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ABSTRACT
Accurate tracking of nonminimum phase (NMP) systems is well known to require

large amounts of control effort. It is, therefore, of practical value to minimize the effort

DS-18-1094 | Okwudire | 1



Journal of Dynamic Systems, Measurement and Control

needed to achieve a desired level of tracking accuracy for NMP systems. There is growing
interest in the use of the filtered basis functions (FBF) approach for tracking control of
linear NMP systems because of distinct performance advantages it has over other methods.
The FBF approach expresses the control input as a linear combination of user-defined
basis functions. The basis functions are forward filtered through the dynamics of the plant
and the coefficients are selected such that the tracking error is minimized. There is a wide
variety of basis functions that can be used with the FBF approach, but there has been no
work to date on how to select the best set of basis functions. Towards selecting the best
basis functions, the Frobenius norm of the lifted system representation of dynamics is
proposed as an excellent metric for evaluating the performance of linear time varying
discrete-time tracking controllers, like FBF, independent of the desired trajectory to be
tracked. Using the metric, an optimal set of basis functions that minimize the control effort
without sacrificing tracking accuracy is proposed. The optimal set of basis functions is
shown in simulations and experiments to significantly reduce control effort while
maintaining or improving tracking accuracy compared to popular basis functions, like B-

splines.

1. INTRODUCTION

Tracking control is a fundamental problem encountered in a wide range of
application areas such as manufacturing, robotics and aeronautics. The objective of
tracking control is to force the output of the controlled system to follow a desired trajectory
as closely as possible. It is also important that this objective is achieved with minimal
control effort, e.g., due to power limits of actuators. Excellent tracking accuracy can be

achieved using feedforward control by direct inversion of a sufficiently accurate model of
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a system (i.e., pole-zero cancellation) [1]. However, when applied to systems with
nonminimum phase (NMP) zeros, direct model inversion gives rise to unstable or
extremely high control inputs which are unacceptable [1]. There have been several
feedforward tracking control methods reported in the literature that are applicable to linear
systems with NMP zeros. These methods include NMP zero ignore (NPZ-ignore), zero
phase error tracking control (ZPETC) [1], zero magnitude error tracking control (ZMETC),
extended bandwidth ZPETC [2], truncated series (TS) [3], direct inversion with bounded
reference trajectories [4—8], approximate frequency domain inversion [9], H» matching
[10,11], B-spline-based tracking with preview using iterative learning control [12], spline
filtering with feedback [13,14], etc. A major shortcoming of most of these methods is that
they are not versatile in terms of the systems and/or the desired trajectories to which they
are applicable (e.g., several of the methods cannot be applied to nonhyperbolic systems,
i.e., systems with zeros on the unit circle) — see [15] for a more detailed discussion of this
matter. Moreover, their tracking accuracy varies significantly depending on NMP zero

location (in the complex plane) [15].

The filtered basis functions (FBF) approach has recently been gaining interest as
an approach for tracking linear systems with NMP zeros [15—19]. The origin of the FBF
approach can be traced back to the work of Frueh and Phan [20] on inverse linear quadratic
learning in iterative learning control (ILC). It expresses the control input as a linear
combination of user-defined basis functions with unknown coefficients. The basis
functions are forward filtered using the system dynamics, and their coefficients selected
such that tracking error is minimized. Unlike most of the methods discussed above, the

FBF method is effective in tracking any desired trajectory, irrespective of the location of
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NMP zeros in the z-plane (including nonhyperbolic systems [15,17,19]). Moreover, it has
been observed by the authors that the FBF method maintains consistent tracking accuracy
compared to popular linear time invariant (LTI) discrete-time tracking controllers
irrespective of the location of the NMP zero in the z-plane [15,17,21].
There is a wide range of basis function available for use with the FBF approach.
The choice of basis functions is entirely up to the control engineer. Prior work in the
literature has explored cosine signals [20,22], reference trajectory based basis functions
[23,24], B-splines [12,17,21], Gaussian radial basis functions [ 18], etc. However, there has
been no study on the optimal selection of basis functions to achieve a desired control
objective using the FBF approach. This paper (and, in part, its preliminary version [25])
addresses the problem of optimal basis function selection by making the following original
contributions to the literature:
1. It proposes the Frobenius norm of the lifted system representation (LSR) of dynamics
as an excellent and appropriate metric for analyzing the performance of LTI and linear
time varying (LTV) tracking controllers, independent of desired trajectory. The

proposed metric is applicable to any discrete-time linear controller.

2. It demonstrates, using the metric that the tracking accuracy of the FBF approach is
solely dependent on the number of basis functions used; it is independent of the type
of basis functions and the plant dynamics (e.g., zero location), thus explaining the
consistent tracking performance of the FBF approach relative to other tracking

controllers.

3. It demonstrates that the metric for FBF’s control effort dynamics is dependent on the

system dynamics and the type of basis functions used. A methodology for determining
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the optimal set of basis functions for achieving a desired level of tracking accuracy
with minimum control effort is derived analytically. These optimal basis functions are

shown to be singular vectors of the lifted system representation of the plant dynamics.

Section 2 provides some background and motivation for the paper, and Sec. 3
presents the proposed metric, analyzes the FBF method using the metric and derives a
methodology for determining the optimal set of basis functions. The discussion in Sec. 3
is validated in Sec. 4, using simulations and experiments. This is followed by conclusions

and future work in Sec. 5.

2. BACKGROUND AND MOTIVATION
2.1. Feedforward Tracking Control Problem
Given a discrete-time LTI single input single output (SISO) plant G(g), as shown
in Fig. 1, which may represent an open loop or a closed loop controlled system, we can
write
(k) = Gg)u(k) (1)
where £ is the time index, g is the forward shift operator, y and u are the output and control
input, respectively. The objective of feedforward tracking control is to design a controller
C(q) or find a control input u(k) given by
u(k) = C(q)y, (k) 2)

where ya(k) 1s the desired trajectory, such that the tracking error, e(k), given by

e(k)=y,(k)—y(k)
=(1-G(@)C(g)y, (k) =E;(q)y, (k) 3)
L(q)
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is minimized. Note that L(q) and E#(q) are the overall and error dynamics of the controlled
system, respectively.

