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ABSTRACT
This paper proposes a robust filtered basis functions 

approach for feedforward tracking of linear time invariant 
systems with dynamic uncertainties. Identical to the standard 
filtered basis functions (FBF) approach, the robust FBF 
approach expresses the control trajectory as a linear 
combination of user-defined basis functions with unknown 
coefficients. The basis functions are forward filtered using a 
model of the plant and their coefficients are selected to 
minimize tracking errors. The standard FBF and robust FBF 
approaches differ in the filtering process. The robust FBF 
approach uses an optimal robust filter which is based on 
minimization of a frequency domain based error cost function 
over the dynamic uncertainty, whereas, the standard FBF 
approach uses the nominal model. Simulation examples and 
experiments on a desktop 3D printer are used to demonstrate 
significantly more accurate tracking of uncertain plants using 
robust FBF compared with the standard FBF. 

1. INTRODUCTION
Tracking control is a fundamental problem encountered in

guiding the motion of systems involved in manufacturing, 
robotics, aeronautics, and many other industries. The goal of 
tracking control is to force the output trajectory to follow the 
desired trajectory as closely as possible. The focus of this paper 
is feedforward tracking control of linear time invariant (LTI) 
systems with dynamic uncertainties. 

Perfect tracking control (PTC) can be achieved, in theory, 
by model inversion (i.e., pole-zero cancellation) [1]. PTC 
results in zero phase and gain errors between the desired and 
output trajectories, if the plant model is accurate and has a 
stable inverse. However, when applied to plants with 
nonminimum phase (NMP) zeros, PTC gives rise to highly 
oscillatory or unstable control trajectories which are 
unacceptable. NMP zero are prevalent in practice. For example, 
they occur in plants with fast sampling rates [2], as well as in 
plants with noncollocated placement of sensors and actuators 
[3]. Hence, a lot of research has been done on developing 

methods for feedforward tracking control of plants with NMP 
zeros [4–9]. 

Recent work by the authors and others [8,10,11] have 
focused on the  filtered basis functions (FBF) approach for 
feedforward tracking control of NMP systems. The FBF 
approach can be traced back to work done by Frueh and Phan 
on plant model inversion in the context of iterative learning 
control [12]. It assumes that the entire desired trajectory is 
known a priori and the control input is a linear combination of 
user-defined basis functions with unknown coefficients. The 
basis functions are forward filtered through a nominal model of 
the plant dynamics and the coefficients are selected such that 
the tracking error is minimized. Unlike many other methods in 
the literature, the FBF method is also applicable to 
nonhyperbolic plants (e.g., plants with zero(s) on the unit circle 
in the z-plane). The tracking performance of the FBF approach 
does not change significantly with the location of the NMP zero 
in the z-plane [13], which does not hold for most other tracking 
controllers. The assumption related to knowledge of the entire 
desired trajectory was also relaxed using limited preview 
filtered B-splines (LPFBS) approach [14]. However, since the 
standard FBF approach relies on a model of the plant, in the 
presence of uncertainties its accuracy might deteriorate 
severely. 

In their prior work [15], the authors proposed the 
regularized filtered basis functions approach to improve the 
accuracy of FBF in the presence of bounded random 
uncertainties. The regularized FBF approach formulated the 
coefficient selection problem as a constrained game-type 
problem where the control objective is to minimize the tracking 
error in the presence of uncertainties. The solution to the 
regularized FBF approach is obtained by solving a set of 
nonlinear coupled equations which is cumbersome as compared 
to the elegant least squares solution of the FBF approach. For 
example, the regularized FBF approach is not amenable to the 
LPFBS algorithm, which is a computationally efficient 
implementation of the FBF method [14]. An approach that 
improves robustness of FBF and retains the elegance associated 
with least squares solution of FBF is therefore desirable. This is 
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achieved in this paper by replacing the nominal plant model 
used in standard FBF with a filter which is designed to 
minimize the effects of dynamic uncertainties on the tracking 
performance of the FBF approach. 

