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Abstract

The area under the receiver operating characteristic curve (AUC) serves as a
summary of a binary classifier’s performance. For inference on the AUC, a com-
mon modeling assumption is binormality, which restricts the distribution of the
score produced by the classifier. However, this assumption introduces an infinite-
dimensional nuisance parameter and may be restrictive in certain machine learn-
ing settings. To avoid making distributional assumptions, and to avoid the com-
putational challenges of a fully nonparametric analysis, we develop a direct and
model-free Gibbs posterior distribution for inference on the AUC. We present the
asymptotic Gibbs posterior concentration rate, and a strategy for tuning the learn-
ing rate so that the corresponding credible intervals achieve the nominal frequentist
coverage probability. Simulation experiments and a real data analysis demonstrate
the Gibbs posterior’s strong performance compared to existing Bayesian methods.

Keywords and phrases: credible interval; Gibbs posterior; generalized Bayesian
inference; model misspecification; robustness.

1 Introduction

First proposed during World War II to assess the performance of radar receiver operators
(Cali and Longobardi 2015), the receiver operating characteristic (ROC) curve is now
an essential tool for analyzing the performance of binary classifiers in areas such as
signal detection (Green and Swets 1966), psychology examination (Swets 1973, 1986),
radiology (Hanley and McNeil 1982; Lusted 1960), medical diagnosis (Hanley 1989; Swets
and Pickett 1982), and data mining (Fawcett 2006; Spackman 1989). One informative
summary of the ROC curve is the corresponding area under the curve (AUC). This
measure provides an overall assessment of classifier’s performance, independent of the
choice of threshold, and is, therefore, the preferred method for evaluating classification
algorithms (Bradley 1997; Huang and Ling 2005; Provost and Fawcett 1997; Provost
et al. 1998). The AUC is an unknown quantity, and our goal is to use the information
contained in the data to make inference about the AUC. The specific set up is as follows.
For a binary classifier which produces a random score to indicate the propensity for, say,
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Group 1; individuals with scores higher than a threshold are classified to Group 1, the rest
are classified to Group 0. Let U and V' be independent scores corresponding to Group 1
and Group 0, respectively. Given a threshold ¢, define the specificity and sensitivity as
spec(t) = P(V < t) and sens(t) = P(U > t). Then the ROC curve is a plot of the
parametric curve (1 — spec(t),sens(t)) as ¢ takes all possible values for scores. While the
ROC curve summarizes the classifier’s tradeoff between sensitivity and specificity as the
threshold varies, the AUC measures the probability of correctly assigning scores for two
individuals from two groups, which equals P(U > V') (Bamber 1975), and is independent
of the choice of threshold. Consequently, the AUC is a functional of the joint distribution
of (U, V), denoted by P, so the ROC curve is actually not needed to identify AUC.

In the context of inference on the AUC, when the scores are continuous, it is common
to assume that P satisfies a so-called binormality assumption, which states that there
exists a monotone increasing transformation that maps both U and V' to normal ran-
dom variables (Hanley 1988). For most medical diagnostic tests, where the classifiers
are simple and ready-to-use without training, such an assumption serves well (Cai and
Moskowitz 2004; Hanley 1988; Metz et al. 1998), although it has been argued that other
distributions can be more appropriate for some specific tests (e.g., Goddard and Hinberg
1990; Guignard and Salehi 1983). But for complicated classifiers which involve multiple
predictors, as often arise in machine learning applications, binormality—or any other
model assumption for that matter—becomes a burden. This motivates our pursuit of a
“model-free” approach to inference about the AUC.

Specifically, our goal is the construction of a type of posterior distribution for the AUC.
The most familiar such construction is via Bayes’s formula, but this requires a likelihood
function and, hence, a statistical model. The only way one can be effectively “model-free”
within a Bayesian framework is to make the model extra flexible, which requires lots of
parameters. In the extreme case, a so-called Bayesian nonparametric approach would
take the distribution P itself as the model parameter (e.g., Ghosal and van der Vaart
2017; Gu et al. 2008). When the model includes lots of parameters, then the analyst
has the burden of specifying prior distributions for these, based on little or no genuine
prior information, and also computation of a high-dimensional posterior. But since the
AUC is just a one-dimensional feature of this complicated set of parameters, there is no
obvious return on the investment into prior specification and posterior computation. A
better approach would be to construct the posterior distribution for the AUC directly,
using available prior information about the AUC only, without specifying a model and
without the introduction of artificial model parameters. That way, the data analyst can
avoid the burdens of prior specification and posterior computation, bias due to model
misspecification, and issues that can arise as a result of non-linear marginalization (e.g.,
Fraser 2011; Martin 2019).

As an alternative to the traditional Bayesian approach, we consider here the con-
struction of a so-called Gibbs posterior for the AUC. In general, the Gibbs posterior con-
struction proceeds by defining the quantity of interest as the minimizer of a suitable risk
function, treating an empirical version of that loss function like a negative log-likelihood,
and then combining with a prior distribution like in Bayes’s formula. General discussion
of Gibbs posteriors can be found in Zhang (2006a,b), Bissiri et al. (2016) and Alquier et al.
(2016), and some statistical applications are discussed in Jiang and Tanner (2008) and
Syring and Martin (2017, 2019a,b). Again, the advantage is that Gibbs posteriors avoid



model misspecification bias and the need to deal with nuisance parameters. Moreover,
under suitable conditions, Gibbs posteriors can be shown to have desirable asymptotic
concentration properties (e.g., Bhattacharya and Martin 2020; Chernozhukov and Hong
2003; Syring and Martin 2020), with theory that parallels that of Bayesian posteriors
under model misspecification (e.g., Kleijn and van der Vaart 2006, 2012).