For finite time, 0 < k < M (where M+1 is the number of discrete points in the
trajectory), the desired trajectory, control input, tracking error and output trajectory can be

expressed using vectors as

Y =[n 0 y,0) .. y,D], u=[u©) u@®) ... wM)],

T . 4
e= [e(O) e(l) ... e(M)] ,y= [y(O) y(1) ... y(M)]
Accordingly, Egs. (1), (2) and (3) can be expressed as
y=Gu; u=Cy,; e=(I1-L)y, 5)

E,

where G, C, L and Ey are the lifted system representations (LSRs) of G, C, L and Ep,
respectively (see Appendix A for details on LSR), and I is the identity matrix of appropriate

size.

u(k) R

C(q) G(q) >y(k)

\ 4

va(k)

Fig. 1: Block diagram for feedforward tracking control
2.2. Filtered Basis Functions (FBF) Approach
The FBF approach relies on two assumptions:
1. the desired trajectory is known a priori; and
2. the control input u(k) is expressed as a linear combination of n+1 user-defined basis

functions ¢i(k); i.e.,

u(h) =Y. 7,(8) ©
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where y; are unknown coefficients. Using vectors, Eq. (6) can be expressed as

u =@y;
T r ()
D=[9, ¢ ... 9,].0,=[20) o) ... oMD].v=[r, 7 .. 7]
Hence, for a linear system G(g) (with LSR G), y can be expressed as
y =®r;
- ) < 3 (8)
O=GP; ¢,=Go; P=[¢p, ¢ ... §,]

where @ represents the filtered basis functions. The control objective is to find the optimal

coefficient vector y such that the squared 2-norm of the tracking error, i.e.,
eTe:(yd —(i)y)T (yd —(i)y) )]
is minimized; the optimal solution is given by the classical least-squares solution,
v =(®'®) @y, (10)
Based on Egs. (5), (7), (8) and (10), the controller dynamics (C(g)) and error dynamics

(Ef(q)) for the FBF controller can be expressed in LSR as

Cp ~0(&'®) " &’
E, ., =1-®(®'®) & an
%/—J
L

Remark 1: Crsr and Egrsr both depend on the LSR of the plant, G, as well as the selected
basis functions. Both matrices are, in general, non-Toeplitz and non-triangular implying
that the FBF controller is, in general, LTV and non-causal [15].

Remark 2: Although, for simplicity, this paper describes the FBF approach in the context
of LTI SISO systems, it is applicable to other types of linear systems such as LTV, linear
parameter varying (LPV) [18] and multi-input multi-output (MIMO) systems. Reference

[17] relaxes the assumption on a priori knowledge of the entire desired trajectory using the
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local property of B-splines as basis functions. Without loss of generality, this paper
assumes that the initial conditions are zero. The authors’ prior work [15,17] can be
consulted for approaches to incorporate effects of initial conditions into the FBF approach.
2.3. Motivational Case Study

This section motivates the rest of the paper using time-domain simulations based

on a simple first order plant

G(g) =1~ (12)
q—p

where a (a real number) € [-5, 5] and p = 0.5 are the zero and pole of the system,
respectively. Note that this first order system has also been used for analysis of simple
approximate inversion techniques by Butterworth et al. [26]. In this section, the tracking
performance of FBF is analyzed for different basis functions.

For simulations, the desired trajectory (y«) is a zero-mean white noise signal, with
variance equal to 1, M = 1000 and sampling frequency 10 kHz. As discussed in Sec. 1,
there is a wide range of basis functions available for use with the FBF method. Here, three
types of basis functions are used: (i) discrete cosine transform (DCT) [22], (i1) block pulse
functions (BPF) [27] and (ii1) B-splines [28]; their expressions are provided in Appendix
B. The DCT and BPF basis functions are rudimentary basis functions in frequency-domain
and time-domain, respectively, whereas, B-splines are commonly used to parameterize
commands sent to manufacturing machines and robots [29].

Figure 2 (a) compares the normalized root mean square (RMS) tracking error
erms/ya rus for the three basis functions (n = 990) for various values of a. It must be pointed
out that approximate inversion is not generally used for tracking control in the minimum

phase (MP) region because C = G! can be employed (provided a is not poorly damped
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[1]). However, the MP region is included in this paper for sake of completeness. The FBF
approach demonstrates consistent tracking accuracy, as compared to popular methods in
the literature (see Fig. 12 in Appendix C for a comparison with two such popular methods,
viz. ZPETC and TS), irrespective of zero location and type of basis functions [15,17,21].
Similar observations have been made in prior work [15,17] and contrasted with other
tracking controllers whose tracking accuracy typically varies significantly depending on
NMP zero location [3,26]. A theoretical justification for this observation was preliminarily
explored in [25], and is further discussed in Sec. 3 below.

Figure 2 (b) compares the normalized RMS control effort of the various basis
functions applied to the FBF approach. Notice that there is significant variation in control
effort for various basis functions, even when tracking accuracy is similar. For instance, at
a = 1.02, all the basis functions achieve similar levels of tracking accuracy, but the control
effort required by DCT is 370 times that of BPF, whereas, the control effort required by B-
splines is 11800 times that required by DCT. In contrast, all the basis functions have very
similar values of erus and urms for —1 < a < 1. This suggests that the system dynamics and
choice of basis functions play a significant role in the control effort required to achieve a
desired level of tracking accuracy using the FBF approach. Hence, a methodology for
determining the best set of basis functions for a given plant and desired level of tracking

accuracy is needed.
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Fig. 2: Effect of basis functions (DCT, BPF and B-splines) on: (a) normalized RMS
tracking error and (b) normalized RMS control input for various values of a (M = 1000, n
=990). The methods are also simulated for MP region (shaded) but the system can also

be inverted in this region.

