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We present lattice QCD results for mesonic screening masses in the temperature range

140 MeV ≲ T ≲ 2500 MeV. Our calculations were carried out using (2þ 1) flavors of the highly

improved staggered quark action, with a physical value for the strange quark mass and two values of the

light quark mass corresponding to pion masses of 160 and 140 MeV. Continuum-extrapolated results were

obtained using calculations with a variety of lattice spacings corresponding to temporal lattice extents

Nτ ¼ 6–16. We discuss the implications of these results for the effective restoration of various symmetries

in the high temperature phase of QCD, as well as the approach toward the perturbative limit.
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I. INTRODUCTION

At high temperatures the properties of strong-interaction

matter change from being controlled by hadronic degrees of

freedom to deconfined quarks and gluons. While the

thermodynamics in the low temperature phase of QCD

resembles many features of a hadron resonance gas, with

hadrons keeping their vacuummasses, this quickly changes

at temperatures close to and above the crossover transition

to the high temperature phase. In fact, the zero temperature

hadronic degrees of freedom seem to provide a quite

satisfactory description of thermal conditions close to the

transition to the high temperature phase [1], although there

is evidence of thermal modification of the spectrum [2]. At

high temperature, however, quarks and gluons deconfine,

which also is reflected in properties of hadron correlation

functions and the thermal masses extracted from them (see,

e.g., [3]). Resonance peaks in spectral functions, which

enter the integral representations of thermal hadron corre-

lation functions, broaden and shift with temperature [4]. In

spatial correlation functions [5] the finite temporal extents,

0 ≤ τ ≤ 1=T, of the Euclidean lattice act on spatial quark

and antiquark propagators like a finite volume effect, which

influences the long-distance behavior of these correlation

functions. Their exponential decay at large distances

defines screening masses, which differ substantially from

the pole masses at zero temperature, and approach multi-

ples of πT at high temperature, which is characteristic of

the propagation of free quark quasiparticles in a thermal

medium.

The chiral crossover separating the low and high temper-

ature regimes for nonvanishing quark masses is character-

ized by a smooth but rapid change of the chiral condensate

around Tpc. The pseudocritical temperature Tpc, for the

physical value of the ratio of light and strange quarkmasses,

has recently been determined from fluctuations of various

chiral observables, Tpc ¼ ð156.5� 1.5Þ MeV [6].

Despite a small explicit breaking of the chiral symmetry

by the residual light quark masses, the chiral symmetry,
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which is spontaneously broken in the hadronic phase, gets

effectively restored above Tpc. The deconfinement of the

light quark and gluon degrees of freedom is believed to be

strongly related to the drop of the chiral condensate and the

resultant effective restoration of the chiral symmetry. If

chiral symmetry is restored then the excitations of the

plasma are also expected to carry that information in spatial

hadron correlators. In fact, the analysis of spatial hadron

correlation functions and their asymptotic large distance

behavior [5] is found to be a sensitive tool for studies of

different patterns of chiral symmetry restoration at high

temperature. Generally it is found in calculations at

physical values of the quark masses that the temperature

dependence of screening masses differs significantly in

quantum number channels sensitive to the restoration of the

SULð2Þ × SURð2Þ chiral flavor symmetry and the anoma-

lous axial UAð1Þ symmetry, respectively. While the former

will be restored completely at chiral transition temperature

in the chiral limit, the latter remains broken also at high

temperature by the Adler-Bell-Jackiw anomaly [7–9].

However, with the thermal suppression of nonperturbative

breaking effects, which at zero temperature arise, for

instance, from the presence of topologically nontrivial

gauge field configurations [10], the anomalous axial

symmetry may be “effectively restored.” It has been argued

that the question whether or not the chiral symmetry and

anomalous axial symmetry get effectively restored at the

same temperature may have significant qualitative conse-

quences for the structure of the QCD phase diagram in the

chiral limit [11].

Calculations with staggered fermions [12,13] show

evidence for UAð1Þ symmetry breaking also above Tpc

and provide evidence for the close relation between

axial symmetry breaking and the density of near-zero

eigenmodes [14]. However, to what extent the flavor singlet

anomalous axial UAð1Þ symmetry gets effectively restored

at the chiral phase transition temperature, T0
c ¼ 132

þ3

−6
MeV

[15], which defines the onset of a true phase transition in the

chiral limit, is still an open question [16–19].

Several recent lattice QCD calculations performed in 2

and (2þ 1)-flavor QCD with physical quark mass values

utilizing overlap and Möbius domain wall [20–25] as well

as Wilson [26] fermions observe an effective restoration of

the UAð1Þ symmetry at temperatures above the pseudoc-

ritical temperature Tpc, i.e., at about ð1.2–1.3ÞTpc. This is

in accordance with earlier findings in calculations of

screening masses with staggered fermions, where effective

UAð1Þ restoration has been observed through the degen-

eracy of scalar and pseudoscalar correlation functions and

screening masses at temperatures T ≳ 1.3Tpc [12].

One of the motivations of this study is to also determine

the extent to which UAð1Þ is effectively restored at the

chiral crossover temperature through screening masses for

which we have performed continuum extrapolation not yet

performed in earlier studies. At the level of screening

correlators, UAð1Þ restoration leads to a degeneracy

between the scalar (S) and pseudoscalar (PS) correlators,
while chiral symmetry restoration yields a degeneracy

between the vector (V) and axial vector (AV) correlators.
We calculate mesonic correlation functions numerically

using (2þ 1)-flavor lattice QCD for all the possible flavor

combinations including light and strange quarks, namely,

light (ūd), light strange (ūs), and strange (s̄s). Within each

flavor combination, we determine scalar, pseudoscalar,

vector, and axial vector ground sate screening masses.

The temperature dependence of this set of meson correla-

tion functions has been analyzed before [12], including also

charmonia [27], on coarse lattices using the p4 discretiza-

tion scheme for staggered fermions. With this calculation

we substantially improve over earlier work by using the

highly improved staggered quark (HISQ) action with

physical values for the light and strange quark masses

and by performing calculations in a wide range of lattice

spacings, 0.017 fm ≤ a ≤ 0.234 fm, that allows us to

perform controlled extrapolations to the continuum limit

in the temperature range 140 MeV ≤ T ≤ 974 MeV.

Albeit not continuum extrapolated, we extend the calcu-

lation of screening masses to temperatures as large as

2.5 GeV. Results for screening masses for charmonia, open

strange charm, as well as for s̄s channels, with the HISQ

action but for only a single lattice spacing corresponding to

Nτ ¼ 12, have been reported before [28].

This paper is organized as follows: In the next section,

we briefly review properties of spatial meson correlation

functions and their evaluation using the staggered fermion

discretization scheme. We describe the staggered fermion

setup for our calculations in Sec. III. We then present our

results in Sec. IV where we start with updating our scale

setting in Sec. IVA and present some zero-temperature

meson masses. Staggered fermion specific cutoff effects,

so-called taste splittings, for T ¼ 0 are shown in Sec. IV B.

We present results for temperatures around the chiral

crossover regime in Sec. IV C where we also discuss

effective UAð1Þ restoration. In Sec. IV D, we present our

results for the screening masses at high temperatures

compared to chiral crossover temperature and compare

these with predictions from resummed thermal perturbation

theory. Finally we state our conclusions in Sec. V. For

completeness we have appendixes where we start with an

update of the parametrization for scale setting in

AppendixAand then inAppendixesB andC,we summarize

our statistics in Tables 2–9 and tabulate the continuum-

extrapolated values of the screening masses in Tables 10–12

respectively.