A subtle point is that, while the risk minimization problem that defines the quantity
of interest is independent of the scale of the loss function, the Gibbs posterior is not. This
scale factor is often referred to as the learning rate (e.g., Griinwald 2012) and, because it
controls the spread of the Gibbs posterior, its specification needs to be handled carefully.
Various approaches to the specification of the learning rate parameter (e.g., Bissiri et al.
2016; Grinwald 2012; Griinwald and Van Ommen 2017; Holmes and Walker 2017; Lyd-
don et al. 2019). Here we adopt the approach in Syring and Martin (2019a) that aims
to set the learning rate so that, in addition to its robustness to model misspecification
and asymptotic concentration properties, the Gibbs posterior credible sets have the nom-
inal frequentist coverage probability. When the sample size is large, we recommend an
(asymptotically) equivalent calibration method that is simpler to compute.

The present paper is organized as follows. In Section 2.1, we review some methods
for making inference on the AUC based on the binormality assumption, in particular, the
Bayesian approach in Gu and Ghosal (2009) that involves a suitable rank-based likelihood.
In Section 2.2, we argue that the binormality assumption is generally inappropriate in
machine learning applications, and provide one illustrative example involving a support
vector machine. This difficulty with model specification leads us to the Gibbs posterior,
a model-free alternative to a Bayesian posterior, which is reviewed in Section 2.3. We
develop the Gibbs posterior for inference on the AUC, derive its asymptotic concentration
properties, and investigate how to properly scale the risk function in Section 3. Simulation
experiments are carried out in Section 4, where a Gibbs posterior estimator performs
favorably compared with the Bayesian approach based on a rank-based likelihood. We
also apply the Gibbs posterior on a real dataset for evaluating the performance of a
biomarker for pancreatic cancer and compare our result with those based on the rank
likelihood. Finally, we give some concluding remarks in Section 5.

2 Background

2.1 Binormality and related methods

Following Hanley (1988), the scores U and V satisfy the binormality assumption if their
distribution functions are ®[b~*{H(u) — a}| and ®{H(v)} respectively, where a > 0,
b > 0, H is a monotone increasing function, and ® denotes the N(0,1) distribution
function, which implies that U and V' can be transformed to N(a, b*) and N(0,1) via H.
If P = P,y n denotes the distribution of (U, V) under this assumption, then the ROC
curve and the AUC, respectively, are given by ¢ — ®[b~{a + ®~!(¢)}] and

O{a(b? +1)712). (1)

Even though H is not needed to define the AUC—only (a, b)—since the joint distribution
of (U,V) does depend on H, any likelihood-based method would have to deal with this



infinite-dimensional nuisance parameter. Some strategies are used to avoid dealing with
H directly. The semi-parametric approach in Cai and Moskowitz (2004) manipulates the
equivalent densities ratio of U over V and W over Z, and introduces cumulative hazard
function as a nuisance parameter. A profile likelihood is obtained based on a discrete
estimate for the cumulative hazard function. In the approach of Metz et al. (1998), data
are suitably grouped and a multinomial pseudo-likelihood is constructed. Alternatively,
since data ranks are invariant to monotone transformations, one can construct a rank-
based likelihood, as in Zou and Hall (2000), which can be maximized over (a, b) to estimate
the AUC. But it turns out that a Bayesian approach that uses Monte Carlo sampling
from a rank-based posterior distribution, as in Gu and Ghosal (2009), is computationally
more efficient than maximizing the rank likelihood. Since this is our proposed method’s
primary competitor, we give some details about Gu and Ghosal’s Bayesian rank-based
likelihood approach here.

Consider the transformed scores W = H(U) and Z = H(V'), according to the binor-
mality assumption, its joint distribution can be written as P,;, no more dependence on
H. Elimination of the nuisance parameter H is desirable, but (W, Z) are unavailable to us
without knowledge of H. That is, unless we consider a function of (U, V') that is invariant
to transformations by H. A good candidate function is the ranks. That is, let Ry de-
note the ranks of the vector (Uy,...,Un, V1,...,V,,), where (Uy,...,Uy,) and (V4,...,V,)
are independent and identically distributed (iid) copies of U and V', respectively. Then

Pa,b,H(RU,V = 7’) = Pa,b(RW,Z = 7’)7 (2)

where Ry, 7 is the ranks of (Wy,... . W,,, Zy,..., Z,), with W; = H(U;) and Z; = H(Vj).
The key is that the observed ranks based on the (U;, V;) sample can be plugged in for
r on the right-hand side of (2) and that gives a likelihood function for (a,b), without
requiring knowledge of H. Of course, this is not a proper likelihood function, i.e., there
is loss of information caused by throwing away the values of (U;,V;), but eliminating
the infinite-dimensional nuisance parameter might be worth the price, especially when
the goal is inference on the ROC curve or AUC, neither of which depend directly on
H. The approach outlined in Gu and Ghosal (2009) proceeds by treating the (W;, Z;)
values as latent variables and defining a full posterior for (a,b* W;, Z;), given Ry, and
then marginalizing out (WW;, Z;) to get a posterior distribution for (a,b?) alone. If we
take the Jeffreys prior for (a,b?), which is proportional to b2, then the full conditional
distribution presented in Gu and Ghosal (2009) are

