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ABSTRACT 

Accurate tracking of nonminimum phase (NMP) systems is well known to require 

large amounts of control effort. It is, therefore, of practical value to minimize the effort 
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needed to achieve a desired level of tracking accuracy for NMP systems. There is growing 

interest in the use of the filtered basis functions (FBF) approach for tracking control of 

linear NMP systems because of distinct performance advantages it has over other methods. 

The FBF approach expresses the control input as a linear combination of user-defined 

basis functions. The basis functions are forward filtered through the dynamics of the plant 

and the coefficients are selected such that the tracking error is minimized. There is a wide 

variety of basis functions that can be used with the FBF approach, but there has been no 

work to date on how to select the best set of basis functions. Towards selecting the best 

basis functions, the Frobenius norm of the lifted system representation of dynamics is 

proposed as an excellent metric for evaluating the performance of linear time varying 

discrete-time tracking controllers, like FBF, independent of the desired trajectory to be 

tracked. Using the metric, an optimal set of basis functions that minimize the control effort 

without sacrificing tracking accuracy is proposed. The optimal set of basis functions is 

shown in simulations and experiments to significantly reduce control effort while 

maintaining or improving tracking accuracy compared to popular basis functions, like B-

splines.  

 
 
1. INTRODUCTION 

Tracking control is a fundamental problem encountered in a wide range of 

application areas such as manufacturing, robotics and aeronautics. The objective of 

tracking control is to force the output of the controlled system to follow a desired trajectory 

as closely as possible. It is also important that this objective is achieved with minimal 

control effort, e.g., due to power limits of actuators. Excellent tracking accuracy can be 

achieved using feedforward control by direct inversion of a sufficiently accurate model of 
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a system (i.e., pole-zero cancellation) [1]. However, when applied to systems with 

nonminimum phase (NMP) zeros, direct model inversion gives rise to unstable or 

extremely high control inputs which are unacceptable [1]. There have been several 

feedforward tracking control methods reported in the literature that are applicable to linear 

systems with NMP zeros. These methods include NMP zero ignore (NPZ-ignore), zero 

phase error tracking control (ZPETC) [1], zero magnitude error tracking control (ZMETC), 

extended bandwidth ZPETC [2], truncated series (TS) [3], direct inversion with bounded 

reference trajectories [4–8], approximate frequency domain inversion [9], H∞ matching 

[10,11], B-spline-based tracking with preview using iterative learning control [12], spline 

filtering with feedback [13,14], etc. A major shortcoming of most of these methods is that 

they are not versatile in terms of the systems and/or the desired trajectories to which they 

are applicable (e.g., several of the methods cannot be applied to nonhyperbolic systems, 

i.e., systems with zeros on the unit circle) – see [15] for a more detailed discussion of this 

matter. Moreover, their tracking accuracy varies significantly depending on NMP zero 

location (in the complex plane) [15].   

The filtered basis functions (FBF) approach has recently been gaining interest as 

an approach for tracking linear systems with NMP zeros [15–19]. The origin of the FBF 

approach can be traced back to the work of Frueh and Phan [20] on inverse linear quadratic 

learning in iterative learning control (ILC). It expresses the control input as a linear 

combination of user-defined basis functions with unknown coefficients. The basis 

functions are forward filtered using the system dynamics, and their coefficients selected 

such that tracking error is minimized. Unlike most of the methods discussed above, the 

FBF method is effective in tracking any desired trajectory, irrespective of the location of 
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NMP zeros in the z-plane (including nonhyperbolic systems [15,17,19]). Moreover, it has 

been observed by the authors that the FBF method maintains consistent tracking accuracy 

compared to popular linear time invariant (LTI) discrete-time tracking controllers 

irrespective of the location of the NMP zero in the z-plane [15,17,21].  

There is a wide range of basis function available for use with the FBF approach.  

The choice of basis functions is entirely up to the control engineer. Prior work in the 

literature has explored cosine signals [20,22], reference trajectory based basis functions 

[23,24], B-splines [12,17,21], Gaussian radial basis functions [18], etc. However, there has 

been no study on the optimal selection of basis functions to achieve a desired control 

objective using the FBF approach. This paper (and, in part, its preliminary version [25]) 

addresses the problem of optimal basis function selection by making the following original 

contributions to the literature: 

1. It proposes the Frobenius norm of the lifted system representation (LSR) of dynamics 

as an excellent and appropriate metric for analyzing the performance of LTI and linear 

time varying (LTV) tracking controllers, independent of desired trajectory. The 

proposed metric is applicable to any discrete-time linear controller. 

2. It demonstrates, using the metric that the tracking accuracy of the FBF approach is 

solely dependent on the number of basis functions used; it is independent of the type 

of basis functions and the plant dynamics (e.g., zero location), thus explaining the 

consistent tracking performance of the FBF approach relative to other tracking 

controllers. 

3. It demonstrates that the metric for FBF’s control effort dynamics is dependent on the 

system dynamics and the type of basis functions used. A methodology for determining 
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the optimal set of basis functions for achieving a desired level of tracking accuracy 

with minimum control effort is derived analytically. These optimal basis functions are 

shown to be singular vectors of the lifted system representation of the plant dynamics.  

Section 2 provides some background and motivation for the paper, and Sec. 3 

presents the proposed metric, analyzes the FBF method using the metric and derives a 

methodology for determining the optimal set of basis functions. The discussion in Sec. 3 

is validated in Sec. 4, using simulations and experiments. This is followed by conclusions 

and future work in Sec. 5.       

