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Abstract— There is growing interest in the use of the filtered
basis functions (FBF) approach for feedforward tracking
control of linear systems. The FBF approach expresses the
control input to the plant as a linear combination of basis
functions. The basis functions are forward filtered through the
plant dynamics and the coefficients of the linear combination
are selected such that the tracking error is minimized. It has
been demonstrated that the FBF approach is more versatile
compared to other methods in the literature. However, the
tracking accuracy of the FBF approach deteriorates in the
presence of model uncertainty, much like it does with other
feedforward control methods. But, unlike other methods, the
FBF approach presents flexibility in terms of the choice of the
basis functions, which can be used to improve its accuracy in the
presence of model uncertainty. This paper analyzes the effect of
choice of the basis functions on the tracking accuracy of FBF, in
the presence of uncertainty, using the Frobenius norm of the
lifted system representation of FBF’s error dynamics. Based on
the analysis, a methodology for optimal selection of basis
functions is presented. The effectiveness of the proposed
methodology is demonstrated using examples. Large
improvements in robustness are observed using the proposed
optimal set of basis functions compared to popular basis
functions, viz., B-splines, discrete cosine transform and block
pulse functions.

I. INTRODUCTION

Tracking control is a fundamental problem encountered in
a wide range of fields such as manufacturing, robotics and
aeronautics. The objective of tracking control is to force the
output trajectory of the controlled system to follow a desired
trajectory as closely as possible. Tracking control could be
achieved using feedforward and/or feedback controllers. This
paper is written in the context of feedforward tracking control
of discrete-time linear systems.

Feedforward tracking control of linear systems can be
ideally achieved using perfect tracking control (PTC) i.e.,
pole-zero cancellation [1]. But in practice, ideal feedforward
control cannot be realized due to (i) nonminimum phase
(NMP) zeros and (ii) uncertainty in the plant dynamics [2].
When applied to NMP systems, PTC results in highly
oscillatory or unstable control trajectories which are
unacceptable. NMP zeros are quite prevalent in practice. For
example, they occur in systems with fast sampling rates [3], as
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well as in systems with noncollocated placement of sensors
and actuators [4]. Hence, a lot of research on feedforward
tracking control of NMP systems can be found in the literature
([5STH7] present detailed literature reviews on the subject).
Recently, the filtered basis functions (FBF) approach has been
gaining attention as an effective approach for feedforward
tracking control of linear NMP systems [8]-[12]. The FBF
approach expresses the control input as a linear combination
of user-defined basis functions (of which there are a wide
range of choices, e.g., B-splines [8], cosine signals [13], radial
basis functions [10], etc.). The basis functions are forward
filtered through the plant dynamics and the coefficients are
selected, using an elegant least squares solution, such that the
tracking error is minimized. The FBF approach finds its
origins in iterative learning control (ILC) [13] but was not
applied to feedforward tracking control of NMP systems until
recently [8]-[12]. Unlike most of the methods in the literature,
the FBF approach is effective for a wide range of desired
trajectories and plants including nonhyperbolic systems
(systems with zeros on the unit circle in the z-plane) [9], [12],
square and non-square multi input multi output (MIMO)
systems, linear time varying (LTV) systems, linear parameter
varying (LPV) systems [10], etc. Also, the tracking accuracy
of FBF does not change significantly with plant dynamics, as
compared to other popular methods in the literature [14].

A key challenge of feedforward controllers, including
FBF, is how to improve their robustness in the presence of
uncertainty in plant dynamics [2], [15]-[20]. Recently,
optimal selection of coefficients [21] and optimal filtering of
basis functions [22] have been explored as avenues to improve
the robustness of the FBF approach. However, optimal
selection of basis functions presents an opportunity for
improving the robustness of the FBF approach that is
unavailable to other feedforward tracking control methods; it
could be used as an alternative or complement to existing
methods. Recently, [23] has proposed an optimal set of basis
functions to achieve a desired level of tracking accuracy with
minimum control effort. The optimization was realized using
the Frobenius norm of the lifted system representation (LSR)
of the FBF’s error as well as controller dynamics. In a similar
vein as [23], this paper explores optimal basis function
selection for robust tracking control using the FBF approach.
Specifically, it makes the following original contributions to
the literature:

1. It analyzes the effect of basis functions on tracking
accuracy of FBF, in the presence of uncertainty, using the
Frobenius norm of the LSR of the error dynamics.