II. SPATIAL CORRELATORS AND

SCREENING MASSES

Properties of the hadron spectrum at zero and nonzero

temperature are commonly determined from an analysis of

two-point correlation functions hMΓðxÞM̄ΓðyÞi, where the
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operators MΓ project onto a specific set of quantum

numbers and x, y are Euclidean space-time coordinates.

At zero temperature the lowest excitation (mass) in a given

quantum number channel is conveniently extracted from

the asymptotic large Euclidean time behavior of the

correlation function. At finite temperature, the calculation

of correlators separated in Euclidean time is limited by the

limited extent of this direction that determines the inverse

temperature of the system, β ¼ 1=T. In contrast there are

no such restrictions for spatially separated correlators, also

known as screening correlators.

In QCD, the finite temperature meson screening corre-

lators, projected onto zero transverse momentum (p⊥≡

ðpx;pyÞ¼ 0) and lowest Matsubara frequency of a bosonic

state (p0 ≡ ω0 ¼ 0), are defined by

GΓðz;TÞ¼
Z

β

0

dτ

Z

dxdyhMΓðx;y;z;τÞMΓð0;0;0;0Þi;

ð1Þ

where MΓ ≡ ψ̄Γψ is a meson operator that projects onto a

quantum number channel Γ selected by Γ ¼ ΓD ⊗ ta with

Dirac matrices ΓD and a flavor matrix ta. The angular

brackets h� � �i, denote the expectation value over the gauge
field ensemble. The correlators decay exponentially for

large z,

GΓðz; TÞ ∼
z→∞

e−mΓðTÞz; ð2Þ

which defines the corresponding screening massmΓðTÞ. As
already mentioned, for T → 0, the screening masses tend to

the mass of the T ¼ 0 meson with the same quantum

numbers. For T → ∞, they approach the common value

mΓ ¼ 2πT irrespective of the spin and flavor [5], which

indicates that the dominant excitations consist of two

almost free fermionic excitations (quarks), which each

have a lowest Matsubara frequency (energy) ω0 ¼ πT.
For nonzero T, the relation between screening mass and

pole mass could be highly nontrivial due to the emergence

of nonanalytic structures in the spectral function [29].

On the lattice, the continuum Dirac action must be

replaced by a suitable discrete variant. Staggered fermions,

which we use in this work, are described by one-component

spinors rather than the usual four-component spinors.

Because of this, they are relatively inexpensive to simulate.

However the price to be paid is that the relation to the

continuum theory is subtle. The continuum limit of the

theory is the Dirac theory of four fermions rather than one.

As a result, each meson too comes in sixteen degenerate

copies, which are known as tastes, and the corresponding

operators are of the form ψ̄ðxÞðΓD ⊗ Γ
�
TÞψðxÞ, where ψðxÞ

is the 16-component hypercubic spinor and ΓD and ΓT are

Dirac matrices in spin and taste space, respectively.

Although different tastes are degenerate in the continuum,

on the lattice this degeneracy is broken by gluonic

interactions. The masses of the taste partners can be

determined from the decay of correlation functions of

staggered meson operators MðxÞ¼
P

n;n0ϕðn;n0Þχ̄ðxþnÞ
χðxþn

0Þ, where x is the hypercube coordinate and n and n0

point to the various vertices of the unit hypercube and ϕ is a

site-dependent phase factor whose form depends on the spin

and taste quantum numbers of the meson [30–32].

In this work, we only consider local operators, i.e.,

operators with n ¼ n
0. In Table I we list the eight local

staggered meson operators that were studied in this work

and their mapping to the familiar mesons of QCD. We note

that the operators M3, M4, and M5 (respectively, M6,

M7, and M8) refer to the x, y, and τ components of the

same axial vector (respectively, vector) meson. In the spatial

correlation functions the meson operators were separated

along the z direction. One thus may average over the M3

andM4 (respectively,M6 andM7) components in order to

improve the signal. Note however, that unlike at T ¼ 0, at

finite temperature one cannot average over all three trans-

verse directions due to the absence of Lorentz invariance in

the definition of the correlators [33]. In the vector and axial

vector channels we thus deal with two distinct correlation

functions and resulting screening masses, denoted as trans-

verse and longitudinal.

A typical staggered meson correlator, for a fixed sepa-

ration (in lattice unit) between source and sink, is an

oscillating correlator that simultaneously couples to two

sets of mesons with the same spin but with opposite parities,

GϕðnσÞ ¼
X

i

�

A
ð−Þ
i cosh

�

am
ð−Þ
ϕ;i

�

nσ −
Nσ

2

��

− ð−1ÞnσAðþÞ
i cosh

�

am
ðþÞ
ϕ;i

�

nσ −
Nσ

2

���

; ð3Þ

TABLE I. The list of local meson operators studied in this

work. States associated with the nonoscillating and the oscillating

part of the screening correlators are designated by the identifiers

NO and O, respectively. Particle assignments of the corresponding

states are given only for the ūd flavor combination. The super-

scripts T andL stand for transverse and longitudinal, respectively.

The operators listed here are the same as in Ref. [12].

ΓD JPC States

ϕðxÞ NO O NO O NO O

M1 ð−1Þxþyþτ γ3γ5 11 0−þ 0þþ π2 a0

M2 1 γ5 γ3 0−þ 0þ− π –

M3 ð−1Þyþτ γ1γ3 γ1γ5 1−− 1þþ ρT
2

aT
1

M4 ð−1Þxþτ γ2γ3 γ2γ5 1−− 1þþ ρT
2

aT
1

M5 ð−1Þxþy γ4γ3 γ4γ5 1−− 1þþ ρL
2

aL
1

M6 ð−1Þx γ1 γ2γ4 1−− 1þ− ρT
1

bT
1

M7 ð−1Þy γ2 γ1γ4 1−− 1þ− ρT
1

bT
1

M8 ð−1Þτ γ4 γ1γ2 1−− 1þ− ρL
1

bL
1
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where nσ ¼ z=a denotes the spatial separation of the source

and sink operators Mϕ. For large enough distances the

correlator of Eq. (3) may be constrained to a single term, i.e.,

i ¼ 0. In Eq. (3) we also replaced the large distance

exponential falloff given in Eq. (2) by a hyperbolic cosine

that arises due to the periodic nature of correlators on lattices

with finite spatial extent Nσ .