(@ | Wi, oo, W, Z4, -+ Zo, %, Ruy) ~ N(m —lzz Wi, b2m1),
O | Wi, oo, Won, Z, -+ D0, Ryy) ~ 1G (252, 157 (W, — a)?),
)
)
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(Wi\W,i,Zl,...,Zn,a,bQ,RUV ~ ((1 b2)X1(sz—RUv) 1=1...m
(Zj|Z_j,W17...,Wm,CL7b2,RUV ~ (0 1)X1(sz—RU\/) jzln

where, e.g., W_; = Wh,...,W;_1,Wiiq,..., W), IG(e, 5) denotes the inverse gamma
distribution with density %x’a’le’ﬁ/ * and 1(-) denotes the indicator function. With
these full conditionals, it is straightforward to develop a Monte Carlo strategy that pro-
duces samples from the (a, b?) posterior distribution. These samples can then be used to
get a posterior distribution for AUC using the expression in (1).



2.2 Validity of binormality in machine learning applications

Before ROC and AUC analyses gained popularity machine learning, the binormality
assumption had been proposed and used in the context of medical diagnosis for simple
classifiers, where the scores U and V are determined based on a single predictor variable.
When assuming binormality for classifiers in machine learning (e.g., Brodersen et al. 2010;
Macskassy and Provost 2004), the situation differs because multiple predictor variables
are usually involved.

Suppose that a binary Y € {0,1} indicates the group, X € RP? is the predictors,
and My y denotes the joint distribution of (X,Y’). As described in Section 1, a binary
classifier provides a parametric form of the predictor, namely the score S(X;f), to in-
dicate the propensity for Y taking value 1. A training process is generally needed for
estimating the unknown /3 based on data {(X;,Y;) :i=1,...,n}, and let B, € RP denote
that estimator. Then the random score U for Group 1 is defined as S(X; f3,) where the
predictor X follows the conditioned distribution M xy—;. Similarly, the random score
V' for Group 0 is defined as S(X; Bn) where X ~ Mx|y—o. By assuming that B, con-
verges to a non-random quantity as n — oo, U and V' are asymptotically independent.
Consequently, for simple classifiers, where p = 1 and S(X;5) = X, a binormality as-
sumption on U and V only restricts M xy—; and M x|y—g to be two normal distributions
(after the transformation H). In the general case where p > 1, even if each predictor is
normally distributed, because S(X; ) might be a complicated non-linear function, the
corresponding scores U and V' need not satisfy binormality.

For example, we suppose that predictors X; and X, are used to classify two groups
(Y =1or0). In Group 1, X; and X, are independently and identically distributed as
N(0,50); in Group 0, they are distributed as N(0,2). Panel (a) in Figure 1 shows the
training data, and it is clear that a non-linear classifier would be required to separate
the two groups. Here we use a support vector machine with the radial basis function
kernel; based on the training result, we obtain scores {U;}i2, and {V;}7_, for each group,
m = n = 10,000. To verify the binormality, we approximate the monotone increasing
transformation H by H = &' o F},, where Fy/(v) = n™" > -1 L(Vj <) is the empirical
distribution function. Although H uniquely transforms V' to a standard normal, the
transformed score H(U) does not follow a normal distribution, as indicated in Panels (b)
and (c) of Figure 1. Therefore, given this specific dataset and classifiers, there is no such
a H which simultaneously transforms U and V' to normal random variables.

2.3 Gibbs posterior distributions

A Gibbs posterior distribution resembles a Bayesian posterior, but is constructed using
different ingredients. In particular, the Gibbs posterior does not start with a statistical
model and likelihood, it starts with a more general connection between data and quan-
tities of interest, through a loss function. Suppose that data Ti,...,T,, are identically
distributed T-valued observations from distribution P, and that there is some functional
6 = 0(P), taking values in ©, about which inference is desired. Instead of introducing
a statistical model for P—that is, assuming P takes a particular distributional form P
for some model parameter ¢, and then expressing 6 as a function of (—we construct a
posterior for € directly as follows. Assume that there exists a loss function ¢4 (t), mapping
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Figure 1: (a) Training set and the SVM decision boundary (red curve). For each point,
two predictors (X, Xy) are plotted on axes and Y is visualized by the color (black for
Group 1, gray for Group 0); (b) Histograms for transformed scores H(U) and H (V') with
the fitted normal densities; (¢) Q-Q plot for transformed samples {H(Uy), ..., H(Un)}

T x © to R, such that the true value, 8*, of 8 solves the optimization problem

0" = arg mein R(0), (3)

where the risk function R(0) = P/ is just the expected loss with respect to P. When the
quantity of interest is defined as the solution to an optimization problem, it makes sense
to estimate that quantity by solving an empirical version of the optimization problem,

0, = arg mgin R,.(0),

where the empirical risk R,(0) = P,.(, is the expected loss with respect to the empirical
distribution P, = n~! Z?:l Op,, with J; the point-mass distribution concentrated at .
From this empirical risk function, the Gibbs posterior distribution is defined as

IL,,(df) ox e~ =@ 11(dp), 6 € O, (4)

where II is a prior distribution on © and w > 0 is a scale parameter to be determined;
see Bissiri et al. (2016) for the decision-theoretic underpinnings of this approach.

