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Abstract— In this paper, we consider sensor selection for
(binary) hypothesis testing. Given a pair of hypotheses and a set
of candidate sensors to measure (detect) the signals generated
under the hypotheses, we aim to select a subset of the sensors
(under a budget constraint) that yields the optimal signal
detection performance. In particular, we consider the Neyman-
Pearson detector based on measurements of the chosen sensors.
The goal is to minimize (resp., maximize) the miss probability
(resp., detection probability) of the Neyman-Pearson detector,
while satisfying the budget constraint. We first show that the
sensor selection for the Neyman-Pearson detector problem is
NP-hard. We then characterize the performance of greedy
algorithms for solving the sensor selection problem when we
consider a surrogate to the miss probability as an optimization
metric, which is based on the Kullback-Leibler distance. By
leveraging the notion of submodularity ratio, we provide a
bound on the performance of greedy algorithms.

I. INTRODUCTION

Sensor selection problems arise in many different fields,
including control system design and environment monitoring.
In the general formulation of such problems, the system
designers are faced with the situation where only a subset
of candidate sensors can be installed on the system (under
a budget constraint) to perform sensing tasks in order to
achieve certain performance objectives.

While researchers have studied the sensor (or actuator)
selection problem in control system design (e.g., [1]–[8]),
and have provided complexity characterizations and algo-
rithms, relatively less work has been done for the sensor
selection problem in signal detection and hypothesis testing
(e.g., [9]). In this paper, we consider the sensor selection
problem for hypothesis testing based on the Neyman-Pearson
detector [10]. We study the problem of choosing a subset of
sensors (under a given budget constraint) to minimize the
miss probability of the Neyman-Pearson detector such that
the false-alarm probability is within a prescribed range. We
further consider a surrogate (e.g., [9], [11], [12]), based on
the Kullback-Leibler (KL) distance, to the miss probability
of the Neyman-Pearson detector as an optimization metric.
We summarize some related work as follows.

In [13], it was shown that the sensor selection problem
for Kalman filtering is NP-hard and cannot be approximated
within any constant factor (in polynomial time). Moreover,
[13] showed that greedy algorithms can perform arbitrarily
poorly. In contrast, in this paper we study the problem of
Sensor Selection for the Neyman-Pearson detector (SSNP).
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We show that this problem is also NP-hard. We further pro-
vide performance bounds on greedy algorithms that depend
on parameters of the SSNP instance, when we consider a
certain surrogate to the objective function in SSNP.

The authors of [11] show that SSNP is NP-hard after they
replace the miss probability with the surrogate, based on the
KL distance, as the optimization metric. They further show
that the objective function of the problem corresponding to
the surrogate is not submodular in general. Here, we show
that the original SSNP formulation (with the miss probability
as the minimization metric) is NP-hard. When considering
the surrogate (based on the KL distance) as the optimization
metric, we provide bounds on the performance of greedy
algorithms. We achieve this by leveraging the notion of
submodularity ratio that is used to characterize how close
a nonsubmodular set function is to being submodular.

In [12], the authors also study SSNP using surrogates
to the original objective function. When studying SSNP
using the KL distance as a surrogate, they first consider a
special instance of SSNP and use a certain metric (different
from the submodularity ratio) to characterize how close a
nonsubmodular set function is to being submodular, which
leads to a performance bound on the greedy algorithm.
However, for more general instances of SSNP, the authors
further consider submodular surrogates to the optimization
metric corresponding to the KL distance. In this paper, we
use the notion of submodularity ratio to provide a bound on
the performance of greedy algorithms for solving different
and potentially more useful instances of SSNP when directly
using the optimization metric based on the KL distance.

Our contributions to this problem are as follows. First,
we show that SSNP is NP-hard when we consider the
miss probability of the Neyman-Pearson detector as the
optimization metric. We then consider solving SSNP using
an optimization criterion based on the KL distance. In such a
case, we provide performance bounds on greedy algorithms
that depend on the parameters of the SSNP problem.