2. It proposes an optimal set of basis functions for tracking
control using FBF, in the presence of uncertainty.



The paper is structured as follows: Section II presents
some background information on the FBF approach and the
Frobenius norm metric. The contributions of the paper are
presented in Section III. Section IV demonstrates the
effectiveness of the proposed basis functions using a
simulation example and Section V concludes the paper.

1I. BACKGROUND
A. Tracking Control Problem

Given a discrete-time linear time invariant (LTI) single
input single output (SISO) system G(gq), as shown in Fig. 1,
which may represent an open loop plant or a closed loop
controlled system, we can write

y(k) = G(q)u(k) (M

where £ is the time index, ¢ is the forward shift operator, y and
u are the output and control input, respectively. The objective
of tracking control is to design the feedforward controller C(g)
or find the control input u(k) given by

u(k) =C(q)y, (k) )

where yq(k) is the desired trajectory, such that the tracking
error e(k)

e(k) = y, (k) — y(k)
= (1= G(g)C(@)y, (k) = E ; (q)y, (k) )
G@)C()

L(q)

is minimized, where L(g) and Ej(g) are the overall dynamics
and the error dynamics of the controlled system, respectively.

For finite time, 0 < k < M (M1 is the number of discrete
points in the trajectory), the desired trajectory, control input,
tracking error and output trajectory can be expressed using
vectors

Yo =[y.00) »,() 3, (M,

u=[u(0) u() u(M)]', @)
e=[e(0) e(l) e(M)]',

y=[»0) »0) ... yn]

Accordingly, Egs. (1), (2) and (3) can be expressed as
y=Gu; u=Cy,; e=(I-L)y, =E,y, (5)

where G, C, L and Ej are the lifted system representations
[24] of G, C, L and Ej; respectively, and I is the identity matrix
of appropriate size. The use of boldface symbols to represent
LSR of systems is maintained hereinafter.

b u(k)

Clg) G(q) (k)

L(g)=1-E«q)

Fig. 1: Block diagram for feedforward tracking control
B. Filtered Basis Functions (FBF) Approach

The FBF approach relies on two assumptions:
e The desired trajectory is known a priori
e The control input u(k) is expressed as a linear combination
of n+1 user-defined basis functions ¢:(k)

u(k) :im(m ©)

where y; are unknown coefficients. Using vectors, Eq. (6) can
be expressed as

u =ovy;
(D = b
[(PO (Pl (Pn] . (7)
9, =[0.(0) @0 e(M)]
v=[r, » Al

For a linear system G(g) (with lifted system representation G),
y can be expressed as

y=®y;
D=GP; §, =Goy,; ®)
(i):[(bo (T)l (Ijn]

where @ represents the filtered basis functions matrix. The
control objective is to find the optimal coefficient vector y
such that the 2-norm of the tracking error

~ T ~
e'e=(y,~®y) (v,-dy) ©)
is minimized; the optimal solution is given by
Yy =(0'®) @'y, (10)

Based on Egs. (5), (7), (8) and (10), the LSRs of the controller
and error dynamics can be expressed as

Cpp =@ (D) &'
E ror :I_(i)((DT(D) l(i)T )
-—

Remark 1: Crpr and Ejppr both depend on the system as well
as the selected basis functions. Both matrices are, in general,
non-Toeplitz and non-triangular implying that the FBF
controller is, in general, LTV and non-causal [9].

