of R%, and R, at yz =0 shown in Fig. 6 one
finds that the value of §; corresponds to a freeze-out
temperature of 153.5(2.0) MeV. This temperature range is
consistent with an earlier determination of the freeze-out
temperature that was based on a comparison of the mean-to-
variance ratio of net electric-charge and net proton-number
ratios obtained by the STAR and PHENIX collaborations
[29,30] with corresponding lattice QCD calculations for net
electric-charge and net baryon-number cumulant ratios [31].
We also note that the ratio of the curvature of R%, and R, on
the pseudocritical (freeze-out) line tends to be larger than 3,
which also has been noted in our previous analysis of the
skewness and kurtosis ratios [19].

While the experimental data on the skewness and kurtosis
cumulant ratios of net proton-number fluctuations, obtained
at /syy > 27 GeV, are consistent with results on net
baryon-number cumulants calculated within equilibrium
QCD thermodynamics, this is not the case for the prelimi-
nary data on sixth-order cumulants presented by the STAR
Collaboration [20]. The still preliminary data at \/syy =
200 and 54.4 GeV, taken from the 0-40% centrality class, are
shown in Fig. 11 together with the NLO lattice QCD
calculations. At both values of |/syy deviations from the
NLO Iattice QCD results are large and of similar magnitude.
While it is conceivable that the NLO results at R, ~ 0.5 (or
up/T ~0.6) will receive sizable corrections at NNLO, this is
not the case at R%, ~0.15 (or pp/T ~0.3). It thus seems
impossible to describe both data points within QCD equi-
librium thermodynamics. We also note that a large positive
x5, is needed, for such a contribution to render the hyper-
kurtosis ratio positive at /syy = 54.4 GeV.

As pointed out in the previous section the NLO correc-
tions for the hyper-skewness ratio RS, are a factor of 3
smaller than those for the hyper-kurtosis ratio Rgz.
Truncation errors for the former series are thus expected
to be less severe. Furthermore, this ratio will also be easier
to determine experimentally with smaller statistical errors.
It thus would be an important check on the thermodynamic
consistency of higher-order cumulants to compare exper-
imental data on R‘SDl at \/syy = 54.4 GeV with the NLO
lattice QCD calculations presented here.

V. SUMMARY AND CONCLUSIONS

We have presented new results on the pp dependence of
up to sixth-order cumulants using our latest results on up to
eighth-order cumulants calculated at vanishing chemical
potentials. Using simulation results obtained on lattices of
size 32% x 8 and 48° x 12 we further presented continuum
limit estimates for up to fourth-order cumulant ratios. For
this analysis we used results from NNLO expansions of
cumulants in the baryon chemical potential for strangeness
neutral systems, ng = 0 at an electric-charge to baryon-
number ratio ny/ng = 0.4. Systematic effects arising from
the truncation of Taylor series for the skewness and kurtosis
ratios were shown to be small for uz/T < 1, i.e., for the
range of chemical potentials that can be probed in heavy-ion
collisions in a range of beam energies /syy > 27 GeV. A
comparison of the results on ratios of up to fourth-order
cumulants of net baryon-number fluctuations calculated in
equilibrium QCD thermodynamics with corresponding
cumulants of net proton-number fluctuations yields quite
good agreement. This suggests that the latter are consistent
with reflecting the imprint of thermodynamical fluctuations
at a temperature close to but below the pseudocritical
temperatures 7. (ug). The particularly good agreement
between lattice QCD calculations and the high-statistics
experimental data for up to fourth-order cumulants at
V/Swn = 54.4 GeV suggests that this conclusion could be
further strengthened, if data with similarly high statistics
also becomes available at other beam energies in the
range /syy > 27 GeV.

We also presented first results from a NLO calculation of
fifth- and sixth-order cumulants and showed that the hyper-
skewness and hyper-kurtosis ratios R%, and Rf, are
negative at low values of up/T and temperatures in the
vicinity of T',.(ug). This is at odds with preliminary data
obtained by the STAR Collaboration at \/syy > 54.4 GeV
for the sixth-order cumulant ratio, RgQ, of net proton-
number fluctuations, which was found to be positive and
close to unity. However, on the one hand corrections to the
LO result for these cumulants, calculated in lattice QCD,
are large already at pp ~ 0.5. This makes a calculation of
NNLO corrections for these cumulants desirable. On the
other hand, the experimental determination of sixth-order
cumulant ratios is known to require high statistics and
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current experimental data may be statistics limited. We
pointed out that a measurement of ratios of fifth- and first-
order cumulants would be very helpful as this ratio can be
better controlled experimentally and suffers less from
truncation effects in NLO lattice QCD calculations.

All data from our calculations, presented in the figures of
this paper, can be found at https://pub.uni-bielefeld.de/
record/2941824 [32].
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APPENDIX: TAYLOR EXPANSION
COEFFICIENTS OF NET BARYON-NUMBER
CUMULANTS

We give here explicit expressions for the first four
expansion coefficients in the Taylor series for net
baryon-number cumulants in strangeness neutral systems
(ng = 0) with a fixed ratio of electric-charge to baryon-
number densities (ny/ng = 0.4) as defined in Eq. (4).
These constraints determine the strangeness and electric-
charge chemical potentials (ug, pp) in terms of the baryon
chemical potential up [24],

fig(T.ug) = q(T)iip + q3(T)ig, + qs(T)ag + ...,

fis(T,pg) = s1(Tip + s3(Tpg + ss(Dip + ... (A1)
Explicit expressions for the expansion coefficients ¢; and s;
up to i = 5 were given in Appendix B of Ref. [24]. Results
for i = 7 can easily be generated following the procedure
outlined in that Appendix.

