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ROBUST AND RATE-OPTIMAL GIBBS POSTERIOR
INFERENCE ON THE BOUNDARY OF A NOISY IMAGE

By Nicholas Syring and Ryan Martin

Washington University in St. Louis and North Carolina State University

Detection of an image boundary when the pixel intensities are
measured with noise is an important problem in image segmentation.
From a statistical point of view, a challenge is that likelihood-based
methods require modeling the pixel intensities inside and outside the
image boundary, even though these distributions are typically not of
interest. Since misspecification of the pixel intensity distributions can
negatively affect inference on the image boundary, it would be desir-
able to avoid this modeling step altogether. Towards this, we develop
a robust Gibbsian approach that constructs a posterior distribution
for the image boundary directly, without modeling the pixel intensi-
ties. We prove that the Gibbs posterior concentrates asymptotically
at the minimax optimal rate, adaptive to the boundary smoothness.
Monte Carlo computation of the Gibbs posterior is straightforward,
and simulation results show that the corresponding inference is more
accurate than that based on existing Bayesian methodology.

1. Introduction. In image analysis, the boundary or edge of the image
is one of the most important features of the image, and extraction of this
boundary is a critical step. An image consists of pixel locations and intensity
values at each pixel, and the boundary can be thought of as a curve sepa-
rating pixels of higher intensity from those of lower intensity. Applications
of boundary detection are wide-ranging, e.g., Martin, Fowlkes and Malik
(2004) use boundary detection to identify important features in pictures of
natural settings, Li et al. (2010) identifies boundaries in medical images, and
in Yuan et al. (2016) boundary detection helps classify the type and severity
of wear on machines. For images with noiseless intensity, boundary detec-
tion has received considerable attention in the applied mathematics and
computer science literature; see, e.g., Ziou and Tabbone (1998), Maini and
Aggarwal (2009), Li et al. (2010), and Anam, Uchino and Suetake (2013).
However, these approaches suffer from a number of difficulties. First, they
can produce an estimate of the image boundary, but do not quantify esti-
mation uncertainty. Second, these methods use a two-stage approach where
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the image is first smoothed to filter out noise and then a boundary is es-
timated based on a calculated intensity gradient. This two-stage approach
makes theoretical analysis of the method challenging, and no convergence
results are presently known to the authors. Third, in our examples, these
methods perform poorly on noisy data, and we suspect one reason for this
is that the intensity gradient is less informative for the boundary when we
observe noisy data. In the statistics literature, Gu, Pati and Dunson (2014)
take a Bayesian approach to boundary detection and emphasize borrowing
information to recover boundaries of similar objects in an image. Boundary
detection using wombling is also a popular approach; see Liang, Banerjee
and Carlin (2009), with applications to geography (Lu and Carlin, 2004),
public health (Ma and Carlin, 2007), and ecology (C. et al., 2010). However,
these techniques are used with areal or spatially aggregated data and are
not suitable for the pixel data encountered in image analysis.

In Section 2, we give a detailed description of the image boundary prob-
lem, following the setup in Li and Ghosal (2017). They take a fully Bayesian
approach, modeling the probability distributions of the pixel intensities both
inside and outside the image. This approach is challenging because it often
introduces nuisance parameters in addition to the image boundary. There-
fore, in Section 3, we propose to use a so-called Gibbs model, where a suitable
loss function is used to connect the data to the image boundary directly,
rather than a probability model (e.g., Catoni, 1997; Zhang, 2006; Jiang and
Tanner, 2008; Syring and Martin, 2017; Bissiri, Holmes and Walker, 2016).

We investigate the asymptotic convergence properties of the Gibbs poste-
rior in Section 4. There we show that, if the boundary is α-Hölder smooth,
then the Gibbs posterior concentrates around the true boundary at the rate
{(log n)/n}α/(α+1), which is minimax optimal (Mammen and Tsybakov,
1995) up to the logarithmic factor, relative to neighborhoods of the true
boundary measured by the Lebesgue measure of a symmetric difference.
Moreover, as a consequence of appropriately mixing over the number of
knots in the prior, this rate is adaptive to the unknown smoothness α. To
our knowledge, this is the first Gibbs posterior convergence rate result for
an infinite-dimensional parameter, so the proof techniques used herein may
be of general interest. Further, since the Gibbs posterior concentrates at the
optimal rate without requiring a model for the pixel intensities, we claim
that the inference on the image boundary is robust.

Computation of the Gibbs posterior is relatively straightforward and, in
Section 5, we present a reversible jump Markov chain Monte Carlo method;
R code to implement to the proposed Gibbs posterior inference is available
at https://github.com/nasyring/GibbsImage. A comparison of inference
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based on the proposed Gibbs posterior to that based on the fully Bayes
approach in Li and Ghosal (2017) is shown in Section 6. For smooth bound-
aries, the two methods perform similarly, providing very accurate estimation.
However, the Gibbs posterior is easier to compute, thanks to there being no
nuisance parameters, and is notably more accurate than the Bayes approach
when the model is misspecified or when the boundary is not everywhere
smooth. Proofs of technical results are deferred to Appendix A.

