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Abstract—We present shared memory parallel algorithms for
maximal biclique enumeration (MBE), the task of enumerating
all complete dense subgraphs (maximal bicliques) from a bipar-
tite graph, which is widely used in the analysis of social, biolog-
ical, and transactional networks. Since MBE is computationally
expensive, it is necessary to use parallel computing to scale to
large graphs. Our parallel algorithm ParMBE efficiently uses the
power of multiple cores that share memory. From a theoretical
view, ParMBE is work-efficient with respect to a state-of-the-art
sequential algorithm. Our experimental evaluation shows that
ParMBE scales well up to 64 cores, and is significantly faster than
current parallel algorithms. Since ParMBE was yielding a super-
linear speedup compared to the sequential algorithm on which
it was based (MineLMBC), we develop an improved sequential
algorithm FMBE, through “sequentializing” ParMBE.

I. INTRODUCTION

We study the problem of Maximal Biclique Enumeration
(MBE) from a bipartite graph, which requires to enumerate
all maximal bicliques (complete bipartite graphs). A biclique
B = (BL, BR), BL ⊆ L, BR ⊆ R is a dense bipartite
subgraph of the original bipartite graph G = (L,R,E) where
every vertex in BL is connected to every vertex in BR.
MBE is a computationally hard problem since the number of
maximal bicliques can be of exponential order [1]. However,
the number of maximal bicliques in real world graphs is
typically small and therefore we can hope for enumerating
them all in reasonable amount of time. Sequential algorithm
for solving the MBE problem has been studied for more
than a decade. Eppstein [2] proposed a linear time sequential
algorithm for enumerating all maximal biclique from a simple
undirected graph with bounded arboricity using a technique
called acyclic orientation. Alexe et al. [3] proposed an output
sensitive algorithm based on consensus technique where large
bicliques are constructed by combining small bicliques starting
with stars. There are many other works on designing sequential
algorithms for solving MBE on static graph [4] [5] [6] [7] [8].
Liu et al. [9] develop a output sensitive branch and bound
algorithm MineLMBC for solving the same problem which is
also efficient in practice compared to the other algorithms.

The runtime of sequential algorithms for solving MBE
can be high on large graphs. For example, MineLMBC takes
approximately 11 hours to enumerate 5.2 million maximal
bicliques in a bipartite IMDB network with 1.2 million vertices
and 3.8 million edges and more than 8 hours to enumerate
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around 54 million maximal bicliques from BookCrossing
with approximately 445 thousand vertices and 1.1 million
edges. Clearly, sequential algorithms are not suitable for enu-
merating large number of maximal bicliques and this motivates
us in designing parallel algorithms.

In this work we develop shared memory parallel algorithms
for MBE. We choose shared memory parallelism because (1)
the graph can reside on a single shared global memory, thus
no need to distribute it across the nodes and (2) there is no
network communication overhead.

In this work we make the following contributions:

Theoretically Efficient Parallel Algorithm ParLMBC: We
present a shared-memory parallel algorithm ParLMBC that
takes as input a bipartite graph G and enumerates all maximal
bicliques in G. ParLMBC is a parallelization of a state-of-the-
art sequential algorithm MineLMBC, due to Liu, Sim, and
Li [9]. Our analysis of ParLMBC using a work-depth model of
computation [10] shows that it is work-efficient and has a low
parallel depth.

Faster Parallel Algorithm ParMBE: We design a practically
efficient shared memory parallel algorithm ParMBE that builds
on ParLMBC and yields substantially improved practical perfor-
mance. The high level idea is to create cluster (subproblem)
for each vertex v with its 2-neighborhood vertices and run
ParLMBC as a subroutine for enumerating all the maximal
bicliques from each cluster in parallel. This approach signif-
icantly reduces the parallel enumeration time compared with
ParLMBC because the computational cost for enumerating the
bicliques is directly related to the size of the candidate set
(for the exploration of the search space) and its adjacent
neighborhood which is much smaller in each subproblem in
ParMBE than that of executing ParLMBC directly on the input
graph. Thus, the size of the problem instances is reduced in
ParMBE while keeping the total number of recursive calls same
as that of ParLMBC as each recursive call is followed by the
generation of a maximal biclique. If we simply enumerate
all maximal bicliques from each subproblem then a maximal
biclique will be enumerated more than one. We prevent this by
assuming an ordering of the vertices using a rank function so
that a highly ranked vertex will contain more maximal biclique
than a low ranked vertex. Clearly, there will be imbalance
of the load if we enumerate the maximal bicliques from
the subproblems corresponding to the highly ranked vertices.
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We distribute the load by delegating the task of enumerating
maximal bicliques to the lower ranked vertices adjacent to a
highly ranked vertex. For doing this, we create subproblems
in a manner that all maximal bicliques enumerated from the
subproblem for vertex w will have w as the least ranked vertex.
However, computing the exact rank of the vertices beforehand
is difficult and therefore we heuristically consider degree of
a vertex for computing the rank. This way, in our optimized
algorithm ParMBE we ensure (1) non duplicate enumeration
of all maximal bicliques and (2) load distribution.

