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Abstract—Given a linear dynamical system affected by noise,
we study the problem of optimally placing sensors (at design-
time) subject to a sensor placement budget constraint in order
to minimize the trace of the steady-state error covariance of the
corresponding Kalman filter. While this problem is NP-hard in
general, we consider the underlying graph associated with the
system dynamics matrix, and focus on the case when there is
a single input at one of the nodes in the graph. We provide
an optimal strategy (computed in polynomial-time) to place the
sensors over the network. Next, we consider the problem of
attacking (i.e., removing) the placed sensors under a sensor attack
budget constraint in order to maximize the trace of the steady-
state error covariance of the resulting Kalman filter. Using the
insights obtained for the sensor placement problem, we provide
an optimal strategy (computed in polynomial-time) to attack
the placed sensors. Finally, we consider the scenario where a
system designer places the sensors under a sensor placement
budget constraint, and an adversary then attacks the placed
sensors subject to a sensor attack budget constraint. The resilient
sensor placement problem is to find a sensor placement strategy
to minimize the trace of the steady-state error covariance of
the Kalman filter corresponding to the sensors that survive the
attack. We show that this problem is NP-hard, and provide a
pseudo-polynomial-time algorithm to solve it.

I. INTRODUCTION

In large-scale control system design, one of the key prob-
lems is to place sensors or actuators on the system in order
to achieve certain performance criteria (e.g., [1], [2]). In cases
involving linear systems with process or measurement noise,
researchers have studied how to place sensors (at design-time)
in order to minimize certain metrics of the error covariance of
the corresponding Kalman filter (e.g., [3]-[7]). The problem
has been shown to be NP-hard and inapproximable within
any constant factor in general [8]. This motivates us to
consider special classes of this problem in this paper and
seek polynomial-time algorithms for the optimal sensor place-
ment problem. Specifically, we consider a discrete-time linear
dynamical system whose states represent nodes in a directed
network, and interact according to the topology of the network.
The nodes of the network are possibly affected by stochastic
inputs. Such networked systems with stochastic inputs have
received much attention from researchers recently (e.g., [9]—
[12]). These models encompass diffusion networks (e.g., [13])
that arise in many different areas, including information and
influence diffusion over social networks [14], spreading of
diseases in populations [15], and diffusion of chemicals in
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certain environments [16]. In such applications, estimating the
states of the entire network is an important objective.

In this paper, we focus on the case when there is a single
node of the network that has a stochastic input. Specifically,
we consider the scenario where a system designer can spend
a limited budget on placing sensors (at design-time) over the
network in order to minimize the trace of the steady-state error
covariance of the Kalman filter corresponding to the placed
sensors. A sensor placed at a certain node gives measurements
of the state corresponding to the node. In addition, placing a
sensor at a node incurs a placement cost (which could vary
across the nodes). We refer to this problem as the Graph-based
Kalman Filtering Sensor Placement (GKFSP) problem.

Additionally, the systems that we are interested in mon-
itoring may be targeted by adversaries, where an adversary
can attack a subset of placed sensors. Different types of
attacks have been studied previously, including Denial of
Service (DoS) attacks (e.g., [17], [18]) and false data injection
attacks (e.g., [19], [20]). Here, we consider adversaries that
perform DoS attacks on sensors by simply removing them (or
equivalently, dropping all the measurement data). The goal of
the adversary is to remove a subset of placed sensors under a
budget constraint in order to maximize the trace of the steady-
state error covariance of the Kalman filter corresponding to the
surviving sensors. We assume that attacking a sensor placed
at a node incurs an attack cost (which could also vary across
the nodes). In contrast with existing work in the literature, we
analyze the problem using the graph structure of the systems.
We refer to this problem as the Graph-based Kalman Filtering
Sensor Attack (GKFSA) problem.