Optimal robust feedforward controllers have been studied 
in the literature [16,17]. For example, Wu & Zou [16] proposed 
a gain modulated inversion based controller to minimize the 
worst-case tracking error in the presence of dynamic 
uncertainty, which imposes bounds on both magnitude and 
phase of the uncertainty. Lunenburg [17] discussed an optimal 
feedforward controller that minimized (in an average sense) the 
tracking error in frequency domain using a conventional 
multiplicative uncertainty framework which bounds only the 
magnitude of the uncertainty. The above mentioned methods 
[16,17] realized their controllers using a direct inversion 
method [18]. However, the method [18] is not applicable to 
nonhyperbolic plants, whereas the FBF approach is.

Therefore, this paper makes the following contributions to 
the literature:
1. The conventional multiplicative uncertainty framework 

[17], which considers bound on only magnitude, is 
conservative and hence, this paper considers an alternate 
dynamic uncertainty framework, which factors in bounds 
on both magnitude and phase. An optimal feedforward 
controller that minimizes the tracking error in frequency 
domain, in the presence of dynamic uncertainties, is 
designed.

2. The inverse of the optimal feedforward controller is used 
to filter the basis functions and to obtain the filtered basis 
functions. The coefficients are selected such that the 
tracking error is minimized in a least squares sense. The 
resultant method is a more robust version of the standard 
FBF approach and is denoted as the robust FBF approach.                    
The effectiveness of the robust FBF approach as compared 

to the standard FBF approach is demonstrated using 
simulations and experiments on a desktop 3D printer. This 
paper is organized as follows. Section 2 gives an overview of 
the standard FBF approach. Section 3 then introduces the 
robust FBF approach. Section 4 compares the standard FBF and 
robust FBF approaches using simulation examples and 
experiments, followed by conclusions and future work in Sec. 
5.         

2. OVERVIEW OF THE STANDARD FILTERED BASIS 
FUNCTIONS APPROACH  

Consider the discrete-time linear time invariant (LTI) 
single input single output (SISO) plant G(z) shown in Fig. 1, 
augmented with a tracking controller, C(z), with overall 
dynamics L(z) = C(z)G(z) and error dynamics Eff(z) = 1 – 
C(z)G(z). The plant G(z) could represent the transfer function of 
a plant or a closed-loop controlled system [19]. Given a desired 
trajectory, yd(k), where 0 ≤ k ≤ M, k   and M+1 is the number 
of discrete points in the trajectory, the objective of the tracking 
controller C(z) is to produce a signal u(k), which after passing 

through G(z), results in an output trajectory y(k) that follows the 
desired trajectory yd(k) as closely as possible.

Figure 1: Block diagram for tracking control 
The FBF approach assumes that: 

a) the desired trajectory yd(k) is known a priori, which is often 
the case in manufacturing, robotics and aeronautics 
applications [20]

b) the control signal u(k) is expressed as a linear combination 
of basis functions, as follows

 
0
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n

i i
i

u k k (1) 

where φi(k) and γi are the user-defined basis functions and their 
coefficients, respectively. The control input vector u = [u(0) 
u(1) … u(M)]T can be expressed as 

u Φγ (2) 
where
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The resulting output trajectory y = [y(0) y(1) … y(M)]T can be 
expressed as a linear combination of filtered basis functions  

y ΦγΦγ (4)

where ΦΦ is a (M+1)×(n+1) matrix whose columns iφiφ  are 
obtained by filtering φi using a nominal model, Gnom, of the 
plant G, as shown in Fig. 2. The implication is that the tracking 
error vector, e, can be expressed as 

de y ΦγΦγ (5)

where yd = [yd(0) yd(1) … yd(M)]T. The coefficients γ are 
selected such that an objective function J, representing the 2-
norm of the tracking error, is minimized; i.e.  

2 2
min dJ
γ

e Φγ y
2dd (6)

the result is an optimal coefficient vector, γ, given by 
1T T

dγ Φ Φ Φ y
1 T1

dΦ yT (7)

Remark 1: The standard FBF approach assumes that Gnom = G,
i.e., the nominal model matches the plant perfectly. Hence, Eff =
1 – CGnom and minimal Eff can be realized using optimal 
controller Copt = Gnom

–1. To approximate Gnom
–1, the standard 

FBF approach uses Gnom to filter the basis functions.

