
  

 

Abstract  There is growing interest in the use of the filtered 

basis functions (FBF) approach for feedforward tracking 

control of linear systems. The FBF approach expresses the 

control input to the plant as a linear combination of basis 

functions. The basis functions are forward filtered through the 

plant dynamics and the coefficients of the linear combination 

are selected such that the tracking error is minimized. It has 

been demonstrated that the FBF approach is more versatile 

compared to other methods in the literature. However, the 

tracking accuracy of the FBF approach deteriorates in the 

presence of model uncertainty, much like it does with other 

feedforward control methods. But, unlike other methods, the 

FBF approach presents flexibility in terms of the choice of the 

basis functions, which can be used to improve its accuracy in the 

presence of model uncertainty. This paper analyzes the effect of 

choice of the basis functions on the tracking accuracy of FBF, in 

the presence of uncertainty, using the Frobenius norm of the 

the analysis, a methodology for optimal selection of basis 

functions is presented. The effectiveness of the proposed 

methodology is demonstrated using examples. Large 

improvements in robustness are observed using the proposed 

optimal set of basis functions compared to popular basis 

functions, viz., B-splines, discrete cosine transform and block 

pulse functions. 

I. INTRODUCTION  

Tracking control is a fundamental problem encountered in 
a wide range of fields such as manufacturing, robotics and 
aeronautics. The objective of tracking control is to force the 
output trajectory of the controlled system to follow a desired 
trajectory as closely as possible. Tracking control could be 
achieved using feedforward and/or feedback controllers. This 
paper is written in the context of feedforward tracking control 
of discrete-time linear systems.  

Feedforward tracking control of linear systems can be 
ideally achieved using perfect tracking control (PTC) i.e., 
pole-zero cancellation [1]. But in practice, ideal feedforward 
control cannot be realized due to (i) nonminimum phase 
(NMP) zeros and (ii) uncertainty in the plant dynamics [2]. 
When applied to NMP systems, PTC results in highly 
oscillatory or unstable control trajectories which are 
unacceptable. NMP zeros are quite prevalent in practice. For 
example, they occur in systems with fast sampling rates [3], as 
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well as in systems with noncollocated placement of sensors 
and actuators [4]. Hence, a lot of research on feedforward 
tracking control of NMP systems can be found in the literature 
([5] [7] present detailed literature reviews on the subject). 
Recently, the filtered basis functions (FBF) approach has been 
gaining attention as an effective approach for feedforward 
tracking control of linear NMP systems [8] [12]. The FBF 
approach expresses the control input as a linear combination 
of user-defined basis functions (of which there are a wide 
range of choices, e.g., B-splines [8], cosine signals [13], radial 
basis functions [10], etc.). The basis functions are forward 
filtered through the plant dynamics and the coefficients are 
selected, using an elegant least squares solution, such that the 
tracking error is minimized. The FBF approach finds its 
origins in iterative learning control (ILC) [13] but was not 
applied to feedforward tracking control of NMP systems until 
recently [8] [12]. Unlike most of the methods in the literature, 
the FBF approach is effective for a wide range of desired 
trajectories and plants including nonhyperbolic systems 
(systems with zeros on the unit circle in the z-plane) [9], [12], 
square and non-square multi input multi output (MIMO) 
systems, linear time varying (LTV) systems, linear parameter 
varying (LPV) systems [10], etc. Also, the tracking accuracy 
of FBF does not change significantly with plant dynamics, as 
compared to other popular methods in the literature [14].  

A key challenge of feedforward controllers, including 
FBF, is how to improve their robustness in the presence of 
uncertainty in plant dynamics [2], [15] [20]. Recently, 
optimal selection of coefficients [21] and optimal filtering of 
basis functions [22] have been explored as avenues to improve 
the robustness of the FBF approach. However, optimal 
selection of basis functions presents an opportunity for 
improving the robustness of the FBF approach that is 
unavailable to other feedforward tracking control methods; it 
could be used as an alternative or complement to existing 
methods. Recently, [23] has proposed an optimal set of basis 
functions to achieve a desired level of tracking accuracy with 
minimum control effort. The optimization was realized using 
the Frobenius norm of the lifted system representation (LSR) 

 well as controller dynamics. In a similar 
vein as [23], this paper explores optimal basis function 
selection for robust tracking control using the FBF approach. 
Specifically, it makes the following original contributions to 
the literature: 

1. It analyzes the effect of basis functions on tracking 
accuracy of FBF, in the presence of uncertainty, using the 
Frobenius norm of the LSR of the error dynamics. 