Finally, combining the two problems that we considered
above, we formulate and study a resilient sensor placement
problem for the networked system. We assume that the system
designer is aware of the potential attack from an adversary
who chooses to optimally attack the sensors (subject to an
attack budget constraint) deployed by the system designer.
The system designer’s goal is to place sensors (under a
placement budget constraint) among a subset of nodes in order
to minimize the trace of the steady-state error covariance of the
Kalman filter corresponding to the surviving sensors after the
attack. We refer to this problem as the Resilient Graph-based
Kalman Filtering Sensor Placement (RGKFSP) problem.

Contributions

First, we provide an optimal sensor placement strategy for
the GKFSP problem using the graph structure of the system.
Second, leveraging the insights for the GKFSP problem, we
give an optimal sensor attack strategy for the GKFSA problem.
Third, we show that the RGKFSP problem is NP-hard; we
then provide an algorithm based on dynamic programming
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that can return an optimal solution to general instances of
the RGKFSP problem in pseudo-polynomial time. Although
the results are derived under the assumption that the sensors
give perfect measurements, we show that how to apply these
results to analyze the case with sensor measurement noise
and provide numerical examples. A preliminary version of the
results in this paper was presented in [21], where only the
GKFSP problem was studied for a more restrictive class of
system dynamics matrices.

Related work

The (design-time) sensor placement problem has been
widely studied in the literature. For example, in [6], [22],
the authors considered the Kalman filtering sensor placement
problem over a finite number of time steps. Here, we study
the problem of optimizing steady-state error covariances of the
corresponding Kalman filter. In [7], [8], the authors considered
the same sensor placement problem as the one considered here,
but for general system dynamics. In such cases, they showed
that finding the optimal placement for the general problem is
NP-hard. Thus, in this paper, we impose additional structure
on the problem (by considering the graph representation of
the dynamics) in order to seek optimal solutions. In [23],
[24], the authors studied the sensor placement problem for
estimating a static variable (parameter) that does not change
over time. Here, we study the problem of placing sensors to
estimate the states of a linear dynamical system affected by
stochastic inputs. In contrast to the sensor placement problem
where the set of placed sensors cannot change over time,
the sensor scheduling problem for Kalman filtering has also
received much attention (e.g., [25]-[28]), where different sets
of sensors can be chosen at different time steps.

In networked system settings, the authors in [29] considered
the sensor placement problem for continuous-time diffusion
dynamics, and applied the Wiener filter to estimate the system
states using sensor measurements. Here, we consider discrete-
time networked system dynamics and apply the Kalman filter
to estimate the system states. The authors in [10]-[12] studied
the leader selection problem in consensus networks with
stochastic inputs. The problem is to select a subset of nodes
whose states are fixed over time in order to minimize the
H; norm of the system states at steady state. In contrast, we
consider the problem of placing sensors among the nodes of
systems with more general dynamics in order to minimize the
trace of the steady-state error covariance of the Kalman filter.

Although both of the sensor placement and the sensor attack
problems have received much attention from researchers, the
resilient sensor placement is less explored. The authors in [30]
considered the problem of resilient maximization of monotone
submodular set functions under a cardinality constraint on
the sets. They proposed a polynomial-time approximation
algorithm for the problem with performance bounds that
depend on the curvature of the objective function. In [31], the
authors considered a resilient observation selection problem.
The problem is to resiliently select observations of a scalar
Gaussian process given that some of the selected observations
could be removed by an adversary. The authors showed that
this problem is NP-hard and proposed a greedy algorithm

with a provable performance guarantee. Here, we consider
the resilient sensor placement problem for Kalman filtering of
(vector) linear dynamical systems subject to general knapsack
constraints. While we show this problem is NP-hard, we give
an algorithm based on dynamic programming to solve the
problem optimally in pseudo-polynomial time [32].