III. CALCULATIONAL SETUP

A. Data sets

We calculated the six distinct mesonic correlators,

constructed from local staggered fermion operators intro-

duced in the previous subsection, numerically using

(2þ 1)-flavor gauge field ensembles generated with the

HISQ action and a Symanzik improved gauge action. The

HISQ action [34–36] is known to have the least amount of

taste splitting [37], due to which it has been used in several

precision studies both at T ¼ 0 as well as at finite temper-

ature [35,37–40]. The gauge ensembles for β ≤ 7.825 have

been generated by the HotQCD collaboration and previ-

ously had been used to study the QCD equation of state of

strongly interacting matter [41,42]. For β > 7.825, we have

used the gauge ensembles from TUMQCD collaboration,

generated for the study of the expectation values of the

Polyakov loop and its correlators [43,44]. Gauge configu-

rations have been generated on lattices of size N3
σ × Nτ,

where Nτ ¼ 6, 8, 10, 12, and 16, and Nσ ¼ 4Nτ. Most of

the data for these five different values of the temporal lattice

size, corresponding to five different values of the lattice

spacing a at fixed value of the temperature T ¼ 1=ðNτaÞ,
have been collected in a temperature range 140 MeV ≤

T ≤ 172 MeV using physical values of the light (ml) and

strange (ms) quark masses, i.e., a quark mass ratio 1=27. On
lattices with temporal extent Nτ ¼ 8; 10, and 12 we also

used data sets obtained with a slightly larger quark mass

ratio, 1=20. These data sets cover a larger temperature

range up to about 2.5 GeV. The Goldstone pion masses for

these two quark mass ratios are 140 MeV for ml=ms ¼
1=27 and 160 MeV for ml=ms ¼ 1=20.
All the above-mentioned gauge configurations

used in this analysis have been generated with a strange

quark mass tuned to its physical value by tuning the

mass of the ηs̄s meson, Mηs̄s
¼ 686 MeV. This value is

based on leading order chiral perturbation theory relation,

Mηs̄s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2
K −m2

π

p

, between the ηs̄s, π, and K masses.

Once the strange quark mass was determined, the light

quark mass was set to either ml ¼ ms=27 or ml ¼ ms=20,
as already discussed. The former choice of quark mass was

used for temperatures below and near the chiral crossover

temperature, Tpc, while the higher quark mass was used at

higher temperatures (T ≳ 172 MeV) where quark mass

effects are negligible. The tuning of the strange quark mass,

which leads to our line of constant physics, is also

discussed in detail in Ref. [41]. All our simulation

parameters and the number of gauge field configurations

analyzed are summarized in Appendix B.

The conversion of hadron masses, calculated in lattice

units, into physical units as well as the determination of our

temperature scale requires the calculation of one physical

observable that is used for the scale setting. For this purpose

we use the kaon decay constant, fK ¼ 156.1=
ffiffiffi

2
p

MeV,

also used in other thermodynamics studies with the HISQ

action. We give the updated parametrizations of fKaðβÞ in
Appendix A.

The purpose of the new calibration of the parametriza-

tion of fKaðβÞ in Appendix A is to improve on the scale at

the larger β values in this study. Note that when compared

to the previous scale [40,41], this leads to a small ∼1%

decrease of the lattice spacing at the largest β values

compared to the previous scale determination [40,41],

while the differences are negligible for β ≲ 7.0.

B. Hadron correlation functions

A general meson correlator hMðxÞM̄ðyÞi consists of

quark line connected and disconnected parts. In this work

we only focus on flavor nonsinglet mesonic correlators that

do not have disconnected contribution. The analysis of

chiral symmetry restoration, including the UAð1Þ restora-

tion, can be performed using flavor nonsinglet correlators

alone [21,45]. The (fictitious) ηs̄s meson, whose mass was

used to fix the bare quark masses, also does not receive any

contributions from disconnected diagrams [28].

We generally had to retain up to 2 to 3 states in Eq. (3).

Such multistate fits present a challenge as a straightforward

fit is often highly unstable. For this purpose we developed a

routine to guess the initial parameters directly from the data

[46] for different terms of the sum in Eq. (3). We also

developed [46] a fit parameter estimation routine that works

directly on the oscillating correlators. This method relies on

the fact that the mass of the oscillating and nonoscillating

part, respectively, is usually roughly of similar size and thus

assumes their equality in the first step.

(1) At a small fit interval ½nσ;min∶nσ;max ¼ Nσ=2�, per-
form one state fits on all even points of the correlator

and we call the resulting fit parameters say Aeven
ϕ;0

and meven
ϕ;0 . Repeat the same for the odd points

(Aodd
ϕ;0 , m

odd
ϕ;0 ).

(2) Assuming similar size of the nonoscillating and

oscillating mass, the fit parameters for the combined

fit may be estimated with A−
ϕ;0 ¼ ðAeven

ϕ;0 þ Aodd
ϕ;0 Þ=2,

Aþ
ϕ;0 ¼ ðAeven

ϕ;0 − Aodd
ϕ;0 Þ=2, and m−

ϕ;0 ¼ mþ
ϕ;0 ¼

ðmeven
ϕ;0 þ modd

ϕ;0 Þ=2.
(3) Using the parameters from step 2 as an initial guess,

perform a full one state fit with an oscillating and

nonoscillating part.

(4) Increase the fit interval. Guess the mass of the next

excited state of either the even or the odd part (we

used m
−=þ
ϕ;1 ¼ 5=4m

−=þ
ϕ;0 ). Adjust the corresponding
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amplitude (A−
ϕ;1 or Aþ

ϕ;1) such that the first point of

the correlator in the fit interval is reproduced.

(5) Perform a full fit with higher states. Use the

parameters from steps 3 and 4 as an initial guess.

(6) Repeat steps 4 to 5 until the desired number of states

is reached.

Having developed a method to perform automated

multiple state fits, we still have to find which set of fit

parameters is the most reasonable one for a given fit

interval. For that purpose we have used the corrected

AICc [47,48]: For each fit interval we have performed

different multiple state fits (maximum three states for

oscillating correlators and maximum four states for non-

oscillating correlators) and selected the one that has the

smallest AICc. In Fig. 1 a comparison between the different

multiple state fits and the result that is selected by the AICc

is shown. In contrast to the one state fit, this results in an

early onset of a stable plateau. After the fits were performed

the plateaus were manually selected for each correlator. The

final value for the screening mass and its uncertainty are

determined by Gaussian bootstrapping. More technical

details about the automated fitting procedure can be found

in Ref. [46].

We calculated screening correlation functions using

point as well as corner wall sources. The point source is

the simplest type of source that one can use to calculate

mesonic screening functions and we have used one source

for each color. However it does not suppress the excited

states; therefore, isolating the ground state can be difficult

unless the states are well separated or the lattice extent is

large. The use of extended (smeared) sources can often help

to suppress excited state contributions, allowing to extract

the ground state mass and amplitude even on smaller

lattices. Here we have used a corner wall source, which

means putting a unit source at the origin of each 23 cube on

a chosen (in our case) z slice [49–51]. In Fig. 2, we show a

comparison of a mass calculation using point and corner

wall sources at two different temperatures. As discussed

earlier, in both cases we found that it is necessary to take

into account contributions from higher excited states to

obtain reliable results for the ground state screening

masses. In Fig. 2 we have only shown the fit results

where we have taken one state for both the oscillating

and nonoscillating part of the correlator [denoted by self-

explanatory notation (1,1)] and the AICc selected pla-

teaus for the corresponding fit interval. We found that the

use of a corner wall source provided advantages only for

the noisy correlators, which in particular are the vector

and axial vector channels at low temperatures. In the

bottom panel of Fig. 2, we provide an example where a

corner wall source yielded a better signal as compared to

a point source and one gets a longer plateau with smaller

FIG. 1. Screening masses for in the vector channel with a

different number of states varying the fit interval for 483 × 12

lattice for β ¼ 8.710, which corresponds to T ¼ 866 MeV. Fit

results selected by the Akaike information criterion (AICc)

criterion (shown in black) for different values of minimum

distance for the fits seem to fall on a nice plateau.