2. It proposes an optimal set of basis functions for tracking 
control using FBF, in the presence of uncertainty. 

Keval S. Ramani and Chinedum E. Okwudire 

 

 

  



 

The paper is structured as follows: Section II presents 
some background information on the FBF approach and the 
Frobenius norm metric. The contributions of the paper are 
presented in Section III. Section IV demonstrates the 
effectiveness of the proposed basis functions using a 
simulation example and Section V concludes the paper. 

II. BACKGROUND  

A. Tracking Control Problem 

Given a discrete-time linear time invariant (LTI) single 
input single output (SISO) system G(q), as shown in Fig. 1, 
which may represent an open loop plant or a closed loop 
controlled system, we can write  

( ) ( ) ( )y k G q u k   

where k is the time index, q is the forward shift operator, y and 
u are the output and control input, respectively. The objective 
of tracking control is to design the feedforward controller C(q) 
or find the control input u(k) given by 

( ) ( ) ( )du k C q y k   

where yd(k) is the desired trajectory, such that the tracking 
error e(k)   
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is minimized, where L(q) and Eff(q) are the overall dynamics 
and the error dynamics of the controlled system, respectively.  

k M (M+1 is the number of discrete 
points in the trajectory), the desired trajectory, control input, 
tracking error and output trajectory can be expressed using 
vectors 
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Accordingly, Eqs. ,  and  can be expressed as  

;   ;   ( )d d ff dy Gu u Cy e I L y E y   

where G, C, L and Eff are the lifted system representations 
[24] of G, C, L and Eff, respectively, and I is the identity matrix 
of appropriate size. The use of boldface symbols to represent 
LSR of systems is maintained hereinafter.  

 
Fig. 1: Block diagram for feedforward tracking control 

B. Filtered Basis Functions (FBF) Approach 

The FBF approach relies on two assumptions: 

 The desired trajectory is known a priori 

 The control input u(k) is expressed as a linear combination 
of n+1 user-defined basis functions i(k) 
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where i are unknown coefficients. Using vectors, Eq.  can 
be expressed as 

0 1

T

T

0 1

;

,

(0) (1) ( ) ,

n

i i i i

n

M

u

,n

(i

T

n

  

For a linear system G(q) (with lifted system representation G), 
y can be expressed as 
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where  represents the filtered basis functions matrix. The 
control objective is to find the optimal coefficient vector  
such that the 2-norm of the tracking error 

T
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is minimized; the optimal solution is given by 
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Based on Eqs. , ,  and , the LSRs of the controller 
and error dynamics can be expressed as 
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Remark 1: CFBF and Eff,FBF both depend on the system as well 
as the selected basis functions. Both matrices are, in general, 
non-Toeplitz and non-triangular implying that the FBF 
controller is, in general, LTV and non-causal [9].  

Remark 2: Although this paper describes the FBF approach 

in the context of LTI SISO systems, it is applicable to other 

types of linear systems such as LTV and MIMO systems.  

C. Frobenius Norm Metric 

As a tracking performance evaluation metric, [14], [23] 
proposed the following metric, Je, based on the Frobenius 
norm of Eff  
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The Frobenius norm is selected because it takes into account 
all singular values/gains ( i) of Eff, as opposed to ||Eff||2, which 
considers only the maximum singular value/gain.  

Note that for a normalized desired trajectory (||yd||2 = 1), 
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The implication is that Je is an upper bound on the RMS 
tracking error (eRMS).  Moreover, it is shown in [23], that for an 
LTI system 

2
   as 
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In other words, Je approaches the system error 2-norm 
criterion (sometimes used in the design and analysis of 
tracking controllers [25]).  

III. OPTIMAL BASIS FUNCTIONS FOR ROBUST TRACKING  

This section analyzes the robustness of the FBF approach 
and proposes an optimal set of basis functions for robust 
tracking control by: (i) providing a metric expression for FBF 
including plant uncertainty, and (ii) formulating basis 
functions selection as an optimization problem and solving the 
optimization problem to find the best set of basis functions for 
robust tracking.   

A.  Effect of Uncertainty and Basis Functions on Tracking 

Accuracy of FBF 

Assume that the actual plant dynamics belongs to the set 
{Gaj}, j l. The set could represent a plant with 
additive uncertainty, multiplicative uncertainty, parametric 
uncertainty, etc. Without loss of generality, this paper assumes 
that the set is discrete. Sampling of uncertainty has been used 
in literature [20], [26] for robust controller design. If the 
controller C (see Fig. 1) is designed based on nominal plant 
dynamics Gnom and the error dynamics corresponding to Gaj is 
given by Effj, then to analyze the robustness of tracking 
controllers, the Frobenius norm metric Je,r can be expressed as 
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where { j} denotes weights associated with the distribution of 
the uncertainty. Note that the nominal plant dynamics Gnom 
may or may not belong to the set {Gaj}. 