Notation and terminology

The sets of integers and real numbers are denoted as Z and
R, respectively. For any = € R, let |z] denote the greatest
integer that is less than or equal to . For a matrix P € R"*",
let P denote its transpose, P;; (or (P);;) denote the element
in the 7th row and jth column of P, and P; denote the 7th row
of P. Let 0,,x, denote a zero matrix; the subscript is dropped
if the dimension of the matrix is clear from the context. The
identity matrix of dimension n is denoted as I,,. A positive
semi-definite matrix P is denoted by P = 0 and P > @ if P—
Q@ = 0. The set of n by n positive definite (resp., positive semi-
definite) matrices is denoted by S’} | (resp., S'}). For a vector
x, denote its ith element as x;, and let supp(x) be its support,
where supp(z) = {¢ : x; # 0}. Define e; to be a column
vector where the ¢th element is 1 and all the other elements
are zero; the dimension of the vector can be inferred from the
context. We use E[z] to denote the expectation of a random
variable (vector) x. For a set A, let | A| be its cardinality. Given
two functions o1 : R>g — R and @2 : R>g — R, ¢1(n) is
O(¢2(n)) if there exist positive constants ¢ and N such that
le1(n)| < c|pa(n)| for all n > N.

II. PROBLEM FORMULATION

We begin with the following definitions from graph theory.
Further details can be found in, for example, [33] and [34].

Definition 1: For any given matrix A € R™*", the directed
graph of A, denoted as G(A), is defined as the directed graph
on n vertices (or nodes) x1,Z2,...,x, such that for all 7,5 €
{1,2,...,n}, there is a directed edge in G(A) from z; to
x;, denoted as (z;,x;), if and only if A;; # 0. Denoting
the set of vertices and the set of edges of G(A) as X(A) =
{z1,22,...,2n} and E(A), respectively, the graph G(A) is
also denoted as G(A) = {X(A),E(A4)}.

Definition 2: Consider a directed graph G = {X, £}, where
X & {z1,79,...,7,}. A directed path from ;, to x;, is a se-
quence of directed edges (zi,, i, ), (Tiys Tin)s -« - (Tiy_y s Ti,)
in G. The ordered list of vertices in the directed path is
Tiy, Tiys - .-, %i,. The length of a directed path is the number
of directed edges in the directed path. A cycle is a directed
path that begins and ends at the same vertex which occurs
exactly twice in the ordered list of vertices in the directed
path, and no other vertices occur more than once in the list.
A cycle of length 1 is a self-loop at the corresponding vertex.

Definition 3: Consider a directed graph G = {X,£}. For
any pair of distinct vertices z;,z; € X such that there exists
a directed path from z; to x;, the distance from z; to x;,
denoted as [;;, is defined as the shortest length over all such
paths. Define [,,,, = 0 for all z,,, € X

Definition 4: A directed graph G = {X,£} is strongly
connected if for all pairs of distinct vertices x;,x; € X, there
is a directed path from z; to x; in G.
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We start with a general system model. Consider a ma-
trix A € R™" with the associated graph G(A) =
{X(A),E(A)} (given in Definition 1). Suppose that T =
{wigs iy, i, } © X(A) is the set of nodes that have
stochastic inputs, where n; € Zx>;. We then consider the
following discrete-time linear system:

zlk + 1] = Az[k] + Bw[k], (1)

where z[k] € R"™ is the system state at time step k, and
B £ e €i, _,] € R™™ is the input matrix. The
stochastic input w[k] € R™ is a zero-mean white noise
process with E[w[k](w[k])T] = W € S!}'. The initial state
x[0] is a random vector with mean Z, € R™ and covariance
I, € S%, and is assumed to be independent of w(k] for
all k € Z>¢. Each state of the system, denoted as x;[k|, is
associated with node z; in G(A). As we mentioned in the intro-
duction, [8] showed that the Kalman filtering sensor placement
problem cannot be approximated within any constant factor
in polynomial time (if P#NP) for general system dynamics
matrices even when the measurement noise is zero. Moreover,
under the networked system setting, [21] showed that if there
are multiple input nodes in the graph, the Kalman filtering
sensor placement problem becomes NP-hard even when the
graph only contains a set of disjoint paths of length three and
each path has a single input node. Hence, in order to bypass
these inherent complexity issues, we focus on networked
systems with a single input node z;, € X(A) (i.e., B = e;,
and E[(w[k])?] = 02 € R>p), and seek efficient algorithms
to optimally solve the corresponding sensor placement, sensor
attack, and resilient sensor placement problems. We assume
throughout this paper that the pair (A, Bo,,) is stabilizable.
The generality of this assumption will be justified later.