Remark 2: Although this paper describes the FBF approach
in the context of LTI SISO systems, it is applicable to other
types of linear systems such as LTV and MIMO systems.

C. Frobenius Norm Metric

As a tracking performance evaluation metric, [14], [23]
proposed the following metric, J., based on the Frobenius
norm of Ej

el

M+1

"E”"F: trace(E‘Tﬁ.E‘[f = ’;{m(Eﬁ_)y

The Frobenius norm is selected because it takes into account
all singular values/gains (o;) of Eg; as opposed to ||[Eg|2, which
considers only the maximum singular value/gain.

(12)

Note that for a normalized desired trajectory (||yd. = 1),

(13)

el &L
M +1 M +1

RMS

e



The implication is that J. is an upper bound on the RMS
tracking error (erys). Moreover, it is shown in [23], that for an
LTI system

[

In other Words, Jo approaches the system error 2-norm
criterion (sometimes used in the design and analysis of
tracking controllers [25]).

”2 asM — (14)

III. OPTIMAL BASIS FUNCTIONS FOR ROBUST TRACKING

This section analyzes the robustness of the FBF approach
and proposes an optimal set of basis functions for robust
tracking control by: (i) providing a metric expression for FBF
including plant uncertainty, and (ii) formulating basis
functions selection as an optimization problem and solving the
optimization problem to find the best set of basis functions for
robust tracking.

A. Effect of Uncertainty and Basis Functions on Tracking
Accuracy of FBF

Assume that the actual plant dynamics belongs to the set
{G4}, j =1, 2, ..., I. The set could represent a plant with
additive uncertainty, multiplicative uncertainty, parametric
uncertainty, etc. Without loss of generality, this paper assumes
that the set is discrete. Sampling of uncertainty has been used
in literature [20], [26] for robust controller design. If the
controller C (see Fig. 1) is designed based on nominal plant
dynamics G and the error dynamics corresponding to Gy is
given by Ejp, then to analyze the robustness of tracking
controllers, the Frobenius norm metric J can be expressed as

=Z%J3,
J=

el r-Gud,
T IMr1 M+ ;’1

where {4} denotes weights associated with the distribution of
the uncertainty. Note that the nominal plant dynamics Gom
may or may not belong to the set {Gy;}.

(15)

Remark 3: This paper focuses on FBF, hence, the modified
metric will only be explored in the context of FBF in the
remainder of the paper. However, the metric can be used to
analyze robustness of other tracking controllers in the
literature.

If the FBF controller C is designed using the nominal plant
dynamics Gom, then its LSR C is given by

(16)

Analysis using the pseudoinverse is quite cumbersome and
hence, the filtered basis functions matrix ®@,,,,= G, ® is
transformed into the decoupled filtered basis functions matrix

c=0(o,o,) o

nom nom

¥oom=Grom¥rom (for more details see [9]). After
transformation, the LSRs C and Eg; can be expressed as
T . gl ¥ _ .
C= ‘I’nom‘Pnam H ‘Pnom‘{’nnm - In+] > (] 7)
_ q QT
E/ﬁ - IMJrl - \I’aj,nam‘Pnom

where ‘T’aj_,mm is obtained by filtering ¥,,,,, using LSR of the
actual plant dynamics G;.

Proposition 1: For the set of possible actual plant dynamics
{G,4} and associated weights {4}, j =1, 2, ..., [, the metric J,
can be expressed in terms of the uncertainty and basis
functions as

PR A LN
J

F (18)
M+1 5 M +1

Proof: This proof first finds the metric J,; and then finds J.,
using Eq. (15). Based on Egs. (15) and (17),