Remark 3: This paper focuses on FBF, hence, the modified 
metric will only be explored in the context of FBF in the 
remainder of the paper. However, the metric can be used to 
analyze robustness of other tracking controllers in the 
literature.  

 If the FBF controller C is designed using the nominal plant 
dynamics Gnom, then its LSR C is given by 

1
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1
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Analysis using the pseudoinverse is quite cumbersome and 

hence, the filtered basis functions matrix  is 
transformed into the decoupled filtered basis functions matrix 

 (for more details see [9]). After 
transformation, the LSRs C and Effj can be expressed as 
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where  is obtained by filtering  using LSR of the 

actual plant dynamics Gaj. 

Proposition 1: For the set of possible actual plant dynamics 
{Gaj} and associated weights { j}, j l, the metric Je,r 
can be expressed in terms of the uncertainty and basis 
functions as 
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Proof: This proof first finds the metric Jej and then finds Je,r 

using Eq. . Based on Eqs.  and , 
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Using the fact that trace is a linear mapping and is invariant 
under cyclic permutations 
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Substituting Eq.  in Eq.  gives 
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(End of Proof) 

Remark 4: The metric can be expressed as 
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The implication is that the metric is the summation of two 
components  nominal and uncertainty-related. The nominal 
component is identical to the value of the metric in the absence 
of the uncertainty (discussed in prior work [14]); it only 



 

depends on the number of basis functions and is independent 
of the plant dynamics and the choice of basis functions. 
However, the uncertainty-related component depends on the 
uncertainty, choice of nominal model and the type and number 
of basis functions.     

B. Optimal Selection of Basis Functions for Robust Tracking 

Control 

This section finds an optimal set of basis functions that 
minimize the uncertainty-related component of the metric 
Je,unc, for a given value of the nominal component of the metric 
Je,nom. The procedure for optimal basis function selection is 
outlined in Proposition 2. 

Proposition 2: For the set of possible actual plant dynamics 
{Gaj}, associated weights { j}, j l, and nominal 
model Gnom, the n+1 basis functions nom that minimize Je,unc 

are given by  
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where Vnom, nom and Wnom denote the left singular vector 
matrix, singular value matrix and right singular vector matrix 
of Gnom, respectively. Similarly, V ,  and W  denote the left 
singular vector matrix, singular value matrix and right singular 
vector matrix of , respectively. 

Proof: Using Eqs.  and , the optimization problem 
corresponding to Proposition 2 can be expressed as 
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Note that the constraint is a result of the decoupling process 

(Eq. ). The objective can be expressed in terms of  as 
follows 
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Hence, the optimization problem given by Eq.  can be 
re-written as 
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Using definition of Frobenius norm, 
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Using the fact that trace is a linear mapping 
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Hence, the optimization problem given by Eq.  can be 
re-written as 
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The solution to the optimization problem is the set of right 
singular vectors of the matrix , corresponding to its n+1 
smallest singular values [23] 
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and the corresponding basis functions are 
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The optimal value of the metric is given by 
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where { i}, i M+1, denote the singular values of 
the matrix  in the descending order.  

(End of Proof)  

Remark 5: If the nominal plant dynamics has NMP zeros or 
more poles than zeros, then the LSR of the nominal plant Gnom 
has very small singular values, which might not be ideal for 
inversion of nom and Gnom. This undesirable inversion might 
result in very high control inputs, as discussed in prior work 
[23]. This issue can be resolved by imposing additional 
constraints, to avoid the small singular values, in the 
optimization problem. This situation will be investigated 
further in future work.  

Remark 6: Since, the choice of basis functions only affects 
the uncertainty-related component and does not affect the 
nominal component (Remark 4), the proposed optimal basis 
functions are selected such that robust tracking is realized 
without significantly affecting the nominal tracking accuracy 
of FBF (Proposition 2). This is unlike many other robust 



 

tracking controllers in the literature [19], [22], whose 
improved robustness in tracking is achieved at the cost of 
deterioration in nominal tracking accuracy.      

IV. EXAMPLE  

To demonstrate the effectiveness of the proposed optimal 
set of basis functions, this section uses a damped oscillator 
with parametric uncertainty: 
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where n and  denote the natural frequency and damping 

nom  The 

system in Eq. (33) is representative of the dynamics of a 

vibration-prone 3D printer with uncertainty [11], [22].  The 

system is sampled at 1 kHz. The set of actual plant dynamics 

{Gaj}, is generated by selecting l = 410 evenly distributed 

realizations of the plant defined by Eq.  such that j = 1/l. 