A. The Sensor Placement Problem

First, suppose that there is a system designer who can
choose a subset of the vertices of the graph G(A) at which to
place sensors under a budget constraint. Specifically, a sensor
placed at node x; € A'(A) has a placement cost h; € Zxo; de-
fine the sensor placement cost vector as h £ [hy hin] T
The designer has a sensor placement budget H € Zx that can
be spent on placing sensors at the nodes of G(A). A sensor
that is placed at node z; € X'(A) gives a measurement
‘)
K2

process. We further define y[k] £ [y1[k] ---

where C; = e] and v;[k] € R is a zero-mean white noise

k)], C 2

(€T ... CT]" and o[k] £ [vs[k] -+ v,[K]]". Thus, the
output provided by all sensors together is given by
ylk] = Cxl[k] + vlk], (3)

where C' = I,,. We denote E[v[k](v[k])T] = V € ST and
consider E[v[k](w[j])T] = 0, Vk,j € Zs¢. The initial state
x[0] is also assumed to be independent of v[k] for all k € Z>,.

After the sensors are placed, the Kalman filter is then
applied to provide an estimate of the states using the mea-
surements from the installed sensors. We define a vector
w € {0,1}™ as the indicator vector indicating the vertices

where sensors are placed. Specifically, p1; = 1 if and only if a
sensor is placed at node z; € X' (A). Denote C() as the mea-
surement matrix of the installed sensors indicated by u, i.e.,
C(p) & [CF C,?;}T, where supp(p) = {i1,...,%} C
{1,...,n}. Similarly, denote V(1) as the measurement noise
covariance matrix of the installed sensors, ie., V(u) =
E[o[k](0[k])T], where 0[k] £ [(v[k])i, --- (v[k])i,] . The
a priori and the a posteriori error covariance matrices of
the Kalman filter at time step k, when the sensors indicated
by pu are placed, are denoted as Xj,p_1(p) and Xy, (p),
respectively. The initial a priori error covariance is set as
Yo/—1(p) = Tlp. The limit () 2 limy_ oo Ypy1/k (also
known as the steady-state a priori error covariance), if it exists,
satisfies the discrete algebraic Riccati equation (DARE) [35]:

Y(u) = AS(u) AT + 02 BBT

AS()C ()T (C 2 C()T + V(1) Cr)()AT,
“)
where 02 € Rso and B = e;,. The limit ¥*(u) =

limy 00 ¥g/x (1) (also known as the steady-state a posteriori
error covariance), if it exists, satisfies the following equations
[36]:

E(p) = X(p)—
S()C ()T (CE()C)T + V() Cw(n), ()

and
Y(p) = AL (u)AT + 02 BBT. (6)

The inverses in Eq. (4) and (5) are interpreted as the Moore-
Penrose pseudo-inverses (which we denote using the notation
“37) if the arguments are not invertible [35]. We will use the
following result from [35].

Lemma 1: For a given indicator vector p, >y, /k,l(u) (resp.,
Yk (1)) will converge, as k — oo, to a finite limit (u)
(resp., X*(u)), regardless of the initial covariance X/ _1(u),
if and only if the pair (A4,C(u)) is detectable and the pair
(A, Bo,,) is stabilizable. Furthermore, if the limit 3(u) (resp.,
¥*()) exists, it is also the only positive semi-definite solution
to Eq. (4) (resp., Eq. (5)).