For us, the motivation behind the use of a Gibbs posterior is that it gives us direct,
model-free posterior inference about the quantity of interest. This is beneficial because,
for one thing, a statistical model could be misspecified and that would generally bias the
results. But even if the model is correctly specified, it is unlikely that an appropriate
statistical model could be described in terms of 6 alone, so the model index ¢ would
include a number of nuisance parameters that require prior distribution specification and
posterior computation, efforts that are effectively wasted if marginal inference on 6 is the
goal. The Gibbs posterior, by targeting 6 directly, avoids the possible misspecification
bias, allows for prior beliefs about # to be readily accommodated, and does not require
dealing with nuisance parameters. And the applications presented in Syring and Martin



(2017, 2019a,b), along with the one presented here, suggest that this direct approach has
a number of important advantages over the more traditional Bayesian counterpart.

Of course, the magnitude of the loss function does not affect the solution to the
optimization problem in (3), nor that in the empirical version thereof. But the magnitude
does affect the Gibbs posterior in (4), which is why we include the scaling factor w. Data-
driven strategies for specifying this tuning parameter are discussed in Section 3.3 below.

3 (Gibbs posterior for the AUC

3.1 Definition

As mentioned, the AUC is a functional of the joint distribution P of (U, V), i.e., § = 0(P),
given by 6 = P(U > V). Recall that the data consists of independent copies (Uy, ..., Uy)
and (V1,...,V,) of U and V, respectively. To construct a Gibbs posterior distribution for
f as discussed above, we need an appropriate loss function. That is, we need a function
ly(u,v) such that the corresponding risk function, R(6) = P{y, is minimized at the true

AUC, #*. If we define
o, v) = {0 — 1w > v)}%, 0 € 0,1,

then it is easy to check that R(#) = 6% — 20*0 + 6*? and, moreover, that this risk function
is uniquely minimized at § = #*. Then the empirical risk function is

. 1 m n
Ryn(0) =Pl = — 0—1(U; > V;)}?
0 =Paate= 035010 > )
where ﬁmn = (mn)~' 37", 370 dw,v;) is the empirical distribution of the score pairs.
Note that the minimizer of the empirical risk function, namely,

. . 1 n
O = arg min Ryn(0) = - Z ' LU, > Vj), (5)
=1 j=1
is the familiar statistic suggested by Mann and Whitney (1947) for testing if one of two
independent random variables is stochastically larger than the other.
Following the general approach described in Section 2.3, we can construct a Gibbs

posterior distribution for the AUC, with density
T (0) o e Ema® 7(g) 9 € 0,1],

where 7 is some prior density for the AUC, and w is the learning rate to be specified
in Section 3.3. This Gibbs posterior does not require any model assumptions, does not
require marginalization over nuisance parameters, and can directly incorporate available
prior information about #. Moreover, the Gibbs posterior is approximately centered
around ém,ny which is a quality estimator of the AUC, regardless of what form the un-
derlying distribution P takes, so we can expect the Gibbs posterior—for suitable w—to
provide quality model-free inference. Some nonstandard concentration results emerge,
see Theorem 1, because the summation in R, , contains m x n dependent terms. To
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construct the Gibbs posterior, the empirical risk function is multiplied by the product of
two sample sizes m x n rather than its total m + n.

After some simple algebraic manipulations, the Gibbs posterior above can be re-
expressed as

Tmn(0) e_“’m"(e_ém’”)Qw(Q), 6 € [0, 1], (6)

which shows some resemblance to a truncated normal distribution. A very reasonable
choice of prior is a truncated normal distribution with informative choices of prior location
1o and scale gg. With this choice, the Gibbs posterior is a truncated normal distribution
too, with corresponding location and scale, respectively,

- o + 2wosmnb, and o — { ol }1/2
’ 1 4 2wodmn ’ 1 4 2wodmn

In the absence of prior information about the AUC, one can take a flat uniform prior,
m(0) = 1, in which case the Gibbs posterior is still a truncated normal distribution but
with location and scale, respectively,

M = émn and 0y, = (2wmn)_1/2.

In practice, we recommend the use of available prior information about the AUC whenever
possible, but, for the remainder of this paper, we will work with the Gibbs posterior based
on the default uniform prior.

Here we are interested in the inference on AUC for any given classifier, and con-
sequently the posterior is constructed directly for the AUC. A similar Gibbs posterior
formulation can be found in Ridgway et al. (2014), which aimed at selecting the classifier
via AUC maximization and focused on the parameters introduced by the classifiers.