2. Problem formulation. Let Ω ⊂ R2 be a bounded region that rep-
resents the frame of the image; typically, Ω will be a square, say, [−1

2 ,
1
2 ]2,

but, generally, we assume only that Ω is scaled to have unit Lebesgue mea-
sure. Data consists of pairs (Xi, Yi), i = 1, . . . , n, where Xi is a pixel location
in Ω and Yi is an intensity measurement at that pixel. The range of Yi is
context-dependent, and we consider both binary and real-valued cases be-
low. The model asserts that there is a region Γ ⊂ Ω such that the intensity
distribution is different depending on whether the pixel is inside or outside
Γ. We consider the following model for the joint distribution PΓ of pixel
location and intensity, (X,Y ):

X ∼ g(x),

Y | (X = x) ∼ fΓ(y) 1(x ∈ Γ) + fΓc(y) 1(x ∈ Γc),(1)

where g is a density on Ω, fΓ and fΓc are densities on the intensity space,
FΓ and FΓc are their respective distribution functions, and 1(·) denotes an
indicator function. That is, given the pixel location X = x, the distribution
of the pixel intensity Y depends only on whether x is in Γ or Γc. Of course,
more complex models are possible, e.g., where the pixel intensity distribution
depends on the specific pixel location, but we will not consider such models
here. We assume that there is a true, star-shaped set of pixels, denoted by
Γ?, with a known reference point in its interior. That is, any point in Γ? can
be connected to the reference point by a line segment fully contained in Γ?.
The observations {(Xi, Yi) : i = 1, . . . , n} are iid samples from PΓ? , and the
goal is to make inference on Γ? or, equivalently, its boundary γ? = ∂Γ?.

The density g for the pixel locations is of no interest and is taken to be
known. The question is how to handle the two conditional distributions, fΓ

and fΓc . Li and Ghosal (2017) take a fully Bayesian approach, modeling both
fΓ and fΓc . By specifying these parametric models, they are obligated to
introduce priors and carry out posterior computations for the corresponding
parameters. Besides the efforts needed to specify models and priors and to
carry out posterior computations, there is also a concern that the pixel
intensity models might be misspecified, potentially biasing the inference on
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Γ?. Since the forms of fΓ and fΓc , as well as any associated parameters, are
irrelevant to the boundary detection problem, it is natural to ask if inference
can be carried out robustly, without modeling the pixel intensities.

We answer this question affirmatively, developing a Gibbs model for Γ in
Section 3. In the present context, suppose we have a loss function `Γ(x, y)
that measures how well an observed pixel location–intensity pair (x, y) agrees
with a particular region Γ. The defining characteristic of `Γ is that Γ? should
be the unique minimizer of Γ 7→ R(Γ), where R(Γ) = PΓ?`Γ is the risk, i.e.,
the expected loss. A main contribution here, in Section 3.1, is specification
of a loss function that meets this criterion. A necessary condition to con-
struct such a loss function is that the distribution functions FΓ and FΓc

are stochastically ordered. Imagine a gray-scale image; then, stochastic or-
dering means this image is lighter, on average, inside the boundary than
outside the boundary, or vice-versa. In the specific context of binary images
the pixel densities fΓ? and fΓ?c are simply numbers between 0 and 1, and
the stochastic ordering assumption means that, without loss of generality,
fΓ? > fΓ?c , while for continuous images, again without loss of generality,
FΓ?(y) < FΓ?c(y) for all y ∈ R. If we define the empirical risk,

(2) Rn(Γ) =
1

n

n∑
i=1

`Γ(Xi, Yi),

then, given a prior distribution Π for Γ, the Gibbs posterior distribution for
Γ, denoted by Πn, has the formula

(3) Πn(B) =

∫
B e
−nRn(Γ) Π(dΓ)∫

e−nRn(Γ) Π(dΓ)
,

where B is a generic Π-measurable set of Γ’s. Of course, (3) only makes
sense if the denominator is finite; in Section 3, our risk functions Rn are
non-negative so this integrability condition holds automatically.

Proper scaling of the loss in the Gibbs model is important (e.g., Bissiri,
Holmes and Walker, 2016; Syring and Martin, 2018), and here we will provide
some context-specific scaling; see Sections 4 and 5.2. Our choice of prior Π
for Γ is discussed in Section 3.2. Together, the loss function `Γ and the prior
for Γ define the Gibbs model, no further modeling is required.

3. Gibbs model for the image boundary.

3.1. Loss function. To start, we consider inference on the image bound-
ary when the pixel intensity is binary, i.e., Yi ∈ {−1,+1}. In this case, the
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densities, fΓ and fΓc , in (1) must be Bernoulli, so the likelihood is known.
Even though the parametric form of the conditional distributions is known,
the Gibbs approach only requires prior specification and posterior compu-
tation related to Γ, whereas the Bayes approach must also deal with the
nuisance parameters in these Bernoulli conditional distributions. The bi-
nary case is relatively simple and will provide insights into how to formulate
a Gibbs model in the more challenging continuous intensity problem.

A reasonable choice for the loss function `Γ is the following weighted
misclassification error loss, depending on a parameter h > 0:

(4) `Γ(x, y) = h 1(y = +1, x ∈ Γc) + 1(y = −1, x ∈ Γ).

Note that putting h = 1 in (4) gives the usual misclassification error loss.
In order for the Gibbs model to work the risk, or expected loss, must be
minimized at the true Γ? for some h. Picking h to ensure this property holds
necessitates making a connection between the probability model in (1) and
the loss in (4). The condition in (5) below is just the connection needed.
With a slight abuse of notation, let fΓ? and fΓ?c denote the conditional
probabilities for the event Y = +1, given X ∈ Γ? and X ∈ Γ?c, respectively.
Recall our stochastic ordering assumption implies fΓ? > fΓ?c .

Proposition 1. Using the notation in the previous paragraph, if h is
such that

(5) fΓ? ≥
1

1 + h
≥ fΓ?c ,

then the risk function R(Γ) = PΓ?`Γ is minimized at Γ?.