A. Notation and terminology

The set of integers and real numbers are denoted as Z and
R, respectively. For x ∈ R, denote |x| as its absolute value.
For a set S , denote |S| as its cardinality. For a vector x of
dimension n, denote xi (or (x)i) as its ith element, and let
supp(x) , {i : xi 6= 0}. Denote 1n as a column vector
of dimension n with all of its elements equal to 1. For a
matrix P ∈ Rn×n, let PT , tr(P ) and det(P ) be its transpose,
trace and determinant, respectively. The eigenvalues of P are
ordered with nondecreasing magnitude (i.e., |λ1(P )| ≤ · · · ≤
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|λn(P )|). Denote Pij as the element in the ith row and jth
column of P . The set of n by n real positive semi-definite
(resp., positive definite) matrices is denoted by Sn+ (resp.,
Sn++). The identity matrix with dimension n is denoted as
In. For a random vector X ∈ Rn, denote E[X] ∈ Rn
and Cov(X) = E[(X − E[X])(X − E[X])T ] ∈ Rn×n
as its mean vector and covariance, respectively. For two
random vectors X ∈ Rn1 and Y ∈ Rn2 , denote ΣXY =
Cov(X,Y ) = E[(X −E[X])(Y −E[Y ])T ] ∈ Rn1×n2 as the
cross-covariance between them.

II. PROBLEM FORMULATION

We consider the classical binary hypothesis testing prob-
lem, where we assume that there are two possible hypotheses
or states, denoted as H0 and H1, respectively. Denote X ,
{1, 2, . . . , n} as the set of all candidate sensors; each sensor
is capable of providing a single measurement. Let X ,[
X1 X2 · · · Xn

]T ∈ Rn be the vector that collects the
measurements for all the sensors in X , where Xk ∈ R is the
measurement from the kth sensor in X for all k ∈ X . The
measurements satisfy

H0 : Xk ∼ pk(x|H0), k = 1, 2, . . . , n,

H1 : Xk ∼ pk(x|H1), k = 1, 2, . . . , n,
(1)

where pk(x|Hi) denotes the probability density function
(pdf) of Xk conditioned on the state Hi, for i = 0, 1. Denote
the pdf of X conditioned on Hi as p(x|Hi), for i = 0, 1.

We consider the scenario where we can only select a subset
of sensors from X to deploy under a budget constraint.
Specifically, sensor k ∈ X has a certain selection cost,
denoted as ωk ∈ R≥0, for all k ∈ X . Define ω =[
ω1 ω2 · · · ωn

]T
as the sensor cost vector. We are given

a total budget, denoted as Ω ∈ R>0.
After a set of sensors is selected, we use their measure-

ments to solve the hypothesis testing problem corresponding
to Eq. (1). We define an indicator vector µ ∈ {0, 1}n
indicating which sensors are selected, where µk = 1 if
sensor k ∈ X is selected, and µk = 0 if otherwise.
Given an indicator vector µ with supp(µ) = {j1, . . . , jp} ⊆
{1, . . . , n}, we define X(µ) =

[
Xj1 · · · Xjp

]T
as the

vector that contains the measurements from the selected
sensors indicated by µ. Denote the pdf of X(µ) conditioned
on Hi as p(x(µ)|Hi), for i = 0, 1. We consider the Neyman-
Pearson detector for hypothesis testing, which is based on
the log-likelihood ratio of the two hypotheses [10]. The log-
likelihood ratio is defined as

logL(x(µ)) = log
p(x(µ)|H1)

p(x(µ)|H0)
. (2)

The Neyman-Pearson detector minimizes the miss probabil-
ity (also known as Type II error) Pm , P (H0|H1), where
P (H0|H1) is the conditional probability of deciding H0

given that H1 is true, such that the false-alarm probability
(also known as Type I error) Pf , P (H1|H0) is within
a prescribed range, where P (H1|H0) is the conditional
probability of deciding H1 given that H0 is true. Moreover,
the detection probability is defined as PD , 1− Pm. Given

an indicator vector µ, denote Pm(µ), PD(µ) and Pf (µ) as
the miss probability, the detection probability, and the false-
alarm probability obtained from the measurements of the
sensors indicated by µ, respectively. For a given false-alarm
rate α ∈ R≥0 and an indicator vector µ, the Neyman-Pearson
detector is of the form

logL(x(µ))
H1

≷
H0

γ(µ), (3)

where logL(x(µ)) is as defined in Eq. (2) and γ(µ) is the
threshold chosen such that Pf (µ) = α. The Sensor Selection
for the Neyman-Pearson detector (SSNP) problem is given
as follows.

Problem 1: (SSNP) Consider two possible states H0 and
H1, a sensor measurement vector X ∈ Rn where each
element satisfies Eq. (1), a cost vector ω ∈ Rn≥0, a budget
Ω ∈ R>0 and a prescribed false-alarm rate α ∈ R≥0. The
SSNP problem is to find a sensor selection µ that solves

min
µ∈{0,1}n

Pm(µ)

s.t. ωTµ ≤ Ω, Pf (µ) ≤ α.

