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ABSTRACT

This paper proposes a robust filtered basis functions
approach for feedforward tracking of linear time invariant
systems with dynamic uncertainties. Identical to the standard
filtered basis functions (FBF) approach, the robust FBF
approach expresses the control trajectory as a linear
combination of user-defined basis functions with unknown
coefficients. The basis functions are forward filtered using a
model of the plant and their coefficients are selected to
minimize tracking errors. The standard FBF and robust FBF
approaches differ in the filtering process. The robust FBF
approach uses an optimal robust filter which is based on
minimization of a frequency domain based error cost function
over the dynamic uncertainty, whereas, the standard FBF
approach uses the nominal model. Simulation examples and
experiments on a desktop 3D printer are used to demonstrate
significantly more accurate tracking of uncertain plants using
robust FBF compared with the standard FBF.

1. INTRODUCTION

Tracking control is a fundamental problem encountered in
guiding the motion of systems involved in manufacturing,
robotics, aeronautics, and many other industries. The goal of
tracking control is to force the output trajectory to follow the
desired trajectory as closely as possible. The focus of this paper
is feedforward tracking control of linear time invariant (LTT)
systems with dynamic uncertainties.

Perfect tracking control (PTC) can be achieved, in theory,
by model inversion (i.e., pole-zero cancellation) [1]. PTC
results in zero phase and gain errors between the desired and
output trajectories, if the plant model is accurate and has a
stable inverse. However, when applied to plants with
nonminimum phase (NMP) zeros, PTC gives rise to highly
oscillatory or wunstable control trajectories which are
unacceptable. NMP zero are prevalent in practice. For example,
they occur in plants with fast sampling rates [2], as well as in
plants with noncollocated placement of sensors and actuators
[3]. Hence, a lot of research has been done on developing
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methods for feedforward tracking control of plants with NMP
zeros [4-9].

Recent work by the authors and others [8,10,11] have
focused on the filtered basis functions (FBF) approach for
feedforward tracking control of NMP systems. The FBF
approach can be traced back to work done by Frueh and Phan
on plant model inversion in the context of iterative learning
control [12]. It assumes that the entire desired trajectory is
known a priori and the control input is a linear combination of
user-defined basis functions with unknown coefficients. The
basis functions are forward filtered through a nominal model of
the plant dynamics and the coefficients are selected such that
the tracking error is minimized. Unlike many other methods in
the literature, the FBF method is also applicable to
nonhyperbolic plants (e.g., plants with zero(s) on the unit circle
in the z-plane). The tracking performance of the FBF approach
does not change significantly with the location of the NMP zero
in the z-plane [13], which does not hold for most other tracking
controllers. The assumption related to knowledge of the entire
desired trajectory was also relaxed using limited preview
filtered B-splines (LPFBS) approach [14]. However, since the
standard FBF approach relies on a model of the plant, in the
presence of uncertainties its accuracy might deteriorate
severely.

In their prior work [15], the authors proposed the
regularized filtered basis functions approach to improve the
accuracy of FBF in the presence of bounded random
uncertainties. The regularized FBF approach formulated the
coefficient selection problem as a constrained game-type
problem where the control objective is to minimize the tracking
error in the presence of uncertainties. The solution to the
regularized FBF approach is obtained by solving a set of
nonlinear coupled equations which is cumbersome as compared
to the elegant least squares solution of the FBF approach. For
example, the regularized FBF approach is not amenable to the
LPFBS algorithm, which is a computationally efficient
implementation of the FBF method [14]. An approach that
improves robustness of FBF and retains the elegance associated
with least squares solution of FBF is therefore desirable. This is

Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 04/03/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



achieved in this paper by replacing the nominal plant model
used in standard FBF with a filter which is designed to
minimize the effects of dynamic uncertainties on the tracking
performance of the FBF approach.

Optimal robust feedforward controllers have been studied
in the literature [16,17]. For example, Wu & Zou [16] proposed
a gain modulated inversion based controller to minimize the
worst-case tracking error in the presence of dynamic
uncertainty, which imposes bounds on both magnitude and
phase of the uncertainty. Lunenburg [17] discussed an optimal
feedforward controller that minimized (in an average sense) the
tracking error in frequency domain using a conventional
multiplicative uncertainty framework which bounds only the
magnitude of the uncertainty. The above mentioned methods
[16,17] realized their controllers using a direct inversion
method [18]. However, the method [18] is not applicable to
nonhyperbolic plants, whereas the FBF approach is.