J., =1-

"Efﬁ " = trace (EﬁpE 7 )
I T T
(IM 1 ‘I’aj,nmn nom )
=trace - .
(IM+1 - af,nom ~ nom )
‘7 w7
IM+1 - ‘I’a/,nom‘llnom
T T
=trace _‘Ilnom aj ,nom
J/ @ T i1 T
+‘Ilnnm ‘I’aj,nam T aj,nom T nom
(19)
IM +1
7 J T
- {\v +¥, }
nom aj—nom,nom nom
~ T
=lrace nom {‘I‘nom aj—nom,nom } >
‘I'nom {\I'nom aj—nom,nom §
{‘Pnam + Ta/ nom,nom } nom
~ A
\Paj—m}m,nom - ‘Paj,nom = X nom

Using the fact that trace is a linear mapping and is invariant
under cyclic permutations

e ’ (20)

F

(M +1)=(n+1)+|¥®

ol =
Substituting Eq. (20) in Eq. (15) gives

J, = ZAJJj
J=1

aj—nom,nom

(21
2
n+1 ! ||(Gq/' _Grmm)\llnom Ja
=1- +Y 4,
M+1 “F7 M +1
(End of Proof)
Remark 4: The metric can be expressed as
Jz = JL2 nom + JGZMIIL
2 A n+l1
Je,nam =1- M +1 (22)
2
(G, -G..)¥
Ny Z i nom nom F
Teane M +1

The imphcatlon is that the metric is the summation of two
components — nominal and uncertainty-related. The nominal
component is identical to the value of the metric in the absence
of the uncertainty (discussed in prior work [14]); it only



depends on the number of basis functions and is independent
of the plant dynamics and the choice of basis functions.
However, the uncertainty-related component depends on the
uncertainty, choice of nominal model and the type and number
of basis functions.

B. Optimal Selection of Basis Functions for Robust Tracking
Control

This section finds an optimal set of basis functions that
minimize the uncertainty-related component of the metric
Jeune, for a given value of the nominal component of the metric
Jenom. The procedure for optimal basis function selection is
outlined in Proposition 2.

Proposition 2: For the set of possible actual plant dynamics
{G4}, associated weights {4}, j =1, 2, ..., /, and nominal
model Gom, the n+1 basis functions W, that minimize J, .
are given by

W Z V W |:0(Mn)><(n+l)j|_

nom nom nom I
n+l

G, =V T W:

nom nom nom
— T.
A=V, I, W/
T
ATA

—ZJ, ( M+l T ;10»1) ( i —G Gnnm)

where V,wm, Xom and W,,, denote the left singular vector
matrix, singular value matrix and right singular vector matrix
of Giom, respectively. Similarly, Va, Xa and Wa denote the left
singular vector matrix, singular value matrix and right singular
vector matrix of A, respectively.

(23)

Proof: Using Egs. (17) and (22), the optimization problem
corresponding to Proposition 2 can be expressed as

nom

F

in| 2. Zl l(6,-G,.)¥

,,,,,,, M+1 (24)

s.t. ‘l’:am‘ilnom = ln+1
Note that the constraint is a result of the decoupling process
(Eq. (17)). The objective can be expressed in terms of ¥, as

follows

—1 W
||(Ga/ - Gnum )G)mm\[’num F

M +1
! ||(IM+1 _GajG;(l;m )‘anom ’
- ;ﬂf M+l )

Hence, the optimization problem given by Eq. (24) can be
re-written as

!
2
Je,unc - Zij
Jj=1

(25)

||(IM+1 _GajG;ulm )\i’num i
M +1

mm J?

(26)

1
e,unc z /1]
j=1

st WT 9o

nom = nom n+l

Using definition of Frobenius norm,

2

F

2/1, ||(IM+1 - Ga_[G;;m )‘NI’nom
j=

@7
oA -G,G,,
_ i trace nom”"j ( M +1 nom )
Jj=1 ( M +1 G G;mm ) nom
Using the fact that trace is a linear mapping
!
zlj (IM+1 G Gnum) nom ZF
Jj=1
trace(‘l’,mmATA‘I’nom ) “A‘I’,,om ; (28)

ATA

!
2341, -6,6.,) (1., -G,G,,)
j=1

Hencé, the optimization problem given by Eq. (26) can be
re-written as

)