III. COMPLEXITY OF SSNP

In this section, we will show that SSNP is NP-hard.
To do this, we introduce the sensor selection problem for
linear regression (e.g., [14]). Specifically, consider a pre-
dictor (random) variable Z ∈ R and observation (random)
variables Y1, . . . , Ym. Denote C , Cov(Y ) ∈ Sm++, where
Y ,

[
Y1 · · · Ym

]T ∈ Rm. Define a covariance vector
b ∈ Rm such that bi = Cov(Z, Yi), ∀i ∈ {1, . . . ,m}.
Given an indicator vector ν with supp(ν) = {i1, . . . , iq} ⊆
{1, . . . ,m}, we denote b(ν) ,

[
bii · · · biq

]T
and C(ν) ∈

Sq++ as the covariance vector and the covariance matrix
corresponding to ν, respectively, where C(ν) is a submatrix
of C that contains the rows and columns corresponding to
supp(ν). Given fLR(ν) ,

(
b(ν)

)T (
C(ν)

)−1
b(ν), the Sensor

Selection for Linear Regression (SSLR) problem is defined
as follows.

Problem 2: (SSLR) Consider a predictor variable Z and
observation variables Y1, . . . , Ym with the corresponding
covariance matrix C ∈ Sm++ and covariance vector b ∈ Rm,
and an integer s ∈ Z>0. The SSLR problem is to find a
sensor selection ν that solves

max
ν∈{0,1}m

fLR(ν)

s.t. |supp(ν)| ≤ s.

We will use the following result (e.g., [15], [14] and [11]).
Lemma 1: SSLR is NP-hard even when b = 1m.
We will relate SSNP to SSLR and prove the following.
Theorem 1: The SSNP problem is NP-hard.

Proof: We show the result by giving a reduction from
SSLR to SSNP. Consider any instance of SSLR with the
predictor variable Z, observation variables Y1, . . . , Ym and
the positive integer s, where the covariance matrix is C ∈
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Sm++ and the covariance vector is b = 1m. We construct an
instance of SSNP as follows. The measurement vector X is
Gaussian distributed conditioned on Hi for i = 0, 1, i.e.,

H0 : X ∼ N (θ0, C),

H1 : X ∼ N (θ1, C),

where N (θi, C) denotes the pdf of a multivariate Gaussian
with mean θi ∈ Rm and covariance C ∈ Sm++. Moreover,
we set θ0 = 0 and θ1 = b = 1m. We set the cost vector as
ω = 1m and the budget as Ω = s. The required false-alarm
rate for the Neyman-Pearson detector is set as α = 1

2 .
Considering any sensor selection µ ∈ {0, 1}m with its

support denoted as supp(µ) = {j1, . . . , jp}, where p ≤
s and {j1, . . . , jp} ⊆ {1, . . . ,m}, we define θi(µ) ,[
(θi)j1 · · · (θi)jp

]T
, for i = 0, 1. We have from Eq. (2):

logL(x(µ)) =
(
θ1(µ)

)T (
C(µ)

)−1
x(µ)

− 1

2

(
θ1(µ)

)T (
C(µ)

)−1
θ1(µ).

(4)

Let T (µ) ,
(
θ1(µ)

)T (
C(µ)

)−1
x(µ) ∈ R, where the pdf of

T (µ) conditioned on Hi, for i = 0, 1, is given as

H0 : T (µ) ∼ N (0, σ(µ)),

H1 : T (µ) ∼ N (σ(µ), σ(µ)),

where σ(µ) ,
(
θ1(µ)

)T (
C(µ)

)−1
θ1(µ) > 0 for all µ 6= 0,

since
(
C(ν)

)−1
is positive definite and θ1 = 1m. We have

from (3) and (4) that the Neyman-Pearson detector is of the
form

T (µ)
H1

≷
H0

γ′(µ), (5)

where γ′(µ) , γ(µ)+ 1
2σ(µ). We then know from [10] (Case

III.B.2) that γ′(µ) satisfies

γ′(µ) =
√
σ(µ)Φ−1(1− α) =

√
σ(µ)Φ−1(

1

2
) = 0,

where Φ(·) is the cumulative distribution function (cdf) of
the standard normal distribution, and Φ−1(·) is the inverse
of Φ(·). The corresponding detection probability is given by

PD(µ) = P (T (µ) > γ′(µ)|H1)