FIG. 2. Comparison of point versus corner wall sources for

(top) the scalar (M1) channel using a 483 × 12 lattice at T ¼
769 MeV and (bottom) the vector (average of M6 and M7)

channel using a 643 × 16 lattice at T ¼ 146 MeV. Numbers

appearing in parenthesis correspond to the number of states taken

in the fit for the nonoscillating and oscillating part of the

correlator. The method of using AICc selection criterion to find

a plateau among various fits has been described in the main text.
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uncertainty when the minimum distance for the fit, nσ;min,

is varied. Therefore, we used the corner wall source only

where it was necessary, i.e., for the vector and axial

vector channels below T ¼ 300 MeV. For all the other

cases however, we found that higher state fits for the

point source worked just as well and that their results

agreed with the corner wall results. We also found that in

the case of a corner wall source, the excited state often

has a negative amplitude and, therefore, the influence of

the higher states is to shift the result for the screening

mass downward rather than upward as can be seen from

the top panel of Fig. 2.

IV. RESULTS

A. Scale setting and line of constant physics

As the scale setting calculations as well as the determi-

nation of the line of constant physics was performed prior

to our current screening mass analysis we tried to reconfirm

the scales used in our calculation through additional zero

temperature calculations performed on lattices of size 644.

We performed calculations at three values of the gauge

coupling, β ¼ 7.01, 7.13, and 7.188. Using the paramet-

rization of fKaðβÞ given in Appendix A this corresponds to

lattice spacings a ¼ 0.085, 0.076, and 0.072 fm, respec-

tively. The strange quark mass has been fixed usingmsaðβÞ
from Ref. [41] and the light quark mass was taken to be

ml ¼ ms=27. The resulting zero temperature meson spec-

trum is shown in Fig. 3. The solid horizontal lines in the

figures correspond to the experimentally determined values

of the respective masses [52]. The slight mismatch forMηs̄s

(mK), arising from the slight mistuning of the strange quark

mass, is visible in the right (middle) panel of Fig. 3. We

note that results for most of the PS, V, and AV mesons

agree well with the physical zero temperature spectrum

within errors. The scalar meson, in the ūd sector however,

seems to have twice the pseudoscalar mass rather than the

true scalar mass for the ūd sector. This is a well-known

staggered artifact [53–55] and we also discuss its effect for

nonzero temperatures in Sec. IV C. However, such a

definite trend is absent in heavier ūs and s̄s sectors. A

slight mismatch can also be observed for the AV masses in

the ūd sector with no definite trend with decreasing lattice

spacing.

B. Taste splittings at T = 0

Although use of staggered quarks leads to taste splitting

in every hadronic channels, its effects are particularly

severe in the pseudoscalar sector (π, K, and ηs̄s), since

these are the lightest states in the theory. In Fig. 4, we plot

the masses of the sixteen different tastes of each of the three

pseudoscalar mesons, i.e., π, K, and ηs̄s, for three different

values of the lattice spacing. The correlators for the

different taste partners are constructed using nonlocal

operators [32] with ΓD ¼ γ5 and various ΓT , as shown

in Fig. 4. In each case, the lightest meson is the meson with

the quantum numbers ΓT ¼ ΓD ¼ γ5. This meson is the

only Goldstone boson that is massless in the chiral limit at

finite lattice spacing and the masses of the other fifteen

mesons approach its mass in the continuum limit. The

masses of the other partners have been normalized to the

mass of the corresponding Goldstone boson for that

particular lattice spacing. Our results extend the previous

HISQ results for taste splitting to smaller lattice spacings. A

more detailed discussion on the taste-splitting effects, also

FIG. 3. T ¼ 0 masses of the four kinds of mesons studied in this work for the ūd, ūs, and s̄s flavor channels, respectively. Horizontal
lines correspond to the physical values of the masses [52]. The scalar meson mass is 2mπ instead ofma0 (ormπ þmη) due to a staggered

artifact at finite lattice spacing. This discrepancy vanishes when the continuum limit of the correlator would be taken before calculating

the screening mass [53,54] (see Sec. IV C).
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in comparison to other staggered discretization schemes,

can be found in [38,40].

One can define the root mean square (RMS) pion mass

mPS
RMS as a measure of the taste splitting [56],

mPS
RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

16
ðm2

γ5
þm2

γ0γ5
þ 3m2

γiγ5
þ 3m2

γiγj
þ 3m2

γiγ0
þ 3m2

γi
þm2

γ0
þm2

1
Þ

r

: ð4Þ

The γ-matrix suffixes in Eq. (4) refer to the taste structure

of the mesons. The RMS mass approaches the Goldstone

mass in the continuum limit; hence its deviation from the

Goldstone mass at a given lattice spacing is a way of

quantifying the taste-breaking effects. The sixteen tastes

group into different multiplets, in a way understood from

staggered chiral perturbation theory [56]. This is the reason

for the factors of 3 in Eq. (4). We find that the RMS taste

splitting is of the order of 15%–25% for the light-light (ūd)
sector but decreases to about 4%–8% for the strange-

strange (s̄s) sector. We also see that this splitting decreases

as the lattice spacing decreases, as expected. Lastly we note

that the masses plotted here are consistent with the trend

observed in Fig. 2 of Ref. [40] where the taste splitting was

calculated, with the same action but for coarser lattices and

a slightly heavier quark mass.

C. Screening masses around the crossover region

We now present our results for screening masses calcu-

lated in a range of temperatures going from just below the

chiral crossover temperature, Tpc ¼ 156.5ð1.5Þ MeV, to

about 2Tpc, namely, 140 MeV ≤ T ≤ 300 MeV. This tem-

perature range is important both from the phenomenological

point of view as well as regarding the restoration of chiral

SUAð2Þ and axialUAð1Þ symmetries. As already mentioned

earlier, our screening masses were calculated at two values

of the light quark mass, viz.ml ¼ ms=27 for T ≲ 172 MeV

and ml ¼ ms=20 for all higher temperatures. It is worth

mentioning here that we have also calculated screening

masses with ml ¼ ms=20 for T ≲ 172 MeV but we do not

show them here because we have fewer statistics compared

to that for ml ¼ ms=27. For higher temperatures, the quark

mass dependence is negligible and the heavier quark mass

can be used without affecting any of the conclusions.

Using the fitting procedure described in Sec. III, we

calculated screening masses for five different values of the

lattice spacings corresponding to Nτ ¼ 6, 8, 10, 12, and 16,

which allow for a continuum extrapolation. As the temper-

atures do not agree among the different lattices, the

screening masses have to be interpolated between the

different temperature values. In our extrapolation method,

the interpolation and the extrapolation are performed in one

single fit: For the interpolation we use simple splines. Then,

the extrapolation is performed by replacing the spline

coefficients by a function linear in 1=N2
τ and performing

a joint fit that includes all the data. The spline’s knot

positions are placed according to the density of data points.

The knots are positioned in such a way that the same

number of data points lies between each pair of subsequent

knots. This means, in particular, that more knots are used at

FIG. 4. Masses of the different taste partners of the pseudoscalar mesons, labeled by different ΓT , for light-light (ūd), light-strange
(ūs), and strange-strange (s̄s) sectors, normalized to the corresponding Goldstone π,K, and ηs̄s masses, respectively. The lattice spacings

considered here range from approximately 0.085–0.072 fm. Also plotted are the RMS masses defined in Eq. (4).
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the low temperature region, where the interpolation is more

curvy. To stabilize the spline, we use some of its coef-

ficients, to constrain the spline’s derivative with respect to T

at some points. These constraints are placed far outside of

the actual region where the extrapolation is performed [46].