3. OPTIMAL SELECTION OF BASIS FUNCTIONS

A suitable metric is needed in order to probe deeper into the observations made in
Sec. 2.3 above and provide a methodology for selecting an optimal set of basis functions.
While Bode diagrams [3] and magnitude at Nyquist frequency [26] have been used as
metrics to analyze LTI tracking controllers, they are not applicable to LTV controller like
FBF. In this section, we propose a metric that is suitable for analyzing LTV controllers like
FBF, independent of trajectory to be tracked, and utilize the metric to develop a
methodology for optimal selection of basis functions for minimum control effort.

3.1. Proposed Metric
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Journal of Dynamic Systems, Measurement and Control

For evaluating the tracking accuracy of discrete-time linear controllers (LTI or

LTV), we propose the following metric, Je, based on the Frobenius norm of Eg

el

N Vel

The Frobenius norm is selected because it considers all singular values/gains (o7) of Eg, as

(13)

opposed to ||Ezl|2 (sometimes used in ILC for stability analysis [30]), which considers only
the maximum singular value/gain. The square root of (M+1) is included in the metric to
ensure that it is uniformly bounded as the length of the trajectory (and size of Ey) grows.

Moreover, as shown in Appendix D, for an LTI system,

Ik,

© M +1

In other words, Je approaches the error 2-norm criterion (sometimes used in the design and

—>HEﬁ(q)H2 as M — (14)

analysis of tracking controllers [3]). The singular values of E; approximate the magnitude
of the frequency response of Ei(q) [31]; and ||Eg(q)||~ is the maximum gain of the system
Ej(q) which is approximated by ||[E4|2 (because the 2-norm of a matrix is its maximum
singular value) and this approximation is more accurate as M — 0.

Note that for a normalized desired trajectory (i.e., ||yd|]2 = 1),

e, 15
eRMS_x/MiIS\/M:I_Je (4

The implication is that J. is an upper bound on the RMS tracking error (eras).
Similarly, control effort requirements can be analyzed using metric, J., defined as

follows
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J, = % (16)
and analogously, Jc bounds the RMS control input (urms) for a tracking controller with
[yall2 =1 as

Uy <J, (17)
and Jc — ||C(g)|2 as M — o
Remark 3: The LSR is employed for the proposed metric because it applies to both LTI
and LTV controllers [32]. Moreover, the LSR is applicable to feedforward as well as
feedback controllers, SISO as well as MIMO controllers. Thus, the proposed metric is
broadly applicable to any linear discrete-time tracking controller. It can also be used for
evaluating other performance criteria beyond tracking accuracy and control effort.
3.2. Effect of Basis Functions on the Tracking Performance of FBF
Proposition 1: The metric of Eq. (13) applied to the FBF error dynamics (i.e., Jer8F) is

given by

n+l
Je,FBF = _M+1 (18)

Proof: The filtered basis functions matrix @ in Eq. (8) can be transformed to the decoupled

filtered basis functions matrix ¥ using transformation Q (for more details, see [15])

O =YQ (19)
O =YQ
such that
vw=1_;
Cryr =YY, (20)
E, =1, —P¥
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Based on Eq. (20) (for more details see prior work [15]), it is known that Lrsr, which

depends on the selected basis functions and the plant dynamics, can be expressed as
n+l
L = Z\T’,\T’IT (21)
i=1

where , are the decoupled filtered basis functions that satisfy

j
1 i=j (22)
51‘;' :{ . J
' 0 i#j
Hence,
_ ”I _LFBF”F
e,FBF M +1
M+1 — n+l o
TATHEDRAT
— i=1 i=1 F
M +1
M+1
ATH (23)
— i=n+2 F
VM +1
_ M—n
M +1
_ e n+l
M +1
(End of proof)

Remark 4: Note that J. rsr is independent of G(¢g) and the type of basis functions employed.
It depends only on the number of basis functions (relative to the number of discrete points
in the trajectory). As discussed in [25], the independence of J. from G(q) cannot be taken
for granted with other tracking controllers [26]. The consistent tracking accuracy of FBF
stems from the unique structure of Ezrsr and it provides an analytical explanation of the

relative independence of the FBF method’s tracking accuracy from G(g) observed in prior
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work [15,17,21], and demonstrated in Section 2.3. Also, the result of Proposition 1 holds
for any linear plant dynamics, i.e., it also applies to LTV and LPV plants.
Remark 5: Note that, |Egrsr|2 is equal to 1, irrespective of the number of basis functions
used, which is not a reasonable representation of the tracking accuracy of the FBF method,
which varies significantly with n [15,17,21]. Hence, the proposed metric is more
appropriate compared to 2-norm metrics like those used in convergence analysis in ILC
[30].
Remark 6: J. = 0 implies C = G™! which might be undesirable if G(g) contains
uncancellable zero(s) because such zeros result in very small singular values of G, and
large control signals [33]. The FBF approach is rank constrained minimization of the metric
applied to error dynamics [25]. A rank constraint, which in the LSR implies a restricted
space of input and output [15], is used to avoid inversion of the full G, while also reducing
the computational demands of the control problem [22,34,35]. However, the rank
constraint does not necessarily result in minimization of control input and hence, analysis
of FBF controller dynamics (discussed in the remainder of this section) and selection of an
optimal set of basis functions (presented in Sec. 3.3) is necessary.

The LSR of the plant, G, can be decomposed using singular value decomposition

(SVD) [36] as follows

M+1
G=VIW'= Z oV.W,;

i=1

v=[v, v, ... vi.|; 24)
wW=[w, w, ... w,];
X= diag([O'1 o, ... O-M-H]);

0,>0,>...>0,,>0

Without loss of generality, this paper assumes that G has distinct singular values.