= 1− Φ
(γ′(µ)− σ(µ)√

σ(µ)

)
= 1− Φ

(
−
√
σ(µ)

)
= Φ

(√(
θ1(µ)

)T (
C(µ)

)−1
θ1(µ)

)
, (6)

where P (T (µ) > γ′(µ)|H1) is the conditional probability
of T (µ) > γ′(µ) given that H1 is true. Noting that Φ(x)
is monotonically nondecreasing on x ∈ R, Eq. (6) then
yields that in order to maximize PD(µ) over sensor selections
µ that satisfy the budget constraint, we have to maximize(
θ1(µ)

)T (
C(µ)

)−1
θ1(µ). By our construction of the SSNP

instance, it follows that a sensor selection µ for SSLR is
optimal if and only if µ is optimal for the corresponding
SSNP instance that we construct. Since we know from
Lemma 1 that SSLR is NP-hard, the SSNP problem is also
NP-hard, which completes the proof of the theorem.

Remark 1: Theorem 1 shows that SSNP is NP-hard even
when the measurement vector is Gaussian distributed and all
the sensors have the same selection cost. Our direct proof of
complexity complements the existing result in [11], which
optimized a surrogate (which we shall discuss in the next
section) to the objective function as defined in Eq. (1), and
then showed that the modified SSNP is NP-hard.

IV. GREEDY ALGORITHMS

We now turn to a modified version of SSNP, and ana-
lyze the performance of greedy algorithms for the modified
problem. Specifically, we use the KL distance between two
distributions as an alternate metric in the SSNP problem,
due to the fact that Pm and Pf may not yield known closed-
form expressions in general. We refer interested readers to,
e.g., [11], [9], [16] and [10], for more detailed justification
and explanation of using this metric as a surrogate for
hypothesis testing problems in the Neyman-Pearson set-
ting. Given the conditional pdfs of X(µ) on H0 and H1,
denoted as p(x(µ)|H0) and p(x(µ)|H1), respectively, we
denote the KL distance between these two distributions as
fKL

(
p(x(µ)|H1)

∣∣∣∣p(x(µ)|H0)
)

(fKL(µ) for simplicity).1

Furthermore, we focus on cases, as studied in [11] and
[12], when the measurement vector X ∈ Rn is Gaussian
distributed given both hypotheses H0 and H1, i.e.,

H0 : X ∼ N (θ0,Σ0),

H1 : X ∼ N (θ1,Σ1),
(7)

where θ0, θ1 ∈ Rn and Σ0,Σ1 ∈ Sn++. Given a sensor
selection µ ∈ {0, 1}n with its support denoted as supp(µ) =
{j1, . . . , jp}, where {j1, . . . , jp} ⊆ {1, . . . , n}, we define
θi(µ) =

[
(θi)j1 · · · (θi)jp

]T
and Σi(µ) as the submatrix

of Σi that contains the rows and columns corresponding to
supp(µ), for i = 0, 1. The KL distance fKL(µ) is then given
by (e.g., [11])

fKL(µ) =
1

2

(
tr
(
Σ̃−1

0 Σ̃1

)
+
(
θ̃1 − θ̃0

)T
Σ̃−1

0

(
θ̃1 − θ̃0

)
+ log

(det(Σ̃0)

det(Σ̃1)

)
− |supp(µ)|

)
, (8)

where θ̃i , θi(µ) and Σ̃i , Σi(µ), for i = 0, 1.
Remark 2: Noting from Eq. (8) that fKL(µ) depends on

θ0(µ) and θ1(µ) through θ1(µ)−θ0(µ) only, we can assume
without loss of generality that θ0 = 0 in what follows.

The Modified Sensor Selection for the Neyman-Pearson
detector (MSSNP) problem, as studied in [11] and [12], is
then given as follows.

Problem 3: (MSSNP) Consider two possible states H0

and H1, a sensor measurement vector X ∈ Rn satisfying
Eq. (7), and a budget Ω ∈ Z≥1. The MSSNP problem is to
find a sensor selection µ that solves

max
µ∈{0,1}n

fKL(µ)

s.t. |supp(µ)| ≤ Ω,
(9)

1Noting that the KL distance is always nonnegative [16], we have that
fKL(µ) ≥ 0 for all µ.
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where fKL(µ) is given in Eq. (8) if µ 6= 0 and fKL(0) = 0.