Experimental Evaluation: We empirically evaluate all our
algorithms and the experiment shows that ParLMBC yields 3x-
19x parallel speedup and ParMBE yields 21x-345x parallel
speedup when compared with MineLMBC, the state-of-the-art
sequential algorithm for MBE on a multicore machine with
64 cores in it. We also show that the parallel speedup of
ParMBE is almost a linear function of the number of processors
- the speedup increases with the increase in the number of
the processor cores. Next we implement the state of the art
MapReduce algorithm CDFS in a shared memory setting that
we call MCoreCDFS and show that it gives magnitude of order
speedup over the sequential algorithm MineLMBC. We also
show that our parallel algorithm ParMBE is upto 3x faster than
MCoreCDFS.

Efficient Sequential Algorithm: The super-linear speedup
of ParMBE over sequential MineLMBC (sometimes 345x on
64 cores) shows that it must be possible to develop a better
sequential algorithm than MineLMBC. Leveraging this observa-
tion, we present an efficient sequential algorithm FMBE through
“sequentializing” ParMBE, i.e. executing the steps of ParMBE
sequentially. FMBE is simple to implement, often significantly
faster than MineLMBC, and always at least matches the perfor-
mance of MineLMBC.

Roadmap: The rest of the paper is organized as follows.
We present the preliminaries and backgrounds in Section III
followed by the description of our parallel algorithms in Sec-
tion IV. We present experimental evaluations of all our parallel
algorithms in Section V and we conclude in Section VI.

II. PRIOR AND RELATED WORKS

Parallel Algorithms: Previous works on parallel algorithms
for MBE consider both the shared memory setting [11] and
distributed memory setting [12]. The shared memory algo-
rithm [11] does not consider load balancing across threads and
also has not been evaluated on large graphs – the largest graph
considered there is with 500 vertices and 9K edges. There is
a parallel algorithm in the Map-Reduce [12] that does scale to
large graphs. When compared with this work, our algorithm
employs a greater degree of parallelism. We compare with an
adaptation of the [12] algorithm to the shared-memory model
in our experimental section.
Sequential Algorithms: Alexe et al. [3] present an algorithm
for MBE from a static graph based on the “consensus
method”, whose time complexity is proportional to the size
of the output (number of maximal bicliques in the graph)

- termed as an output-sensitive algorithm. Damaschke [13]
present an algorithm for MBE from bipartite graphs with
a skewed degree distribution. Gély et al. [14] present an
algorithm for MBE through a reduction to maximal clique
enumeration (MCE). However, in their work, the number of
edges in the graph used for enumeration increases significantly
compared to the original graph. Makino and Uno [5] present
an algorithm based on matrix multiplication, which provides
the current best theoretical time complexity for dense graphs.
Eppstein [2] presented a linear time algorithm for MBE
when the input graph has an arboricity that is bounded by a
constant. Other works on sequential algorithms for MBE on
a static graph include [15], [16], [17], [18]. Li et al. [6] show
a correspondence between closed itemsets in a transactional
database and maximal bicliques in an appropriately defined
graph. Das et al. [19] present an algorithm for MBE from a
dynamic graph that is changing due to the addition/deletion
of edges. Practically, the most efficient sequential algorithm
for MBE from a static graph seems to be due to Liu et al. [9],
based on depth-first-search.