  

2. BACKGROUND AND MOTIVATION 

2.1. Feedforward Tracking Control Problem 

Given a discrete-time LTI single input single output (SISO) plant G(q), as shown 

in Fig. 1, which may represent an open loop or a closed loop controlled system, we can 

write  

( ) ( ) ( )y k G q u k  (1)

where k is the time index, q is the forward shift operator, y and u are the output and control 

input, respectively. The objective of feedforward tracking control is to design a controller 

C(q) or find a control input u(k) given by 

( ) ( ) ( ) du k C q y k  (2)

where yd(k) is the desired trajectory, such that the tracking error, e(k), given by 

( ) ( ) ( )

       (1 ( ) ( )) ( ) ( ) ( )

( )

 
  



d

d ff d

e k y k y k

G q C q y k E q y k

L q

 (3)
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is minimized. Note that L(q) and Eff(q) are the overall and error dynamics of the controlled 

system, respectively.  

For finite time, 0 ≤ k ≤ M (where M+1 is the number of discrete points in the 

trajectory), the desired trajectory, control input, tracking error and output trajectory can be 

expressed using vectors as 

   
   

T T

T T

(0) (1) ( ) ,  (0) (1) ( ) ,

(0) (1) ( ) ,  (0) (1) ( )

d d d dy y y M u u u M

e e e M y y y M

 

 

y u

e y

 

 
 (4)

Accordingly, Eqs. (1), (2) and (3) can be expressed as  

;   ;   ( )   
d d

ff

y Gu u Cy e I L y

E

 
(5)

where G, C, L and Eff are the lifted system representations (LSRs) of G, C, L and Eff, 

respectively (see Appendix A for details on LSR), and I is the identity matrix of appropriate 

size.   

 

Fig. 1: Block diagram for feedforward tracking control 

2.2. Filtered Basis Functions (FBF) Approach 

The FBF approach relies on two assumptions: 

1. the desired trajectory is known a priori; and 

2. the control input u(k) is expressed as a linear combination of n+1 user-defined basis 

functions φi(k); i.e., 

0

( ) ( ) 



n

i i
i

u k k  (6)
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where γi are unknown coefficients. Using vectors, Eq. (6) can be expressed as 

     T T

0 1 0 1

                                                         ;

, (0) (1) ( ) ,  n i i i i nM     



  

u Φγ

Φ φ φ φ φ γ  
 (7)

Hence, for a linear system G(q) (with LSR G), y can be expressed as 

 0 1

                  ;

;   ;  i i n



  

y Φγ

Φ GΦ φ Gφ Φ φ φ φ



    
 (8)

where Φ  represents the filtered basis functions. The control objective is to find the optimal 

coefficient vector γ such that the squared 2-norm of the tracking error, i.e., 

   TT    
d de e y Φγ y Φγ  (9)

is minimized; the optimal solution is given by the classical least-squares solution, 

  1* T T
   

dγ Φ Φ Φ y  (10)

Based on Eqs. (5), (7), (8) and (10), the controller dynamics (C(q)) and error dynamics 

(Eff(q)) for the FBF controller can be expressed in LSR as 

 
 

1T T

1T T
,







 

  

   


FBF

ff FBF

FBF

C Φ Φ Φ Φ

E I Φ Φ Φ Φ

L

 (11)

Remark 1: CFBF and Eff,FBF both depend on the LSR of the plant, G, as well as the selected 

basis functions. Both matrices are, in general, non-Toeplitz and non-triangular implying 

that the FBF controller is, in general, LTV and non-causal [15].  

Remark 2: Although, for simplicity, this paper describes the FBF approach in the context 

of LTI SISO systems, it is applicable to other types of linear systems such as LTV, linear 

parameter varying (LPV) [18] and multi-input multi-output (MIMO) systems. Reference 

[17] relaxes the assumption on a priori knowledge of the entire desired trajectory using the 
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local property of B-splines as basis functions.  Without loss of generality, this paper 

assumes that the initial conditions are zero. The authors’ prior work [15,17] can be 

consulted for approaches to incorporate effects of initial conditions into the FBF approach.  

2.3. Motivational Case Study 

This section motivates the rest of the paper using time-domain simulations based 

on a simple first order plant  

( )
q a

G q
q p





 (12)

where a (a real number) ϵ [−5, 5] and p = 0.5 are the zero and pole of the system, 

respectively. Note that this first order system has also been used for analysis of simple 

approximate inversion techniques by Butterworth et al. [26]. In this section, the tracking 

performance of FBF is analyzed for different basis functions. 

For simulations, the desired trajectory (yd) is a zero-mean white noise signal, with 

variance equal to 1, M = 1000 and sampling frequency 10 kHz. As discussed in Sec. 1, 

there is a wide range of basis functions available for use with the FBF method. Here, three 

types of basis functions are used: (i) discrete cosine transform (DCT) [22], (ii) block pulse 

functions (BPF) [27] and (iii) B-splines [28]; their expressions are provided in Appendix 

B. The DCT and BPF basis functions are rudimentary basis functions in frequency-domain 

and time-domain, respectively, whereas, B-splines are commonly used to parameterize 

commands sent to manufacturing machines and robots [29].   

Figure 2 (a) compares the normalized root mean square (RMS) tracking error 

eRMS/yd,RMS for the three basis functions (n = 990) for various values of a. It must be pointed 

out that approximate inversion is not generally used for tracking control in the minimum 

phase (MP) region because C = G−1 can be employed (provided a is not poorly damped 
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[1]). However, the MP region is included in this paper for sake of completeness. The FBF 

approach demonstrates consistent tracking accuracy, as compared to popular methods in 

the literature (see Fig. 12 in Appendix C for a comparison with two such popular methods, 

viz. ZPETC and TS),  irrespective of zero location and type of basis functions [15,17,21]. 

Similar observations have been made in prior work [15,17] and contrasted with other 

tracking controllers whose tracking accuracy typically varies significantly depending on 

NMP zero location [3,26]. A theoretical justification for this observation was preliminarily 

explored in [25], and is further discussed in Sec. 3 below.  