3. ROBUST FILTERED BASIS FUNCTIONS 
APPROACH FOR TRACKING CONTROL 
The previous section assumes that the nominal model, 

Gnom, is a perfect representation of the actual plant, G. 
However, in practice, Gnom ≠ G, due to uncertainties. In the 

L(z)

C(z) G(z)yd(k) y(k)u(k)
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Figure 2: Flowchart for the standard FBF approach
presence of dynamic uncertainties, the actual plant can be 
expressed as 

( ) ( ) ( )s s sj T j T j T
nomG e e G e (8)

based on the substitution sj Tz e , where j is the unit imaginary 
number, ω is frequency in rad/s and Ts is the sampling time in 
seconds. The other variables appearing in Eq. (8) are given by 

( )( ) ( )
( ) ( ) ( )
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s s
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j T j T j T
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max min

j T j T
max min
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e e e

r e  r e

e  e

(9)

Δ denotes the uncertainty and r and θ are the magnitude and 
phase of the uncertainty, respectively. 

As described in remark 1, in the absence of uncertainties, 
the standard FBF approach uses inverse of the optimal 
controller, i.e., Gnom, to filter the basis functions. In the 
presence of dynamic uncertainties (given by Eq. (9)), the 
optimal controller is the one that minimizes the following cost 
function (at each frequency ω)   

*( , )
max max

min min

r

r ff ff
r

J f r E E rdrd (10)

where  
1ff nomE C G (11)

and f(r,θ) is the distribution of the dynamic uncertainty w.r.t. to 
magnitude r and phase θ of the uncertainty, at each frequency 
ω. Note that, for simplicity, the dependence of f(r,θ), Eff, r, θ,
rmax, rmin, θmax and θmin on sj Te is not explicitly shown in Eqs. 
(10) and (11), and the following equations. The superscript *

denotes complex conjugate. The optimal controller can be 
obtained by differentiating Jr w.r.t. C* and is given by 

*

1

*

( , )

( , )

max max

min min

max max

min min

r

r
opt nom r

r

f r rdrd
C G

f r rdrd
(12)

and hence, the filter for robust FBF is given by 

*

1

*

( , )

( , )

max max

min min

max max

min min

r

r
r opt nom r

r

f r rdrd
G C G

f r rdrd

1
optC G1
optopt (13)

If data about the distribution of uncertainty at each 
frequency is available, then f(r,θ) can be used to improve the 
performance of the optimal controller. Without loss of 
generality, in the rest of this paper it is assumed that f(r,θ) = 1, 
i.e., the uncertainty is uniformly distributed. Substituting f(r,θ)
= 1 in Eq. (13) gives  

4 4

3 3

3
4 max min

max min max min
r nom j j

max min

r r
G G

r r j e e (14)

The robust filtered basis functions approach filters the 
user-defined basis functions φi using Gr (instead of Gnom used 
by the standard FBF approach), to obtain the filtered basis 
functions iφiφ . The coefficients are then obtained using the least 
squares solution given by Eq. (7). 
Remark 2: The optimization approach presented above has 
been used by Lunenburg [17] to find an optimal controller for 
conventional multiplicative uncertainties, which consider 
bounds on only the magnitude of the uncertainty. The analysis 
in this section extends the approach to an alternate dynamic 
uncertainties framework given by Eq. (9). Wu & Zou [16] 
designed an optimal controller in the presence of dynamic 
uncertainties (given by Eq. (9)) using worst case optimization 
but assumed a gain modulated inversion structure for the 
controller. Eq. (14) shows that the optimal controller results in 
both gain and phase modulations of the inverse of the nominal 
plant. 

Typically, during system identification, frequency response 
functions (FRFs) are generated for different operating 
conditions. There are various methods to select the nominal 
model based on the FRFs, for example, selecting any one of the 
FRFs as the nominal model [14] or using the average of the 
FRFs as the nominal model [16]. For a given dynamic 
uncertainty and its distribution, the robust filter (used by robust 
FBF) is independent of the choice of the nominal model. This is 
because the robust filter is a result of optimization over the 
entire uncertainty and invariance of the uncertainty ensures 
invariance of the robust filter. To prove this, consider two 

3 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 04/03/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



different nominal models, A and B. The resulting robust filters,
based on Eq. (14), are given by 