Therefore, this paper makes the following contributions to
the literature:

1. The conventional multiplicative uncertainty framework
[17], which considers bound on only magnitude, is
conservative and hence, this paper considers an alternate
dynamic uncertainty framework, which factors in bounds
on both magnitude and phase. An optimal feedforward
controller that minimizes the tracking error in frequency
domain, in the presence of dynamic uncertainties, is
designed.

2. The inverse of the optimal feedforward controller is used
to filter the basis functions and to obtain the filtered basis
functions. The coefficients are selected such that the
tracking error is minimized in a least squares sense. The
resultant method is a more robust version of the standard
FBF approach and is denoted as the robust FBF approach.

The effectiveness of the robust FBF approach as compared
to the standard FBF approach is demonstrated using
simulations and experiments on a desktop 3D printer. This
paper is organized as follows. Section 2 gives an overview of
the standard FBF approach. Section 3 then introduces the
robust FBF approach. Section 4 compares the standard FBF and
robust FBF approaches using simulation examples and
experiments, followed by conclusions and future work in Sec.
5.

2. OVERVIEW OF THE STANDARD FILTERED BASIS
FUNCTIONS APPROACH

Consider the discrete-time linear time invariant (LTI)
single input single output (SISO) plant G(z) shown in Fig. 1,
augmented with a tracking controller, C(z), with overall
dynamics L(z) = C(z)G(z) and error dynamics Ejz) = 1 —
C(z)G(2). The plant G(z) could represent the transfer function of
a plant or a closed-loop controlled system [19]. Given a desired
trajectory, ya(k), where 0 <k <M, k € Z and M+1 is the number
of discrete points in the trajectory, the objective of the tracking
controller C(z) is to produce a signal u(k), which after passing

through G(z), results in an output trajectory y(k) that follows the
desired trajectory ya(k) as closely as possible.

;
vk —H Ce)

G(2) | y(k)

Figure 1: Block diagram for tracking control
The FBF approach assumes that:

a) the desired trajectory yq(k) is known a priori, which is often
the case in manufacturing, robotics and aeronautics
applications [20]

b) the control signal u(k) is expressed as a linear combination
of basis functions, as follows

u(k) = Zw %) 0

where @(k) and y; are the user-defined basis functions and their
coefficients, respectively. The control input vector u = [u(0)
u(1) ... u(M)]" can be expressed as

u=ay @

where
=9, ¢ ... 9]
0, =[0.(0) @) o,(M)]'

The resulting output trajectory y = [»(0) y(1) ... ¥(M)]T can be
expressed as a linear combination of filtered basis functions

y =0y 4)

where @ is a (M+1)x(nt+1) matrix whose columns @, are

3)

obtained by filtering @; using a nominal model, Guom, of the
plant G, as shown in Fig. 2. The implication is that the tracking
error vector, e, can be expressed as

e=y,-®y 5)
where ys = [ya(0) ya(1) ... ya(M)]". The coefficients y are

selected such that an objective function J, representing the 2-
norm of the tracking error, is minimized; i.e.

min| J = e, =@y -y, | ©)
the result is an optimal coefficient vector, y, given by
y=(®'®) @'y, (7)

Remark 1: The standard FBF approach assumes that Guom = G,
i.e., the nominal model matches the plant perfectly. Hence, Ey=
1 — CGuom and minimal Ej; can be realized using optimal
controller Copr = Gruom'. To approximate Gyon !, the standard
FBF approach uses Guon to filter the basis functions.

3. ROBUST FILTERED BASIS FUNCTIONS
APPROACH FOR TRACKING CONTROL

The previous section assumes that the nominal model,
Guom, 18 a perfect representation of the actual plant, G.
However, in practice, Guom # G, due to uncertainties. In the
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Figure 2: Flowchart for the standard FBF approach

presence of dynamic uncertainties, the actual plant can be
expressed as

G(e™") = Ae"™")G,, (") (8)

based on the substitution z = /" | where ; is the unit imaginary

number, o is frequency in rad/s and 7 is the sampling time in
seconds. The other variables appearing in Eq. (8) are given by

A" ) = r(e’™) /0™
@y <rE)<r,, (")

0, )<0(e )<, (") 9)
l<r, (e/")y<ow, 0<r, (e/")<1

0, .")>0, 0. ("")<0

min

7

min

A denotes the uncertainty and r and 6 are the magnitude and
phase of the uncertainty, respectively.