In a prior work [20], we presented shared memory parallel
algorithms for maximal clique enumeration (MCE) from an
undirected graph. There are some significant differences be-
tween the problems of MCE and MBE. A maximal clique
lies within the 1-hop neighborhood of each vertex in the
clique, where as a maximal biclique does not lie within the
1-neighborhood of a vertex. We have to consider the 2-hop
neighborhood of vertices to reach all vertices within a maximal
biclique. This makes the subproblems generated during MBE
larger than the ones during MCE. The sequential algorithms
used in MCE are also different from the ones used for MBE
and so are the pruning and exploration methods. Other works
on parallel MCE include distributed algorithm due to Xu et
al. [21], and MapReduce algorithm due to Svendsen et al. [22].

III. PRELIMINARIES

We consider simple undirected bipartite graph
G = (L,R,E) where L and R are two partitions and
E ⊆ L × R. The set of vertices adjacent to a vertex v is
denoted by Γ(v) and the set of vertices common to all the
vertices in the set X is denoted by Γ(X). Mathematically,
Γ(v) = {u|(u, v) ∈ E} and Γ(X) = {u|∀x ∈ X, (u, x) ∈ E}.
We denote by Γ2(v) all the vertices reachable in 2 hops from
v and by deg(v) the number of vertices adjacent to v. Let d
denote the maximum degree of the graph G, M denote the
number of maximal biclique in G, and Mv denote the number
of maximal bicliques in G containing a particular vertex v.

Sequential Algorithm MineLMBC: The algorithm MineLMBC

enumerates all maximal bicliques of a simple undirected graph
G by exploring the graph in a depth-first manner. Each node
in the search tree generates a maximal biclique and spawns
child nodes by adding the vertices to the current set X (which
is a partition of the current maximal biclique) one at a time
from the set tail(X) which is a set of candidate vertices
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for generating maximal bicliques from X often called tail
vertices of X . For generating all maximal bicliques when G
is a bipartite graph, tail(X) is initialized with the smaller
partition, Γ(X) with the larger partition, X with an empty set,
and minimum size ms = 1. MineLMBC is formally described
in Algorithm 1.

Algorithm 1: MineLMBC(X,Γ(X), tail(X),ms)

Input: X - vertex set, Γ(X) - adjacency list of X
tail(X) - tail vertices of X
ms - minimum size threshold.
Output: B - Set of all maximal bicliques containing X .

1 for v ∈ tail(X) do
2 if (|Γ(X ∪ {v})| < ms) then
3 tail(X)← tail(X) \ {v}

4 if |X|+ |tail(X)| < ms then
5 return
6 sort vertices of tail(X) into ascending order of
|Γ(X ∪ {v})|

7 for v ∈ tail(X) do
8 tail(X)← tail(X) \ {v}
9 if |X ∪ {v}|+ |tail(X)| > ms then

10 Y ← Γ(Γ(X ∪ {v}))
11 if Y \ (X ∪ {v}) ⊆ tail(X) then
12 if |Y | ≥ ms then
13 B ← B∪ < Y,Γ(X ∪ {v}) >
14 MineLMBC(Y,Γ(X ∪ {v}), tail(X) \ Y,ms)

The time complexity of generating all maximal bicliques
in a bipartite graph G using MineLMBC is O(ndM) where n
is the size of the smaller partition of G and other notations
carry their usual meaning.

Parallel Cost Model: We analyze our shared memory par-
allel MBE algorithm assuming CRCW PRAM model [10], a
model of shared memory parallel computation that assumes
concurrent read and concurrent writes. Our parallel algorithm
is also suitable for other parallel computation model such
as EREW PRAM (Exclusive Read Exclusive Write) at a
cost of logarithmic factor increase in both the work and the
parallel depth. For measuring the efficiency of our parallel
algorithm, we use work-depth model [10] where the “work” of
a parallel algorithm is the cumulative cost of all the operations
and “depth” is the length of the longest chain of dependent
computations also denoted as the parallel time or span.

We assume parallel insertions and finding of elements using
a concurrent hashtable using the following result. We use this
result in showing the work and depth of the parallel operations
in our analysis of the parallel algorithms.

Theorem 1 (Theorem 3.15 [23]). There is an implementation
of a hash table, which, given a hash function with expected
uniform distribution, performs n1 insert, n2 delete and n3 find

operations in parallel using O(n1 +n2 +n3) work and O(1)
depth on average.