When the pair (A, C(p)) is not detectable, we define the
limits ¥(p) = +4oo and ¥*(u) = +oo. The priori and
posteriori Graph-based Kalman Filtering Sensor Placement
(GKFSP) problems are defined as follows.

Problem 1: (Priori and Posteriori GKFSP) Consider a
system dynamics matrix A € R"*"™ with the associated
graph G(A) = {X(A4),E(A)}, a single vertex z;, € X(A)
that has a stochastic input with variance o2 € Rso, the
measurement matrix C' = I, (containing all of the individ-
ual sensor measurement matrices), a sensor noise covariance
matrix V € Si, a sensor placement cost vector h € Z%, and
a sensor placement budget I € Zx>(. The priori Graph-based
Kalman Filtering Sensor Placement (GKFSP) problem is to
find the sensor placement g, i.e., the indicator vector p of the
vertices where sensors are placed, that solves

min

t >
mintrace((1)
s.t. hTu <H,

2325-5870 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on August 02,2020 at 12:29:54 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2020.3006271, IEEE

Transactions on Control of Network Systems

where X(u) is given by Eq. (4) if the pair (A,C(u)) is
detectable, and X(u) = +oo otherwise. The posteriori GKFSP
Problem is to find the sensor placement y that solves
min trace(X*
o (X" ()
s.t. hTu <H,

where ¥*(u) is given by Eq. (5) if the pair (A,C(u)) is
detectable, and X*(u) = 400 otherwise.

B. The Sensor Attack Problem

Suppose that the sensors indicated by the sensor placement
w € {0,1}" are placed and installed by the system designer,
and there is an adversary who aims to attack (i.e., remove) a
subset of the installed sensors. To attack a sensor placed at
node z; € X(A), the adversary needs to pay a cost f; € Z>q.
Define the sensor attack cost vector as f £ [f1 - fnTT
The adversary has a total sensor attack budget I’ € Z>q for
attacking the installed sensors. We define a vector v € {0, 1}"
as the indicator vector indicating the subset of sensors that
are attacked, where v; = 1 if and only if the sensor at
x; € X(A) is attacked. Note that supp(v) C supp(p) is
always assumed implicitly in the sequel. Denote the matrix
C(p \ v) as the measurement matrix of the surviving sensors
corresponding to y and v, i.e., C(u\v) = [C]) C};]T,
where {j1,...,Jq} = supp(n) \ supp(v). Denote supp(p) \
supp(v) = supp(p \ v). Similarly, define V(p \ v) as the
measurement noise covariance of the surviving sensors. The
Kalman filter is then applied based on the measurements of the
surviving sensors. The resulting a priori and a posteriori error
covariances of the Kalman filter at time step %k are denoted as
Yk/k—1(p\ v) and Xy (p \ v), respectively, whose limits as
k — oo are denoted as X(p \ v) and X*(u \ v), respectively.

The priori and posteriori Graph-based Kalman Filtering
Sensor Attack (GKFSA) problems are then defined as follows.

Problem 2: (Priori and Posteriori GKFSA) Consider a
system dynamics matrix A € R"*™ with the associated graph
G(A) = {X(A),E(A)}, a single vertex z;, € X(A) that has
a stochastic input with variance 0'3) € R, the measurement
matrix C' = [,, (containing all of the individual sensor mea-
surement matrices), a sensor noise covariance matrix V' € S'7,
a sensor attack cost vector f € ZZ, a sensor attack budget
F € Z>o, and a sensor placement vector 1 € {0,1}". The
priori Graph-based Kalman Filtering Sensor Attack (GKFSA)
problem is to find the sensor attack v, i.e., the indicator vector
v of the vertices where the installed sensors (indicated by )
are attacked, that solves

Ver?(%i(}n trace(X(p \ v))
st. fTv < F,

where X(u \ v) is given by Eq. (4) if the pair (A,C(u\ v))

is detectable, and X(u \ ) = +oo otherwise. The posteriori
GKFSA problem is to find the sensor attack v that solves

t D
x| race(X" (1 \ v))

s.t. fTu < F,

where X*(p \ v) is given by Eq. (5) if the pair (A, C(u\ v))
is detectable, and ¥* (i1 \ v) = 400 otherwise.