3.2 Asymptotic concentration properties

It is natural to ask what kind of asymptotic concentration properties the Gibbs posterior
distribution enjoys. An advantage of our approach’s simplicity is the ease in which
the convergence properties can be deduced, but some care is needed in formulating the
asymptotic regime precisely. Indeed, since the two groups may have different sample
sizes, it is clear that what we need is for the smaller of the two sample sizes to go to
infinity. Therefore, the rate is determined by m A n, and following theorem states that,
under no conditions on the joint distribution P of (U, V'), the Gibbs posterior distribution
concentrates asymptotically around the true AUC at the rate (m A n)~1/2,

Theorem 1. Let 0* be the true AUC corresponding to P. If 11,,,, is the Gibbs posterior
defined in (6) based on a fized learning rate w > 0 and a prior density 7 that is positive
and continuous in an interval containing 0*, then for any sequence K,, , — oo,

I ({0:10 — 0| > Ky (m An)"Y2Y) =0 in P-probability as m An — oo,
Proof. See Appendix A. m

Several remarks on the concentration rate theorem, its consequences, and some related
results are in order.



e The convergence in P-probability conclusion in Theorem 1 implies convergence in
Li(P) by the dominated convergence theorem, and can be strengthened to conver-
gence with P-probability 1 by assuming that sample sizes for two groups increase at
the same rate, i.e., m(m +n)~' — p € (0,1). Under this condition, Korolyuk and
Borovskich (2013, Chap. 3.2) show that émn — #* with P-probability 1 and, with
this, the stronger Gibbs posterior concentration rate result can be proved along
lines similar to those in Appendix A below.

e Asshown in (4), the Gibbs posterior resembles a Bayesian posterior based on a suit-
ably misspecified model, one whose “likelihood function” equals exp{—wnR,(0)}.
Even in misspecified cases, Bernstein—von Mises-style distributional approximations
are possible; see, e.g., Kleijn and van der Vaart (2012). In our case, we immediately
see a truncated normal form of the Gibbs posterior, so as long as 6* € (0,1), the
asymptotic normality of the Gibbs posterior is automatic.

e We note the loss scale w controls the proportion of information in the Gibbs pos-
terior which is learned from the data. Consequently, it is reasonable to adjust w
so that a set of observations with a larger size is given more trust. In fact, if we
substitute the fixed w in Theorem 1 with a sequence w,, that vanishes slower than
(m Vv n)~! then the Gibbs posterior concentration rate result still holds.

3.3 Tuning the learning rate

The good behavior of a Bayesian posterior is guaranteed only when the model is cor-
rectly specified. Under misspecification, even if the posterior concentrate around an
efficient estimator, the asymptotic variance of the posterior could be drastically different
from that of the efficient estimator; see Kleijn and van der Vaart (2012). Consequently,
100(1 — )% credible regions from a misspecified Bayes model may not achieve the nomi-
nal 100(1 — «)% confidence. Fortunately, the Gibbs posterior learning rate parameter, w,
which controls the spread, can be tuned in such a way that this undesirable discrepancy
between credibility and confidence is avoided. Various tuning strategies are available in
the literature (e.g., Bissiri et al. 2016; Fasiolo et al. 2017; Griinwald 2012; Lyddon et al.
2019), but only the approach presented in Syring and Martin (2019a) focuses directly on
coverage probability, so that is the approach we will adopt here.

Algorithm 1 describes the calibrating procedure from Syring and Martin (2019a) in the
context of inference on the AUC. The rationale behind this algorithm is as follows. Take
a 100(1 — a)% credible interval based on the Gibbs posterior (6) with learning rate w, in
particular, the highest posterior density credible interval. Then the frequentist coverage
probability of that credible interval, call it ¢, (w), depends on w, «, and other things. If
we could evaluate ¢, (w), that is, if we knew and could directly simulate from P, then we
could just solve the equation ¢,(w) = 1 — . For future reference, in this ideal case, we
call the solution to this equation the oracle learning rate. In real applications, however,
P is unknown, so we cannot evaluate c,(w) exactly, but we can get an estimate using the
bootstrap, and then solve that equation using stochastic approximation (Robbins and
Monro 1951) with step size sequence (k) that satisfies

Yk =00 and 37 Kf < oo (7)



Details are discussed in Syring and Martin (2019a).

When implementing Algorithm 1, for each bootstrap sample and a fixed scale w,
calculating the Gibbs posterior credible interval is straightforward thanks to the simple
truncated normal distribution form. However, that credible set calculation is required for
every bootstrap sample in each w updating step, so this can be computationally expensive,
especially when the sample is large. Fortunately, for such cases, there is an alternative
strategy, which attempts to match the Gibbs posterior variance to the variance of its
mode, the Mann-Whitney estimator ém,n. A similar variance-matching idea can be seen
in Lyddon et al. (2019). Specifically, if

A= lim

€ (0,1),
m;n—o0 M + N ( )

then Hoeffding (1948, Theorem 7.3) showed that the asymptotic variance of émm is

1 T10 To1 )
m—i—n()\ 1N (8

~—

where
T10 = C{l(Ul > ‘/1), 1(U1 > ‘/2)} and To1 = C{l(Ul > ‘/1), 1(U2 > ‘/1)},

with C the covariance operator under joint distribution P. If we take the flat prior in our
Gibbs posterior construction, then choosing

N m+n /T To1 )‘1
n — ~ ; 9
W 2mn ( A + 1—A 9)
with the obvious estimates
2 e R
Tio = o — 1) ZZ L(U; > V;) L(U; > V) — 972n,n
mn(n — 1) pr iy
2 n

for = S ST > V) LUy > V) — 2,

nm(m — 1) ==

will make the Gibbs posterior variance approximately match the Mann—Whitney estima-
tor variance, thus, approximate calibration.