As described in remark 1, in the absence of uncertainties,
the standard FBF approach uses inverse of the optimal
controller, i.e., Guom, to filter the basis functions. In the
presence of dynamic uncertainties (given by Eq. (9)), the
optimal controller is the one that minimizes the following cost
function (at each frequency w)

‘max T

Omax Tmax
J,= [ | f0.0E,E}rdrdo (10

0,

‘min Ty

where

nom

E, =1-CAG (1)

and f(r,0) is the distribution of the dynamic uncertainty w.r.t. to
magnitude r and phase 6 of the uncertainty, at each frequency
. Note that, for simplicity, the dependence of f(r,0), Ey, r, 0,

Fmaxs Fminy Omar and i on €™ is not explicitly shown in Egs.
(10) and (11), and the following equations. The superscript *
denotes complex conjugate. The optimal controller can be
obtained by differentiating J, w.r.t. C* and is given by

G 1,

j j F(r,0)A rdrd6
-1 Onin Tin
Cn=6G (12)

70N 65 Tnge

j j £(r,0)AAN rdrd0

Ormin Tnin

and hence, the filter for robust FBF is given by

gj j £(r,0)AAN rdrd@
O v Tosin

Gr = CI:P]t = Gnom :;,[,’:,,r "rmur (13)
[ ] s rara
Opin Tinin

If data about the distribution of uncertainty at each
frequency is available, then f{r,f) can be used to improve the
performance of the optimal controller. Without loss of
generality, in the rest of this paper it is assumed that f{7,0) = 1,
i.e., the uncertainty is uniformly distributed. Substituting f{r,6)
=11in Eq. (13) gives

4 4
G _ G é rmax B rmin Hmax - Hmin
r = “~nom 4 3 3 . —jo — 6, (14)
i =T (€7 =)

The robust filtered basis functions approach filters the

user-defined basis functions @; using G, (instead of G.n used
by the standard FBF approach), to obtain the filtered basis
functions @, . The coefficients are then obtained using the least
squares solution given by Eq. (7).
Remark 2: The optimization approach presented above has
been used by Lunenburg [17] to find an optimal controller for
conventional multiplicative uncertainties, which consider
bounds on only the magnitude of the uncertainty. The analysis
in this section extends the approach to an alternate dynamic
uncertainties framework given by Eq. (9). Wu & Zou [16]
designed an optimal controller in the presence of dynamic
uncertainties (given by Eq. (9)) using worst case optimization
but assumed a gain modulated inversion structure for the
controller. Eq. (14) shows that the optimal controller results in
both gain and phase modulations of the inverse of the nominal
plant.

Typically, during system identification, frequency response
functions (FRFs) are generated for different operating
conditions. There are various methods to select the nominal
model based on the FRFs, for example, selecting any one of the
FRFs as the nominal model [14] or using the average of the
FRFs as the nominal model [16]. For a given dynamic
uncertainty and its distribution, the robust filter (used by robust
FBF) is independent of the choice of the nominal model. This is
because the robust filter is a result of optimization over the
entire uncertainty and invariance of the uncertainty ensures
invariance of the robust filter. To prove this, consider two
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different nominal models, A and B. The resulting robust filters,
based on Eq. (14), are given by

4 4
JGrom 4 é rmax,A _rmin,A Hmax,A -

o

min, A

3 3 oS Onaxa =/ Orin.a
4 rmax,A rmin,A ] (@ —e '

Gr,A = r)mm,Ae

nom, A
C e g (15)
G = JOom 5 é Voaxg ~ Dnin max,8 —_ “min,B
r8 = Lnom.s 477 3 oy IOus _ O
G max,B min, B ] e —e
nom,B
where

rrmm,A rmax,A = rnum,Brmax’B
rnom,Armin,A = rnom,Brmin,B (16)
gnom,/l + emax,/l = enom,B + amax,B
Hnom,A + emfn,A = elmm,B + emin,B

Based on Egs. (8) and (9), the conditions given by Eq. (16)
ensure that the uncertainty region does not change with choice
of nominal model. Consider the robust filter for nominal model
A