IV. PARALLEL MBE ALGORITHM

In this section, we design two shared memory parallel
algorithms for MBE. The first algorithm ParLMBC is inspired
by the state-of-the-art output sensitive algorithm MineLMBC

and the second algorithm ParMBE is inspired by the state-of-
the-art distributed algorithm CDFS and our parallel algorithm
ParLMBC. Although ParLMBC is a theoretically work-efficient
parallel algorithm, algorithm ParMBE is practically much faster
than ParLMBC because it subdivide the problem into multiple
tasks per vertex and reduces the overall time by significantly
reducing the size of the tail set per task basis as opposed to
the larger tail set in the parallel recursive calls in ParLMBC.
We will discuss about ParMBE followed by the discussion on
ParLMBC which is the subroutine for enumerating maximal
bicliques in tasks per vertex in the algorithm ParMBE.

A. Algorithm ParLMBC

Let us first discuss about the high level idea in designing
the parallel algorithm ParLMBC before going into the technical
details. The parallel design is based on introducing parallelism
at the recursive call levels so that branching out from a
recursive call (usual scenario in a recursive backtracking
algorithm) can be performed in parallel. This way, many
recursive calls at each level can be processed by individual
threads simultaneously (see Figure 1). However, it is not
always straightforward to call recursive procedures in parallel
(that are called iteratively in sequential procedure) due to a
sequential barrier caused by the iterative dependence of data
structures used by the recursive calls. In that case, in parallel
design, we modify the update process of the data structure in
each iteration such that the state of the data structures in each
iteration used by the recursive calls remains independent. This
allows us to call the recursive procedures in parallel.
ParLMBC consists of three main components: (1) pruning

of the tail set (Lines 1-3), (2) sorting the vertices in
the tail set (Line 6), and (3) recursive exploration of the
search space in depth-first order (Lines 7-14) where each
iteration corresponds to the exploration of a sub search space.
Now we explain how we parallelize each of these components:

Parallel pruning of the tail set: Within a single call to
MineLMBC, pruning on the tail vertex set is performed in
parallel in a straight forward manner: iterate over the vertices
in the tail set in parallel and remove those that fails to
satisfy the threshold size criteria as in Line 2 of Algorithm 1.
The total work of this step is O(nd) following the analysis
in the sequential algorithm description and the depth is O(1)
following the O(1) cost of inserting an element and O(1)
cost of searching an element following Theorem 1.

Parallel sorting the vertices in the tail set: Sorting the
vertices in a set using a parallel sorting algorithm is difficult
to achieve because parallel sorting algorithm works on list
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(a) parallelism in prior work [12] (b) parallelism in this work

Fig. 1: demonstration of addition of more parallelism in search tree exploration in this work.

data structure such as array or vector where the elements
are indexed in the data structure which is not the case when
the elements are in an unordered set such as the vertices in
the tail set in our situation. We overcome this difficulty by
putting the elements of tail set in an array (assume the array
is A) in parallel with identity mapping meaning that A[v] = v
only if v is in tail set and A[v] = 0 otherwise. Next we
apply parallel filter operation on the array to compact it (an
array containing only the elements in the pruned tail set)
and assume that the resulting array is A′. Next we apply
parallel sorting algorithm to sort the elements in A′ with
comparison on Γ(·) instead of the absolute values of the
vertices in the tail set. Finally we generate the sorted array
consisting of the vertices in pruned tail set. The total work
of this step is O(n log n) which is a combination of array
A′ construction step with total work O(n) and sorting step
with total work O(n log n) and the depth is O(log n) which
consists of the O(log n) depth for the construction of A′ and
O(log n) depth for parallel sorting.

Parallel unrolling the iterative recursion: We first observe
that there is a sequential dependency in the iterations because
of the update process of the tail vertex set as in Line 8 of
Algorithm 1. Therefore, it is not straightforward to execute
on each vertex (at Line 7 of Algorithm 1) in parallel. Also,
we observed that we can run the iterations in parallel if the
dependency of tail set can be removed. We exactly do this
by creating a local tail set for each iteration and initializing
it with the vertices from index i+ 1 till κ where κ is the size
of tail set before the iterations begin and i is the current
iteration number if presented sequentially. The total work of
this step is O(n+ d2) which is a combination of (1) updating
the tail set with total work O(n), (2) constructing the Y
with total work O(d2), and (2) subset check as in Line 11
of Algorithm 1 with total work O(n). The depth of this step
is O(d2) which is a combination of the depths of these 3
aforementioned components: O(1) for updating tail set,
O(d2) for computing Y , and O(1) for subset check.