Figure 2 (b) compares the normalized RMS control effort of the various basis 

functions applied to the FBF approach. Notice that there is significant variation in control 

effort for various basis functions, even when tracking accuracy is similar. For instance, at 

a = 1.02, all the basis functions achieve similar levels of tracking accuracy, but the control 

effort required by DCT is 370 times that of BPF, whereas, the control effort required by B-

splines is 11800 times that required by DCT. In contrast, all the basis functions have very 

similar values of eRMS and uRMS for −1 ≤ a ≤ 1. This suggests that the system dynamics and 

choice of basis functions play a significant role in the control effort required to achieve a 

desired level of tracking accuracy using the FBF approach. Hence, a methodology for 

determining the best set of basis functions for a given plant and desired level of tracking 

accuracy is needed. 
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Fig. 2: Effect of basis functions (DCT, BPF and B-splines) on: (a) normalized RMS 

tracking error and (b) normalized RMS control input for various values of a (M = 1000, n 

= 990). The methods are also simulated for MP region (shaded) but the system can also 

be inverted in this region. 

 

3. OPTIMAL SELECTION OF BASIS FUNCTIONS  

A suitable metric is needed in order to probe deeper into the observations made in 

Sec. 2.3 above and provide a methodology for selecting an optimal set of basis functions. 

While Bode diagrams [3] and magnitude at Nyquist frequency [26] have been used as 

metrics to analyze LTI tracking controllers, they are not applicable to LTV controller like 

FBF. In this section, we propose a metric that is suitable for analyzing LTV controllers like 

FBF, independent of trajectory to be tracked, and utilize the metric to develop a 

methodology for optimal selection of basis functions for minimum control effort.      

3.1. Proposed Metric 
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For evaluating the tracking accuracy of discrete-time linear controllers (LTI or 

LTV), we propose the following metric, Je, based on the Frobenius norm of Eff  

 2T

                 ;
1

( ) ( )

ff F
e

ff ff ff i ffF
i

J
M

trace 





  

E

E E E E

 (13)

The Frobenius norm is selected because it considers all singular values/gains (σi) of Eff, as 

opposed to ||Eff||2 (sometimes used in ILC for stability analysis [30]), which considers only 

the maximum singular value/gain. The square root of (M+1) is included in the metric to 

ensure that it is uniformly bounded as the length of the trajectory (and size of Eff) grows. 

Moreover, as shown in Appendix D, for an LTI system, 

2
( )   as  

1

ff F
e ffJ E q M

M
  



E
 (14)

In other words, Je approaches the error 2-norm criterion (sometimes used in the design and 

analysis of tracking controllers [3]). The singular values of Eff approximate the magnitude 

of the frequency response of Eff(q) [31]; and ||Eff(q)||∞ is the maximum gain of the system 

Eff(q) which is approximated by ||Eff||2 (because the 2-norm of a matrix is its maximum 

singular value) and this approximation is more accurate as M → ∞.  

Note that for a normalized desired trajectory (i.e., ||yd||2 = 1), 

2

1 1
  

 
ff F

RMS eJ
M M

Ee
e  (15)

The implication is that Je is an upper bound on the RMS tracking error (eRMS).   

Similarly, control effort requirements can be analyzed using metric, Jc, defined as 

follows 
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1



F

cJ
M

C
 (16)

and analogously, Jc bounds the RMS control input (uRMS) for a tracking controller with 

||yd||2 = 1 as 

RMS cJu  (17)

and Jc → ||C(q)||2 as M → ∞ 

Remark 3: The LSR is employed for the proposed metric because it applies to both LTI 

and LTV controllers [32]. Moreover, the LSR is applicable to feedforward as well as 

feedback controllers, SISO as well as MIMO controllers. Thus, the proposed metric is 

broadly applicable to any linear discrete-time tracking controller. It can also be used for 

evaluating other performance criteria beyond tracking accuracy and control effort. 

3.2. Effect of Basis Functions on the Tracking Performance of FBF 

Proposition 1: The metric of Eq. (13) applied to the FBF error dynamics (i.e., Je,FBF) is 

given by  

,

1
1

1e FBF

n
J

M


 


 (18)

Proof: The filtered basis functions matrix Φ  in Eq. (8) can be transformed to the decoupled 

filtered basis functions matrix Ψ  using transformation Ω (for more details, see [15]) 




Φ ΨΩ

Φ ΨΩ


 (19)

such that 

T
1

T

T
, 1

;

;

n

FBF

ff FBF M









 

Ψ Ψ I

C ΨΨ

E I ΨΨ

 



 

 (20)
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Based on Eq. (20) (for more details see prior work [15]), it is known that LFBF, which  

depends on the selected basis functions and the plant dynamics, can be expressed as 

1
T

1





 
n

FBF i i
i

 L ψ ψ  (21)

where iψ  are the decoupled filtered basis functions that satisfy 

T

1

0

i j ij

ij

i j

i j








  

ψ ψ 

 (22)

Hence, 

,

1 1
T T

1 1

1
T

2

1

        
1

        
1

         =
1

1
        1

1

FBF F
e FBF

M n

i i i i
i i F

M

i i
i n F

J
M

M

M

M n

M

n

M

 

 



 


















 



 



I L

ψ ψ ψ ψ

ψ ψ

   

 

 

(23)

(End of proof) 

Remark 4: Note that Je,FBF is independent of G(q) and the type of basis functions employed. 