DS-18-1094 | Okwudire | 14



Journal of Dynamic Systems, Measurement and Control

The Frobenius norm of Crar can be expressed as

||CFBF ||F = \/trace(C}BFCFBF) = \/trace(‘i"I’T‘I"i’T)
= \/tmce(‘I’T‘I"i’T‘i’) = \/trace(‘I’T‘I’)
=[] (25)
=6, = [wervrE| <[V
F

-
where
E=V'Y¥
R R

é;o éél te é;n
: S : (26)

EMH,O gMH,l b gMH,n

M+1

Y, = z é:ijvi
i=1

The implication is that flj represents the contribution of vi towards , and vice-versa.

Hence,
”C || 1 M+l 1 n__
I, gy = e lE = —| Y& (27)
s il TRe Pt PO
Since, viand ; are unitary vectors
&)<
= |z
<
= %y —‘ A (28)
c £2 O 2 = =
= S fy‘ <|E| <|E ,
Jj=0 j=0

Based on Egs. (20) and (26)
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n (29)

The squared Frobenius norm of FBF controller dynamics ||C FBE ||i is a linear combination

M+1
i=

of the inverse of squared singular values of G, i.e., {1/ af} ] with coefficients of the

linear combination ij determined by interaction between filtered basis functions
j=0

and system dynamics G. The coefficients are bounded between 0 and 1 and need to satisfy
orthogonality condition (see Eq. (20)).
3.3. Optimal Selection of Basis Functions for Minimal Control Effort

It has been shown, so far, that the tracking accuracy of the FBF method (measured
by Je) is always fixed for a given number of basis functions, irrespective of the type of
basis functions or the plant dynamics. Also, for a given number of basis functions, the
control effort of the FBF method (measured by J.) is dependent on the plant dynamics and
type of basis functions. In this section, the optimal set of basis functions that minimizes Jc
for a given Je are presented — and the resulting controller is called the optimal FBF
controller (i.e., optimal in terms of minimizing control effort).

Proposition 2: For n+1 basis functions, the minimum value of the squared Frobenius norm

of LSR of FBF controller dynamics, ||C FBF”; , 1s given by

. 5 n+l 1
mln(”CFBF ”F) =2 — (30)

i=1 O_l'

Proof: Proposition 2 is substantiated by

e proving by contradiction that there is no g;l.j such that
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”CFBF” Z_

i=1 O;

1

e showing there exists ffl_j such that

”CFBF” Z—

i=1 O-l
Assume
M+1 1 n+l 1
”CFBF” ‘Z X< I
i=1 O- i=1 O-,'
n ~
_ 2
>E
Jj=0
Therefore,
M+1 n+l

2 zz,<2}

i= n+2

From Egs. (20) and (26),
I M+1
trace(2'E) = z x, =n+l=trace(l ,))
i=1
Hence,
M+1 n+l
Z Xi= Z(l - %)
i=n+2 i=1

Multiplying Eq. (34) by o, gives

M+1 n+1

22 ;+l /,L/ <z n+1
i=n i

1

Subtracting Eq. (36) from Eq. (37) results in

(b Sz oo

i=n+2 i

Note that

(1)

(32)

(33)

(34)

(35)

(36)

(37)

(38)
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2
[O-nﬂ _1j>0 for i=n+2,n+3,...M +1

2
(i;l—ljso for i=1,2,...,n+1 (39)
(o2

%20
(1_;{:‘)20

which implies that left hand side of Eq. (38) is always greater than or equal to zero whereas,
the right hand side is always less than or equal to zero, which is a contradiction and hence,
the assumption given by Eq. (33) is incorrect.

The minimum value of Eq. (30)

n+l 1
”CFBFHZF = Z—z (40)

i=1 O;

1

can be realized when

_ [+l i=j+1,0<j<n
= . (41)
Y 0 otherwise
and hence,
2 n+l 1
||CFBF||F >y — (42)
i=1 O-i
The minimum can be achieved at
‘i’i =1v,
y, =+t 43)
Gi
i=12,....n+1

The implication is that the decoupled filtered basis functions , are the left singular vectors

(SV) of the LSR of the plant, G. Hence, the minimum value of metric J. r5r is given by
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min JC,FBF

. ”CFBF ||F 1 ZM 1
=m = _ 44
ln\/M+1 M+15 o} e

(End of proof)
For n= M, i.e., the number of basis functions equals the number of trajectory points,
the value of Je and Jc are independent of the choice of basis functions and given by

J,=0

e

;o 1 MHL (45)
CAM+1F o7

However, when n = M, the control input is undesirably high if system G contains NMP

zero(s) [16,33].

Remark 7: The singular vectors (SV) based basis functions (given by Eq. (43)) are the
optimal set of basis functions which result in minimum J. for given J.. Note that these
optimal basis functions are system dependent. Inversion of the LSR, G™! for NMP systems
can be realized, approximately, by truncating the smallest singular values from the SVD of
G [16,33]. The truncated SVD-based approximation of G™! is a special case of the optimal
FBF controller (i.e., it uses the SVs of G as basis functions with n = M—r, where r is the
number of NMP zero(s) of system G).

Remark 8: For FBF, the fact that Je is independent of plant dynamics and basis functions,
whereas, Jc is dependent on the plant dynamics and basis functions permits a sequential
two-stage design procedure for achieving the optimal FBF controller. In the first stage, the
user selects the number of basis functions (n+1) to achieve a desired level of tracking
accuracy (Je). Then, in the second stage, the control effort (J:) is minimized by selecting

n+1 of the highest M+1—r SV components of G as the optimal set of basis functions.
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Remark 9: While the proposed two-step methodology is general in that it is independent
of desired trajectory, it can accommodate special cases where information (e.g., frequency
spectrum) of a specific desired trajectory to be tracked is available. For instance, the
dynamics can be pre-multiplied with a weighting filter that emphasizes the frequency
content of the desired trajectory and the proposed methodology can be applied to the
augmented dynamics.