Since it has been shown in [11] that fKL(·) is not a
submodular function with respect to the subsets of candidate
sensors in general, we first introduce the following concept
from [14] and [17], which characterizes how close a nonsub-
modular function f(·) is to being submodular, where f(·) is
nonnegative and f(∅) = 0.

Definition 1: (Submodularity ratio) Given a set V , the
submodularity ratio of a nonnegative set function f : 2V →
R≥0 is the largest γ ∈ R that satisfies∑
a∈A\B

(
f({a}∪B)− f(B)

)
≥ γ

(
f(A∪B)− f(B)

)
, (10)

for all A,B ⊆ V .
Given such a set function as described in Definition 1 and

a positive integer K, a greedy algorithm for the problem

max
A⊆V,|A|≤K

f(A) (11)

starts with a set S = ∅ and iteratively adds an element i ∈
V \S to S such that f({i}∪S) is maximized. The algorithm
then returns S after K iterations.

We will use the following result from [14] and [17].
Lemma 2: If f(·) is a nonnegative and (monotonically)

nondecreasing set function with submodularity ratio γ ≥ 0,
a greedy algorithm for solving problem (11) yields

f(S) ≥ (1− e−γ)f(A∗), (12)

where S is the solution returned by the greedy algorithm and
A∗ is the optimal solution of problem (11).

Remark 3: For a nonnegative and nondecreasing function
f(·) with submodularity ratio γ, we have γ ∈ [0, 1] [17].
Moreover, f(·) is submodular if and only if γ = 1 [17].
We then know from inequality (12) that to characterize the
performance of the greedy algorithm for solving problem
(11), we can give a lower bound on γ.

Remark 4: If Σ0 = Σ1, the expression for fKL(µ) in Eq.
(8) simplifies to fKL(µ) = 1

2

(
θ1(µ)

)T (
Σ0(µ)

)−1
θ1(µ). If

we let b = θ1, C = Σ1 and s = Ω in the SSLR problem
(Problem 2), we can solve such an instance of MSSNP
by solving the corresponding instance of SSLR. Thus, the
analysis in [14] can be applied when Σ0 = Σ1.

Our goal in this section is to give a (lower) bound on
the submodularity ratio of fKL(·), when Σ0 and Σ1 are not
necessarily equal. In the proceedings, we write fKL(µ) as
fKL(A) if A = supp(µ) ⊆ X , where X is the set of all
candidate sensors. Similarly, we use X(A), and Σi(A) and
θi(A) for i = 0, 1. We will use the following result and give
a sketched proof in the Appendix.

Lemma 3: Consider X =
[
X1 . . . Xn

]T ∈ Rn that
collects the measurements of all candidate sensors. Suppose
that X has mean θ ∈ Rn and covariance Σ ∈ Sn++.
For all p < n (p ∈ Z>0), consider the sensor selection
µ ∈ {0, 1}n with supp(µ) = {1, . . . , p}. Denote X(µc) ,

[
Xp+1 · · · Xn

]T
with the corresponding covariance de-

noted as Σ(µc). Partitioning Σ as

Σ =

[
Σ(µ) ΣX(µ)X(µc)

ΣTX(µ)X(µc) Σ(µc)

]
,

the following holds

λ1(Σ) ≤ λ1

(
Σ(µ)− ΣX(µ)X(µc)(Σ(µc))−1ΣTX(µ)X(µc)

)
.

Assumption 1: Let Σ0 = diag(σ2
1 , . . . , σ

2
n), where σi ∈

R>0 for all i ∈ {1, . . . , n}. Let Σ1 be any matrix in Sn++.
Lemma 4: The set function fKL : 2X → R under

Assumption 1 has the following properties.
(a) fKL(·) is nonnegative and nondecreasing, i.e., for all

A ⊆ B ⊆ X , 0 ≤ fKL(A) ≤ fKL(B) holds.
(b) The submodularity ratio of fKL(·), denoted as γKL,

satisfies
γKL ≥

r2
1 + r − 1

r2
1 + r2 − 1 + logλn(Σ0)

λ1(Σ1)

, (13)

where

r , min
1≤i≤n

( (Σ1)ii
σ2
i

− log
(Σ1)ii
σ2
i

)
, r2 , max

1≤i≤n

(Σ1)ii
σ2
i

,

r1 , min
1≤i≤n

∣∣ (θ1)i
σi

∣∣, and r1 , max
1≤i≤n

∣∣ (θ1)i
σi

∣∣.
Proof of (a): Note that fKL(B) ≥ fKL(∅) = 0, ∀B ⊆ X .