The condition in (5) deserves some further explanation. For example, if
we know fΓ? ≥ 1

2 > fΓ?c , then we take h = 1, which means that in (4) we
penalize both intensities of 1 outside Γ and intensities of −1 inside Γ by
a loss of 1. If, however, we know the overall image brightness is higher so
that fΓ? ≥ 4

5 > fΓ?c then we take h = 1/4 in (4) and penalize bright pixels
outside Γ by less than dull pixels inside Γ. To see why this loss balancing
is so crucial, suppose the second case above holds so that fΓ? = 4/5 and
fΓ?c = 3/4, but we take h = 1 anyway. Then, in (4), 1(y = +1, x ∈ Γc) is
very often equal to 1 while 1(y = −1, x ∈ Γ) is very often 0. We will likely
minimize the expected loss then by incorrectly taking Γ to be all of Ω so
that the first term in the loss vanishes. Knowing a working h corresponds
to having some prior information about fΓ? and fΓ?c , but we can also use
the data to estimate a good value of h; see Section 5.2.
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Next, for the continuous case, we assume that the pixel intensities take
values in R. Our strategy is to modify the misclassification error (4) by
working with a suitably discretized intensity measurement, reminiscent of
threshold modeling. In particular, consider the following version of the mis-
classification error, depending on parameters (c, k, z), with c, k > 0:

(6) `Γ(x, y) = k 1(y > z, x ∈ Γc) + c 1(y ≤ z, x ∈ Γ).

Again, we claim that, for suitable (c, k, z), the risk function is minimized
at Γ?. Let FΓ and FΓc denote the distribution functions corresponding to
the densities fΓ and fΓc in (1), respectively. Recall our stochastic ordering
assumption implies FΓ?(z) < FΓ?c(z).

Proposition 2. If (c, k, z) in (6) satisfies

(7) FΓ?(z) ≤
k

k + c
≤ FΓ?c(z),

then the risk function R(Γ) = PΓ?`Γ is minimized at Γ?.

The parameters k and c in (6) determine the scale of the loss as mentioned
in Section 1, while z determines an intensity cutoff. According to the loss
in (6), if a given pixel is located at x ∈ Γc, and with intensity y larger
than cutoff z, it will incur a loss of k > 0. This implies that the true image
Γ? can be identified by working with a suitable version of the loss (6). A
similar condition to (7), see Assumption 1 in Section 4, says what scaling is
needed in order for the Gibbs posterior to concentrate at the optimal rate.
Although the conditions on the scaling all involve the unknown distribution
PΓ? , a good choice of (c, k, z) can be made based on the data alone, without
prior information, and we discuss this strategy in Section 5.2.

3.2. Prior specification. We specify a prior distribution for the boundary
of the region Γ by first expressing the pixel locations x in polar coordinates
(θ, r), an angle and radius, where θ ∈ [0, 2π] and r > 0, relative to the refer-
ence point described in Section 2. Li and Ghosal (2017) tested the influence
of the reference point in simulations and found it to have little influence on
their results. Using polar coordinates the boundary of Γ can be determined
by the parametric curve (θ, γ(θ)). We proceed to model this curve γ.

Whether one is taking a Bayesian or Gibbsian approach, a natural strat-
egy to model the image boundary is to express γ as a linear combination
of suitable basis functions, i.e., γ(θ) = γ̂D,β(θ) =

∑D
j=1 βjBj,D(θ). Li and

Ghosal (2017) use the eigenfunctions of the squared exponential periodic
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kernel as their basis functions. Here we consider a model based on free knot
b-splines, where the basis functions are defined recursively as

Bi,1(θ) = 1(θ ∈ [ti, ti+1])

Bi,k(θ) =
θ − ti

ti+k−1 − ti
Bi,k−1(θ) +

ti+k − θ
ti+k − ti+1

Bi+1,k−1(θ),

where θ ∈ [0, 2π], t−2, t−1, t0 and tD+1, tD+2, tD+3 are outer knots, t1, ..., tD
are inner knots, and β = (β1, ..., βD) ∈ (R+)D is the vector of coefficients.
Note that we restrict the coefficient vector β to be positive because the
function values γ(θ) measure the radius of a curve from the origin. In the
simulations in Section 6, the coefficients β2, ..., βD are free parameters, while
β1 is calculated deterministically to force the boundary to be closed, i.e.
γ(0) = γ(2π), and we require t1 = 0 and tD = 2π; all other inner knots are
free. Our model based on the b-spline representation performs as well as the
eigenfunctions used in Li and Ghosal (2017) for smooth boundaries, and a
bit better for boundaries with corners; see Section 6.

Therefore, the boundary curve γ is parametrized by an integer D and
a D-vector β. We introduce a prior Π on (D,β) hierarchically as follows:
D has a Poisson distribution with rate µD and, given D, the coordinates
β1, . . . , βD of β are iid exponential with rate µβ. These choices satisfy the
technical conditions on Π detailed in Section 4. In our numerical experiments
in Section 6, we take µD = 12 and µβ = 10.

4. Gibbs posterior convergence. The Gibbs model depends on two
inputs, namely, the prior and the loss function. In order to ensure that the
Gibbs posterior enjoys desirable asymptotic properties, some conditions on
both of these inputs are required. The first assumption listed below concerns
the loss; the second concerns the true image boundary γ? = ∂Γ?; and the
third concerns the prior. Here we will focus on the continuous intensity case,
since the only difference between this and the binary case is that the latter
provides the discretization for us.

Assumption 1. Loss function parameters (c, k, z) in (6) satisfy

(8) FΓ?(z) <
ek − 1

ec+k − 1
and FΓ?c(z) >

ek − 1

ek − e−c
.

Compared to the condition (7) that was enough to allow the loss func-
tion to identify the true Γ?, condition (8) in Assumption 1 is only slightly
stronger. This can be seen from the following inequality:

ek − 1

ek − e−c
>

k

k + c
>

ek − 1

ec+k − 1
.
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However, if (c, k) are small, then the three quantities in the above display are
all approximately equal, so Assumption 1 is not much stronger than what is
needed to identify Γ?. Again, these conditions on (c, k, z) can be understood
as providing a meaningful scale to the loss function. Intuitively, the scale of
the loss between observations receiving no loss versus some loss, expressed by
parameters k and c, should be related to the level of information in the data.
When FΓ?(z) and FΓ?c(z) are far apart, the data can more easily distinguish
between FΓ? and FΓ?c , so we are free to assign larger losses than when FΓ?(z)
and FΓ?c(z) are close and the data are relatively less informative.