4 4
G E rmax,A - rmin,A emax,A - gmin,A
r,A

=—r
nom, A 3 3 _i(e 0
4 rmam —_ r;nin,A le J( max, 4 T nnm,A) (17)

T O+ Oum)

—e

Based on Eq. (16),

e_j(gmur,A +6riom .4) _ e_j('g,mu 4 *'gm,m,A)
(18)

o O +Oroms) __ = Orinis +Orom )

Also based on Eq. (16),
9 6 = (emax,A + Hnam,A )_ (Hrmm,A + Hmin,A )

max, A - min, A
= (emax,B + gnom,B ) - (enom,B + gmin,B ) (19)
=0 o

max,B min, B

Hence,
7 rt 6 o

min, A max,B min,B

G — %7" max, A eiH,mm‘H (20)

rA4 nom,A 3 3 —_i6 —i0
— ; Jmax, JCnin,
rmax,A rm[n,A ] ( e max.B _ e ‘min,B )

Consider

4 4
rmax,A B rm[n,A
r)‘mm,A 3 3

max, A - rmin,A

2 2

(}’;nux,A - rmin,A )(rmax,A + rmin,A )(rmux,A + rmin,A )

- rrmm,A 2 2
(rmax,A - rmin,A )(r;nax,A + rmax,Armin’A + rmin,A )
¥ 2 + 2
rmzm,A rmux,A rrmm,A rmin,A rmax,A rmin,A

- 2 2 21

(r +r r +7 ) ( )

max, A max, A" min, A min, A

2
7
max, 4
(rnom‘A rmax’A + rnom,A rmin,A ) [ J +1

7

min, A

2
5 max, A + rmax,A + 1
rm[n,A rmin,A

Based on Eq. (16),

r

max,A __ " max,B
e (22)
rmin,A rmin,B
hence,
2
r
max, A
(rnnm,Armux,A + rrmm,A }/;m'n,A ) + 1
rmin,A
2
rmax,A + rmax,A + 1
rmin,A rmin,A
2
+ rmax,B + 1 (23)
rnom,Brmax,B rnam,Brmin,B
v .
min, B
- 2
rmax,B + rmax,B + 1
rmin,B rmin,B
4 4
_ rmax,B ~ "min,B
- rnum,B 3 3
max,B - rmin,B
Substituting Eq. (23) in Eq. (20) gives
4 4
G _ z rmax,B B rmin,B gmax’B B HmimB JCrom.
rA T rnom,B 3 3 . -6, —jo, €
4 7 —r JmaxB JOin
max,B minB J | € —€
4 4
3 10 rom B r;nux,B - rmin,B Hmux,b' - emin,b' (24)

J
=—r e
nom,B 3 3 . —j6, —-Jjé,
— JOnax, JCnin,
4 rmax,B rmin,B J (e " —e i )

= Gr,B

Hence, for a given uncertainty, the robust filter is independent
of the choice of the nominal model. Therefore, selection of the
nominal model will only affect the performance of the standard
FBF and not the robust FBF. The proposed robust FBF
approach provides a more methodical approach to the filtering
process, in the presence of uncertainties, as compared to the
arbitrary selection of nominal model by the standard FBF.

4. EXAMPLES

This section compares robust FBF with the standard FBF
approach using simulations and experiments on a HICTOP
Prusa i3 desktop 3D printer, shown in Fig. 3. Figure 4 shows
the four measured FRFs for the y-axis of the 3D printer. The
FRFs are obtained by applying swept sine acceleration signals
(with amplitudes ranging from 2 m/s? to 5 m/s?) to the printer’s
stepper motors (each having 12.5 um stepping resolution) and
measuring the relative acceleration of the build platform and
print head using accelerometers (PCB Piezotronics 393B05 and
Y356A63). The maximum, minimum and nominal FRFs
(shown in Fig. 5) are the maximum, minimum and average of
the four FRFs at each frequency, respectively. The FRF for the
robust filter is obtained using Eq. (14). To avoid errors
associated with fitting a transfer function [14], a frequency
domain approach is used to filter the basis functions through
the nominal and robust FRFs. The frequency domain approach
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uses fft and ifft commands in MATLAB® to filter the basis
functions through the dynamics.