Remark 10: The optimization based methodology discussed in this section can easily be
extended to other control objectives (e.g., basis functions selection in presence of

uncertainty) and other applications (e.g., basis functions selection for ILC).

4. EXAMPLES
4.1. Simulations

Section 2.3 motivated Sec. 3 using a first order plant and three different basis
functions, viz., discrete cosine transform (DCT), block pulse functions (BPF) and B-
splines. This section continues with the same example and compares the three basis
functions mentioned above, with the optimal basis functions proposed in Sec. 3.3. The
desired trajectory and other parameters (M = 1000, n = 990) are same as Sec. 2.3.

Figure 3 plots J. and J. for different basis functions and Fig. 4 plots the normalized
tracking error erms/yd.rms and normalized control input urms/ya rus. Note that Figs. 3 and 4
validate the discussion in Sec. 3. The trend for erums/ys.rus and urms/yarus in Fig. 4 are
quite similar to those of Je and J., respectively, in Fig. 3, which demonstrates the
effectiveness of the proposed metric. Note that there might be instances when performance

trends may not exactly follow the predictions of Je or Jc. For example, FBF might have
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much better tracking accuracy than predicted by J. or smaller control effort than predicted
by J. if one purposely (or accidentally) uses filtered basis functions that span the desired
trajectory (y4). However, in general, the proposed metric provides good insights on the
upper limits of RMS tracking performance and control effort. As discussed in Sec 3.2, all
the four basis functions have similar tracking error (see Fig. 4 (a)) but different control
efforts (see Fig. 4 (b)). Table 1 shows the mean values of erus/yarus and uras/yd,rus over
all a. For erms/yd.rus, the values of the mean for different basis functions are of the same
order of magnitude. This validates the discussion about consistent tracking accuracy of the
FBF approach, as compared to popular methods in the literature (see Figs. 12 and 13 in
Appendix C for a comparison with two such popular methods, viz. ZPETC and TS), for
different types of basis functions. However, when it comes to urms/yq rus, the value of the
mean for B-splines is four orders of magnitude higher than the value of the mean for DCT
and the value of the mean for DCT is two orders of magnitude higher than BPF and optimal
basis functions. Although BPF and optimal basis functions have similar order of
magnitude, the value for optimal is 10% lower than the value for BPF. The example
demonstrates the effectiveness of the optimal basis functions, proposed in Sec. 3.3, in

tracking the desired trajectory with minimal control effort.
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Fig. 3: Effect of basis functions (DCT, BPF, B-splines and Optimal) on (a) Je and (b) J.

for various values of a (M = 1000, n = 990).
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Fig. 4: Effect of basis functions (DCT, BPF, B-splines and Optimal) on (a) normalized
RMS tracking error and (b) normalized RMS control input for various values of a (M =
1000, n = 990).

Tab. 1: Mean values of erus/ya rus and urms/yd.rus over all a for different basis functions

Attribute DCT BPF B-splines Optimal

€RrMS/Yd,RMS 7.83 x 1072 6.62 x 1072 8.14 x 1072 8.28 x 1072

URMS/Yd.RMS 2.76 x 10! 7.84 x 107! 1.02 x 10° 7.06 x 107!

4.2. Experiments

This section demonstrates the practical benefits of optimal basis function selection
in experiments. The biaxial (X-Y') linear motor driven stage (Aerotech ALS 25010), shown
in Fig. 5, is used for the experiments. The stage is controlled using a P/PI feedback
controller, augmented with velocity and acceleration feedforward [37] (see Fig. 6). The
controller is implemented on a dSPACE 1202 real-time control board with 10 kHz
sampling frequency. A flexible fixture consisting of a block mounted on a slender rod is
attached to the stage. The block is assumed to represent an apparatus, for example, a tool,
a workpiece or a measurement device whose position needs to be tracked accurately despite
its flexible structure. The FBF approach is used as a feedforward tracking controller as
shown in the block diagram of Fig. 6. The FBF approach takes in the desired position
commands yq for each axis and generates modified position commands u that are sent to
the stage to ensure that the actual position of the block y follows y« accurately, in spite of

its inherent structural flexibilities. The actual position of the block is observed from its

DS-18-1094 | Okwudire | 23



Journal of Dynamic Systems, Measurement and Control

accelerations measured using two unidirectional accelerometers (PCB piezotronics

I Stage Position Feedback |

393B05).
4 D, Accelerometers
Flexible
Fig. 5: Biaxial stage with flexible fixture
Modified Position
Command
Desired Position FBF Feedforward u Axis Dvnamics Position of the
of the Block =—— Controller é Block
Ya C y
fi__'_____'_______________::"
: P/PI Feedback Aerotech Stage :
u 7 + with — )

: Vel. Acc. Feedforward Flexible Fixture

]

I

|

Fig. 6: Block diagram of the FBF controller and experimental setup
Figure 7 shows the frequency response function (FRF) of the dynamics of each axis
of the stage, generated by applying swept sine acceleration inputs to the stage and
measuring the corresponding accelerations of the block using the accelerometers. Each axis
has 4 modes (two dominant and two less dominant) and hence, the plant dynamics is eighth-

order. Prior work of the authors [38] provides more details about a continuous-time model
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for the system, which indicates the presence of one NMP zero in the dynamics of each axis.
The Markov parameters of the dynamics are obtained from the continuous-time model and
are used to construct a finite impulse response (FIR) representation of the dynamics along
each axis. Figure 7 shows a good match between the measured FRF and the FRF generated
using the FIR representations (modeled). Based on the methodology discussed in Appendix
A, the LSR of the dynamics of each axis is generated using the FIR representation. Singular
values of the LSRs (for M = 10000) are shown in Fig. 8. Note that each axis has two very
small singular values which deviate from the cluster and these singular values result in
large control inputs, if the basis functions are not properly selected. One of the two singular
values along each axis arises from the NMP zero, whereas, the other small singular value
is a result of relative degree of one (the first Markov parameter is zero). Figure 9 shows the
desired butterfly shaped path, whereas Fig. 10 show the desired paths position along the X
and Y axes (for more details see [38]). The duration of the trajectory is 1 second (i.e., M =

10000, based on 10 kHz sampling frequency).