To prove that fKL(·) is nondecreasing, it is then sufficient
to show that for all B ⊆ X (B 6= ∅ and B 6= X ) and for all
a ∈ X \B, fKL({a}∪B)−fKL(B) ≥ 0 holds. Recall from
Remark 2 that we set, without loss of generality, θ0 = 0.
Denote B̄ , {a} ∪ B. Denote ΣBa , Cov(X(B),X(a))
as the cross-covariance between X(B) and X(a) under
hypothesis H1, where we note that ΣBa ∈ R|B|. Note that
Σi(B̄) ∈ S|B|+1

++ , and Σi(B) ∈ S|B|++, for i = 0, 1. We have
from Eq. (8) the following:

2
(
fKL({a} ∪B)− fKL(B)

)
=

Σ1(a)

Σ0(a)
+

(
θ1(a)

)2
Σ0(a)

+ log
det
(
Σ1(B)

)
det
(
Σ1(B̄)

) + logΣ0(a)− 1

(14)

=

(
θ1(a)

)2
Σ0(a)

+
Σ1(a)

Σ0(a)
+ logΣ0(a)

− log
(
Σ1(a)− ΣTBa

(
Σ1(B)

)−1
ΣBa

)
− 1 (15)

≥
(
θ1(a)

)2
Σ0(a)

+
Σ1(a)

Σ0(a)
+ logΣ0(a)− logΣ1(a)− 1 (16)

=

(
θ1(a)

)2
Σ0(a)

+
Σ1(a)

Σ0(a)
− log

Σ1(a)

Σ0(a)
− 1 ≥ 0, (17)

where Eq. (14) follows from the assumption that Σ0 is
diagonal and invertible. To obtain Eq. (15) we use the
following identity [18]:

det
(
Σ1(B̄)

)
= det

[
Σ1(B) ΣBa
ΣTBa Σ1(a)

]
= det

(
Σ1(B)

)
det(Σ1(a)− ΣTBa

(
Σ1(B)

)−1
ΣBa

)
, (18)
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where
(
Σ1(a) − ΣTBa

(
Σ1(B)

)−1
ΣBa

)
is a scalar. To ob-

tain inequality (16), we use the fact 0 < Σ1(a) −
ΣTBa

(
Σ1(B)

)−1
ΣTBa ≤ Σ1(a). Noting that the function

h(x) , x− log x achieves its unique minimum on x > 0 at
x = 1 with h(1) = 1, the inequality in (17) then follows.

Proof of (b): First, suppose that A\B 6= ∅ and B 6= ∅. We
begin by providing a lower bound on

∑
a∈A\B

(
fKL({a} ∪

B)− fKL(B)
)
. We follow inequality (16) and obtain:

2
∑

a∈A\B

(
fKL({a} ∪B)− fKL(B)

)
≥

∑
a∈A\B

((θ1(a)
)2

Σ0(a)
+

Σ1(a)

Σ0(a)
− log

Σ1(a)

Σ0(a)
− 1
)

≥ |A \B|(r2
1 + r − 1), (19)

where inequality (19) follows from the definitions of r1 and
r. Note that r − 1 ≥ 0.

We then give an upper bound on fKL(A∪B)− fKL(B).
Denote B̃ , A∪B and Ã , A \B. Further denote ΣBÃ ,
Cov(X(B),X(Ã)) as the cross-covariance between X(B)
and X(Ã) under hypothesis H1, where ΣBÃ ∈ R|B|×|A\B|.
Note that Σi(B̃) ∈ S|A∪B|++ and Σi(Ã) ∈ S|A\B|++ , for i = 0, 1.
We have from Eq. (8) the following:

2
(
fKL(B̃)− fKL(B)

)
=
{ ∑
a∈A\B

((θ1(a)
)2

Σ0(a)
+

Σ1(a)

Σ0(a)
− 1
)}

+ log

(∏
a∈A\B Σ0(a)

)
det
(
Σ1(B)

)
det
(
Σ1(B̃)

) (20)

=
{ ∑
a∈A\B

((θ1(a)
)2

Σ0(a)
+

Σ1(a)

Σ0(a)
− 1
)}

+ log

∏
a∈A\B Σ0(a)

det
(
Σ1(Ã)− ΣT

BÃ

(
Σ1(B)

)−1
ΣBÃ

) (21)

≤
{ ∑
a∈A\B

((θ1(a)
)2

Σ0(a)
+

Σ1(a)

Σ0(a)
− 1
)}

+ log

∏
a∈A\B Σ0(a)(
λ1(Σ1)

)|A\B|
(22)

≤ |A \B|
(
r2

1 + r2 − 1 + log
λn(Σ0)

λ1(Σ1)

)
, (23)

where Eq. (20) follows from the assumption that Σ0 is
diagonal and invertible. To obtain Eq. (21), we use the
following identity [18]:

det
(
Σ1(B̃)

)
= det

[
Σ1(B) ΣBÃ
ΣT
BÃ

Σ1(Ã)

]
(24)

=det
(
Σ1(B)

)
det(Σ1(Ã)− ΣT

BÃ

(
Σ1(B)

)−1
ΣBÃ

)
.