Build
platform

330 mm

Figure 3: Commercial desktop 3D printer (HICTOP Prusa
i3)
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Figure 4: Frequency response functions of y-axis of the 3D
printer for various magnitudes of excitation input
(acceleration)
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Figure 5: Nominal model (Nom) used for standard FBF
with maximum (Max) and minimum (Min) bounds of

uncertainty region, the robust filter (Robust) for robust
FBF

4.1. SIMULATIONS

As discussed in Secs. 2 and 3, the basis functions are user-
defined and there is a wide range of basis functions available
for uses with the standard FBF and robust FBF methods; e.g.,
Laguerre functions [21], wavelets [22], B-splines [10], etc. This
paper, uses two rudimentary basis functions: (i) discrete cosine
transform (DCT) [23] and (ii) block pulse functions (BPF) [24].
The DCT is a frequency-based transform that is widely used in
signal processing; its basis functions are real-valued cosines
defined as [23]

- 72k +1Di
1
=0 2
B - M +1 l (23)
i>0

M +1
The BPF basis functions are given by

keli M ,(i+1)£j,0£i<n
| n+1 n+1

@i (k) = (26)

M M
& ke|li—,(i+1)—|,i=
n+l1 n+l1
0 otherwise

The BPF expressed in Eq. (26) seeks to divide the time interval
from 0 to M among n+1 basis functions in a quasi-uniform
manner.

For comparison of robust FBF with standard FBF, four
sinusoids with frequencies 30 Hz, 35 Hz, 40 Hz and 45 Hz are
used as desired trajectories. The length of each desired
trajectory is 5 seconds, resulting in 5001 discrete points (i.e., M
= 5000) based on Ty = 1 millisecond. Figure 6 compares the
normalized RMS tracking error (erass/yarus) for the standard
FBF and robust FBF approaches, each for 1000 -cases
(randomly generated with uniform distribution to span the
uncertainty region described in Fig. 5); the desired trajectory is
a 45 Hz sinusoid and n = 1000 for both DCT and BPF. For both
DCT and BPF, it is seen that robust FBF performs better than
standard FBF. Table 1 shows the mean normalized RMS
tracking errors of the standard and robust FBF (using DCT and
BPF, n = 1000) for all the four desired trajectories. For all
cases, robust FBF performs better than standard FBF and the
percentage improvement in mean(erus/Yarms) varies from
8.46% to 30.38%. Also shown in Tab. 1 is the success rate of
robust FBF as compared to standard FBF. The success rate
performs a one-on-one comparison between robust FBF and
standard FBF for each of the 1000 cases and denotes the
number of times robust FBF performs better than standard FBF
in terms of erus/yarms. For the results shown in Fig. 6, the
success rate of RFBF is 69.1% (see Tab. 1), for both BPF and
DCT, which implies that for 691 of the 1000 cases, erus/Ya rus
for robust FBF is lower than erys/ysrus for standard FBF. A
success rate higher than 50% for robust FBF as compared to
standard FBF, for all desired trajectories, demonstrates that the
robust FBF approach is more effective than standard FBF over
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Table 1: Comparison of mean normalized RMS tracking errors of standard FBF and robust FBF for four sinusoidal desired
trajectories using 1000 cases with dynamic uncertainties, DCT and BPF basis functions (n = 1000). Also, shown is the success
rate of robust FBF as compared to standard FBF

Desired DCT BPF
trajectory mean(eras/yd,rus) % Improvement in % Success mean(ers/yd,rus) % Improvement in % Success
frequency  standard robust mean(ers/'ya,rus) rate of FBF RFBF mean(eras'yd,rums) rate of
[Hz] FBF FBF using robust FBF robust using robust FBF robust
as compared to FBF as compared to FBF
standard FBF standard FBF
30 0.1077 0.0975 9.49 56.9 0.1077 0.0975 9.49 56.9
35 0.1283 0.1175 8.46 65.1 0.1283 0.1175 8.46 65.1
40 0.3947 0.3073 22.15 62.8 0.3947 0.3073 22.15 62.8
45 0.5365 0.3735 30.38 69.1 0.5365 0.3735 30.38 69.1
a wider region of the dynamic uncertainty. So far, the examples
used a constant value of n = 1000. The next case considers the ___2332 ?gg E;SFT))
effect of number of basis functions on the performance of g %8r wg | standard FBE (DCT)
robust FBF and standard FBF. --=-standard FBF (BPF)
(a) DCT (b) BPF
1.5 1.5
il
g 1 1 0 ‘ ‘ ‘
= 100 500 1000 1500 2000
3:4 n
ﬁ 05 05 Figure 7: Effect of number of basis functions (DCT and
BPF) on mean normalized tracking error performance for
standard FBF and robust FBF using 45 Hz sinusoidal
0 0 desired trajectory and 1000 realizations of the actual plant

standard robust standard robust

Figure 6: Bee-swarm plots comparing normalized RMS
tracking errors of standard FBF and robust FBF for a 45
Hz sinusoidal desired trajectory using 1000 realizations of

the actual plant using: (a) DCT and (b) BPF basis functions
(both with n =1000)