Along with the parallelization of the main steps of the
enumeration algorithm, once one partition of a new maximal

biclique is settled, generation of the other partition of the
same maximal biclique is a costly operation because it
involves computation of intersection of unordered sets. Note
that the generation of the other partition is required for
ensuring non duplicate generation of the maximal bicliques.
Our approach for parallelizing the intersection computation is
the following:

Parallel intersection computation of unordered sets: We
compute Γ(Γ(X ∪{v})) by iterating on each vertex in Γ(X ∪
{v}) in parallel. For each vertex u adjacent to some vertex in
Γ(X∪{v}) we use an atomic counter and increment by one
for each vertex w in Γ(X∪{v}) adjacent to u. For doing this,
we use a hashmap with vertices as key and its counter as the
value. Finally, we consider those vertices from the map in
the set Y with counter value |Γ(X ∪ {v})|. More details are
in Section V.

The formal description of the parallel techniques is pre-
sented in Algorithm 2 and we present the work and depth
analysis of ParLMBC in the following theorem:

Theorem 2. Given a bipartite graph G = (L,R,E) with
n = |L| ≤ |R|, the number of maximal bicliques M , and the
maximum degree d, the total work of ParLMBC is O(ndM)
and the depth of the algorithm is O(d(d2 + log n)).

Proof. From the discussion on the parallel steps, it is easy to
see that the total work of ParLMBC is O(ndM).

To show the depth of the algorithm, note that the overall
depth is the depth of a single recursive call multiplied by the
depth of the search tree. From the previous discussion of the
depth of the individual parallel steps, it is clear to see that
the depth of a single recursive call is O(d2 + log n). Now the
depth of the search tree is the maximum degree of the graph
d. This is because, the size of X increases by at least 1 when
the depth of the search tree is increased by 1 (Line 11 of
Algorithm 2). For contradiction assume that the depth of the
search tree is d + 1. Then there will be an X at depth d + 1
with at least d + 1 vertices. This is a contradiction because
the maximum degree of the graph d. Thus, the depth of the
algorithm follows.
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Algorithm 2: ParLMBC(X,Γ(X), tail(X),ms)

Input: X - vertex set, Γ(X) - adjacency list of X
tail(X) - tail vertices of X , ms - minimum size
threshold.
Output: B - Set of all maximal bicliques containing X .

1 for v ∈ tail(X) do in parallel
2 if (|Γ(X ∪ {v})| < ms) then
3 tail(X)← tail(X) \ {v}

4 if |X|+ |tail(X)| < ms then
5 return
6 parallel sort vertices of tail(X) into ascending order of
|Γ(X ∪ {v})|

7 Let the elements of sorted tail(X) are presented in the
order 0..κ

8 for i ∈ [0..κ] do in parallel
9 ntail(X)← tail[i+ 1..κ]

10 if |X ∪ {v}|+ |ntail(X)| > ms then
11 Y ← Γ(Γ(X ∪ {v})) in parallel
12 if Y \ (X ∪ {v}) ⊆ ntail(X) then
13 if |Y | ≥ ms then
14 B ← B∪ < Y,Γ(X ∪ {v}) >
15 ParLMBC(Y,Γ(X ∪ {v}), ntail(X) \ Y,ms)

B. Algorithm ParMBE

Note that the work efficiency of ParLMBC comes at a cost
of additional sequential work of generation of tail set for
each parallel recursive call (Line 9 of Algorithm 2) that
remains hidden under the cost of updating the tail set to
prune the search space (Line 1-3 of Algorithm 2) because
of asymptotically higher work complexity of this pruning
step. An approach to reduce this sequential overhead is to
reduce the size of the candidate set. One way of reducing
the candidate set size (tail set in this algorithm) is to create
subproblem for each vertex and only consider the vertices in
the neighborhood (or 2-neighborhood as needed) in creating
the candidate set. We take this approach and design another
algorithm ParMBE with techniques close to the distributed
algorithm CDFS. ParMBE works in the following way: For each
vertex v ∈ V (G), we create a subgraph Gv consisting of the
vertices in the set Γ2(v) and enumerate all maximal bicliques
from Gv using our parallel algorithm ParLMBC. While working
on the subproblems, it is important not to enumerate a maximal
bicliques more than once. We ensure this by assuming a
total ordering of the vertices and initializing the tail set
for each subproblem with the vertices that comes after v in
that ordering and belongs to the partition of v. We create
this ordering by defining a rank function based on which we
order the vertices. In this work our rank function is based
on the degree of the vertices where for any two vertices u
and v, rank(u) > rank(v) if deg(u) > deg(v) and when
deg(u) = deg(v), rank(u) > rank(v) if the absolute value of

u is greater than the absolute value of v. ParMBE is presented
formally in Algorithm 3

Algorithm 3: ParMBE(G,ms)

Input: G = (L,R,E) - input graph, ms - minimum size
threshold.