— a) X axis b) Y axi
= 40 (a) (b) Y axis
=,

g 20

E ”/ 7
= 0

an

<

= 20

‘- - -Measured —Modeled‘

ER '
=,
o -100
E
£ 200
5 10 20 40 5 10 20 40
Frequency [Hz] Frequency [Hz]

Fig. 7: Measured and modeled frequency response functions of the X and Y axes of the

biaxial stage
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Fig. 8: Singular values of the LSRs of the X and Y dynamics
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Fig. 9: Desired path

0 (a) X axis (b) Y axis
B
i)
50 /-\\/V\/\
Z
~ 10
0 0.5 1 0 0.5 1
Time [s] Time [s]

Fig. 10: Desired position trajectories along the X and Y axes
For experiments, the optimal basis functions proposed in the paper are compared
with B-splines, because they are often the basis functions of choice for manufacturing and
robotics applications [12,17,21,28,38]. Figure 11 shows the control input (i.e., modified

position commands) sent to the X and Y axes for the two sets of basis functions (for n =
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600). Also, shown are the resultant tracking errors, which are based on position signals
derived from measured acceleration signals using an observer. Note that the B-spline based
control input show rapid growth in magnitude towards the end of the signal because of the
small singular values of the LSR corresponding to the NMP zero and the relative degree.
For safety reasons, a limit + 10 mm is placed on the position commands for both axes, as
shown in Fig. 11; the B-spline control input saturates at the limit. Notice that, before
saturation, the control inputs for the proposed optimal basis functions and B-splines are
quite similar which results in similar tracking errors. In the time interval between 0 and
0.99 s, the RMS tracking errors for optimal basis functions and B-splines are 263.31 um
and 250.85 um, respectively, for the X-axis and between 0 and 0.96 s, 171.29 um and
186.12 um, respectively, for the Y-axis. However, because of saturation, the B-spline based
commands generate large tracking errors, as shown in Fig. 11. Consequently, the overall
RMS tracking error for B-splines, along the X and Y axes, are respectively 3 and 19 times
the RMS tracking error for the optimal basis functions (see Tab. 2). Moreover, the optimal
basis functions require 3% and 13% lower control effort than B-splines for X-axis and Y-
axis, respectively. The proposed optimal basis functions track much better than B-splines
and require less control effort.

Remark 11: The violation of actuator limits by B-splines observed in the results of Fig.
11 can be mitigated by formulating the FBF approach as a constrained optimization
problem using the constraint handling capabilities of B-splines, as done in prior work of
the authors [38]. However, all things being equal, it is theoretically and practically

preferable to avoid large control signals altogether than to contain them via constraints.
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Fig. 11: X and Y control inputs (i.e., modified position command) signals and tracking
errors for optimal basis functions and B-splines (M = 10000, n = 600)

Tab. 2: Summary of tracking error and control effort for experiments

Basis X axis Y axis
Functions erMS/Yd RMS URMS/Yd,RMS €RrMS/Yd,RMS URMS/Yd RMS
Optimal 0.06 1.05 0.05 0.98
B-Splines 0.17 1.08 0.94 1.12

5. CONCLUSIONS AND FUTURE WORK

An appealing feature of the FBF approach is that it provides a control engineer with
a wide variety of basis functions for use in tracking control (of NMP systems). However,
to date, there has been no work on how to determine the best set of basis functions to

achieve a given tracking control objective. To address this shortcoming, this paper has
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proposed a methodology for optimal selection of basis functions that minimize control
effort of the FBF controller without sacrificing its tracking accuracy.

To facilitate optimal basis functions selection, a new metric based on the Frobenius
norm of the LSR of system dynamics is proposed. The proposed metric is versatile. It is
useful for analyzing and evaluating the performance of any linear discrete-time controller
(including LTV controllers like FBF) independent of the inputs to the controller, in a
manner akin to the use of Bode plots for LTI systems. It is shown that, for FBF, the
proposed metric applied to tracking error dynamics is independent of the plant dynamics
and type of basis functions; it depends only on the number of basis functions, relative to
the length of the trajectory to be tracked. This finding is remarkable because it provides a
theoretical justification for observations made by the authors in prior work about the
unusual consistency of the tracking accuracy of the FBF approach irrespective of system
dynamics and basis functions. Conversely, the metric shows that the control effort of the
FBF approach depends on basis functions and plant dynamics.

Leveraging the analysis, a two-step process for selecting optimal basis functions
that minimize control effort for a specified tracking accuracy is proposed. In the first step,
the number of basis functions is selected to satisfy a desired level of tracking accuracy
regardless of the type of basis functions; in the second step, the optimal set of basis
functions — which are related to the singular vectors of the controlled system — are
determined for minimum control effort. Simulations and experiments are used to
demonstrate the effectiveness of the proposed optimal basis functions. Simple first-order
plants with varying zero locations in the z-plane are used in simulations and the proposed

basis functions are compared with three other commonly used basis functions (DCT, BPF
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and B-splines). The results demonstrate the effectiveness of the proposed metric as well as
the superiority of the optimal basis functions. Experiments on an Aerotech linear motor
driven stage, with a flexible structure, are used to show that the proposed basis functions
can effectively track a desired trajectory with minimal effort, as compared to B-splines
which require much higher control effort, resulting in control saturation and degradation
of tracking accuracy.