In the absence of uncertainty, the performance of standard
FBF, in general, improves with increase in number of basis
functions and the tracking error converges to 0 as #n tends to M.
DCT converges monotonically, whereas, BPF does not
converge monotonically [8]. Figure 7 shows mean(ezs/ya rus)
for robust FBF and standard FBF with DCT and BPF, each for
1000 cases (same as the previous case) as the number of basis
functions is varied. The desired trajectory is a 45 Hz sinusoidal
signal with M = 5000. As the number of basis functions is
increased, mean(erys/yqrus) for standard FBF using BPF as
well as DCT converges to non-zero values. The difference in
converged values for DCT and BPF is negligibly small. A
similar behavior is observed for robust FBF and the converged
values for robust FBF are lower than the converged values for
standard FBF (the values are also shown in Tab. 1). Using DCT,
for standard FBF as well as robust FBF, the convergence is
monotonic, whereas, for BPF the convergence is not
monotonic.

4.2. EXPERIMENTS

The standard FBF and robust FBF approaches, with DCT
basis functions (n = 1000, M = 5000), are compared using
experiments on a HICTOP Prusa i3 desktop 3D printer. Since
accelerometers are used as sensors, 45 Hz acceleration signals
with varying amplitudes (amplitudes varying from 2 m/s? to 5
m/s? in increments of 0.1 m/s?) are used as desired trajectories
for tracking. The wvariation in amplitude of the desired
acceleration signals ensures that a significant portion of the
uncertainty (shown in Fig. 5) is spanned. Figure 8 compares the
normalized RMS tracking error (erass/yarus) for the standard
FBF and robust FBF approaches. The mean normalized RMS
tracking error mean(egus/yarms) for standard FBF and robust
FBF are 0.8559 and 0.3604, respectively. The percentage
improvement in robust FBF as compared to the standard FBF
approach is 57.90% and the success rate is 93.54% (robust FBF
performs better than standard FBF in 29 out of 31 cases). The
experimental results demonstrate the effectiveness of robust
FBF as compared to standard FBF. Note that robust FBF
performance as compared to standard FBF is better in
experiments then in simulations. This could be attributed to the
fact that a large number of uniformly distributed uncertain plant
realizations can be generated in simulations, whereas, in
experiments the number of realizations of the plant is small and
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might not be uniformly distributed. Hence, the difference
between simulation and experimental results.
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Figure 8: Bee-swarm plots comparing normalized RMS
tracking errors of standard FBF and robust FBF in
experiments; the desired trajectory is a 45 Hz sinusoid
generated using 31 realizations of the dynamics of the 3D
printer (obtained by varying the acceleration levels); DCT
basis functions (with » = 1000) are used.

5. CONCLUSIONS AND FUTURE WORK

This paper has proposed a robust filtered basis functions
approach for tracking control of systems with dynamic
uncertainty. The standard filtered basis functions approach uses
the nominal model of the plant for filtering. Conversely, the
proposed robust FBF approach designs a robust filter for a
given uncertainty and its distribution. It is shown analytically
that the robust filter does not depend on the choice of the
nominal model.

Although the user is free to select any suitable set of basis
functions for use with robust FBF, this paper uses the discrete
cosine transform (DCT) and block pulse functions (BPF) to
compare the standard FBF and robust FBF approaches, using
four different sinusoidal desired trajectories. The robust FBF
approach is shown to be much more effective than the FBF
approach for tracking the uncertain plant. The effect of the
number of basis functions on tracking accuracy is also explored
and it is observed that robust FBF performs better than FBF for
varying number of basis functions. The standard and robust
FBF approaches are also compared using experiments on a
desktop 3D printer. The experiments also demonstrate the
effectiveness of robust FBF as compared to standard FBF.
Future work will focus on finding an optimal set of basis
functions for tracking systems with dynamic uncertainty.
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