To obtain inequality (22), we first note that ΣBÃ = ΣT
ÃB

,
where ΣÃB , Cov(X(Ã),X(B)). This leads to a partition
of Σ1(B̃) as

Σ1(B̃) =

[
Σ1(Ã) ΣÃB
ΣT
ÃB

Σ1(B)

]
, (25)

where we obtain Σ1(B̃) of the form in Eq. (25) by appro-
priate permutations of rows and columns of Σ1(B̃) from Eq.
(24), which do not change the eigenvalues of Σ1(B̃). It then
follows from Lemma 3 that

λ1

(
Σ1(Ã)−ΣÃB(Σ1(B))−1ΣT

ÃB

)
≥ λ1

(
Σ1(B̃)

)
≥ λ1(Σ1),

where the second inequality follows from the Cauchy in-
terlacing theorem for positive definite matrices [18]. In-
equality (22) then follows from the fact that det(Σ1(Ã)) =∏|Ã|
i=1 λi(Σ1(Ã)). We then obtain inequality (23) from the

definitions of r1 and r2. We note that if r2
1 + r2 − 1 +

logλn(Σ0)
λ1(Σ1) = 0, we have fKL(A ∪ B) − fKL(B) = 0 for

all A,B ⊆ V , where A\B 6= ∅ and B 6= ∅. If we set B as a
singleton, we then see that the (optimal) solution for MSSNP
can be achieved via a sensor selection µ with supp(µ) = 1.
Thus, we consider r2

1 + r2 − 1 + logλn(Σ0)
λ1(Σ1) > 0.

Next, suppose that A \ B 6= ∅ and B = ∅. Following
similar arguments as above, one can show that

2
∑

a∈A\B

(
fKL({a}∪B)−fKL(B)

)
≥ |A|(r2

1 +r−1), (26)

and

2
(
fKL(A∪B)−fKL(B)

)
≤ |A|(r2

1 +r2−1+ log
λn(Σ0)

λ1(Σ1)
).

(27)
Again, we note that if r2

1 + r2 − 1 + logλn(Σ0)
λ1(Σ1) = 0, we

have fKL(A) = 0 for all A ⊆ V . Therefore, we consider
r2

1 + r2 − 1 + logλn(Σ0)
λ1(Σ1) > 0.

Combining inequalities (19), (23), (26) and (27), we obtain
inequality (13) from Definition 1.

We then summarize the above arguments as follows.
Theorem 2: Consider an instance of the MSSNP problem.

Suppose that the measurement vector X ∈ Rn satisfies

H0 : X ∼ N (0,Σ0),

H1 : X ∼ N (θ1,Σ1),

where Σ0 = diag(σ2
1 , . . . , σ

2
n) with σi ∈ R>0, ∀i ∈

{1, . . . , n}, and Σ1 ∈ Sn++. The greedy algorithm, when
applied to such instances of MSSNP, yields

fKL(µgre) ≥ (1− e−γ
∗
)fKL(µ∗), (28)

where µgre is the solution returned by the greedy algo-
rithm, µ∗ is the optimal solution to the problem and γ∗ ,

r2
1+r−1

r2
1+r2−1+logλn(Σ0)

λ1(Σ1)

.