This study demonstrates the importance of a systematic approach for optimally
selecting basis functions not only for the FBF approach but also for related control
techniques, like iterative learning control, where basis functions are commonly used and
often selected in an ad hoc manner. Ongoing work has focused on design of robust FBF
controllers [39,40]. Future work will investigate the use of the proposed metric to study
selection of basis functions to enhance the robustness of the FBF approach in presence of
model uncertainties. The use of the proposed metric as a tool to analyze and design other

optimal linear discrete-time controllers beyond the FBF approach will also be explored.
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An LTI SISO causal plant G can be expressed as
G(Q)=g,+g9q ' +g,9 " +... (46)
where the coefficients gr are the Markov parameters of G. The sequence go, g1, 22, ... also

represent the impulse response of G. Then

»(0) o 0 ... 0] )
y | & & - 0 ud
A (47)
LYM) | |8y 8w g |[u(M) |
y G i
For an LTI non-causal controller C
C(@Q)=...+c,q" +c q' +c,+eqg ' +e,qg” +... (48)
the LSR of C can be expressed as
u(0) C €y o Coy || Y4(0)
ul) | 1o e || Y
S I : (49)
”(M) Ly €y - G ‘yd(M)‘
u C Y

Similarly, overall dynamics L and error dynamics Ey can be expressed in LSR as L and Ey.
For LTI systems, the LSR is Toeplitz. For LTV systems or controllers, the construction of
the LSR for L and Ejfollows a similar process but the resulting matrices are not Toeplitz

[32].

APPENDIX B: Basis Functions
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The DCT is a frequency-based transform that is widely used in signal processing;

its basis functions are real-valued cosines defined as [22]

i=0
B xQk+i) ,  |NM+1
qo,-(k)—ﬂ,-COS(—z(MH)J, b= 5 (50)
M +1 >0

The BPF basis functions are given by

ke[iﬁ,(i+l)£j,0Si<n
| n+1 n+1
(k) = 51
7 &ke{i M (1+1)—} i=n Gl
n+l +1
0 otherwise

The BPF expressed in Eq. (51) seeks to divide the time interval from 0 to M among

n+1 basis functions in a quasi-uniform manner.
For a B-spline of degree m, having n+1 < M+1 control points (same as coefficients

of basis functions), yo, 71, ..., y», and knot vector [0 71 ... #m+n+1]", its real-valued basis

functions, ¢im, are given by [28]

(k)= )=y (TS ()
771+m+1 77i+1 (52)

1 7 < é:k /A
%,o(@) B {0 otherwise

where i = 0, 1, ..., n with & € [0,1], representing normalized time, discretized into M+1

¢m, and 7; is a uniform knot vector, selected such that

points, o, &1 ...
0 0<j<m
J—m ,
n = m+1<j<n (53)
' n—m+
1 n+l<j<m+n+l
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APPENDIX C: Comparison of FBF with ZPETC and TS
This appendix compares the tracking accuracy of FBF with that of ZPETC and TS,
using the normalized RMS tracking error erms/ydrus (Fig. 12) and the proposed Frobenius
norm metric J. (Fig. 13), for various zero locations a € [-10, 10]. The trend for J. and
erms/yarms are quite similar and agree with observations made in the literature
[3,15,17,21,26]. The results show that the tracking performance of FBF is consistent as
compared to popular methods in the literature, viz., ZPETC and TS. For more details,

interested readers can see prior work of the authors [25].
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Fig. 12: Effect of zero location on normalized RMS tracking error for FBF (DCT, BPF),

ZPETC and TS (for more details see [25])
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Fig. 13: Effect of zero location on Frobenius norm metric for FBF, ZPETC and TS (for

more details see [25])

APPENDIX D: Relationship between Metric and System Dynamics 2-norm
Based on Appendix A, the squared Frobenius norm of the LSR of Es can be

expressed as

2 M+l -1 5
& =2 €k
=1 k=I-1-M
_ 2 2 2
—eﬁ,_M+e‘ﬁ,_M+l+...+ejf’o (54)
2 2 2
tey yatey yattey,
+...
2 2 2
+ €40 + €y +...+ €5 M
According to definition of 2-norm of Ex(g) and Parseval’s Theorem [41]
2
fle, ef ao
i 7€) . (55)
_2 _ 2
£, . = Ll

where
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By = 2, epe™ (56)
Consider
M+ e,
k=—0
M+l o 5
= Z Z Chk
I=1 k=—x
-M-1 5 M 5 )
=Y et e F Y e Y €y
k=—0 k=1 (57)
+...
-M-1 h—-M-2 0
+Zﬁk+z €T € psr ¥y ot et D e
=M k=M +1
+...
-M-1
+ e+ z € e ter to e, + Z e,
k=—0 k=—M
and using Eq. (54),
(M+1)z € s _HEﬁH +(M +1) Z eﬁk+(M+1) Z €+ Z |Kle3, (58)
Re-arrangement of the terms in the equation results in
HMﬂJl kZ ik kZ 1.k kleleffk mﬂ,k (59)
=—00 —o0 +
Consider two different values of M, M1 and M2 such that M1 > M>, then
[, D] S z S SR
M, +1 = Cre” 7k Pyt Ik & M +1 7k
ol o % K *
2

DS-18-1094 | Okwudire | 40



Journal of Dynamic Systems, Measurement and Control

where E4{M1] and E4[M2] denote the LSRs of E(qg) for trajectory lengths Mi+1 and M>+1,

respectively. Then

[, 0], [, 0001,

M, +1 M, +1
—M;-1 —M,-1 o o
== et D€ DL €t D €
k=—0 k=—0 k=M;+1 k=M, +1
& k| 2 & K] 2
_k,,M] M, +17* k_zMz M,+17*
R I
_k:—Ml Sk k:M2+1€/f’k v, M +1 e ko M +1 7
W e W
k=—M, M1+1 7k k=—M, M2 +1 Tk (61)
= LR S LR
k—Ml( _M1 +1Jeffk+k_%+1(l M, +1 “rk
w1 1 )
+k__M2(M2+1_M1+1J|k|eﬁ’k
W), L (W
_ 1— 2 - |2
k=M, M, +1Jeff’k +k—%+l( M, +1)eﬁ’k
& M1 _Mz 2
* 2 G =, < e
>0