The nominal values of the plant parameters are used to 

generate the filter Gnom. The desired signal yd is a white noise 

signal with zero mean and unit variance (M = 1000). The 

choice of white noise for yd is because its broadband nature 

eliminates biased results based on arbitrarily selected yd. 

There is a wide choice in terms of the basis functions that can 

be used with the FBF approach. This work uses discrete 

cosine transform (DCT) [27], block pulse functions (BPF) 

[28] and B-splines [29] for comparison with the proposed 

optimal basis functions (the Appendix gives more details 

about the basis functions). 

Figure 2 shows the normalized RMS tracking error 
eRMS/yd,RMS for DCT, BPF and B-splines and the proposed 
optimal basis functions (obtained using Proposition 2), for 
various numbers of basis functions (n = 10 to 990), using the 
410 realizations of the actual plant dynamics G, described 
above. The metrics used for comparison are the mean and 
standard deviation of eRMS/yd,RMS. It is observed that for all 
values of n, the optimal basis functions result in minimum 
values of mean and standard deviation as compared to DCT, 
BPF and B-splines. For example, at n = 500, compared to 
DCT, BPF and B-splines, the optimal basis functions result in 
improvements in mean and standard deviations of eRMS/yd,RMS 
by up to 1.5 times and 77 times, respectively. The nominal 
values of eRMS/yd,RMS for DCT, BPF, B-spline and optimal 
basis functions are 0.6686, 0.6708, 0.6662 and 0.6794, 
respectively. This demonstrates that the significant 
improvement in mean and standard deviations of eRMS/yd,RMS 
is achieved without significantly affecting nominal tracking 
accuracy of the FBF approach.  It is also observed that the 
tracking accuracy of the FBF approach, in the presence of 
uncertainty, does not necessarily improve with increase in the 
number of basis functions. This is unlike prior work [9], [23], 
which showed that in the absence of uncertainty, increasing 
the number of basis functions generally improves the tracking 
accuracy of the FBF approach.   

 
Fig. 2: Comparison of normalized RMS tracking error for optimal basis 

functions, DCT, BPF and B-splines, in the presence of uncertainty, for various 
values of number basis functions, n 

V. CONCLUSION  

This paper has proposed an optimal set of basis functions 
for feedforward tracking control of uncertain plants, using the 
FBF approach. By defining a robustness metric based on the 
Frobenius norm of the LSR of error dynamics, the effect of 
the uncertainty, basis functions and nominal plant model 
(filter) on tracking accuracy is quantified. It is demonstrated 
that, unlike the nominal tracking case studied in prior work, 
the tracking accuracy of FBF in the presence of uncertainty 
depends on the plant dynamics as well as basis functions.  

An optimal set of basis functions that minimize the 
uncertainty-related component, while maintaining the desired 
level of nominal tracking is selected. The proposed basis 
functions try to ensure that the deviation between the tracking 
error due to the uncertainty and the nominal tracking error is 
minimal. In many applications, this property of the proposed 
basis functions could ensure that the uncertainty does not 
affect tracking accuracy significantly, resulting in near 
consistent tracking even in the presence of uncertainty. For 
example, Fig. 2 shows that the standard deviation of the 
normalized tracking error for the proposed optimal basis 
functions is very small for a larger range of number of basis 
functions as compared to popular basis functions such as 
DCT, BPF and B-splines, for the damped oscillator example.    

The results of this paper (e.g., Fig. 2) reveal that there is an 

opportunity to maximize robustness using an optimal number 

of basis functions along with the proposed optimal set of basis 

functions. This opportunity will be explored in future work. 

There is also an opportunity to explore the optimal selection 

of filter using the Frobenius norm metric. Unlike prior work 

on optimal filtering [22] which was restricted to LTI systems, 

the use of the Frobenius norm metric will help in formulation 

of a robust feedforward controller for other types of linear 

systems, for example, LPV and LTV systems. 

APPENDIX  

The discrete cosine transform (DCT) is a frequency-based 
transform that is widely used in signal processing; its basis 
functions are real-valued cosines defined as [22] 
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The block pulse function (BPF) basis are given by 
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The BPF expressed in Eq.  seeks to divide the time 
interval from 0 to M among n+1 basis functions in a 
quasi-uniform manner.  

For a B-spline of degree m, having n M+1 control 
points (coefficients), 0, 1, ..., n, and knot vector [ 0 1 ... 

m+n+1]T, its real-valued basis functions, i,m, are given by [29] 
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where i = 0, 1, ..., n with k  [0,1], representing normalized 
time, discretized into M+1 points, 0, 1 M,  and j is a 
uniform knot vector, selected such that 

0 0
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