Compared to Algorithm 1, this calibration strategy is computationally efficient; it
can also provide an initial guess for Algorithm 1. According to our simulation results
in the next section, the two calibration methods behave similarly as the sample size
increases, but the optimal scale @, yield by (9) has more variability when the sample size
is small. Therefore, when the sample size is relatively small, we suggest the strategy in
Algorithm 1; on the other hand, when the sample size is large, the other strategy described
above is preferable since it achieves similar performance with lower computation cost. The
numerical results in Section 4 are all based on the Algorithm 1, and a summary of the w
values selected by the two methods, justifying these claims, is shown in Figure 3.
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Algorithm 1: Gibbs posterior calibration
Data: Uy,...,U,, and Vq,...,V,
Input: Prior distribution; estimate émn from (5); bootstrap sample size B;
tolerance € > 0; and step sizes (k) satisfying (7).
Output: An estimate of the learning rate, w,.

Generate bootstrap samples Ul(b), ceey U and Vl(b), ey Vn(b), forb=1,...,B.
Initialize w™® and set ¢t = 1.
repeat
w=w:
forbin1l...B do
Calculate HPD®) the 100(1 — «)% highest Gibbs posterior density credible
interval, with learning rate w, based on the b bootstrap sample.

end

Estimate the coverage probability ¢, (w) = B~![{b: HPD® 3 0, ,}|;
Set A = é4(w) — (1 — a); Update wY = w + K, A; Set t =t +1;
until |A| < ¢

Return &, = w®.

4 Numerical examples

4.1 Simulation studies

Since the AUC is invariant when random variables U and V' undergo the same monotone
increasing transformation, we fix the distribution of V' to be standard normal and consider
four examples for the distribution of U:

Ezample 1. U ~ N(2,1) and 0* = 0.9214;

Example 2. U ~ SN(3, 1, —4)—skew normal—and 6* = 0.9665;
Ezample 3. U ~ 0.2N(—1,1) + 0.8N(2,0.5%) and 6* = 0.8185;
Ezample /. U ~ 2 — Exp(1) and 0* = 0.7895.

Figure 2 provides a visualization of the two densities in each of the four examples. Note
that these four examples capture binormality, a slight violation of binormality, a bimodal
case, and one where U and V' have different supports.

Here we compare four methods for inference on the AUC, including the Gibbs poste-
rior, the rank-likelihood-based methods (BRL) described in Section 2.1, and another two
Bayesian nonparametric methods. One is that presented in Gu et al. (2008) where the
Bayesian bootstrap (BB) is used to approximate the posterior distribution of the ROC
curve, and the marginal posterior for the AUC is obtained by calculating the area under
each ROC curve sampled from its posterior. The other is based on the proposal in de Car-
valho et al. (2013), where the distributions of U and V" are each modeled as location-scale
mixtures of Gaussians with a Dirichlet process prior on the mixing distribution. We use
the default settings in the R package dirichletprocess (Ross and Markwick 2018) to
get posterior samples from these Dirichlet process mixture (DPM) models. Using this,
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Figure 2: Density for U (black line) and the standard normal density for V' (gray line) in
Examples 1-4.

we can sample from the posterior predictive distributions of U and V', respectively, from
which we readily obtain samples from the marginal AUC posterior.

For the Gibbs posterior, we use flat prior and follow Algorithm 1, where B = 1000
bootstrap samples are generated and x; = (¢t + 1)7%?! is set to satisfy (7). For the BRL
and DPM, 50,000 posterior samples are drawn via MCMC, with burn-in of 10,000. For
BB, we set the number of bootstrap samples to be 1000. With each increasing observation
sizes m = n € {25,50,75,100, 125}, we take 1,000 data sets from the model as stated
in the examples. Then for each data replication, we produce the AUC posterior for
the four methods. We summarize the methods according to the following three metrics:
the average absolute bias, computing by subtracting the true AUC from the posterior
mean, the average posterior standard deviation, and the coverage probability of the 95%
posterior credible intervals. The results are presented in Tables 1-4.

Both the Gibbs and BRL posteriors concentrate around the true AUC, but the
former—thanks to its built-in robustness—tends to have a smaller bias than the lat-
ter. Furthermore, for large samples, the 95% credible intervals from the Gibbs posterior
have coverage near the target level 0.95, while the corresponding BRL credible interval
tend to under-cover, even in Example 1 where the binormality holds. Such a result is
also demonstrated in Gu and Ghosal (2009). A possible explanation is that the posterior
mean of BRL converges to 8* but at a slower speed than the vanishing posterior spread.

12



abs(Bias) Standard Deviation Coverage Probability

n | Gibbs BRL BB DPM | Gibbs BRL BB DPM | Gibbs BRL BB DPM

25 | 0.002 0.016 0.001 0.035 | 0.035 0.043 0.036 0.046 | 0.902 0972 0.913 0.938
50 | 0.000 0.007 0.000 0.026 | 0.026 0.026 0.026 0.039 | 0.922 0.931 0.935 0.974
75 | 0.000 0.003 0.000 0.022 | 0.021 0.020 0.021 0.036 | 0.939 0.894 0.939 0.986
100 | 0.000 0.003 0.000 0.020 | 0.018 0.016 0.018 0.034 | 0.935 0.879 0.938 0.989
125 | 0.001 0.010 0.001 0.018 | 0.017 0.014 0.016 0.033 | 0.940 0.857 0.946 1.000

Table 1: Gibbs posterior compared with BRL, BB, and DPM for Example 1.