The ability of a statistical method to make inference on the image bound-
ary will depend on the true boundary smoothness. Li and Ghosal (2017)
interpret γ? as a function from the unit circle to the positive real line, and
they formulate a Hölder smoothness condition for this function. Following
the prior specification described in Section 3.2, we treat the boundary γ?

as a function from the interval [0, 2π] to the positive reals, and formulate
the smoothness condition on this arguably simpler version of the function.
Since the reparametrization of the unit circle in terms of polar coordinates is
smooth, it is easy to check that the Hölder smoothness condition (9) below
is equivalent to that in Li and Ghosal (2017).

Assumption 2. The true boundary function γ? : [0, 2π] → R+ is α-
Hölder smooth, i.e., there exists a constant L = Lγ? > 0 such that

(9) |(γ?)([α])(θ)− (γ?)([α])(θ′)| ≤ L|θ − θ′|α−[α], ∀ θ, θ′ ∈ [0, 2π],

where (γ?)(k) denotes the kth derivative of γ? and [α] denotes the largest
integer less than or equal to α. Following the description of Γ? in the in-
troduction, we also assume that the reference point is strictly interior to Γ?

meaning that it is contained in an open set itself wholly contained in Γ? so
that γ? is uniformly bounded away from zero. Moreover, the density g for
X, as in (1), is uniformly bounded above by g := supx∈Ω g(x) and below by
g := infx∈Ω g(x) ∈ (0, 1) on Ω.

General results are available on the error in approximating an α-Hölder
smooth function by b-splines of the form specified in Section 3.2. Indeed,
Theorem 6.10 in Schumaker (2007) implies that if γ? satisfies (9), then

(10) ∀ d > 0, ∃ β?d ∈ (R+)d such that ‖γ? − γ̂d,β?d‖∞ . d−α.

Since γ?(θ) > 0, we can consider all coefficients to be positive, i.e., β?d ∈
(R+)d; see Lemma 1(b) in Shen and Ghosal (2015). The next assumption
about the prior makes use of the approximation property in (10).



GIBBS MODEL FOR IMAGE DETECTION 9

Assumption 3. Let β?d, for d > 0, be as in (10). Then there exists
C, t > 0 such that the prior Π for (D,β) satisfies, for all d > 1,

log Π(D > d) . −d log d,

log Π(D = d) & −d log d,

log Π(‖β − β?d‖1 ≤ kd−α | D = d) & −d log{1/(kd−α)},
log Π(β 6∈ [−m,m]d | D = d) . log d− Cmt.

The first two conditions in Assumption 3 ensure that the prior on D is
sufficiently spread out while the second two conditions ensure that there
is sufficient prior support near β’s that approximate γ? well. Our suggested
Poisson prior for D and independent exponential prior for β, given D, satisfy
these conditions; see also Shen and Ghosal (2015). Assumption 3 is also
needed in Li and Ghosal (2017) for convergence of the Bayesian posterior
at the optimal rate. However, the Bayes model also requires assumptions
about the priors on the nuisance parameters, e.g., Assumption C in Li and
Ghosal (2017), which are not necessary in our approach here.

In what follows, let A4B denote the symmetric difference of sets in Ω
and λ(A4B) its Lebesgue measure.

Theorem 1. With a slight abuse of notation, let Π denote the prior for
Γ, induced by that on (D,β), and Πn the corresponding Gibbs posterior (3).
Under Assumptions 1–3, there exists a constant M > 0 such that

PΓ?Πn({Γ : λ(Γ?4Γ) > Mεn})→ 0 as n→∞,

where εn = εn(α) = {(log n)/n}α/(α+1) and α is the Hölder smoothness
coefficient in Assumption 2.

Theorem 1 says that, as the sample size increases, the Gibbs posterior
places its mass on a shrinking neighborhood of the true boundary γ?. The
rate, given by the size of the neighborhood, is optimal according to Mammen
and Tsybakov (1995), up to a logarithmic factor, and adaptive since the prior
does not depend on the unknown smoothness α.

5. Computation.

5.1. Sampling algorithm. We use reversible jump Markov chain Monte
Carlo (e.g., Green, 1995) to sample from the Gibbs posterior. These methods
have been used successfully in Bayesian free-knot spline regression problems;
see, e.g., Denison, Mallick and Smith (1998) and DiMatteo, Genovese and
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Kass (2001). Although sampling is more complicated when the number and
locations of knots are random instead of fixed, the resulting spline functions
can do a better job fitting curves with low smoothness.

To summarize the algorithm, we start with the prior distribution Π for
(D,β) as discussed in Section 3.2. Next, we need to initialize values of D,
the knot locations {t−2, ..., tD+3}, and the values of β2, ..., βD. The value
of β1 is then calculated numerically to force closure. We choose D = 12
with t−2 = −2, t−1 = −1, t0 = −0.5, t13 = 2π + 0.5, t14 = 2π + 1, t15 =
2π + 2 and t1, ..., t12 evenly spaced in [0, 2π]. We set inner knots t0 = 0
and tD = 2π while the other inner knot locations remain free to change in
birth, death, and relocation moves; we also set β2 = β3 = ... = β12 = 0.1.
Then the following three steps constitutes a single iteration of the reversible
jump Markov chain Monte Carlo algorithm to be repeated until the desired
number of samples are obtained:

1. Use Metropolis-within-Gibbs steps to update the elements of the β
vector, again solving for β1 to force closure at the end. In our examples
we use normal proposals centered at the current value of the element
of the β vector, and with standard deviation 0.10.

2. Randomly choose to attempt either a birth, death, or relocation move
to add a new inner knot, delete an existing inner knot, or move an
inner knot.

3. Attempt the jump move proposed in Step 2. The β vector must be
appropriately modified when adding or deleting a knot, and again we
must solve for β1. Details on the calculation of acceptance probabilities
for each move can be found in Denison, Mallick and Smith (1998) and
DiMatteo, Genovese and Kass (2001).