The error bands are computed using Gaussian bootstrap-

ping and by performing the extrapolation on each sample.

Final values and errors are calculated using median and

68% percentiles of the bootstrap distribution. In Fig. 5 we

show two examples of continuum extrapolations following

the above-mentioned procedure in the PS and S sector for a

limited temperature range. More technical details of the

continuum extrapolations can be found in Ref. [46].

Continuum extrapolated masses of all four channels for

all three flavor combinations have been tabulated in

Appendix. C.

We plot the screening masses for 140 MeV ≤ T ≤

300 MeV, for the different flavor sectors and for all lattice

spacings, in Fig. 6. The mesons with angular momentum

J ¼ 0 (S and PS) were easier to determine, especially for

lower temperatures, as compared to the J ¼ 1 mesons (V
and AV). We find some cutoff dependence in the scalar

sector, especially for smaller Nτ. For the other sectors, the

cutoff dependence was indistinguishable within the stat-

istical error. We perform the continuum limit for all the

sectors, using data from five different values of the cutoff

corresponding to our five different values of the temporal

lattice extent, mentioned earlier. The resulting continuum

extrapolated bands are plotted in Fig. 7. In Figs. 6 and 7 we

also show the pseudocritical temperature region as a gray

vertical band. The massless infinite temperature limit

mfree
scr ¼ 2πT is shown as a dashed line in each of the plots.

For T ≪ Tpc the screening masses are expected to

approach the mass of the lightest zero temperature meson

with the same quantum numbers; e.g., the ūd pseudoscalar

screening mass should approach the pion mass mπ . We see

that this behavior is readily realized for the PS and V
sectors. Already for T ≲ 0.9Tpc the corresponding zero

temperature masses are approached in the ūd, ūs, and s̄s
sectors to better than 10%. Although the zero temperature

limits are not yet reached in the AV channel at this

temperature, we see clear indications for a rapid approach

to the corresponding zero temperature masses for all

combinations of heavy and light quarks. These values

are in all cases approached from below, i.e., at the

pseudocritical temperature the AV screening masses are

FIG. 6. (Left to right) Results for all four screening masses for the ūd, ūs, and s̄s flavor combinations. The gray vertical band in all the

figures represents the pseudocritical temperature, Tpc ¼ 156.5ð1.5Þ MeV [6]. The dashed lines corresponds to the free theory limit of

m ¼ 2πT.

FIG. 5. Examples for the continuum extrapolations for the

pseudoscalar (top), scalar (bottom) screening masses in a reduced

temperature range. The data for different Nτ were fitted to an

Nτ-dependent fit function. Also shown in each figure are the

bands for each Nτ, obtained using the same fit function.
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smaller than the corresponding zero temperature masses. In

the s̄s sector the screeningmass of thef1meson is about 15%

lower than the f1 mass around Tpc and reduces to about 7%

already at T ≲ 0.9Tpc. The situation is similar in the ūs

sector.However, thermal effects are substantially larger in the

ūd sector. Here we find that the screening mass of the a1
mesons at Tpc differs by about 35% from the corresponding

zero temperature mass and the two masses still differ by

about 20% at T ≲ 0.9Tpc. Note that also from our calcu-

lations forml ¼ ms=20, where we have results at even lower
temperatures, we found that the screeningmasses go towards

corresponding zero temperature masses steeply. Similar

behavior was also found in calculations with staggered

fermions utilizing the p4 discretization scheme [12].

The situation is far more complicated in the S sector for

finite lattice spacings. In nature, the lightest flavored scalar

meson is either the a0ð980Þ or the a0ð1450Þ. Rather than
either of these values, as can be seen from the left panel of

Figs. 6 and 7, the scalar screening mass approaches the

value 2mπ instead. The reason for this is that for staggered

fermions, the scalar can decay into two pions at finite lattice

spacing [53]. This decay is forbidden in nature due to

parity, isospin, and G-parity (IG) conservation. The

unphysical behavior in the staggered discretization comes

from the contribution of the different tastes in the inter-

mediate states of loop diagrams. If one takes the continuum

limit for the correlator before calculating the screening

mass, then the contribution from different tastes cancels out

and the physical behavior is recovered [53–55]. Since we,

however, calculate the screening masses first and then take

the continuum limit, we obtain the unphysical ππ state

rather than the true scalar ground state or the physically

allowed πη decay. The unphysical decay only occurs for

mesons with isospin I ¼ 1. For the ūs case (I ¼ 1=2), the
decay to Kπ actually occurs in nature. In Figs. 6 and 7, we

see that the scalar screening mass indeed tends to mπ þmK

as T → 0.

As the crossover temperature is approached, the vector

and axial vector screening masses should become equal due

to effective restoration of chiral symmetry. At T ¼ 0, the

axial vector meson a1 is about 500 MeV heavier than the

vector meson ρ. As the temperature is increased, the AV
screening mass decreases while the V mass increases

slightly until the two masses become degenerate right at

the pseudocritical temperature (left panel of Fig. 7). In

contrast, in the ūs and s̄s sectors, AV and V masses become

equal at higher temperatures compared to Tpc. Moreover,

the relative change of AV masses with respect to V masses

from low temperature towards degeneracy temperature

progressively decreases when one goes from ūd to s̄s. It
must be noted that the approach is nevertheless smoother

compared to previous results that were obtained using the

p4 discretization scheme for staggered fermions [12].

Crossover temperature, as noted from Fig. 7, is quite

similar to what has been seen in the calculation of nucleon

masses, where the mass of one particular parity (the one

with higher zero temperature mass) of nucleon changes a

lot and comes close to its parity partner, which on the

contrary hardly changes from low temperature towards

chiral crossover temperature [2,57,58].

In Fig. 7, we also see that the scalar and pseudoscalar

screening masses in the ūd sector become degenerate

around T ∼ 200 MeV. Unfortunately, one cannot immedi-

ately draw any conclusions about an effective UAð1Þ
restoration from this due to the pathology of the ūd scalar

correlator that we have discussed above. However, as we

have already mentioned, the unphysical contribution can-

cels out if one would take the continuum limit for the

correlator first. Moreover, as the pion screening mass

increases around the crossover region while the continuum

scalar screening mass is expected to decrease around Tpc

before rising again at higher temperatures, this unphysical

decay channel might be closed around Tpc due to lack of

phase space. Therefore the degeneracy of the screening

masses in the S and PS channel around T ∼ 200 MeV is an

indication towards an effective restoration of the UAð1Þ.
Despite the above argument, we may nevertheless try and

estimate the effectiveUAð1Þ restoration temperature directly

from the correlators. Although it is difficult to calculate the

continuum limit of staggered correlators due to their

oscillating behavior, one may instead consider the corre-

sponding susceptibility, which is given by the integrated

FIG. 7. Continuum bands for screening masses of all four types of mesons for ūd, ūs, and s̄s (left to right).
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correlator, and calculate its continuum limit instead. The

staggered π and δ susceptibilities are defined as

χπ ¼
X

Nσ−1

nσ¼0

GM2ðnσÞ; χa0 ¼−

X

Nσ−1

nσ¼0

ð−1ÞnσGM1ðnσÞ: ð5Þ

We plot our results, along with the continuum extrap-

olations, for the difference of the scalar and pseudoscalar

susceptibilities for the ūd sector in Fig. 8. In order to be

able to take the continuum limit, we have renormalized the

quantity with m2
s . We have also normalized these numbers

to T4
pc. For reference, we also show the pseudocritical

temperature region by a gray band in the figure. For

the ūd sector we see that the difference is nonzero around

the pseudocritical temperature and only goes to 0 for

T ∼ 200 MeV. There are some theoretical arguments in

favor of effective UAð1Þ restoration at the chiral phase

transition [59] in the chiral limit. On the other hand lattice

calculations, performed away from the chiral limit, have

found evidence in favor of this scenario [14,20,23,60].