It depends only on the number of basis functions (relative to the number of discrete points 

in the trajectory). As discussed in [25], the independence of Je from G(q) cannot be taken 

for granted with other tracking controllers [26]. The consistent tracking accuracy of FBF 

stems from the unique structure of Eff,FBF and it provides an analytical explanation of the 

relative independence of the FBF method’s tracking accuracy from G(q) observed in prior 
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work [15,17,21], and demonstrated in Section 2.3. Also, the result of Proposition 1 holds 

for any linear plant dynamics, i.e., it also applies to LTV and LPV plants.          

Remark 5: Note that, ||Eff,FBF||2 is equal to 1, irrespective of the number of basis functions 

used, which is not a reasonable representation of the tracking accuracy of the FBF method, 

which varies significantly with n [15,17,21]. Hence, the proposed metric is more 

appropriate compared to 2-norm metrics like those used in convergence analysis in ILC 

[30].     

Remark 6: Je = 0 implies C = G−1 which might be undesirable if G(q) contains 

uncancellable zero(s) because such zeros result in very small singular values of G, and 

large control signals [33]. The FBF approach is rank constrained minimization of the metric 

applied to error dynamics [25]. A rank constraint, which in the LSR implies a restricted 

space of input and output [15], is used to avoid inversion of the full G, while also reducing 

the computational demands of the control problem [22,34,35]. However, the rank 

constraint does not necessarily result in minimization of control input and hence, analysis 

of FBF controller dynamics (discussed in the remainder of this section) and selection of an 

optimal set of basis functions (presented in Sec. 3.3) is necessary.  

The LSR of the plant, G, can be decomposed using singular value decomposition 

(SVD) [36] as follows 

 
 

  

1
T T

1

1 2 1

1 2 1

1 2 1

1 2 1

;

;

;

;

0

M

i i i
i

M

M

M

M

diag



  

  













 







   

G VΣW v w

V v v v

W w w w

Σ









 
(24)

Without loss of generality, this paper assumes that G has distinct singular values. 
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The Frobenius norm of CFBF can be expressed as 

T T T

T T T

1 1 T 1 T

1

( ) ( )

           ( ) ( )

           

           

           

  



 

 



  



 

 

  



FBF FBF FBFF

F

F F F

F

trace trace

trace trace

C C C ΨΨ ΨΨ

Ψ ΨΨ Ψ Ψ Ψ

Ψ

G Ψ WΣ V Ψ Σ V Ψ

Σ Ξ

 (25)

where 

T

10 11 1

20 21 2

1,0 1,1 1,

1

1

n

n

M M M n

M

j ij i
i

  
  

  



  







 
 
   
 
  

 

Ξ V Ψ

Ξ

ψ v



  
  
   

  



 
(26)

The implication is that ij  represents the contribution of vi towards  jψ  and vice-versa.  

Hence, 

1
2

, 2
1 0

1 1

11






 

 
     

  
M n

FBF F
c FBF ij

i ji

J
MM

C
 (27)

Since, vi and  jψ  are unitary vectors 

2

2

2
0 0

1ij

ij ij

n n

ij ij
j j



 

 


 



 

     Ξ Ξ



 

   

 (28)

Based on Eqs. (20) and (26)  
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2

2

0

1

1
n

ij
j






 

Ξ


 (29)

The squared Frobenius norm of FBF controller dynamics 
2

FBF F
C  is a linear combination 

of  the inverse of squared singular values of G, i.e.,    12

1
1

M

i i





 with coefficients of the 

linear combination 2

0



 

n

ij
j

 determined by interaction between filtered basis functions  jψ  

and system dynamics G. The coefficients are bounded between 0 and 1 and need to satisfy 

orthogonality condition (see Eq. (20)). 

3.3. Optimal Selection of Basis Functions for Minimal Control Effort 

It has been shown, so far, that the tracking accuracy of the FBF method (measured 

by Je) is always fixed for a given number of basis functions, irrespective of the type of 

basis functions or the plant dynamics. Also, for a given number of basis functions, the 

control effort of the FBF method (measured by Jc) is dependent on the plant dynamics and 

type of basis functions. In this section, the optimal set of basis functions that minimizes Jc 

for a given Je are presented – and the resulting controller is called the optimal FBF 

controller (i.e., optimal in terms of minimizing control effort). 

Proposition 2: For n+1 basis functions, the minimum value of the squared Frobenius norm 

of LSR of FBF controller dynamics, 
2

FBF F
C  , is given by 

 
1

2

2
1

1
min








n

FBF F
i i

C  (30)

Proof: Proposition 2 is substantiated by  

 proving by contradiction that there is no ij
  such that 
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1
2

2
1

1








n

FBF F
i i

C  (31)

 showing there exists ij
  such that  

1
2

2
1

1








n

FBF F
i i

C  (32)

Assume 

1 1
2

2 2
1 1

2

0

1 1
;

1

M n

FBF iF
i ii i

n

i ij
j


 

 

 

 



 

 

 



C


 (33)

Therefore, 

 
1 1

2 2
2 1

1 1
1 

 

 

  

  
M n

i i
i n ii i

 (34)

From Eqs. (20) and (26), 

1
T

1
1

( ) 1 ( )





   
M

i n
i

trace n trace Ξ Ξ I  (35)

Hence, 

 
1 1

2 1

1 
 

  

  
M n

i i
i n i

 (36)

Multiplying Eq. (34) by 2
1 n  gives 

 
2 21 1

1 1
2 2

2 1

1
  
 

 
 

  

  
M n

n n
i i

i n ii i

 (37)

Subtracting Eq. (36) from Eq. (37) results in 

 
2 21 1

1 1
2 2

2 1

1 1 1
  
 

 
 

  

   
      

   
 
M n

n n
i i

i n ii i

 (38)

Note that 
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 

2
1

2

2
1

2

1 0  for  2, 3, 1

1 0  for  1, 2, , 1

0

1 0














 
      

 
 

    
 



 





n

i

n

i

i

i

i n n M

i n  (39)

which implies that left hand side of Eq. (38) is always greater than or equal to zero whereas, 

the right hand side is always less than or equal to zero, which is a contradiction and hence, 

the assumption given by Eq. (33) is incorrect.  