R code to implement this Gibbs posterior sampling scheme, along with the
empirical loss scaling method described in Section 5.2, is available at https:
//github.com/nasyring/GibbsImage.

5.2. Loss scaling. It is not clear how to select (c, k, z) to satisfy Assump-
tion 1 without knowledge of FΓ? and FΓ?c . However, it is fairly straightfor-
ward to select values of (c, k, z) based on the data which are likely to meet
the required condition. First, we need a notion of optimal (c, k, z) values. If
we knew FΓ? and FΓ?c , then we would select z to maximize FΓ?c(z)−FΓ?(z)
because this choice of z gives us the point at which FΓ? and FΓ?c are most
easily distinguished. Then, we would choose (c, k) to be the largest values
such that (8) holds. Intuitively, we want large values of (c, k) so that the
loss function in (6) is more sensitive to departures from γ?.

Since we do not know FΓ? and FΓ?c , we estimate FΓ?(z) and FΓ?c(z) from

https://github.com/nasyring/GibbsImage
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the data. In order to do this, we need a rough estimate of γ? to define the
regions Γ? and Γ?c. Our approach is to model γ with a b-spline, as before,
and estimate γ? several times by minimizing (6) using several different values
of the loss scaling parameters (c, k, z). Specifically, set a grid of z values
z1, z2, ..., zg, and for each zj , find (c, k) = (cj , kj) that satisfy

kj
kj + cj

=
|{i : yi ≤ zj}|

n
.

Next, estimate γ? by minimizing (6) using (cj , kj , zj). The estimate of γ?

provides estimates of the regions Γ? and Γ?c which we use to calculate the
sample proportions

F̂Γ? :=
|{i : yi ≤ zj , xi ∈ Γ̂?}|
|{i : xi ∈ Γ̂?}|

and F̂Γ?c :=
|{i : yi ≤ zj , xi ∈ Γ̂?c}|
|{i : xi ∈ Γ̂?c}|

.

Then, the approximately optimal value is z = arg maxzj F̂Γ?c(zj)− F̂Γ?(zj).
Finally, choose the approximately optimal values of (c, k) to satisfy (8) re-
placing FΓ?(z) and FΓ?c(z) by their estimates F̂Γ?(z) and F̂Γ?c(z).

Based on the simulations in Section 6, this method produces values of
(c, k, z) very close to their optimal values. Importantly, the estimated (c, k)
are more likely to be smaller than their optimal values than larger, which
makes our estimates more likely to satisfy (8). This is a consequence of the
stochastic ordering of FΓ? and FΓ?c . Unless the classifier we obtain by min-
imizing (6) is perfectly accurate, we will tend to mix together samples from
FΓ? and FΓ?c in our estimates. If we estimate FΓ?(z) with some observations
from FΓ? and some from FΓ?c , we will tend to overestimate FΓ?(z), and vice
versa we will tend to underestimate FΓ?c(z). These errors will cause (c, k)
to be underestimated, and therefore more likely to satisfy (8).

6. Numerical examples. We tested our Gibbs model on data from
both binary and continuous images following much the same setup as in
Li and Ghosal (2017). The pixel locations in Ω = [−1

2 ,
1
2 ]2 are sampled by

starting with a fixed m×m grid in Ω and making a small random uniform
perturbation at each grid point. Several different pixel intensity distributions
are considered. We consider two types of shapes for Γ?: an ellipse with center
(0.1, 0.1), rotated at an angle of 60 degrees, with major axis length 0.35 and
minor axis length 0.25; and a centered equilateral triangle of height 0.5.
The ellipse boundary will test the sensitivity of the model to boundaries
which are off-center while the triangle tests the model’s ability to identify
non-smooth boundaries.
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We consider four binary and four continuous intensity images and compare
with the Bayesian method of Li and Ghosal (2017) as implemented in the
BayesBD package (Syring and Li, 2017a) available on CRAN and described
in Syring and Li (2017b).

B1. Ellipse image, m = 100, and FΓ? and FΓ?c are Bernoulli with parame-
ters 0.5 and 0.2, respectively.

B2. Same as B1 but with triangle image.
B3. Ellipse image, m = 500, and FΓ? and FΓ?c are Bernoulli with parame-

ters 0.25 and 0.2, respectively.
B4. Same as B3 but with triangle image.
C1. Ellipse image, m = 100, and FΓ? and FΓ?c are N(4, 1.52) and N(1, 1),

respectively.
C2. Same as C1 but with triangle image.
C3. Ellipse image, m = 100, and FΓ? and FΓ?c are 0.2N(2, 10)+0.8N(0, 1),

a normal mixture, and N(0, 5), respectively.
C4. Ellipse image, m = 100, and FΓ? and FΓ?c are t distributions with 3

degrees of freedom and non-centrality parameters 1 and 0, respectively.

For binary images, the likelihood must be Bernoulli, so the Bayesian model
is correctly specified in cases B1–B4. For the continuous examples in C1–
C4, we assume a Gaussian likelihood for the Bayesian model. Then, cases
C1 and C2 will show whether or not the Gibbs model can compete with the
Bayesian model when the model is correctly specified, while cases C3 and C4
will demonstrate the superiority of the Gibbs model over the Bayesian model
under misspecification. Again, the Gibbs model has the added advantage of
not having to specify priors for or sample values of the mean and variance
associated with the normal conditional distributions.

We replicated each scenario 100 times for both the Gibbs and Bayesian
models, each time producing a posterior sample of size 4000 after a burn in of
1000 samples. We recorded the errors—Lebesgue measure of the symmetric
difference—for each run along with the estimated loss function parameters
for the Gibbs models for continuous images. The results are summarized
in Tables 1–2. We see that the Gibbs model is competitive with the fully
Bayesian model in Examples B1–B4, C1, and C2, when the likelihood is
correctly specified. When the likelihood is misspecified, the Bayesian model
may fail, as in Examples C3 and C4. The Gibbs model does not depend on
a likelihood, only the stochastic ordering, so it continues to perform well
in these non-Gaussian examples. From Table 2, we see that the empirical
method described in Section 5.2 is able to select parameters for the loss
function in (6) close to the optimal values and meeting Assumption 1.
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Table 1
Average errors (and standard deviations) for each example.