F

mm J? =

rrrrr e,unc M T 1 (29)

s.t. ‘i,:()mli’nam = In+l
The solution to the optimization problem is the set of right
singular vectors of the matrix A, corresponding to its n+1

smallest singular values [23]

. 0
‘I’nnm = WA |: (MIH)X(H+]):|; A = VAZAWAT (30)
n+l
and the corresponding basis functions are
W ¥yt W 0(M—n)><(n+l) .
nom =" nom ° nom I,H] > (3 1)
GVI(I”'I = Vm)m Znum W’;l:"’ﬂ
The optimal value of the metric is given by
M+1 )
O (32)
JZ — i=M-n+1
e,unc M + 1

where {oai}, i =1, 2, ..., M+1, denote the singular values of
the matrix A in the descending order.

(End of Proof)

Remark S: If the nominal plant dynamics has NMP zeros or
more poles than zeros, then the LSR of the nominal plant G,om
has very small singular values, which might not be ideal for
inversion of X, and Guen. This undesirable inversion might
result in very high control inputs, as discussed in prior work
[23]. This issue can be resolved by imposing additional
constraints, to avoid the small singular values, in the
optimization problem. This situation will be investigated
further in future work.

Remark 6: Since, the choice of basis functions only affects
the uncertainty-related component and does not affect the
nominal component (Remark 4), the proposed optimal basis
functions are selected such that robust tracking is realized
without significantly affecting the nominal tracking accuracy
of FBF (Proposition 2). This is unlike many other robust



tracking controllers in the literature [19], [22], whose
improved robustness in tracking is achieved at the cost of
deterioration in nominal tracking accuracy.

1IV. EXAMPLE

To demonstrate the effectiveness of the proposed optimal
set of basis functions, this section uses a damped oscillator
with parametric uncertainty:

CU2

G(s)=—5—""T"";
(<) s’ +2lw,s+ o)

®, ., =200Hz, £, =001,

o, €[180, 220]Hz, ¢ [0.001, 0.1]

where w, and { denote the natural frequency and damping
ratio, and the subscript ‘nom’ denotes the nominal value. The
system in Eq. (33) is representative of the dynamics of a
vibration-prone 3D printer with uncertainty [11], [22]. The
system is sampled at 1 kHz. The set of actual plant dynamics
{Gg}, is generated by selecting / = 410 evenly distributed
realizations of the plant defined by Eq. (33) such that 4; = 1/L.
The nominal values of the plant parameters are used to
generate the filter G,om. The desired signal y, is a white noise
signal with zero mean and unit variance (M = 1000). The
choice of white noise for y, is because its broadband nature
eliminates biased results based on arbitrarily selected ya.
There is a wide choice in terms of the basis functions that can
be used with the FBF approach. This work uses discrete
cosine transform (DCT) [27], block pulse functions (BPF)
[28] and B-splines [29] for comparison with the proposed
optimal basis functions (the Appendix gives more details
about the basis functions).

(33)

Figure 2 shows the normalized RMS tracking error
erus/Yarus for DCT, BPF and B-splines and the proposed
optimal basis functions (obtained using Proposition 2), for
various numbers of basis functions (n = 10 to 990), using the
410 realizations of the actual plant dynamics G, described
above. The metrics used for comparison are the mean and
standard deviation of erus/yarus. It is observed that for all
values of n, the optimal basis functions result in minimum
values of mean and standard deviation as compared to DCT,
BPF and B-splines. For example, at n = 500, compared to
DCT, BPF and B-splines, the optimal basis functions result in
improvements in mean and standard deviations of eras/ya russ
by up to 1.5 times and 77 times, respectively. The nominal
values of erus/Yorus for DCT, BPF, B-spline and optimal
basis functions are 0.6686, 0.6708, 0.6662 and 0.6794,
respectively. This demonstrates that the significant
improvement in mean and standard deviations of ezys/yarus
is achieved without significantly affecting nominal tracking
accuracy of the FBF approach. It is also observed that the
tracking accuracy of the FBF approach, in the presence of
uncertainty, does not necessarily improve with increase in the
number of basis functions. This is unlike prior work [9], [23],
which showed that in the absence of uncertainty, increasing
the number of basis functions generally improves the tracking
accuracy of the FBF approach.