The minimum value of Eq. (30)  

1
2

2
1

1








n

FBF F
i i

C  (40)

can be realized when 

1 1,0

0 otherwise


    
 



ij

i j j n
 (41)

and hence, 

1
2

2
1

1








n

FBF F
i i

C  (42)

The minimum can be achieved at  

1, 2, , 1



 

 

 





i i

i
i

i

i n

ψ v

w
ψ  (43)

The implication is that the decoupled filtered basis functions  iψ  are the left singular vectors 

(SV) of the LSR of the plant, G. Hence, the minimum value of metric Jc,FBF is given by 



Journal of Dynamic Systems, Measurement and Control 
 

DS-18-1094 | Okwudire | 19 
 

1

, 2
1

1 1
min min

11 





 


n

FBF F
c FBF

i i

J
MM

C
 (44)

(End of proof) 

For n = M, i.e., the number of basis functions equals the number of trajectory points, 

the value of Je and Jc are independent of the choice of basis functions and given by 

1

2
1

0

1 1

1 








 

e

M

c
i i

J

J
M

 (45)

However, when n = M, the control input is undesirably high if system G contains NMP 

zero(s) [16,33].  

Remark 7: The singular vectors (SV) based basis functions (given by Eq. (43)) are the 

optimal set of basis functions which result in minimum Jc for given Je. Note that these 

optimal basis functions are system dependent. Inversion of the LSR, G−1 for NMP systems 

can be realized, approximately, by truncating the smallest singular values from the SVD of 

G [16,33]. The truncated SVD-based approximation of G−1 is a special case of the optimal 

FBF controller (i.e., it uses the SVs of G as basis functions with n = M−r, where r is the 

number of NMP zero(s) of system G). 

Remark 8: For FBF, the fact that Je is independent of plant dynamics and basis functions, 

whereas, Jc is dependent on the plant dynamics and basis functions permits a sequential 

two-stage design procedure for achieving the optimal FBF controller. In the first stage, the 

user selects the number of basis functions (n+1) to achieve a desired level of tracking 

accuracy (Je). Then, in the second stage, the control effort (Jc) is minimized by selecting 

n+1 of the highest M+1−r SV components of G as the optimal set of basis functions. 
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Remark 9:  While the proposed two-step methodology is general in that it is independent 

of desired trajectory, it can accommodate special cases where information (e.g., frequency 

spectrum) of a specific desired trajectory to be tracked is available. For instance, the 

dynamics can be pre-multiplied with a weighting filter that emphasizes the frequency 

content of the desired trajectory and the proposed methodology can be applied to the 

augmented dynamics. 

Remark 10: The optimization based methodology discussed in this section can easily be 

extended to other control objectives (e.g., basis functions selection in presence of 

uncertainty) and other applications (e.g., basis functions selection for ILC). 

 

4. EXAMPLES 

4.1. Simulations 

Section 2.3 motivated Sec. 3 using a first order plant and three different basis 

functions, viz., discrete cosine transform (DCT), block pulse functions (BPF) and B-

splines. This section continues with the same example and compares the three basis 

functions mentioned above, with the optimal basis functions proposed in Sec. 3.3. The 

desired trajectory and other parameters (M = 1000, n = 990) are same as Sec. 2.3.  

Figure 3 plots Je and Jc for different basis functions and Fig. 4 plots the normalized 

tracking error eRMS/yd,RMS and normalized control input uRMS/yd,RMS. Note that Figs. 3 and 4 

validate the discussion in Sec. 3. The trend for eRMS/yd,RMS and uRMS/yd,RMS in Fig. 4 are 

quite similar to those of Je and Jc, respectively, in Fig. 3, which demonstrates the 

effectiveness of the proposed metric. Note that there might be instances when performance 

trends may not exactly follow the predictions of Je or Jc. For example, FBF might have 
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much better tracking accuracy than predicted by Je or smaller control effort than predicted 

by Jc if one purposely (or accidentally) uses filtered basis functions that span the desired 

trajectory (yd). However, in general, the proposed metric provides good insights on the 

upper limits of RMS tracking performance and control effort. As discussed in Sec 3.2, all 

the four basis functions have similar tracking error (see Fig. 4 (a)) but different control 

efforts (see Fig. 4 (b)). Table 1 shows the mean values of eRMS/yd,RMS and uRMS/yd,RMS over 

all a. For eRMS/yd,RMS, the values of the mean for different basis functions are of the same 

order of magnitude. This validates the discussion about consistent tracking accuracy of the 

FBF approach, as compared to popular methods in the literature (see Figs. 12 and 13 in 

Appendix C for a comparison with two such popular methods, viz. ZPETC and TS), for 

different types of basis functions.  However, when it comes to uRMS/yd,RMS, the value of the 

mean for B-splines is four orders of magnitude higher than the value of the mean for DCT 

and the value of the mean for DCT is two orders of magnitude higher than BPF and optimal 

basis functions. Although BPF and optimal basis functions have similar order of 

magnitude, the value for optimal is 10% lower than the value for BPF. The example 

demonstrates the effectiveness of the optimal basis functions, proposed in Sec. 3.3, in 

tracking the desired trajectory with minimal control effort.        
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Fig. 3: Effect of basis functions (DCT, BPF, B-splines and Optimal) on (a) Je and (b) Jc 

for various values of a (M = 1000, n = 990).  
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Fig. 4: Effect of basis functions (DCT, BPF, B-splines and Optimal) on (a) normalized 

RMS tracking error and (b) normalized RMS control input for various values of a (M = 

1000, n = 990).  