Output: B - Set of all maximal bicliques containing X .
1 for v ∈ L do in parallel
2 X ← {v}
3 Γ(X)← Γ(v)
4 tail(X)← ∅
5 for w ∈ Γ(v) do in parallel
6 for y ∈ Γ(w) do in parallel
7 if rank(y) > rank(v) then
8 tail(X)← tail(X) ∪ {y}

9 ParLMBC(X,Γ(X), tail(X),ms)

Discussion: Note that the high level idea of ParMBE has a close
resemblance with our recent work on parallel algorithm for
maximal clique enumeration [20]. But unlike maximal cliques,
only the vertices adjacent to the candidate set are not sufficient
for the exploration of the search space. For maximal bicliques,
we need to focus on the 2-neighborhood of the vertices in the
candidate set. Also, lowest rank among the vertices in one
partition does not necessarily imply lowest rank in the entire
vertex set of the maximal biclique which is unlike the case of
maximal cliques. Therefore, we need to take special care while
creating the candidate sets for maximal biclique enumeration
to ensure that all maximal bicliques are enumerated without
any duplication. We ensure both of these through a careful
design in ParMBE.

Next, we can use our previous work [20] here for parallel
maximal biclique enumeration. However that is inefficient
from the space cost perspective. If we want to apply parallel
maximal clique enumeration algorithm for enumerating all
maximal bicliques, we need to transform the original bipartite
graph where we need to add many edges to the original graph
such that each partition becomes a clique in the transformed
graph. It is then easy to see that a maximal clique in the
transformed graph corresponds to a maximal bicliques in the
original bipartite graph.

V. EXPERIMENTS

We empirically evaluate our parallel algorithms ParLMBC

and ParMBE and compare with the state-of-the-art sequential
and parallel algorithms MineLMBC and CDFS respectively on
real world bipartite networks to show the parallel speedup
and scalability of our parallel algorithms. We show that our
parallel algorithms show significant speedup over the state of
the art sequential and parallel algorithms. We evaluate all the
experiments in a multicore computer equipped with 3TB RAM
and 64 core processor (four 16-core Intel 6130 processors).
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A. Datasets

We use 6 real world static bipartite networks from publicly
available repository KONECT [24] for the experiments. The
summary of the dataset is presented in Table I. We consider
two networks DBpedia locations and Marvel with small
number of maximal bicliques for comparison with a prior
sequential algorithm iMBEA.

TABLE I: Bipartite Networks used for evaluation, and their
properties.

Dataset #Vertices #Edges #Maximal Bicliques
DBpedia locations 225,486 293,697 75,360
Marvel 19,428 96,662 206,135
YouTube 124,325 293,360 1,826,587
IMDB 1,199,919 3,782,463 5,160,061
Stack Overflow 641,873 1,301,942 3,320,824
BookCrossing 445,801 1,149,739 54,458,953

B. Implementation of the algorithms

In the implementations of ParLMBC and ParMBE, we use
parallel for and parallel for each constructs from In-
tel TBB parallel library [25] for the implementation of the
parallel for loop. For the atomic operations on hashtable
we use concurrent hash map, for the atomic operations
on unordered set we use concurrent unordered set,
and for atomic operations on the dynamic array we
use concurrent vector. We implement Γ(Γ(X ∪ {v}))
in parallel in ParLMBC. For doing this, we use a
concurrent hash map from vertex as the key and the the
number of vertices in the set Γ(X ∪ {v}) it is adjacent to as
the value. Then we iterate on the vertices of Γ(X ∪{v}) in
parallel and update the frequency of the vertices adjacent to
each vertex in Γ(X∪{v}). Finally, we generate the set Y with
the vertices in the concurrent hash map whose frequency is
|Γ(X∪{v})|. For the parallel sort we use parallel_sort.
All of these are provided by TBB. We use C++11 for the
implementation of the algorithms and compile the sources
using Intel ICC compiler version 18.0.3 with optimization
level ‘-O3’. System level load balancing is performed using a
dynamic work stealing scheduler [25] built inside TBB.