4 4

3 3

4 4

3 3

3
4

3
4

nom ,A

max,A min,A

nom ,B

max,B min,B

j max,A min,A max,A min,A
r ,A nom,A j j

max,A min,A
nom,A

j max,B min,B max,B min,B
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max,B min,B
nom,B

r r
G r e

r r j e e
G

r r
G r e

r r j e e
G

34
nom ,Aj max

nom,A
max

r enom A r
G

j

34
nom ,Bj max

nom,B
max

r enom B r
G

j

(15)

where 
nom,A max,A nom,B max,B

nom,A min,A nom,B min,B

nom,A max,A nom,B max,B

nom,A min,A nom,B min,B

r r r r
r r r r

(16)

Based on Eqs. (8) and (9), the conditions given by Eq. (16)
ensure that the uncertainty region does not change with choice 
of nominal model. Consider the robust filter for nominal model 
A 

4 4

3 3

3
4 max,A nom ,A

min,A nom ,A

max,A min,A max,A min,A
r ,A nom,A j

max,A min,A

j

r r
G r

r r e
j

e

(17)

Based on Eq. (16),    
max,A nom ,A min,A nom ,A

max,B nom ,B min,B nom ,B

j j

j j

e e

e e
(18)

Also based on Eq. (16),   

max,A min,A max,A nom,A nom,A min,A

max,B nom,B nom,B min,B

max,B min,B

(19)

Hence, 
4 4

3 3

3
4

nom ,B

max,B min,B

jmax,A min,A max,B min,B
r ,A nom,A j j

max,A min,A

r r
G r e

r r j e e
(20)
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Based on Eq. (16), 
max,A max,B

min,A min,B
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r r (22)

hence, 
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Substituting Eq. (23) in Eq. (20) gives 
4 4

3 3

4 4

3 3

3
4

3
4

nom ,B

max,B min,B

nom ,B

max,B min,B

jmax,B min,B max,B min,B
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G r e

r r j e e
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r e
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G
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Hence, for a given uncertainty, the robust filter is independent 
of the choice of the nominal model. Therefore, selection of the 
nominal model will only affect the performance of the standard 
FBF and not the robust FBF. The proposed robust FBF 
approach provides a more methodical approach to the filtering 
process, in the presence of uncertainties, as compared to the 
arbitrary selection of nominal model by the standard FBF.  

4. EXAMPLES 

This section compares robust FBF with the standard FBF 
approach using simulations and experiments on a HICTOP 
Prusa i3 desktop 3D printer, shown in Fig. 3. Figure 4 shows 
the four measured FRFs for the y-axis of the 3D printer. The 
FRFs are obtained by applying swept sine acceleration signals 
(with amplitudes ranging from 2 m/s2 to 5 m/s2) to the printer’s 
stepper motors (each having 12.5 μm stepping resolution) and 
measuring the relative acceleration of the build platform and 
print head using accelerometers (PCB Piezotronics 393B05 and 
Y356A63). The maximum, minimum and nominal FRFs
(shown in Fig. 5) are the maximum, minimum and average of 
the four FRFs at each frequency, respectively. The FRF for the 
robust filter is obtained using Eq. (14). To avoid errors 
associated with fitting a transfer function [14], a frequency 
domain approach is used to filter the basis functions through 
the nominal and robust FRFs. The frequency domain approach 
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uses fft and ifft commands in MATLAB® to filter the basis 
functions through the dynamics.   

Figure 3: Commercial desktop 3D printer (HICTOP Prusa 
i3)

Figure 4: Frequency response functions of y-axis of the 3D 
printer for various magnitudes of excitation input 

(acceleration) 

Figure 5: Nominal model (Nom) used for standard FBF 
with maximum (Max) and minimum (Min) bounds of 

uncertainty region, the robust filter (Robust) for robust 
FBF

4.1. SIMULATIONS 
As discussed in Secs. 2 and 3, the basis functions are user-

defined and there is a wide range of basis functions available 
for uses with the standard FBF and robust FBF methods; e.g., 
Laguerre functions [21], wavelets [22], B-splines [10], etc. This 
paper, uses two rudimentary basis functions: (i) discrete cosine 
transform (DCT) [23] and (ii) block pulse functions (BPF) [24]. 
The DCT is a frequency-based transform that is widely used in 
signal processing; its basis functions are real-valued cosines 
defined as [23]