Tab. 1: Mean values of eRMS/yd,RMS and uRMS/yd,RMS over all a for different basis functions 

Attribute DCT BPF B-splines Optimal 

eRMS/yd,RMS 7.83 × 10−2 6.62 × 10−2 8.14 × 10−2 8.28 × 10−2 

uRMS/yd,RMS 2.76 × 101 7.84 × 10−1  1.02 × 105 7.06 × 10−1 

 

4.2. Experiments 

This section demonstrates the practical benefits of optimal basis function selection 

in experiments. The biaxial (X-Y) linear motor driven stage (Aerotech ALS 25010), shown 

in Fig. 5, is used for the experiments. The stage is controlled using a P/PI feedback 

controller, augmented with velocity and acceleration feedforward [37] (see Fig. 6). The 

controller is implemented on a dSPACE 1202 real-time control board with 10 kHz 

sampling frequency. A flexible fixture consisting of a block mounted on a slender rod is 

attached to the stage. The block is assumed to represent an apparatus, for example, a tool, 

a workpiece or a measurement device whose position needs to be tracked accurately despite 

its flexible structure. The FBF approach is used as a feedforward tracking controller as 

shown in the block diagram of Fig. 6. The FBF approach takes in the desired position 

commands yd for each axis and generates modified position commands u that are sent to 

the stage to ensure that the actual position of the block y follows yd accurately, in spite of 

its inherent structural flexibilities. The actual position of the block is observed from its 
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accelerations measured using two unidirectional accelerometers (PCB piezotronics 

393B05).          

 

Fig. 5: Biaxial stage with flexible fixture 

 

 

Fig. 6: Block diagram of the FBF controller and experimental setup  

Figure 7 shows the frequency response function (FRF) of the dynamics of each axis 

of the stage, generated by applying swept sine acceleration inputs to the stage and 

measuring the corresponding accelerations of the block using the accelerometers. Each axis 

has 4 modes (two dominant and two less dominant) and hence, the plant dynamics is eighth-

order. Prior work of the authors [38] provides more details about a continuous-time model 
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for the system, which indicates the presence of one NMP zero in the dynamics of each axis. 

The Markov parameters of the dynamics are obtained from the continuous-time model and 

are used to construct a finite impulse response (FIR) representation of the dynamics along 

each axis. Figure 7 shows a good match between the measured FRF and the FRF generated 

using the FIR representations (modeled). Based on the methodology discussed in Appendix 

A, the LSR of the dynamics of each axis is generated using the FIR representation. Singular 

values of the LSRs (for M = 10000) are shown in Fig. 8. Note that each axis has two very 

small singular values which deviate from the cluster and these singular values result in 

large control inputs, if the basis functions are not properly selected. One of the two singular 

values along each axis arises from the NMP zero, whereas, the other small singular value 

is a result of relative degree of one (the first Markov parameter is zero). Figure 9 shows the 

desired butterfly shaped path, whereas Fig. 10 show the desired paths position along the X 

and Y axes (for more details see [38]). The duration of the trajectory is 1 second (i.e., M = 

10000, based on 10 kHz sampling frequency). 

 

Fig. 7: Measured and modeled frequency response functions of the X and Y axes of the 

biaxial stage 
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Fig. 8: Singular values of the LSRs of the X and Y dynamics 

 

Fig. 9: Desired path 

 

Fig. 10: Desired position trajectories along the X and Y axes 

  For experiments, the optimal basis functions proposed in the paper are compared 

with B-splines, because they are often the basis functions of choice for manufacturing and 

robotics applications [12,17,21,28,38]. Figure 11 shows the control input (i.e., modified 

position commands) sent to the X and Y axes for the two sets of basis functions (for n = 
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600). Also, shown are the resultant tracking errors, which are based on position signals 

derived from measured acceleration signals using an observer.  Note that the B-spline based 

control input show rapid growth in magnitude towards the end of the signal because of the 

small singular values of the LSR corresponding to the NMP zero and the relative degree. 

For safety reasons, a limit ± 10 mm is placed on the position commands for both axes, as 

shown in Fig. 11; the B-spline control input saturates at the limit.  Notice that, before 

saturation, the control inputs for the proposed optimal basis functions and B-splines are 

quite similar which results in similar tracking errors. In the time interval between 0 and 

0.99 s, the RMS tracking errors for optimal basis functions and B-splines are 263.31 μm 

and 250.85 μm, respectively, for the X-axis and between 0 and 0.96 s, 171.29 μm and 

186.12 μm, respectively, for the Y-axis. However, because of saturation, the B-spline based 

commands generate large tracking errors, as shown in Fig. 11. Consequently, the overall 

RMS tracking error for B-splines, along the X and Y axes, are respectively 3 and 19 times 

the RMS tracking error for the optimal basis functions (see Tab. 2). Moreover, the optimal 

basis functions require 3% and 13% lower control effort than B-splines for X-axis and Y-

axis, respectively. The proposed optimal basis functions track much better than B-splines 

and require less control effort.      

Remark 11:  The violation of actuator limits by B-splines observed in the results of Fig. 

11 can be mitigated by formulating the FBF approach as a constrained optimization 

problem using the constraint handling capabilities of B-splines, as done in prior work of 

the authors [38]. However, all things being equal, it is theoretically and practically 

preferable to avoid large control signals altogether than to contain them via constraints. 