abs(Bias) Standard Deviation Coverage Probability

n | Gibbs BRL BB DPM | Gibbs BRL BB DPM | Gibbs BRL BB DPM

25 | 0.005 0.022 0.001 0.026 | 0.020 0.035 0.021 0.033 | 0.997 0.949 0.857 0.958
50 | 0.001 0.006 0.000 0.018 | 0.015 0.017 0.015 0.027 | 0.912 0.904 0.885 0.985
75 | 0.000 0.001 0.000 0.015 | 0.013 0.012 0.013 0.025 | 0.919 0.902 0.911 0.995
100 | 0.000 0.002 0.000 0.013 | 0.012 0.010 0.011 0.024 | 0.931 0.907 0.923 0.999
125 | 0.000 0.004 0.000 0.013 | 0.011 0.009 0.010 0.023 | 0.944 0.861 0.927 1.000

Table 2: Gibbs posterior compared with BRL, BB, and DPM for Example 2.

For the two nonparametric methods, we expect that there would be generally less risk
of model misspecification bias, but potentially some loss of efficiency due to treating the
full U and V distributions as unknown. This is precisely what we found with DPM, in
particular, the posterior standard deviations tend to be relatively large, which leads to
over-coverage of its credible intervals. This extra variability may be due to the poste-
rior for the mixture model including too many components. The other nonparametric
method BB, however, has performance comparable to that of the Gibbs posterior, except
in Example 2 where it tends to under-cover. Although BB’s performance is compara-
ble to Gibbs in these settings, there are still advantages to the Gibbs formulation. In
particular, since the Gibbs posterior focuses directly on the AUC it would be possible
to incorporate available prior information, which would improve its performance. BB,
on the other hand, is “non-informative” by definition and, therefore, cannot incorporate
prior information. In these simulations, we used a flat prior for AUC and, hence, did
not take advantage of this feature. But in real applications, using such prior information
when available will give the Gibbs formulation an upper hand over BB.

Finally, we investigate the learning rate estimates under the Gibbs setting. Figure 3
shows, for each of the four simulation examples, the oracle learning rate compared to those
obtained from the two suggested learning rate selection methods, namely, that based on
Algorithm 1 and that in (9) based on asymptotic approximations. We find that the two
have similar asymptotic behavior, and both closely follow the oracle learning rate, hence
both will produce Gibbs posteriors whose credible sets achieve the nominal frequentist
coverage probability asymptotically. However, the estimates produced by Algorithm 1
have less variability than the asymptotic approximation, which is why the former is our
recommended method. Note, also, that the slope of the red line is less than —1, which, in
the log scale, is agrees with the tolerable decay rate—slower than (m V n)~'—suggested
by the general theory in Section 3.2.
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abs(Bias) Standard Deviation Coverage Probability

n | Gibbs BRL BB DPM | Gibbs BRL BB DPM | Gibbs BRL BB DPM

25 | 0.002 0.020 0.000 0.026 | 0.065 0.064 0.065 0.058 | 0.919 0.922 0.929 0.896
50 | 0.002 0.016 0.002 0.019 | 0.046 0.044 0.047 0.049 | 0.933 0.900 0.935 0.941
75 | 0.000 0.011 0.000 0.017 | 0.037 0.035 0.038 0.046 | 0.921 0.887 0.938 0.977
100 | 0.000 0.008 0.000 0.017 | 0.032 0.030 0.033 0.044 | 0.936 0.897 0.950 0.988
125 | 0.001 0.003 0.001 0.019 | 0.029 0.027 0.030 0.043 | 0.934 0.890 0.942 0.992

Table 3: Gibbs posterior compared with BRL, BB, and DPM for Example 3.

abs(Bias) Standard Deviation Coverage Probability

n | Gibbs BRL BB DPM | Gibbs BRL BB DPM | Gibbs BRL BB DPM

25 | 0.000 0.025 0.001 0.033 | 0.066 0.063 0.065 0.064 | 0.925 0.902 0.936 0.930
50 | 0.000 0.024 0.000 0.026 | 0.045 0.043 0.046 0.054 | 0.937 0.844 0.941 0.973
75 | 0.001 0.020 0.001 0.025 | 0.037 0.033 0.038 0.051 | 0.930 0.788 0.940 0.983
100 | 0.000 0.003 0.000 0.023 | 0.032 0.028 0.033 0.049 | 0.942 0.861 0.952 0.990
125 | 0.000 0.020 0.000 0.022 | 0.029 0.026 0.029 0.047 | 0.938 0.803 0.950 0.999

Table 4: Gibbs posterior compared with BRL, BB, and DPM for Example 4

4.2 Real data analysis

Data consisting of two pancreatic cancer biomarkers’ serum measurements was published
by Wieand et al. (1989); see, also, the R package logcondens. We consider a diagnostic
test that utilizes one of these biomarkers, namely, a cancer antigen (CA-125), to distin-
guish the case group (Group 1) from the control group (Group 0). This diagnostic test is
a simple binary classifier, where the score is serum measurement of CA-125. As described
in Section 1, individuals with scores higher than some threshold are diagnosed as positive
outcomes. In this case-control study, the observations include m = 90 subjects from the
case group and n = 51 subjects from the control group.