C. The Resilient Sensor Placement Problem

We next consider the scenario where the system designer is
aware of the potential attack from a strategic adversary (who
can perform optimal sensor attacks under budget constraints),
and aims to choose a resilient sensor placement.We first define
feasible sensor placements for the system designer as follows.

Definition 5: A sensor placement u € {0,1}" is said to
be feasible if hTu < H (i.e. the sensor placement budget
constraint is satisfied), and for all v € {0, 1}" such that f7v <
F, supp(p \ v) # 0 (i.e., for all sensor attacks that satisfy the
sensor attack budget constraint, at least one sensor indicated
by u is left over by the adversary).

Remark 1: Note that if a sensor placement p is not feasible,
there is an attack (satisfying the attacker’s budget constraint)
such that that the pair (A, C(u \ v)) is not detectable if the
system dynamics matrix A is not stable.

The priori and posteriori Resilient Graph-based Kalman
Filtering Sensor Placement (RGKFSP) problems are then
given by the following.

Problem 3: (Priori and Posteriori RGKFSP) Consider a
system dynamics matrix A € R"*™ with the associated graph
G(A) = {X(A),E(A)}, a single vertex z;, € X(A) that has
a stochastic input with variance ai € R, the measurement
matrix C' = [,, (containing all of the individual sensor mea-
surement matrices), a sensor noise covariance matrix V' € S'7,
a sensor placement cost vector h € Z%,, a sensor placement
budget H € Zx>q, a sensor attack cost vector f €7y, and
a sensor attack budget F' € Zxq. The priori Resilient Graph-
based Kalman Filtering Sensor Placement (RGKFSP) problem
is to find the sensor placement g that solves

uerﬁ)l,?}" uer?o%:f}n trace(X(p \ v))
sit. W' < H, and fTv < F,

where (i \ v) is given by Eq. (4) if the pair (4,C(u\ v))
is detectable, and X(p \ ) = +oo otherwise. The posteriori
RGFKSP problem is to find the sensor placement p that solves
i trace(X*
;J,EI{I%)I,Ill}" yer?(?j(}" ( (M \ V))
st. hTpu < H, and fTv < F,

where ¥*(u \ v) is given by Eq. (5) if the pair (A, C(u\ v))
is detectable, and ¥* (i1 \ v) = 400 otherwise.

III. SOLVING THE GKFSP AND GKFSA PROBLEMS

In this section, we provide algorithms to optimally solve
the GKFSP and GKFSA problems, respectively, when the
sensor noise covariance is V' = 0,x,. We will make the
following assumptions on the instances of the GKFSP and
GKFSA problems in the sequel.

Assumption 1: The pair (A, Bo,,) is assumed to be stabi-
lizable. The pair (A, C(p)) is assumed to be detectable for all
sensor placements p € {0,1}™ with supp(u) # 0.

Assumption 2: The graph G(A) = {X(A),E(A)} (associ-
ated with the system dynamics matrix A € R"*") is assumed
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to satisfy the property that for all z; € X(A) and x; # x;,,
there exists a directed path from z;, to ;. The system
dynamics matrix A is assumed to satisfy (A™);;, # 0 if
liy; = m, where [l; ; is the distance from z;, to x;.