(2 1)( ) cos
2( 1)

1 0
1

2 0
1

i i

i

k ik
M

i
M

i
M

(25)

The BPF basis functions are given by

, ( 1) ,0
1 1

1
( )

&  , ( 1) ,
1 1

0 otherwise

i

M Mk i i i n
n n

k M Mk i i i n
n n

(26)

The BPF expressed in Eq. (26) seeks to divide the time interval 
from 0 to M among n+1 basis functions in a quasi-uniform 
manner.

For comparison of robust FBF with standard FBF, four 
sinusoids with frequencies 30 Hz, 35 Hz, 40 Hz and 45 Hz are 
used as desired trajectories. The length of each desired 
trajectory is 5 seconds, resulting in 5001 discrete points (i.e., M 
= 5000) based on Ts = 1 millisecond. Figure 6 compares the 
normalized RMS tracking error (eRMS/yd,RMS) for the standard 
FBF and robust FBF approaches, each for 1000 cases  
(randomly generated with uniform distribution to span the 
uncertainty region described in Fig. 5); the desired trajectory is 
a 45 Hz sinusoid and n = 1000 for both DCT and BPF. For both 
DCT and BPF, it is seen that robust FBF performs better than 
standard FBF. Table 1 shows the mean normalized RMS 
tracking errors of  the standard and robust FBF (using DCT and 
BPF, n = 1000) for all the four desired trajectories. For all 
cases, robust FBF performs better than standard FBF and the 
percentage improvement in mean(eRMS/yd,RMS) varies from 
8.46% to 30.38%. Also shown in Tab. 1 is the success rate of 
robust FBF as compared to standard FBF. The success rate 
performs a one-on-one comparison between robust FBF and 
standard FBF for each of the 1000 cases and denotes the 
number of times robust FBF performs better than standard FBF 
in terms of eRMS/yd,RMS. For the results shown in Fig. 6, the 
success rate of RFBF is 69.1% (see Tab. 1), for both BPF and 
DCT, which implies that for 691 of the 1000 cases, eRMS/yd,RMS 
for robust FBF is lower than eRMS/yd,RMS for standard FBF. A 
success rate higher than 50% for robust FBF as compared to 
standard FBF, for all desired trajectories, demonstrates that the 
robust FBF approach is more effective than standard FBF over 
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Table 1: Comparison of mean normalized RMS tracking errors of standard FBF and robust FBF for four sinusoidal desired 
trajectories using 1000 cases with dynamic uncertainties, DCT and BPF basis functions (n = 1000). Also, shown is the success 

rate of robust FBF as compared to standard FBF 
Desired 

trajectory 
frequency 

[Hz]

DCT BPF
mean(eRMS/yd,RMS) % Improvement in 

mean(eRMS/yd,RMS) 
using robust FBF 
as compared to 
standard FBF

% Success 
rate of 
robust 
FBF 

mean(eRMS/yd,RMS) % Improvement in 
mean(eRMS/yd,RMS) 
using robust FBF 
as compared to 
standard FBF

% Success 
rate of 
robust 
FBF

standard 
FBF

robust
FBF

FBF RFBF

30 0.1077 0.0975 9.49 56.9 0.1077 0.0975 9.49 56.9
35 0.1283 0.1175 8.46 65.1 0.1283 0.1175 8.46 65.1
40 0.3947 0.3073 22.15 62.8 0.3947 0.3073 22.15 62.8
45 0.5365 0.3735 30.38 69.1 0.5365 0.3735 30.38 69.1

a wider region of the dynamic uncertainty. So far, the examples 
used a constant value of n = 1000. The next case considers the 
effect of number of basis functions on the performance of 
robust FBF and standard FBF.     