Our focus is on estimating the AUC of this binary classifier, and Table 5 presents
results yielded by the Gibbs posterior, BRL, BB, and DPM. The Gibbs posterior results
are based on a flat prior, and the learning rate chosen according to Algorithm 1. BRL
and DPM are based on 50000 MCMC samples and 10,000 burn-in, and the initial values
in BRL are (a,b) = (2,2) which follows Gu and Ghosal (2009). For BB, we use 10, 000
bootstrap samples. We observe that DPM produces quite different results, compared to
the other methods. The Gibbs posterior and BB yield similar results, and they have
estimates slightly larger than that from BRL, with comparable standard deviations. The
BRL credible interval is slightly shorter than the Gibbs and BB intervals but, in light of
the simulation results presented above, especially in the case of relatively large samples
like considered here, it is likely that the BRL intervals are “too short,” while the Gibbs
and BB intervals are not.

5 Conclusion

In certain applications, the parameters of interest can be defined as minimizers of an ap-
propriate risk function, separate from any statistical model. In such cases, one can avoid
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Figure 3: Boxplots of the learning rate estimates @ from Algorithm 1 (yellow) and from
(9) (green) versus sample size n, on the log scale, for Examples 1-4, with m = n €
{25,50,75,100,125}. The red dotted line represents logarithm of the oracle learning rate
defined in Section 3.3.

potential model misspecification biases by working some kind of “model-free” approach.
The present paper considered one such example, namely, inference on the AUC, where the
state-of-the-art statistical model is one that depends on an infinite-dimensional nuisance
parameter. As an alternative, we propose to construct a Gibbs posterior distribution
for direct inference on the AUC, without specifying a model or introducing any nuisance
parameters. This simplifies our computations and prior specifications, while allowing
us to avoid potential model misspecification biases without sacrificing on the desirable
asymptotic convergence properties. Moreover, a strategy for tuning the Gibbs poste-
rior’s learning rate is recommended, that leads to credible intervals having the nominal
frequentist coverage probability.

A direct extension of our work here is the inference on the analog of AUC in settings
that involve three-group classifiers, namely, the volume under the ROC surface, or VUS
(e.g., Mossman 1999). Similar to the set up here for the AUC, the VUS is defined as
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Gibbs BRL BB DPM

Posterior mean 0.705 0.691 0.707 0.579

Posterior SD 0.045 0.046 0.047 0.054
Credible interval (0.615, 0.795) (0.598, 0.774) (0.611, 0.793) (0.470, 0.680)

Table 5: Posterior mean, standard deviation, and 95% credible intervals for the four
methods—Gibbs, BRL, BB, and DPM—in the real-data example in Section 4.2.

P(T > U > V), where T is the score for the third group. Then much of the work
presented here can be immediately generalized to the VUS case.
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A  Proof of Theorem 1

Without loss of generality, we assume n = m An and n — oo, which implies that
m = m, — 0o too. Next, when n (and, hence, m) is large, § — exp{—wmnR,,(0)}
will blow up around 6 = émn and, since the prior 7 is fixed—and positive in an interval
containing 6* and, hence, émm—the Gibbs posterior will be dominated by the empirical
risk term. Therefore, the prior does not affect the asymptotics so, for simplicity, we
present the proof only for the case of a flat prior, 7(6) = 1.

By Chebyshev’s inequality and the bias—variance decomposition of mean square error,

* — n *
({0 2 10 — 67| > Kun™'/?}) < ﬁ{vm,n + (M — 07)?}, (10)

where M, , and V,,, are the mean and variance of the Gibbs posterior distribution,
respectively, and are given by

¢(Am,n) — ¢(Bm,n>
(I)(Bm,n) - (I)<Am,n)
Am,n¢(Am n) — Bm,n¢<Bm n) (ﬁ(Am’n) — ¢(Bm,n) ]2}

=02 {1 ’ nl
Vi = {1+ B(Byon) — B(Ar) B(Bor) — D(Apnn)

Mm,n = em,n + Om,n

with ¢ and ® the N(0, 1) density and distribution functions, respectively, and

~

Am,n = _Mmmo}::n = —@mm(men)l/z

Bpn=(1-— ,um,n)a;%ln =(1- émﬁn)(men)l/?

Since émn is a consistent estimator of 6* (see below), we clearly have that A,,, — —oo
and By,, — 00, so those ratios involving ¢ and ® above are all O,(1). Then we can
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immediately conclude that V;,, = O,((mn)~!) which takes care of the variance term.

For the bias term, we first have that 0,,,, the Mann-Whitney statistic, is an unbiased
estimator of 8* and its variance is upper-bounded by

0*(1 — 6)(m + n)

Therefore, for any ¢ > 0, there exists a number L = L. such that
P00, — 0" > L) <e.

To see this, use Chebyshev’s inequality and the bound on the variance of émn to get that
the left-hand side above is upper-bounded by

0*(1—6")(m+n)n
L2mn '

Since (m +n)/m < 2 and 6*(1 — %) < 1/4, we can take L = L. sufficiently large that
the previous display is less than ¢. This implies that |6,,, — 6*| and, hence, | M, , — 6*|
is O,(n~1/2). Putting everything together, we have that the right-hand side of (10) is

7 {Op((mn) ™) + Op(n™)} = Op(K., ).

But since K, — oo, we have that the upper-bound in (10) converges to 0 in P-probability
as (m,n) — oo, proving the claim.
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