The implication is that for M1 > M-
e 0nf, e, 02,1 (©)

M, +1 M, +1

1.e., the value of the proposed Frobenius norm metric Je increases as M increases for a given

dynamics Ej(q).
Combining Egs. (55) and (59)

DS-18-1094 | Okwudire | 41



Journal of Dynamic Systems, Measurement and Control

2
E —M-1 © M k
el -Ee- 5 60 8 30

As M—oo, the first two summation terms on right hand side of Eq. (63) tend to 0. Assume

that esx is bounded by an exponential function, i.e.,

ej,.,k < e M (64)

where e (on the right hand side) is the Euler’s number and 4 and u are positive non-zero
constants. The implication of the assumption is that the output of dynamics Ej at a
particular instant of time depends more on input at the current time instant and inputs
immediately preceding or succeeding the current input as compared to inputs which
occurred long time back or will occur after a long time in the future. This assumption is

true for stable systems. Hence, the third summation term on right hand side of Eq. (63) is

bounded by
SRR
e, <A e
k;M+1 7k k;‘WMH (65)
Consider the bound on the summation,
M k M
y | | e M — 2AZ k ek (66)
szMM+1 k70M+1

The summation on the right hand side represents summation of an  rithmetic-geometric
sequence [42]. As M—x (based on sum of infinite rithmetic-geometric sequence with
absolute value of common ratio of the geometric part of the sequence bounded by 1, i.e.,

e <1)
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- u

e
lim 24 =0
M S Moe M +1 (1-e™)’ (67)
which implies that
lim i |k| < lim 4 z | | —,UV“
Moo M 41 ff" Mo (68)

The implication is that (based on Egs. (63) and (68))

Ikl

UM +1

—>[E, @), as M -0 (69)
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Figure Captions List

Block diagram for feedforward tracking control

Effect of basis functions (DCT, BPF and B-splines) on: (a) normalized
RMS tracking error and (b) normalized RMS control input for various
values of a (M = 1000, n = 990). The methods are also simulated for
MP region (shaded) but the system can also be inverted in this region.
Effect of basis functions (DCT, BPF, B-splines and Optimal) on (a) Je
and (b) J. for various values of a (M = 1000, n = 990)

Effect of basis functions (DCT, BPF, B-splines and Optimal) on (a)
normalized RMS tracking error and (b) normalized RMS control input
for various values of a (M = 1000, n = 990)

Biaxial stage with flexible fixture

Block diagram of the FBF controller and experimental setup
Measured and modeled frequency response functions of the X and Y
axes of the biaxial stage

Singular values of the LSRs of the X and Y dynamics

Desired path

Desired position trajectories along the X and Y axes

X and Y control inputs (i.e., modified position command) signals and
tracking errors for optimal basis functions and B-splines (M = 10000,

n = 600)
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Fig. 12 Effect of zero location on normalized RMS tracking error for FBF
(DCT, BPF), ZPETC and TS (for more details see [25])
Fig. 13 Effect of zero location on Frobenius norm metric for FBF, ZPETC and

TS (for more details see [25])
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Table Captions List
Tab. 1 Mean values of erums/yarms and wrms/ya rus over all a for different
basis functions
Tab. 2 Summary of tracking error and control effort for experiments
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Fig. 1: Block diagram for feedforward tracking control
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Fig. 2: Effect of basis functions (DCT, BPF and B-splines) on: (a) normalized RMS
tracking error and (b) normalized RMS control input for various values of a (M = 1000, n
=990). The methods are also simulated for MP region (shaded) but the system can also

be inverted in this region.
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1

N ——

Fig. 3: Effect of basis functions (DCT, BPF, B-splines and Optimal) on (a) Je and (b) J.

for various values of a (M = 1000, n = 990).
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Fig. 4: Effect of basis functions (DCT, BPF, B-splines and Optimal) on (a) normalized
RMS tracking error and (b) normalized RMS control input for various values of a (M =

1000, n = 990).
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Fig. 5: Biaxial stage with flexible fixture
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Fig. 6: Block diagram of the FBF controller and experimental setup
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Fig. 7: Measured and modeled frequency response functions of the X and Y axes of the

biaxial stage
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Fig. 8: Singular values of the LSRs of the X and Y dynamics
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Fig. 9: Desired path
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Fig. 10: Desired position trajectories along the X and Y axes
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Fig. 11: X and Y control inputs (i.e., modified position command) signals and tracking

errors for optimal basis functions and B-splines (M = 10000, n = 600)
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Fig. 12: Effect of zero location on normalized RMS tracking error for FBF (DCT, BPF),

ZPETC and TS (for more details see [25])
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Fig. 13: Effect of zero location on Frobenius norm metric for FBF, ZPETC and TS (for

more details see [25])
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Tab. 1: Mean values of erums/ya rms and urms/ya rus over all a for different basis functions

Attribute DCT BPF B-splines Optimal

erMS/Yd,RMS 7.83 x 1072 6.62 x 1072 8.14 x 1072 8.28 x 1072

URMS/Yd,RMS 2.76 x 10! 7.84 x 107! 1.02 x 10° 7.06 x 107!
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Tab. 2: Summary of tracking error and control effort for experiments

Basis X axis Y axis
Functions erMS/Yd RMS UrMS/Yd,RMS €RrMS/Yd,RMS URMS/Yd,RMS
Optimal 0.06 1.05 0.05 0.98
B-Splines 0.17 1.08 0.94 1.12
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