Figure 6: Bee-swarm plots comparing normalized RMS 
tracking errors of standard FBF and robust FBF for a 45 
Hz sinusoidal desired trajectory using 1000 realizations of 

the actual plant using: (a) DCT and (b) BPF basis functions         
(both with n = 1000) 

In the absence of uncertainty, the performance of standard 
FBF, in general, improves with increase in number of basis 
functions and the tracking error converges to 0 as n tends to M.
DCT converges monotonically, whereas, BPF does not 
converge monotonically [8]. Figure 7 shows mean(eRMS/yd,RMS) 
for robust FBF and standard FBF with DCT and BPF, each for 
1000 cases (same as the previous case) as the number of basis 
functions is varied. The desired trajectory is a 45 Hz sinusoidal 
signal with M = 5000. As the number of basis functions is 
increased, mean(eRMS/yd,RMS) for standard FBF using BPF as 
well as DCT converges to non-zero values. The difference in 
converged values for DCT and BPF is negligibly small. A 
similar behavior is observed for robust FBF and the converged 
values for robust FBF are lower than the converged values for 
standard FBF (the values are also shown in Tab. 1). Using DCT, 
for standard FBF as well as robust FBF, the convergence is 
monotonic, whereas, for BPF the convergence is not 
monotonic.   

Figure 7: Effect of number of basis functions (DCT and
BPF) on mean normalized tracking error performance for 

standard FBF and robust FBF using 45 Hz sinusoidal 
desired trajectory and 1000 realizations of the actual plant

4.2. EXPERIMENTS 
The standard FBF and robust FBF approaches, with DCT 

basis functions (n = 1000, M = 5000), are compared using 
experiments on a HICTOP Prusa i3 desktop 3D printer. Since 
accelerometers are used as sensors, 45 Hz acceleration signals 
with varying amplitudes (amplitudes varying from 2 m/s2 to 5 
m/s2 in increments of 0.1 m/s2) are used as desired trajectories 
for tracking. The variation in amplitude of the desired 
acceleration signals ensures that a significant portion of the 
uncertainty (shown in Fig. 5) is spanned. Figure 8 compares the 
normalized RMS tracking error (eRMS/yd,RMS) for the standard 
FBF and robust FBF approaches. The mean normalized RMS 
tracking error mean(eRMS/yd,RMS) for standard FBF and robust 
FBF are 0.8559 and 0.3604, respectively. The percentage 
improvement in robust FBF as compared to the standard FBF 
approach is 57.90% and the success rate is 93.54% (robust FBF 
performs better than standard FBF in 29 out of 31 cases). The 
experimental results demonstrate the effectiveness of robust 
FBF as compared to standard FBF. Note that robust FBF 
performance as compared to standard FBF is better in 
experiments then in simulations. This could be attributed to the 
fact that a large number of uniformly distributed uncertain plant 
realizations can be generated in simulations, whereas, in 
experiments the number of realizations of the plant is small and 
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might not be uniformly distributed. Hence, the difference 
between simulation and experimental results. 

Figure 8: Bee-swarm plots comparing normalized RMS 
tracking errors of standard FBF and robust FBF in

experiments; the desired trajectory is a 45 Hz sinusoid 
generated using 31 realizations of the dynamics of the 3D 
printer (obtained by varying the acceleration levels); DCT 

basis functions (with n = 1000) are used. 

5. CONCLUSIONS AND FUTURE WORK 
This paper has proposed a robust filtered basis functions 

approach for tracking control of systems with dynamic 
uncertainty. The standard filtered basis functions approach uses 
the nominal model of the plant for filtering. Conversely, the 
proposed robust FBF approach designs a robust filter for a 
given uncertainty and its distribution. It is shown analytically 
that the robust filter does not depend on the choice of the 
nominal model.

Although the user is free to select any suitable set of basis 
functions for use with robust FBF, this paper uses the discrete 
cosine transform (DCT) and block pulse functions (BPF) to 
compare the standard FBF and robust FBF approaches, using 
four different sinusoidal desired trajectories. The robust FBF 
approach is shown to be much more effective than the FBF 
approach for tracking the uncertain plant. The effect of the 
number of basis functions on tracking accuracy is also explored 
and it is observed that robust FBF performs better than FBF for 
varying number of basis functions. The standard and robust 
FBF approaches are also compared using experiments on a 
desktop 3D printer. The experiments also demonstrate the 
effectiveness of robust FBF as compared to standard FBF. 
Future work will focus on finding an optimal set of basis 
functions for tracking systems with dynamic uncertainty.    
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