Remark 5: Note that the bound on the performance of the
greedy algorithm depends on the parameters of the MSSNP
instance. We know from Eq. (13) and Eq. (28) that the
bound on the performance of the greedy algorithm becomes
tighter when the lower bound on γKL increases. For example,
considering the instances with Σ0 = σ2In and θ1 = θ1n,
where σ, θ ∈ R, the bound in inequality (13) simplifies into

γKL ≥
θ2

σ2 + min1≤i≤n
( (Σ1)ii

σ2 − log (Σ1)ii
σ2

)
− 1

θ2

σ2 + max1≤i≤n
(Σ1)ii
σ2 − 1 + log σ2

λ1(Σ1)

,
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It follows that

γKL ≥
θ2

σ2 + min1≤i≤n
( (Σ1)ii

σ2 − log (Σ1)ii
σ2

)
− 1

θ2

σ2 + λn(Σ1)
σ2 − logλ1(Σ1)

σ2 − 1
, (29)

where we use the fact that λn(Σ1) ≥ maxi≤i≤n(Σ1)ii [18].
Note that λn(Σ1)

σ2 − logλ1(Σ1)
σ2 − 1 ≥ 0. Supposing that σ

and Σ1 are fixed, we obtain from inequality (29) that the
lower bound on γKL increases if θ2 increases. If we further
consider that Σ1 is diagonal and λ1(Σ1) ≥ σ2, inequality
(29) becomes

γKL ≥
θ2

σ2 + λ1(Σ1)
σ2 − logλ1(Σ1)

σ2 − 1
θ2

σ2 + λn(Σ1)
σ2 − logλ1(Σ1)

σ2 − 1
, (30)

where we use the fact that the function h(x) = x − log x
is nondecreasing on x ≥ 1. Now supposing that θ, λ1(Σ1)
and σ are fixed, we have from inequality (30) that the lower
bound on γKL increases as λn(Σ1) decreases, and the lower
bound on γKL tends to zero if λn(Σ1) goes to infinity. In
summary, a higher value of θ2

σ2 or a smaller gap between
λ1(Σ1) and λn(Σ1) can potentially improve the performance
of the greedy algorithm. Note that when Σ1 is diagonal,
λ1(Σ1) and λn(Σ1) correspond to the smallest variance and
the largest variance among the measurements of the sensors
under H1, respectively.

Remark 6: The result in Theorem 2 complements the
results in [11] and [12]. Specifically, in [11], the authors
only show that the objective function of MSSNP is not sub-
modular without further analyzing the submodularity ratio of
the objective function. Furthermore, they propose a selection
algorithm without providing any theoretical guarantee on
the performance. Under the assumption that Σ0 = Σ1, the
authors in [12] consider a different metric to characterize
how close a nonsubmodular function is to being submodular,
which leads to a bound on the performance ratio of the
greedy algorithm, defined as fKL(µ∗)

fKL(µgre)
, that depends on

the value of fKL(µgre). For general instances of MSSNP,
where θ0 6= θ2 or Σ0 6= Σ1 (or both), the authors in
[12] instead consider solving the MSSNP problem with
submodular surrogates to fKL(µ).

V. CONCLUSIONS

In this paper, we studied the sensor selection for the
Neyman-Pearson detector problem in hypothesis testing. We
first showed that the sensor selection for the Neyman-
Pearson detector problem is NP-hard in general. We related
our problem to the subset selection for linear regression
to achieve this. We then characterized the performance of
greedy algorithms for solving the sensor selection problem
when we considered a surrogate (based on the KL distance)
to the miss probability of the Neyman-Pearson detector. By
using the notion of submodularity ratio to characterize how
close a nonsubmodular set function is to being submodular,
we provided a bound on the performance of greedy algo-
rithms that depends on the parameters of the problem. Future
studies on other types of detectors and hypothesis testing in
networks are of interest.

APPENDIX

Proof of Lemma 3 (sketch):

Note that since Σ ∈ Sn++, we have that Σ(µ) and Σ(µc)
are positive definite for all µ ∈ {0, 1}n with supp(µ) =
{1, . . . , p}, where p < n (p ∈ Z>0). Denote Σ′ = Σ(µ) −
ΣX(µ)X(µc)(Σ(µc))−1ΣTX(µ)X(µc). Let e1 be an eigenvector
of the eigenvalue λ1(Σ′) > 0, i.e., Σ′e1 = λ1(Σ′)e1,

and define e0 =

[
e1

−(Σ(µc))−1ΣTX(µ)X(µc)e1

]
. Using Eq.

(0.8.5.3) in [18], one can show that Σe0 =

[
Σ′e1

0

]
. It follows

that

eT0 λ1(Σ)e0 ≤ eT0 Σe0 = eT1 Σ′e1 = eT1 λ1(Σ′)e1, (31)

where the first inequality follows from the fact that
(
Σ −

λ1(Σ)In
)

is positive semi-definite [18]. Noting that eT0 e0 ≥
eT1 e1 > 0, we have from (31) that λ1(Σ) ≤ λ1

(
Σ′
)
.
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