The expansion coefficients of the cumulant series
xB(T,up) defined in Eq. (4) are given in terms of the
expansion coefficients of the pressure series,

P U BOSAi j ak
T4 = ZW}(W HpHoHs-
L iljlk!

(A2)

For n even, one obtains for the expansion coefficients j(ff K ,
appearing in Eq. (4)

~B.0 BQOS

=

~B)2 BQOS BOS BQOS BQOS BOS BQOS

Xn = ()(117?2.00 +S%)(n0Q2 +q%xn2Q0 +2S1)(ng],01 +2qu{n$l.]0 +2q1S1)(n1Q] )/2’

~ BOS
mt g

= (24s153058% + 51580 + 244351 /00° + 244,53 008° + 49,508 + 249143580 + 643571080 + 4q s, 1BG

BOS

BOS

4  BOS BQOS 3 BOS BQOS 2 BQOS 2 BQS 3
+qixna0 T 24530, 5000 T AT 03 T 24030, 000 T 1200870050 10 12075100, 5001 44100051 30

BOS

BOS

BOS BOS BOS BOS
+ 6‘5%)(}182.02 + 12‘1151)(,132,11 + 641 X220 T+ 431%%.01 + 4910500 an4.oo)/24’
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For the expansion coefficients of cumulants y2 (7T, ug), with n odd, one obtains
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)?5’5 = (120s5)(fogls + 60s%s3)(f(%s + s?)(f(%s + 120q5)(51%s + 60q3s%)(fl%s + 120¢, s1s3)(le2S + Sqls‘l‘)(fl%s

BOS BOS BOS BOS BOS BOS BOS
+12091g351 2,5 +60g3s3 7,5 + 1043t ns +60a3qsxs + 104istans +54ts12ma + 43 2ns
BOS BOS BOS BOS BOS BOS

+ 12051539(7131,02 + SS?)(ngl,m + 120%51%%.11 + 120611s3)(rzgl,11 + 20‘115?%:31.13 + 120‘11‘13%81,20

BOS BOS BOS BOS BOS BOS BOS
+ 304%5%%%.22 + 20‘1%1%%,31 + 5441‘%81.40 + 6053%8@01 + los?lngz,m + 60%%82,10 + 30‘]15%)(;132,12

BOS BOS BOS BOS BOS
+ 30‘1%51%?2,21 + 10‘1?%%2.30 + 105%%%3,02 + 2051151%%3,11 + 109%%%,20

+ 5S1)(f$45,01 +5q100 % 10 + Xffss.oo)/lzo’

anT = (50405, 5G° + 2520553455 + 25205255y + 210sts3 5% + 57 yhS + 5040, 458 + 2520g553 yoy

N N N S N N
+ 504Oq3s1s3)(f]% + 2520q]s§;(fl% + 504Oq1s1s5;(fl% + 21Oq3s‘1‘)(le4 + 840q1s?s3)(flg4 + 7q1s?)(fl%

+ 25206351 1yt + 50401551 2051 + 5040q14353 081 + 25204355 sy + 84041 q353 s + 12603 sTs3 s
+21gisinne +25209143 205 +252043qs 2% + 12601 q353 2,5 + 840q3s 1535 + 35q1stxns
+840qiq3511ns +210q1s310s + 3515t ana + 210G a3 ms + 210353 0ns + TdSs1mer + 4w

+ 2520537520 o5 + 504051557527 o5 + 8405353 7027 oy + Ts 102 o6 + 5040gss, xo 27 || + 5040g3s3 0027 |

+ 5040611352(58511 + 840%3?15%9,13 + 2520q1s%s3;(fffl3 + 42915?152515 + 2520‘1%15%9,20 + 5040@1‘15)(54?520

BOS BOS BOS BOS BOS
+ 25205115135%)(;1%,22 + 2520ﬁ3133)(n%,22 + 105‘1%541‘%81.24 + 2520q%‘1351)(ngl,31 + 840q?s31r£1.31

+ 140‘1?5"?)(535,33 + 840‘1?613)(585,40 + 1054‘1‘5%)(53542 + 42q?s,;(fffﬂ + 7‘1?2(5%5,60 + 252055?(585,01

BOS BOS BOS BOS BOS BOS
+ 1260S%53){n+Qz,03 + 21S?anz,os + 2520‘15)(;1%2.10 + 1260‘135%%82,12 + 2520%51%%%.12 + 105‘11541‘)(»132,14

N N N N N N
+ 2520‘11‘1351)(532,21 + 1260‘1%%54%,21 + 210‘1%5%)(582,23 + 1260‘1%93)(522,30 + 210‘1%%){582,32 + 105‘1‘1131)(582,41

074502-12



SKEWNESS, KURTOSIS, AND THE FIFTH AND ...

PHYS. REV. D 101, 074502 (2020)

BOS

s s s N N
+ 21‘1?)(n+2,50 + 840s1s3;(ff3_02 + 35541‘)(583,04 + 840‘13%)(5%3,11 + 8406]153)(55-23.11 + 140‘113%)(5%,13

BOS BQOS BOS BQOS BQOS BQOS
+ 84OQIQ3)(n$3,20 + 2IOQ%S%Zn$3.22 + 140(1?31)(,133,31 + 354411)(;183,40 + 21053)(,;24,01 =+ 355?)(,184,03

BOS BOS

+ 210‘13)(585,10 + 1056113%)(53312 + 105%&)(535.21 + 35‘1?)(n+4,30 + 215%)(;&5,02 + 42611S1)(fgss,11

BQS BQS

BOS BQOS
+ 21q%ln+5,20 + 751 X601 + 191X 05610 T Xnt7.00

)/5040.
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