Before moving on, we note that the behavior of the

screening masses and susceptibilities in the ūs and s̄s
sectors is qualitatively the same although the degeneracies

discussed above occur at progressively higher temperatures

[46]. This mass ordering of degeneracy temperatures is in

complete accordance with what has been observed for even

heavier sectors [28], although one has to keep in mind that

the mass effects in the susceptibilities for heavier sectors

are expected to be much larger than the UAð1Þ breaking

effects due to quantum fluctuations.

D. Screening masses at high temperatures

In the previous subsection we have seen that the temper-

ature dependence of the screening masses at T > 250 MeV

qualitatively follows the free theory expectations; namely,

the screening masses are proportional to the temperature,

with proportionality constant not very different from 2π.

Furthermore, the AV and V screening masses are close to

the free theory expectations, while the PS and S screening

masses are 10%–20% smaller. In this subsection we study

the screening masses at higher temperature with the aim to

see how the degeneracy of PSðSÞ and AVðVÞ screening

masses expected in the infinite temperature limit sets it. We

would like to see if contacts to the weak coupling

calculations can be made at high temperatures.

Although attempts have been made [5,58,61–66] to

compare screening masses from lattice QCD to those from

weak coupling calculations, it is not clear in which temper-

ature range weak coupling results can be reliable. For this

reason it is important to perform lattice calculations at as

high temperatures as possible. Therefore, we extended the

calculations of the meson screening masses to T ¼ 1 GeV

using four lattice spacings corresponding to Nτ ¼ 6, 8, 10,

and 12, and performed the continuum extrapolations. The

results are shown in Fig. 9. We find that the lattice spacing

dependence is very small for T > 300 MeV, and within

errors the Nτ ¼ 8 results agree with the continuum

extrapolated values. Therefore, for 1GeV<T < 2.5GeV,

we calculated the screening masses using only Nτ ¼ 8

lattices. The results of these calculations are also shown

in 9. We clearly see from the figure that the AV and V

screening masses overshoot the free theory value around

T ¼ 400 MeV and are almost constant in temperature

units. The PS and S screening masses overshoot the free

theory expectation only at temperature larger than 1 GeV

and remain smaller than the AV and V screening masses up

to the highest temperature considered.

The behavior of the screening masses in the weak

coupling picture beyond the free theory limit can be

understood in terms of dimensionally reduced effective

field theory, called electrostatic QCD (EQCD) [69]. This

approach turned out to be useful for understanding the

lattice on the quark number susceptibilities [70,71], the

expectation value of Polyakov loop [43], and the Polyakov

loop correlators [44]. It is interesting to see if deviation of

the screening masses at high temperature from 2πT can be

understood within this framework.

In EQCD the correction to the free theory value for the

screening masses is obtained by solving the Schrödinger

equation in two spatial dimensions with appropriately

defined potential [67,72,73]. At leading order the potential

is proportional to the coupling constant of EQCD, g2E [67],

which in turn can be expressed in terms of the QCD

coupling constant g2 ¼ 4παs. At leading order g2E ¼ g2T,

and g2E has been calculated to two loops [68]. Moreover, at

leading order the potential and the correction to the free

theory value are independent of the spin; i.e., the PSðSÞ and
AVðVÞ screening masses receive the same correction that

has been calculated in Ref. [67]. This correction is positive

in qualitative agreement with our lattice results. In Fig. 9 we

FIG. 8. Difference between the pseudoscalar and scalar sus-

ceptibilities as a function of the temperature. The difference is

multiplied by m2
s to renormalize and normalized to 1=T4

pc. The

continuum extrapolation is also shown in the figure as a super-

imposed band.
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show the corresponding weak coupling result from EQCD.

We used the two-loop result for g2E and the optimal choice

for the renormalization scale μ=T ¼ 9.08 [68]. We varied

the scale μ by a factor of 2 around this optimal value to

estimate the perturbative uncertainty, which turned out to

be very small (the uncertainty corresponds to the width of

the weak coupling curve in Fig. 9). We see that the weak

coupling results from EQCD are slightly larger than the

AVðVÞ screening masses and significantly larger the lattice

results for PSðSÞ screening masses. This is not completely

surprising because the EQCD coupling constant g2E is not

small except for very high temperatures and thus higher

order corrections may be important. Beyond Oðg2EÞ the

correction will be spin dependent [72,73]. Since the

coupling constant decreases logarithmically the screening

masses approach 2πT only for temperatures many orders of

magnitude larger than those considered here, when the

AVðVÞ and PSðSÞ screening masses become degenerate. It

would be interesting to calculate the Oðg4EÞ correction to

meson screening masses and see whether EQCD predic-

tions work quantitatively.

V. CONCLUSIONS

We have performed an in-depth analysis of mesonic

screening masses in (2þ 1)-flavor QCD with physical

(degenerate) light and strange quark masses. In the vicinity

of the pseudocritical temperature for chiral symmetry

restoration, Tpc and up to about 1 GeV we could perform

controlled continuum extrapolations, using input from five

different values of the lattice cutoff. Comparing screening

masses for chiral partners, related through the chiral

SULð2Þ × SURð2Þ and the axial UAð1Þ transformations,

respectively, we find in the case of light-light mesons

evidence for the degeneracy of screening masses related

through the chiral SULð2Þ × SURð2Þ at or very close to Tpc

while screening masses related through an axial UAð1Þ
transformation start becoming degenerate only at about

1.3Tpc. In particular, the V and AV mesons (J ¼ 1), which

are related by chiral SULð2Þ × SURð2Þ transformations,

become degenerate at T ≃ Tpc, while the S and the PS

(J ¼ 0) mesons, which are related by axial UAð1Þ trans-

formations, only become degenerate around 1.3Tpc.

The onset of these degeneracies also occurs in the light-

strange and strange-strange meson sectors, but at higher

temperatures.

At high temperatures the screening masses overshoot the

free theory expectations in qualitative agreement with the

weak coupling calculations at Oðg2EÞ. While mesonic

screening masses in given angular momentum (J) channels
become degenerate, screening masses in channels with

different J, e.g., J ¼ 0 and J ¼ 1, stay well separated even

up to the highest temperature, T ¼ 2.5 GeV, that was

analyzed by us. We argued that it is necessary to go

beyond Oðg2EÞ calculations in order to understand this

feature within the EQCD framework. This nondegeneracy

has also been observed in Ref. [74], where it was also

shown that these two sets of mesons only become degen-

erate at asymptotically high temperatures. This conclusion

is in agreement with the results that we have presented in

this paper in Sec. IV D (Fig. 9).
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APPENDIX A: PARAMETRIZATION OF fKaðβÞ
FOR SCALE SETTING

For the scale setting in this project we used the kaon

decay constant, i.e., fKaðβÞ. Including the measurements

up to β ¼ 7.373, listed in Ref. [41], we have updated the

parametrization used in Ref. [40],

fKaðβÞ ¼
c0fðβÞ þ c2ð10=βÞf3ðβÞ

1þ d2ð10=βÞf2ðβÞ
; ðA1Þ

where

fðβÞ ¼
�

10b0

β

�

−b1=ð2b20Þ
expð−β=ð20b0ÞÞ;

with b0 and b1 being the coefficients of the two-loop beta

function. For the three-flavor case, b0 ¼ 9=ð16π2Þ and

b1 ¼ 1=ð4π4Þ. The updated fit renders the following param-

eters for the form described in Eq. (A1): c0 ¼ 7.49415,

c2 ¼ 46049ð1248Þ, and d2 ¼ 3671ð137Þ. We have not

included the fKaðβÞ measurements for the two highest β

values, shown in Fig. 10 because of possible large finite

volume effects.