For the comparison with prior works, we implement state of
the art MapReduce algorithm CDFS in shared memory setting
that we call MCoreCDFS. We also implement a more recent
sequential algorithm iMBEA [8].

C. Discussion of the Results

Now we present and interpret the results of the empirical
evaluations of our parallel algorithms. First we will show the
parallel speedup (with respect to MineLMBC) and scalability
of ParLMBC and ParMBE to show that the performance
of the parallel algorithms improve when the number of
core is increased. Next we compare our parallel algorithms
with MCoreCDFS to show that ParMBE performs better than
MCoreCDFS on all the input graph and then we compare
with the sequential algorithm iMBEA and show that we get
magnitude of order speedup over this algorithm. This is as
expected because, the performance of iMBEA is much worse

than the performance of MineLMBC.

Parallel Speedup: We show the parallel speedup of ParLMBC
and ParMBE in Table II. The result clearly shows the sub-
stantially better performance of ParMBE over ParLMBC and
magnitude of order parallel speedup of ParMBE compared with
MineLMBC. However, more than 64× speedup of ParMBE in a
64 core machine clearly indicates that the sequential algorithm
MineLMBC is not the most efficient one.

TABLE II: Runtime (in sec.) of MineLMBC, ParLMBC, and
ParMBE on 64 cores. Numbers in the parenthesis indicates the
parallel speedup.

Dataset MineLMBC ParLMBC ParMBE

YouTube 305 85 (3.6x) 8.3 (36.7x)
IMDB 41476 2187 (19x) 120 (345.6x)
Stack Overflow 23323 1220 (19x) 892 (26x)
BookCrossing 18569 4259 (4.3x) 863 (21.5x)

Scalability: We show the scalability of our parallel algorithms
ParLMBC and ParMBE in Figure 3. The result shows that
ParMBE scale up almost linearly as we increase the degree
of parallelism by increasing the number of threads. The x
axis is the number of the threads used and the y axis is the
parallel speedup which is a function of the number of threads.
We also see that ParLMBC does not scale as we increase the
number of threads. This is because the additional overhead
in the parallelization of processing the candidate sets is large
compared to the sequential algorithm MineLMBC due to the
large candidate sets in the recursive calls compared with the
candidate sets in the recursive calls in ParMBE. Moreover, the
speedup achieved with 64 threads is not always maximum
(for example Figure 3(a)) especially when the problem size
is small.

Comparison with prior works: We compare our parallel
algorithms ParLMBC and ParMBE with a distributed parallel
algorithm CDFS [12] in a shared memory setting by reusing
the methods of cluster construction and maximal biclique
enumeration and eliminating the need to communicate the
subgraphs by storing a single copy of the graph in a global
shared memory. From Table III we see that ParMBE is upto
3x faster than MCoreCDFS. This speedup is due to the use of
parallel algorithm ParLMBC in ParMBE for enumerating the
maximal biclique from the subproblems instead of MineLMBC
as in CDFS. We also evaluate a prior sequential algorithm
iMBEA and it appears that MineLMBC is significantly faster
over iMBEA. For an instance, on Marvel graph, MineLMBC

takes around 10 second to enumerate around 206K maximal
bicliques where as iMBEA takes more than 30 minutes to
enumerate those maximal bicliques. In another example on
DBpedia locations graph, MineLMBC takes around 450 sec.
to enumerate around 75K maximal bicliques where as iMBEA

takes more than an hour for exactly doing the same job.
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Fig. 2: Runtime of ParMBE and ParLMBC as a function of number of threads.

TABLE III: Comparison of runtime (in sec.) of ParMBE with
CDFS on 64 cores.

Dataset MCoreCDFS ParMBE

YouTube 18 8.3
IMDB 247 120
Stack Overflow 2694 892
BookCrossing 2190 863

D. New Sequential Algorithm FMBE

Based on the observation from Table II the parallel speedup
of ParMBE compared with MineLMBC is magnitude of order
better than the number of cores (64) in the multicore ma-
chine where we execute all the parallel algorithms. Clearly
MineLMBC is not the optimized sequential algorithm and it
indicates a gap between the possibility of a better sequential
algorithm and the algorithm MineLMBC. We fill the gap by
designing a new sequential algorithm FMBE where we execute
all the procedures in ParMBE sequentially. Surprisingly, we
find that the time complexity of FMBE is better than the time
complexity of MineLMBC in both the theory and in practice.
We formally present FMBE in Algorithm 4.