Model B1 B2 B3 B4 C1 C2 C3 C4

Bayes
0.00

(0.00)
0.02

(0.00)
0.01

(0.00)
0.02

(0.01)
0.03

(0.03)
0.04

(0.03)
0.11

(0.06)
0.10

(0.05)

Gibbs
0.01

(0.00)
0.01

(0.00)
0.02

(0.01)
0.02

(0.01)
0.01

(0.00)
0.01

(0.00)
0.01

(0.01)
0.01

(0.01)

Table 2
Average (and optimal) values of the parameters (c, k, z) in (6).

Parameter C1 C2 C3 C4

c
1.45

(1.86)
1.47

(1.86)
0.80

(1.27)
0.71

(0.80)

k
2.30

(2.36)
2.29

(2.36)
0.26

(0.34)
0.71

(0.75)

z
2.43

(2.40)
2.39

(2.40)
-1.83

(-1.76)
0.46

(0.46)

Figures 1 and 2 show the results of the Bayesian and Gibbs models for one
simulation run in each of Examples B1–B2 and C1–C4, respectively. The 95%
credible regions, as in Li and Ghosal (2017), are highlighted in gray around
the posterior means. That is, let ui = supθ{s(θ)−1|γi(θ) − γ̂(θ)|}, where
γi(θ) is the ith posterior boundary sample, γ̂(θ) is the pointwise posterior
mean and s(θ) the pointwise standard deviation of the γ(θ) samples. If τ is
the 95th percentile of the ui’s, then a 95% uniform credible band is given
by γ̂(θ) ± τ s(θ). The results of cases B2 and C2 suggest that free-knot b-
splines may do a better job of approximating non-smooth boundaries than
the kernel basis functions used by Li and Ghosal (2017). In particular, the
reversible jump sampling method with its relocation moves allowed knots to
move towards the corners of the triangle, thereby improving estimation of
the boundary over b-splines with fixed knots.

Acknowledgments. The authors thank the anonymous reviewers for
their helpful comments. This work is partially supported by the U. S. Na-
tional Science Foundation, grant DMS–1811802.

APPENDIX A: PROOFS
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Fig 1. From top, Examples B1–B2. In each row, the observed image is on the left, the
Bayesian posterior mean estimator (Li and Ghosal, 2017) is in the middle, and the Gibbs
posterior mean estimator is on the right. Solid lines show the true image boundary, dashed
lines are the estimates, and gray regions are 95% credible bands.

A.1. Proof of Proposition 1. By the definition of the loss function
in (4), for a fixed h and for any Γ ⊂ Ω, we have

`Γ(x, y)− `Γ?(x, y) = h 1(y = +1, x ∈ Γc)− h 1(y = +1, x ∈ Γ?c)

+ 1(y = −1, x ∈ Γ)− 1(y = −1, x ∈ Γ?)

= h 1(y = +1, x ∈ Γ? \ Γ)− 1(y = −1, x ∈ Γ? \ Γ)

+ 1(y = −1, x ∈ Γ \ Γ?)− h 1(y = +1, x ∈ Γ \ Γ?).

Then the expectation of the loss difference above is

P (X ∈ Γ? \ Γ) (hfΓ? + fΓ? − 1) + P (X ∈ Γ \ Γ?) (1− fΓ?c − hfΓ?c),

where the probability statement is with respect to the density g of X. By
Assumption 2, the density g is bounded away from zero on Ω, so the expec-
tation of the loss difference is zero if and only if Γ = Γ?. The expectation
can also be lower bounded by

P (X ∈ Γ4Γ?) min{hfΓ? + fΓ? − 1, 1− fΓ?c − hfΓ?c}.

According to (5) in Proposition 1, both terms in the minimum are positive.
Therefore, R(Γ) ≥ R(Γ?) with equality if and only if Γ = Γ?.
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Fig 2. Same as Figure 1, but for Examples C1–C4.
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A.2. Proof of Proposition 2. The proof here is very similar to that
of Proposition 1. By the definition of the loss function in (6), for any fixed
(c, k, z) and for any Γ ⊂ Ω, we get

`Γ(x, y)− `Γ?(x, y) = k 1(y ≥ z, x ∈ Γc)− k 1(y ≥ z, x ∈ Γ?c)

+ c 1(y < z, x ∈ Γ)− c 1(y < z, x ∈ Γ?)

= k 1(y ≥ z, x ∈ Γ? \ Γ)− c 1(y < z, x ∈ Γ? \ Γ)

+ c 1(y < z, x ∈ Γ \ Γ?)− k 1(y ≥ z, x ∈ Γ \ Γ?).

Then, the expectation of the loss difference above is given by

P (X ∈ Γ?\Γ) {k−kFΓ?(z)−cFΓ?(z)}+P (X ∈ Γ\Γ?) {cFΓ?c(z)−k+kFΓ?c(z)},

where the probability statement is with respect to the density g of X. As in
the proof of Proposition 1, this quantity is zero if and only if Γ = Γ?. It can
also be lower bounded by

P (X ∈ Γ4Γ?) min
{
k − kFΓ?(z)− cFΓ?(z), cFΓ?c(z)− k + kFΓ?c(z)

}
.

Given the condition (7) in Proposition 2, both terms in the minimum are
positive. Therefore, R(Γ) ≥ R(Γ?) with equality if and only if Γ = Γ?.

A.3. Preliminary results. Towards proving Theorem 1, we need sev-
eral lemmas. The first draws a connection between the distance between
defined by the Lebesgue measure of the symmetric difference and the sup-
norm between the boundary functions.