In Fig. 10 we have compared the fit described with

Eq. (A1) to the same from Ref. [40]. It can be seen from the

plot that one overestimates fKaðβÞ with the old paramet-

rization for β ≳ 6.9 by ∼1%. One can look in Refs. [40,41]

for more details on this kind of parametrization.

APPENDIX B: SUMMARY OF STATISTICS

FOR ml =ms=20 AND ml =ms=27

Here we summarize our data sets and the number of

configurations on which point and wall source correlators

have been calculated are given in the last two columns of

the tables, which are labeled point and wall, respectively.

FIG. 10. Comparison of updated fKaðβÞ parametrization and

the older one from Ref. [40].

TABLE II. Summary of statistics for ml ¼ ms=20, 243 × 6

lattices.

β T [MeV] ml ms Point Wall

5.850 119.19 0.00712 0.1424 1166 1166

5.900 125.45 0.00660 0.1320 1000 1000

5.950 132.07 0.00615 0.1230 1000 1000

6.000 139.08 0.00569 0.1138 3073 3073

6.025 142.73 0.00550 0.1100 1000 1000

6.050 146.48 0.00532 0.1064 1000 1000

6.062 148.32 0.005235 0.1047 1000 1000

6.075 150.33 0.00518 0.1036 1000 1000

6.090 152.70 0.00504 0.1008 1001 1001

6.100 154.29 0.00499 0.0998 3363 3363

6.120 157.54 0.004845 0.0969 1001 1001

6.125 158.36 0.00483 0.0966 1003 1003

6.150 162.54 0.00468 0.0936 1000 1000

6.165 165.10 0.00457 0.0914 1000 1000

6.185 168.58 0.004455 0.0891 1000 1000

6.195 170.35 0.00440 0.0880 1000 1000

6.245 179.46 0.00415 0.0830 1000 1000
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TABLE III. Summary of statistics for ml ¼ ms=20, 32
3 × 8

lattices.

β T [MeV] ml ms Point Wall

6.050 109.86 0.00532 0.1064 2108 2108

6.125 118.77 0.00483 0.0966 2241 2241

6.195 127.76 0.00440 0.0880 1690 1690

6.245 134.60 0.00415 0.0830 2710 2710

6.285 140.32 0.00395 0.0790 2000 2000

6.341 148.74 0.00370 0.0740 1713 1713

6.354 150.76 0.00364 0.0728 1249 1249

6.390 156.50 0.00347 0.0694 2604 2604

6.423 161.93 0.00335 0.0670 2031 2031

6.460 168.24 0.00320 0.0640 1644 1644

6.488 173.16 0.00310 0.0620 1790 1790

6.515 178.03 0.00302 0.0604 3067 3067

6.575 189.29 0.00282 0.0564 3206 3206

6.608 195.75 0.00271 0.0542 2379 2379

6.664 207.17 0.00257 0.0514 2001 2001

6.740 223.58 0.00238 0.0476 831 831

6.800 237.32 0.00224 0.0448 500 500

6.880 256.75 0.00206 0.0412 500 500

7.030 296.81 0.00178 0.0356 500 500

7.280 375.26 0.00142 0.0284 500 500

7.373 408.63 0.00125 0.0250 500 500

7.596 499.30 0.00101 0.0202 500 500

7.825 610.60 0.00082 0.0164 500 500

8.000 710.45 0.00070 0.0140 500 500

8.200 843.20 0.0005835 0.0116 250 250

8.400 999.39 0.0004875 0.00975 250 250

8.570 1153.83 0.0004188 0.008376 200 200

8.710 1298.31 0.0003697 0.007394 200 200

8.850 1460.54 0.0003264 0.006528 200 200

9.060 1742.17 0.0002417 0.004834 200 0

9.230 2009.14 0.0002074 0.004148 200 200

9.360 2240.48 0.00018455 0.003691 200 200

9.490 2498.41 0.00016425 0.003285 200 200

9.670 2905.28 0.00013990 0.002798 0 200

TABLE IV. Summary of statistics for ml ¼ ms=20, 40
3 × 10

lattices.

β T [MeV] ml ms Point Wall

6.488 138.53 0.00310 0.0620 9534 9534

6.515 142.42 0.00302 0.0604 2525 2525

6.575 151.43 0.00282 0.0564 2512 2512

6.608 156.60 0.00271 0.0542 2685 2685

6.664 165.73 0.00257 0.0514 1071 1071

6.740 178.86 0.00238 0.0476 1021 1021

6.800 189.85 0.00224 0.0448 800 800

6.880 205.40 0.00206 0.0412 650 650

6.950 219.87 0.00193 0.0386 500 500

7.030 237.45 0.00178 0.0356 600 600

7.150 266.03 0.00160 0.0320 500 500

(Table continued)

TABLE IV. (Continued)

β T [MeV] ml ms Point Wall

7.500 366.65 0.00111 0.0222 450 450

7.650 419.00 0.00096 0.0192 250 250

7.825 488.48 0.00082 0.016 250 250

8.000 568.36 0.00070 0.0140 500 500

8.200 674.56 0.0005835 0.0116 551 551

8.400 799.51 0.0004875 0.00975 300 300

8.570 923.07 0.0004188 0.008376 250 250

TABLE V. Summary of statistics for ml ¼ ms=20, 48
3 × 12

lattices.

β T [MeV] ml ms Point Wall

6.664 138.11 0.00257 0.0514 372 372

6.700 143.20 0.00248 0.0496 649 649

6.740 149.05 0.00238 0.0476 2214 2214

6.800 158.21 0.00224 0.0448 2008 2008

6.880 171.17 0.00206 0.0412 2001 2001

6.950 183.22 0.00193 0.0386 1300 1300

7.030 197.87 0.00178 0.0356 1000 1000

7.150 221.69 0.00160 0.0320 730 730

7.280 250.18 0.00142 0.0284 800 800

7.373 272.42 0.00125 0.0250 800 800

7.596 332.87 0.00101 0.0202 800 800

7.825 407.06 0.00082 0.0164 900 900

8.000 473.63 0.00070 0.0140 310 310

8.200 562.13 0.0005835 0.0116 500 500

8.400 666.26 0.0004875 0.00975 500 500

8.570 769.22 0.0004188 0.008376 250 250

8.710 865.54 0.0003697 0.007394 250 250

8.850 973.70 0.0003264 0.006528 250 250

TABLE VI. Summary of statistics for ml ¼ ms=27, 24
3 × 6

lattices.