Typically the size of the tail set for each subproblem
becomes significantly smaller than the size of the tail set
for the entire graph. Intuitively the significant reduction in the

runtime is related to the reduction in the size of the tail set in
the argument of MineLMBC in algorithm FMBE. The following
lemma shows a better time complexity of FMBE than MineLMBC

when the maximum degree d of the graph is much smaller than
the number of vertices n.

Lemma 1. Given a bipartite graph G = (L,R,E) with
n = |L| ≤ |R|, the number of maximal bicliques M , and the
maximum degree d, the time complexity of FMBE is O(d4M).

Proof. First we show that if b = (bL, bR) is a maximal biclique
of G where bL ⊆ L and bR ⊆ R, it will be enumerated from
Gv only where v is the least ranked vertex among all the
vertices in bL. Suppose this is not the case, and assume that
b is enumerated from another subgraph Gw for some w ∈ L.
Then, v is not the least ranked vertex among the vertices of
bL based on the construction of Gw. This is a contradiction.

Now for each vertex v ∈ L, the the size of Gv is O(d2)
because, in constructing Gv , we consider the vertex v, the
vertices in Γ(v) and the vertices adjacent to each of the vertex
in Γ(v). The time complexity of MineLMBC on the instance of
Gv is O(d3Mv) where Mv is the number of maximal bicliques
in Gv and d is the maximum degree of Gv which is same as
the maximum degree of the original graph G. Thus the overall
time complexity is

∑
v∈LO(d3Mv) which is O(d4M) because
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Fig. 3: Parallel speedup (with respect to MineLMBC) of ParMBE and ParLMBC as a function of number of threads.

each maximal cliques will be enumerated at most d times by
d different subproblems. This completes the proof.

In Figure 4 we show that the runtime of FMBE is significantly
smaller than the runtime of MineLMBC in almost all the
input graphs. This shows that FMBE is a significantly better
sequential algorithm than MineLMBC.

Algorithm 4: FMBE(G)

Input: G = (L,R,E) - input graph
Output: B - Set of all maximal bicliques containing X .

1 for v ∈ L do
2 X ← {v}
3 Γ(X)← Γ(v)
4 tail(X)← ∅
5 for w ∈ Γ(v) do
6 for y ∈ Γ(w) do
7 if rank(y) > rank(v) then
8 tail(X)← tail(X) ∪ {y}

9 MineLMBC(X,Γ(X), tail(X), 1)
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Fig. 4: Comparison of runtimes (in sec.) of MineLMBC and
FMBE with the input graphs in the x-axis and the runtime in
the y-axis in logscale.
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Fig. 5: Runtime as a function of the size threshold.

E. Enumeration of Large Maximal Bicliques

We also consider enumerating maximal bicliques with size
of each partition exceeding a threshold ms. This is important
when we do not require all maximal bicliques but some of
them with larger size. Note that enumerating all maximal
bicliques is a special case when ms = 1. We try to address the
following question in this study: Can we enumerate large max-
imal bicliques faster than enumerating all maximal bicliques?
We conduct experimental evaluation to show in Figure 5 that
indeed the runtime decreases with the increase in the threshold
size. This clearly follows the intuition that the search space is
shrunk when we increase the threshold size by disregarding the
vertices with smaller degrees (than the threshold) from being
in the candidate set for the enumeration process. Also, it is
clear from the plots that the relative time of the algorithms
is preserved. Intuitively, this ensures the shrinking of search
space in each of the algorithms due to the increase in the
threshold size.

VI. CONCLUSION

In this work we design shared memory parallel algorithm
for maximal biclique enumeration (MBE) based on the
state-of-the-art sequential algorithm MineLMBC. We provide
theoretical guarantee of work-efficiency and low depth of

our parallel algorithms and demonstrate through experimental
evaluation that our parallel algorithms are efficient and
scalable - scales linearly with the increase in the number
of processor. We also so that our practical efficient parallel
algorithm ParMBE provides more than 2x speedup over
the shared memory implementation of state-of-the-art
MapReduce based parallel algorithm CDFS. In addition to
that, we develop with theoretical guarantee a faster (than
MineLMBC) sequential algorithm inspired by the observation
that the speedup achieved by ParMBE is much higher than the
maximum number of available cores in the system.
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