Lemma 1. Suppose Γ?, with boundary γ? = ∂Γ?, satisfies Assumption 2,
in particular, γ? := infθ∈[0,2π] γ

?(θ) > 0. Take any Γ ⊂ Ω, with γ = ∂Γ, such

that λ(Γ4Γ?) > δ for some fixed δ > 0, and any Γ̃ ⊂ Ω such that γ̃ = ∂Γ̃
satisfies ‖γ̃ − γ‖∞ < ωδ, where ω ∈ (0, 1). Then

λ(Γ̃4Γ?) >
4δ

γ?

( 1

diam(Ω)
− πω

)
,

where diam(Ω) = supx,x′∈Ω ‖x − x′‖ is the diameter of Ω. So, if ω <
{π diam(Ω)}−1, then the lower bound is a positive multiple of δ.

Proof. The first step is to connect the symmetric difference-based dis-
tance to the L1 distance between boundary functions. A simple conversion
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to polar coordinates gives

λ(Γ4Γ?) =

∫
Γ4Γ?

dλ

=

∫ 2π

0

∫ γ(θ)∨γ?(θ)

γ(θ)∧γ?(θ)
r dr dθ

=
1

2

∫ 2π

0
{γ(θ) ∧ γ(θ?)}2 − {γ(θ) ∨ γ(θ?)}2 dθ

=
1

2

∫ 2π

0
|γ(θ)− γ?(θ)| |γ(θ) + γ?(θ)| dθ.

If we let γ? = infθ γ
?(θ), then it is easy to verify that

γ? ≤ |γ(θ) + γ?(θ)| ≤ diam(Ω), ∀ θ ∈ [0, 2π].

Therefore,

(11) 1
2γ

?‖γ − γ?‖1 ≤ λ(Γ4Γ?) ≤ 1
2 diam(Ω)‖γ − γ?‖1.

Next, if λ(Γ4Γ?) > δ, which is positive by Assumption 2, then it follows
from the right-most inequality in (11) that diam(Ω)‖γ − γ?‖1 > 2δ and, by
the triangle inequality,

diam(Ω){‖γ − γ̃‖1 + ‖γ̃ − γ?‖1} > 2δ.

We have ‖γ − γ̃‖1 ≤ 2π‖γ − γ̃‖∞ which, by assumption, is less than 2πωδ.
Consequently,

diam(Ω){2πωδ + ‖γ̃ − γ?‖1} > 2δ

and, hence,

‖γ̃ − γ?‖1 >
2δ

diam(Ω)
− 2πωδ.

By the left-most inequality in (11), we get

λ(Γ̃4Γ?) >
4δ

γ? diam(Ω)
− 4πωδ

γ?
=

4δ

γ?

( 1

diam(Ω)
− πω

)
,

which is the desired bound. It follows immediately that the lower bound is
a positive multiple of δ if ω < {π diam(Ω)}−1.

The next lemma shows that we can control the expectation of the inte-
grand in the Gibbs posterior under the condition (8) on the tuning param-
eters (c, k, z) in the loss function definition.
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Lemma 2. If (8) holds, then PΓ?e
−(`Γ−`Γ? ) < 1 − ρλ(Γ?4Γ) for a con-

stant ρ ∈ (0, 1).

Proof. From the proof of Proposition 2, we have

`Γ(x, y)− `Γ?(x, y) = k 1(y ≥ z, x ∈ Γ? \ Γ)− c 1(y < z, x ∈ Γ? \ Γ)

+ c 1(y < z, x ∈ Γ \ Γ?)− k (y ≥ z, x ∈ Γ \ Γ?).

The key observation is that, if x 6∈ Γ4Γ?, then the loss difference is 0 and,
therefore, the exponential of the loss difference is 1. Taking expectation with
respect PΓ? , we get

PΓ?e
−(`Γ−`Γ? ) = Pg(X 6∈ Γ?4Γ)

+ {e−k(1− FΓ?(z)) + ecFΓ?(z)}Pg(X ∈ Γ? \ Γ)

+ {e−cFΓ?c(z) + ek − ekFΓ?c(z)}Pg(X ∈ Γ \ Γ?).

If we define

κ = max{e−k(1− FΓ?(z)) + ecFΓ?(z), e
−cFΓ?c(z) + ek − ekFΓ?c(z)},

then it follows from (8) that κ < 1 and

PΓ?e
−(`Γ−`Γ? ) ≤ 1− Pg(X ∈ Γ4Γ?) + κPg(X ∈ Γ4Γ?)

= 1− (1− κ)Pg(X ∈ Γ4Γ?).

Since Pg(X ∈ Γ4Γ?) ≥ gλ(Γ4Γ?), the claim holds with ρ = (1− κ)g.

The next lemma yields a necessary lower bound on the denominator of
the Gibbs posterior distribution. The neighborhoods Gn are simpler than
those in Lemma 1 of Shen and Wasserman (2001), because the variance of
our loss difference is automatically of the same order as its expectation, but
the proof is otherwise very similar to theirs, so we omit the details.

Lemma 3. Let tn be a sequence of positive numbers such that ntn →
0 and set Gn = {Γ : R(Γ) − R(Γ?) ≤ Ctn} for some C > 0. Then∫

exp[−n{Rn(Γ)−Rn(Γ?)}] Π(dΓ) & Π(Gn) exp(−2ntn) with PΓ?-probability
converging to 1 as n→∞.

Our last lemma is a summary of various results derived in Li and Ghosal
(2017) towards proving their Theorem 3.3. This helps us to fill in the details
for the lower bound in Lemma 3 and to identify a sieve with high prior
probability but relatively low complexity.
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Lemma 4. Let εn be as in Theorem 1 and let Dn = (n/ log n)
1

α+1 . Then,
‖γ? − γ̂Dn,β?‖∞ ≤ Cεn for some C > 0, β? = β?Dn ∈ (R+)Dn from (10).
Define the following two sets,

B?
n = {(β, d) : β ∈ Rd, d = Dn, ‖γ? − γ̂d,β‖∞ ≤ Cεn}

Σn(r) = {γ : γ = γ̂d,β, β ∈ Rd, d ≤ Dn, ‖β‖∞ ≤ r}, r > 0.