β T [MeV] ml ms Point Wall

6.025 142.73 0.004074 0.1100 990 990

6.038 144.66 0.004 0.1082 1581 1581

6.050 146.48 0.003941 0.1064 1649 1649

6.062 148.32 0.003878 0.1047 1650 1650

6.075 150.33 0.003837 0.1036 1393 1749

6.090 152.70 0.003733 0.1008 1386 1386

6.105 155.10 0.003659 0.0988 1749 1749

6.120 157.54 0.003589 0.0969 1649 1649

6.135 160.02 0.003519 0.0950 1749 1749

6.150 162.54 0.003467 0.0936 990 990

6.175 166.83 0.003356 0.0906 1472 1472

6.185 168.58 0.0033 0.0891 1475 1550

MESON SCREENING MASSES IN (2þ 1)-FLAVOR QCD PHYS. REV. D 100, 094510 (2019)

094510-13



APPENDIX C: CONTINUUM-EXTRAPOLATED

VALUES OF THE SCREENING MASSES

Here we have tabulated the continuum extrapolated

screening masses of PS, S, V, and AV channels and in

each channel for all three flavor combinations, i.e., ūd, ūs,
and s̄s.

TABLE VII. Summary of statistics for ml ¼ ms=27, 32
3 × 8

lattices.

β T [MeV] ml ms Point Wall

6.315 144.77 0.00281 0.0759 1115 1115

6.354 150.76 0.00270 0.0728 3731 3731

6.390 156.50 0.00257 0.0694 3514 3514

6.423 161.93 0.00248 0.0670 3250 3250

6.445 165.66 0.00241 0.0652 1912 2373

6.474 170.68 0.00234 0.0632 1937 2425

TABLE VIII. Summary of statistics for ml ¼ ms=27, 48
3 × 12

lattices.

β T[MeV] ml ms Point Wall

6.712 144.94 0.00181 0.0490 1955 1955

6.754 151.15 0.00173 0.0468 1484 1484

6.794 157.28 0.00167 0.0450 1407 1407

6.825 162.17 0.00161 0.0436 1946 1946

6.850 166.21 0.00157 0.0424 2081 2081

6.880 171.17 0.00153 0.0412 1960 1960

TABLE IX. Summary of statistics for ml ¼ ms=27, 64
3 × 16

lattices.

β T [MeV] ml ms Point Wall

6.973 140.50 0.00139 0.0376 4817 2757

7.010 145.59 0.00132 0.0357 5919 6168

7.054 151.84 0.00129 0.0348 123 622

7.095 157.87 0.00124 0.0334 0 308

7.130 163.17 0.00119 0.0322 3697 3697

7.156 167.20 0.00116 0.0314 5774 6107

7.188 172.29 0.00113 0.0306 4451 4324

TABLE X. Continuum-extrapolated values of the light-light

screening masses.

T [GeV] mP [GeV] mV [GeV] mS [GeV] mA [GeV]

0.132 0.129(5) 0.7(2) 0.22(2) 1.0(2)

0.136 0.139(4) 0.69(9) 0.23(2) 0.96(9)

0.140 0.150(2) 0.70(7) 0.24(1) 0.94(7)

0.144 0.1615(9) 0.71(5) 0.245(8) 0.91(5)

0.148 0.174(2) 0.72(4) 0.254(6) 0.88(4)

0.152 0.187(2) 0.73(5) 0.263(6) 0.85(4)

0.156 0.202(3) 0.75(6) 0.274(7) 0.83(6)

(Table continued)

TABLE X. (Continued)

T [GeV] mP [GeV] mV [GeV] mS [GeV] mA [GeV]

0.160 0.221(3) 0.78(5) 0.286(7) 0.81(6)

0.164 0.245(2) 0.82(4) 0.303(6) 0.82(5)

0.168 0.275(4) 0.85(5) 0.326(6) 0.84(4)

0.172 0.310(7) 0.88(4) 0.356(9) 0.87(4)

0.176 0.352(8) 0.90(4) 0.39(2) 0.90(4)

0.180 0.399(7) 0.93(4) 0.44(2) 0.94(4)

0.184 0.445(9) 0.96(4) 0.48(2) 0.97(3)

0.188 0.50(1) 0.99(4) 0.53(2) 1.00(3)

0.192 0.54(1) 1.02(4) 0.58(3) 1.04(3)

0.196 0.59(2) 1.05(4) 0.63(3) 1.07(3)

0.200 0.64(2) 1.09(4) 0.68(3) 1.11(3)

0.240 1.08(4) 1.41(2) 1.10(4) 1.43(1)

0.280 1.45(3) 1.73(1) 1.43(3) 1.729(8)

0.320 1.76(2) 2.03(2) 1.74(3) 2.03(2)

0.360 2.06(2) 2.32(2) 2.04(2) 2.32(2)

0.400 2.34(3) 2.61(3) 2.33(2) 2.60(2)

0.440 2.61(3) 2.88(3) 2.61(3) 2.87(3)

0.480 2.88(3) 3.15(4) 2.89(4) 3.14(4)

0.520 3.15(4) 3.41(4) 3.16(4) 3.40(4)

0.560 3.42(5) 3.66(5) 3.42(4) 3.66(5)

0.600 3.68(4) 3.92(5) 3.68(4) 3.92(5)

0.640 3.94(4) 4.17(4) 3.93(3) 4.17(5)

0.680 4.19(4) 4.43(4) 4.19(3) 4.43(5)

0.720 4.45(4) 4.68(4) 4.44(3) 4.68(5)

0.760 4.71(4) 4.94(4) 4.70(3) 4.94(5)

0.800 4.97(4) 5.21(5) 4.96(3) 5.21(5)

0.840 5.23(4) 5.48(5) 5.22(4) 5.48(6)

0.880 5.49(4) 5.76(5) 5.49(3) 5.75(5)

0.920 5.76(6) 6.04(5) 5.75(4) 6.03(6)

0.960 6.02(9) 6.33(6) 6.03(4) 6.32(6)

1.000 6.3(2) 6.63(9) 6.30(5) 6.62(9)

TABLE XI. Continuum-extrapolated values of the strange-light

screening masses.

T [GeV] mP [GeV] mV [GeV] mS [GeV] mA [GeV]

0.132 0.50(2) 0.88(2) 0.66(3) 1.17(6)

0.136 0.51(1) 0.89(2) 0.67(3) 1.16(6)

0.140 0.519(5) 0.90(2) 0.67(2) 1.14(5)

0.144 0.527(2) 0.91(2) 0.67(2) 1.12(3)

0.148 0.537(4) 0.923(9) 0.67(2) 1.10(3)

0.152 0.547(9) 0.936(9) 0.675(9) 1.08(2)

0.156 0.559(7) 0.950(9) 0.679(8) 1.06(2)

0.160 0.574(4) 0.965(9) 0.682(7) 1.04(2)

0.164 0.590(7) 0.982(9) 0.686(5) 1.04(2)

0.168 0.604(4) 1.00(1) 0.690(6) 1.04(2)

0.172 0.621(6) 1.020(9) 0.698(8) 1.05(2)

0.176 0.642(9) 1.041(9) 0.71(2) 1.07(2)

0.180 0.667(9) 1.063(9) 0.73(2) 1.09(2)

0.184 0.697(9) 1.086(9) 0.75(2) 1.11(2)

0.188 0.73(2) 1.11(1) 0.77(2) 1.13(2)

(Table continued)
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