(a) DCT (b) BPF (c) B-splines
L5 +1o band
Mean
g
=
S
R
=
@
— = DCT — — BPF = = B-splines
E== Optimal E==Optimal E==—Optimal
0
0 500 1000 0 500 1000 0 500 1000

n n n
Fig. 2: Comparison of normalized RMS tracking error for optimal basis
functions, DCT, BPF and B-splines, in the presence of uncertainty, for various
values of number basis functions, n

V. CONCLUSION

This paper has proposed an optimal set of basis functions
for feedforward tracking control of uncertain plants, using the
FBF approach. By defining a robustness metric based on the
Frobenius norm of the LSR of error dynamics, the effect of
the uncertainty, basis functions and nominal plant model
(filter) on tracking accuracy is quantified. It is demonstrated
that, unlike the nominal tracking case studied in prior work,
the tracking accuracy of FBF in the presence of uncertainty
depends on the plant dynamics as well as basis functions.

An optimal set of basis functions that minimize the
uncertainty-related component, while maintaining the desired
level of nominal tracking is selected. The proposed basis
functions try to ensure that the deviation between the tracking
error due to the uncertainty and the nominal tracking error is
minimal. In many applications, this property of the proposed
basis functions could ensure that the uncertainty does not
affect tracking accuracy significantly, resulting in near
consistent tracking even in the presence of uncertainty. For
example, Fig. 2 shows that the standard deviation of the
normalized tracking error for the proposed optimal basis
functions is very small for a larger range of number of basis
functions as compared to popular basis functions such as
DCT, BPF and B-splines, for the damped oscillator example.

The results of this paper (e.g., Fig. 2) reveal that there is an
opportunity to maximize robustness using an optimal number
of basis functions along with the proposed optimal set of basis
functions. This opportunity will be explored in future work.
There is also an opportunity to explore the optimal selection
of filter using the Frobenius norm metric. Unlike prior work
on optimal filtering [22] which was restricted to LTI systems,
the use of the Frobenius norm metric will help in formulation
of a robust feedforward controller for other types of linear
systems, for example, LPV and LTV systems.

APPENDIX

The discrete cosine transform (DCT) is a frequency-based
transform that is widely used in signal processing; its basis
functions are real-valued cosines defined as [22]



1
—. 1
72k +1)i NM +1
(k)= p.cos| ———|; B = 4
@, (k)=p, (2(M+1)) B 5 (34)
— >0
M +1
The block pulse function (BPF) basis are given by
ke[ii,(i+l)£}0£i<n
n+l n+l
(k) =
a2 &ke[i M L },i:n (33)
n+l n+l
0 otherwise

The BPF expressed in Eq. (35) seeks to divide the time
interval from 0 to M among n+l basis functions in a
quasi-uniform manner.

For a B-spline of degree m, having n+1 < M+1 control
points (coefficients), yo, 1,

..., ¥n, and knot vector [7o 71 ...

Hmnr1]T, its real-valued basis functions, ¢;,,, are given by [29]
o (k) =9,,(S)

B
®.,(&) = 0

= ﬂ@,m-l (é) + M @ritm (5)
Diom =1, Mivma —Mint (36)

n <& <Ny
otherwise

where i =0, 1, ..., n with & < [0,1], representing normalized
time, discretized into M+1 points, &, &1 ...¢y, and #; is a
uniform knot vector, selected such that

[10]

0 0<j<m
j—m .
7 n—-m+l / (37)
1 n+l<j<m+n+l
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