Journal of Dynamic Systems, Measurement and Control 
 

DS-18-1094 | Okwudire | 28 
 

 

Fig. 11: X and Y control inputs (i.e., modified position command) signals and tracking 

errors for optimal basis functions and B-splines (M = 10000, n = 600)  

Tab. 2: Summary of tracking error and control effort for experiments  

Basis 

Functions 

X axis Y axis 

eRMS/yd,RMS uRMS/yd,RMS eRMS/yd,RMS uRMS/yd,RMS 

Optimal 0.06 1.05 0.05 0.98 

B-Splines 0.17 1.08 0.94 1.12 

 

5. CONCLUSIONS AND FUTURE WORK 

An appealing feature of the FBF approach is that it provides a control engineer with 

a wide variety of basis functions for use in tracking control (of NMP systems). However, 

to date, there has been no work on how to determine the best set of basis functions to 

achieve a given tracking control objective. To address this shortcoming, this paper has 
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proposed a methodology for optimal selection of basis functions that minimize control 

effort of the FBF controller without sacrificing its tracking accuracy.   

To facilitate optimal basis functions selection, a new metric based on the Frobenius 

norm of the LSR of system dynamics is proposed. The proposed metric is versatile. It is 

useful for analyzing and evaluating the performance of any linear discrete-time controller 

(including LTV controllers like FBF) independent of the inputs to the controller, in a 

manner akin to the use of Bode plots for LTI systems. It is shown that, for FBF, the 

proposed metric applied to tracking error dynamics is independent of the plant dynamics 

and type of basis functions; it depends only on the number of basis functions, relative to 

the length of the trajectory to be tracked. This finding is remarkable because it provides a 

theoretical justification for observations made by the authors in prior work about the 

unusual consistency of the tracking accuracy of the FBF approach irrespective of system 

dynamics and basis functions. Conversely, the metric shows that the control effort of the 

FBF approach depends on basis functions and plant dynamics.  

Leveraging the analysis, a two-step process for selecting optimal basis functions 

that minimize control effort for a specified tracking accuracy is proposed. In the first step, 

the number of basis functions is selected to satisfy a desired level of tracking accuracy 

regardless of the type of basis functions; in the second step, the optimal set of basis 

functions – which are related to the singular vectors of the controlled system – are 

determined for minimum control effort. Simulations and experiments are used to 

demonstrate the effectiveness of the proposed optimal basis functions. Simple first-order 

plants with varying zero locations in the z-plane are used in simulations and the proposed 

basis functions are compared with three other commonly used basis functions (DCT, BPF 
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and B-splines). The results demonstrate the effectiveness of the proposed metric as well as 

the superiority of the optimal basis functions. Experiments on an Aerotech linear motor 

driven stage, with a flexible structure, are used to show that the proposed basis functions 

can effectively track a desired trajectory with minimal effort, as compared to B-splines 

which require much higher control effort, resulting in control saturation and degradation 

of tracking accuracy.  

This study demonstrates the importance of a systematic approach for optimally 

selecting basis functions not only for the FBF approach but also for related control 

techniques, like iterative learning control, where basis functions are commonly used and 

often selected in an ad hoc manner.  Ongoing work has focused on design of robust FBF 

controllers [39,40]. Future work will investigate the use of the proposed metric to study 

selection of basis functions to enhance the robustness of the FBF approach in presence of 

model uncertainties. The use of the proposed metric as a tool to analyze and design other 

optimal linear discrete-time controllers beyond the FBF approach will also be explored. 
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An LTI SISO causal plant G can be expressed as 

1 2
0 1 2( )G q g g q g q     (46)

where the coefficients gl are the Markov parameters of G. The sequence g0, g1, g2, … also 

represent the impulse response of G. Then 
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(47)

For an LTI non-causal controller C 

2 1 1 2
2 1 0 1 2( )C q c q c q c c q c q 
         (48)

the LSR of C can be expressed as 
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(49)

Similarly, overall dynamics L and error dynamics Eff can be expressed in LSR as L and Eff. 

For LTI systems, the LSR is Toeplitz. For LTV systems or controllers, the construction of 

the LSR for L and Eff follows a similar process but the resulting matrices are not Toeplitz 

[32].   
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The DCT is a frequency-based transform that is widely used in signal processing; 

its basis functions are real-valued cosines defined as [22] 
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 (50)

The BPF basis functions are given by 
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The BPF expressed in Eq. (51) seeks to divide the time interval from 0 to M among 

n+1 basis functions in a quasi-uniform manner.  

For a B-spline of degree m, having n+1 ≤ M+1 control points (same as coefficients 

of basis functions), γ0, γ1, ..., γn, and knot vector [η0 η1 ... ηm+n+1]T, its real-valued basis 

functions, φi,m, are given by [28] 
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 (52)

where i = 0, 1, ..., n with ξk  [0,1], representing normalized time, discretized into M+1 

points, ξ0, ξ1 …ξM,  and ηj is a uniform knot vector, selected such that  
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APPENDIX C: Comparison of FBF with ZPETC and TS 

This appendix compares the tracking accuracy of FBF with that of ZPETC and TS, 

using the normalized RMS tracking error eRMS/yd,RMS (Fig. 12) and the proposed Frobenius 

norm metric Je (Fig. 13), for various zero locations a ϵ [−10, 10]. The trend for Je and 

eRMS/yd,RMS are quite similar and agree with observations made in the literature 

[3,15,17,21,26]. The results show that the tracking performance of FBF is consistent as 

compared to popular methods in the literature, viz., ZPETC and TS. For more details, 

interested readers can see prior work of the authors [25]. 