1. Π(B?
n) & exp(−anεn) for some a > 0 depending on C.

2. Set Σn = Σn(K0mn) where mn satisfies Dn logmn . nεn and K0 > 0
is a constant. Then Π(Σc

n) . exp(−Knεn) for some K > 0.
3. If Dn exp(−Cmt

n) . exp(−nεn), for t > 0 as in Assumption 3, then
the bracketing entropy of Σn satisfies logN(εn,Σn, ‖ · ‖∞) . nεn.

Based on our choice of prior and Assumption 3, t = 1, mn = n, and C > 1
satisfy the conditions in Lemma 4.

A.4. Proof of Theorem 1. Define the set

(12) An = {Γ : λ(Γ?4Γ) > Mεn}.

For the sieve Σn in Lemma 4, we have Πn(An) = Πn(An∩Σc
n)+Πn(An∩Σn).

We want to show that both terms in the right hand side of the previous
equality vanish, in L1(PΓ?).

It helps to start with a lower bound on In =
∫
e−n{Rn(Γ)−Rn(Γ?)}Π(dΓ),

the denominator in both of the terms discussed above. First, write

In ≥
∫
Gn

e−n{Rn(Γ)−Rn(Γ?)}Π(dΓ)

where Gn is defined in Lemma 3 with tn = εn and C > 0 to be determined.
From Proposition 2 and Lemma 1

R(Γ)−R(Γ?) ≤ Pg(X ∈ Γ4Γ?)V ≤ 1
2 V g diam(Ω) ‖γ − γ?‖1

where V = min{k− kFΓ?(z)− cFΓ?c(z), cFΓ?c(z) + kFΓ?c(z)}. Let B∞(γ?; r)
denote the set of regions Γ with boundary functions γ = ∂Γ that satisfy
‖γ − γ?‖∞ ≤ r. If Γ ∈ B∞(γ?;C0εn), then we have

‖γ − γ?‖1 ≤ 2πgC0εn

and, therefore, R(Γ) − R(Γ?) ≤ Cεn, where C = C0πV g
2 diam(Ω). From

Lemma 3, we have In & Π(Gn)e−2Cεn , with PΓ?-probability converging to
1. Since Gn ⊇ B∞(γ?;C0εn), it follows from Lemma 4, part 1,

In & Π{B∞(γ?;C0εn)}e−2Cεn & e−C1nεn ,
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with PΓ? probability converging to one, and where C1 > 0 is a constant
depending on C0 and C.

Now we are ready to bound Πn(An ∩ Σc
n). Write this quantity as

Πn(An ∩ Σc
n) =

Nn(An ∩ Σc
n)

In
=

1

In

∫
An∩Σcn

e−n{Rn(Γ)−Rn(Γ?}Π(dΓ).

It will suffice to bound the expectation of Nn(An∩Σc
n). By Tonelli’s theorem,

independence, Lemma 2, and the definition of An, we have

PΓ?Nn(An ∩ Σc
n) =

∫
An∩Σcn

PΓ?e
−n{Rn(Γ)−Rn(Γ?)}Π(dΓ)

=

∫
An∩Σcn

{
PΓ?e

−(`Γ−`Γ? )}n Π(dΓ)

≤
∫
An∩Σcn

{
1− ρλ(Γ4Γ?)}n Π(dΓ)

≤ Π(Σc
n)e−ρMnεn .

By Lemma 4, part 2, we have that Π(Σc
n) ≤ e−Knεn and, consequently, we

can conclude PΓ?Nn(An ∩ Σc
n) ≤ e−(K+ρM)nεn .

Next, we bound Πn(An ∩ Σn) and, as before, it will suffice to bound the
expectation of Nn(An ∩ Σn). Choose a covering An ∩ Σn by sup-norm balls
Bj = B∞(γj ;ωMεn), j = 1, . . . , Jn, with centers γj = ∂Γj in An and radii
ωMnεn, where ω < {π diam(Ω)}−1 is as in Lemma 1. Also, from Lemma 4,
part 3, we have that Jn is bounded by eK1nεn for some constant K1 > 0.
For this covering, we immediately get

PΓ?Nn(An ∩ Σn) ≤
Jn∑
j=1

PΓ?Nn(Bj).

For each j, using Tonelli, independence, and Lemma 2 again, we find

PΓ?Nn(Bj) =

∫
Bj

{PΓ?e
−(`Γ−`Γ? )}n Π(dΓ) ≤

∫
Bj

e−nρλ(Γ4Γ?) Π(dΓ).

By Lemma 1, for Γ in Bj , since the center γj is in An, it follows that λ(Γ4Γ?)
is lower bounded by ηMεn, where η = η(Γ?) is given by

η =
4

γ?

( 1

diam(Ω)
− πω

)
> 0.
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Therefore, from the bound on Jn,

PΓ?Nn(An ∩ Σn) ≤
Jn∑
j=1

PΓ?Nn(Bj) ≤ e−nηMεn Jn ≤ e−(ηM−K1)nεn .

Finally, putting everything together, we have

Πn(An) ≤ Nn(An)

In
1(In > e−C1nεn) + 1(In ≤ e−C1nεn)

≤ eC1nεn{Nn(An ∩ Σn) +Nn(An ∩ Σc
n)}+ 1(In ≤ e−C1nεn)

Now take PΓ?-expectation of both sides:

PΓ?Πn(An) ≤ eC1nεn{PΓ?Nn(An ∩ Σn) + PΓ?Nn(An ∩ Σc
n)}+ o(1)

≤ e−(ηM−K1−C1)nεn + e−(K+ρM−C1)nεn + o(1).

If M > max{(K1 + C1)/η, (K − C1)/ρ}, then the upper bound vanishes,
completing the proof.
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