 

Fig. 12: Effect of zero location on normalized RMS tracking error for FBF (DCT, BPF), 

ZPETC and TS (for more details see [25]) 
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Fig. 13: Effect of zero location on Frobenius norm metric for FBF, ZPETC and TS (for 

more details see [25])  

 

APPENDIX D: Relationship between Metric and System Dynamics 2-norm 

Based on Appendix A, the squared Frobenius norm of the LSR of Eff can be 

expressed as 
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(54)

According to definition of 2-norm of Eff(q) and Parseval’s Theorem [41] 
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where 
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and using Eq. (54), 
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Re-arrangement of the terms in the equation results in 
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Consider two different values of M, M1 and M2 such that M1 > M2, then 
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where Eff[M1] and Eff[M2] denote the LSRs of Eff(q) for trajectory lengths M1+1 and M2+1, 

respectively. Then 
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The implication is that for M1 > M2 
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(62)

i.e., the value of the proposed Frobenius norm metric Je increases as M increases for a given 

dynamics Eff(q).  

Combining Eqs. (55) and (59)    
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As M→∞, the first two summation terms on right hand side of Eq. (63) tend to 0. Assume 

that eff,k is bounded by an exponential function, i.e., 
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where e (on the right hand side) is the Euler’s number and A and µ are positive non-zero 

constants. The implication of the assumption is that the output of dynamics Eff at a 

particular instant of time depends more on input at the current time instant and inputs 

immediately preceding or succeeding the current input as compared to inputs which 

occurred long time back or will occur after a long time in the future. This assumption is 

true for stable systems. Hence, the third summation term on right hand side of Eq. (63) is 

bounded by 
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Consider the bound on the summation, 
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The summation on the right hand side represents summation of an rithmetic-geometric 

sequence [42]. As M→∞ (based on sum of infinite rithmetic-geometric sequence with 

absolute value of common ratio of the geometric part of the sequence bounded by 1, i.e., 

|e−µ| < 1)   
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which implies that 
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The implication is that (based on Eqs. (63) and (68)) 
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Figure Captions List 

Fig. 1 Block diagram for feedforward tracking control 

Fig. 2 Effect of basis functions (DCT, BPF and B-splines) on: (a) normalized 

RMS tracking error and (b) normalized RMS control input for various 

values of a (M = 1000, n = 990). The methods are also simulated for 

MP region (shaded) but the system can also be inverted in this region. 

Fig. 3 Effect of basis functions (DCT, BPF, B-splines and Optimal) on (a) Je 

and (b) Jc for various values of a (M = 1000, n = 990) 

Fig. 4 Effect of basis functions (DCT, BPF, B-splines and Optimal) on (a) 

normalized RMS tracking error and (b) normalized RMS control input 

for various values of a (M = 1000, n = 990) 

Fig. 5 Biaxial stage with flexible fixture 

Fig. 6 Block diagram of the FBF controller and experimental setup 

Fig. 7 Measured and modeled frequency response functions of the X and Y 

axes of the biaxial stage 

Fig. 8 Singular values of the LSRs of the X and Y dynamics 

Fig. 9 Desired path 

Fig. 10 Desired position trajectories along the X and Y axes 

Fig. 11 X and Y control inputs (i.e., modified position command) signals and 

tracking errors for optimal basis functions and B-splines (M = 10000, 

n = 600) 
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Fig. 12 Effect of zero location on normalized RMS tracking error for FBF 

(DCT, BPF), ZPETC and TS (for more details see [25]) 

Fig. 13 Effect of zero location on Frobenius norm metric for FBF, ZPETC and 

TS (for more details see [25]) 
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Table Captions List 

Tab. 1 Mean values of eRMS/yd,RMS and uRMS/yd,RMS over all a for different 

basis functions 

Tab. 2 Summary of tracking error and control effort for experiments 
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Fig. 1: Block diagram for feedforward tracking control 
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Fig. 2: Effect of basis functions (DCT, BPF and B-splines) on: (a) normalized RMS 

tracking error and (b) normalized RMS control input for various values of a (M = 1000, n 

= 990). The methods are also simulated for MP region (shaded) but the system can also 

be inverted in this region. 
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Fig. 3: Effect of basis functions (DCT, BPF, B-splines and Optimal) on (a) Je and (b) Jc 

for various values of a (M = 1000, n = 990). 
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Fig. 4: Effect of basis functions (DCT, BPF, B-splines and Optimal) on (a) normalized 

RMS tracking error and (b) normalized RMS control input for various values of a (M = 

1000, n = 990).  
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Fig. 5: Biaxial stage with flexible fixture 
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Fig. 6: Block diagram of the FBF controller and experimental setup  
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Fig. 7: Measured and modeled frequency response functions of the X and Y axes of the 

biaxial stage 
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Fig. 8: Singular values of the LSRs of the X and Y dynamics 
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Fig. 9: Desired path 
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Fig. 10: Desired position trajectories along the X and Y axes 
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Fig. 11: X and Y control inputs (i.e., modified position command) signals and tracking 

errors for optimal basis functions and B-splines (M = 10000, n = 600)  
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Fig. 12: Effect of zero location on normalized RMS tracking error for FBF (DCT, BPF), 

ZPETC and TS (for more details see [25]) 
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Fig. 13: Effect of zero location on Frobenius norm metric for FBF, ZPETC and TS (for 

more details see [25])  
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Tab. 1: Mean values of eRMS/yd,RMS and uRMS/yd,RMS over all a for different basis functions 

Attribute DCT BPF B-splines Optimal 

eRMS/yd,RMS 7.83 × 10−2 6.62 × 10−2 8.14 × 10−2 8.28 × 10−2 

uRMS/yd,RMS 2.76 × 101 7.84 × 10−1  1.02 × 105 7.06 × 10−1 
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Tab. 2: Summary of tracking error and control effort for experiments  

Basis 

Functions 

X axis Y axis 

eRMS/yd,RMS uRMS/yd,RMS eRMS/yd,RMS uRMS/yd,RMS 

Optimal 0.06 1.05 0.05 0.98 

B-Splines 0.17 1.08 0.94 1.12 

 