Remark 2: Note that Assumptions 1-2 are satisfied by large
classes of systems. For example, it was shown in [37] that
Assumption 1 holds if the system dynamics matrix A is row-
stochastic and irreducible.! Assumption 2 holds if the system
dynamics matrix A is nonnegative and irreducible [34]. Since
any row-stochastic matrix is also nonnegative, Assumptions
1-2 hold for any system dynamics matrix A that is row-
stochastic and irreducible. Furthermore, using techniques in
control theory pertaining to linear structured systems (e.g.,
[38], [39]), one can show that Assumption 1 holds for almost
any system dynamics matrix A such that the graph G(A4) is
strongly connected, using approaches from [40], [41]. Specif-
ically, one can consider the system dynamics matrix A to be
structured, i.e., each entry of the system dynamics matrix A is
either a fixed zero or an independent free parameter (which can
attain any real value including zero), where the graph G(A)
is defined according to the free parameters of the structured
matrix A. One can then show that the set of parameters for
which Assumption 1 does not hold has Lebesgue measure
zero. Moreover, using similar techniques to those above and
the result from [34] that shows that Assumption 2 holds for
all nonnegative irreducible matrices A, one can show that
Assumption 2 holds for almost any choice of free parameters
in the structured matrix A such that the graph G(A) is strongly
connected. Note that the systems where Assumptions 1-2 hold
are not limited to the cases described above.

Remark 3: We can generalize our analysis to system dynam-
ics matrices A where G(A) has multiple strongly connected
components [33]. Suppose that the input node can only reach
(via directed paths in G(A)) nodes that are in the same strongly
connected component. Then, under Assumption 1, we only
need to consider the strongly connected component of G(A)
that contains the input node, since one can show that the mean
square estimation error of the Kalman filter remains zero for
the states corresponding to nodes that are not in the strongly
connected component containing the input node.

The first main result of this section is as follows.

Theorem 1: Consider a system dynamics matrix A € R™*"
with the associated graph G(A) = {X(A),E(A)}, a single
vertex x;, € X(A) that has a stochastic input with variance
0121} € R, the measurement matrix C' = I,, (containing all of
the individual sensor measurement matrices), and the sensor
noise covariance matrix V' = 0,,x,. Suppose that Assumptions
1-2 hold. For any sensor placement p € {0,1}" such that
supp(p) # 0, denote ¢ = mincqupp(u) lig; > 0, where I ;
is the distance from vertex x;, to vertex x;. The following
expressions hold:

¢
S(u) = oy, Y AmBBT(AT)™, (7)

m=0

'Note that the matrix A is irreducible if and only if the graph G(A) is
strongly connected [34].

and
¢—1
y 0_2 AmBBT AT mof >1’
sy ={ 02 AT re=1 g,
0 ifC=0,

where X(u) (resp., X*(u)) is the steady-state a priori (resp.,
a posteriori) error covariance of the corresponding Kalman
filter, and B = e;,.

Proof: The existence of X(p) and X*(p) follows directly
from Lemma 1 and Assumption 1. Considering any sensor
placement p such that ¢ > 1, i.e., sensors are not placed at
the input vertex z;,, we first prove Eq. (7) by verifying that
Eq. (7) satisfies Eq. (4). Note that C; = e! for all z; € X (A).
Denote X,, C X'(A) as the set of vertices indicated by ; where
sensors are placed and X C X'(A) as the set of vertices that
have distance ¢ from the input vertex z;,. Since performing
elementary row operations on C(u) does not change X (u),
we assume without loss of generality that p = [uf uQT}T
such that p1 = lx.nx, and pp € {0,137 1%l In
other words, ;1 contains all sensors placed at vertices that
have distance ¢ from the input vertex x;,, and l;,; > (¢ for
all j € supp(uz). The corresponding measurement matrix is

ggz;ﬂ 5 where C(,ul) c R‘Supp(l’«l)‘Xn and

C(uz) € RIswp(#2)Ixn Qubstituting Eq. (7) into the right hand
side (RHS) of Eq. (4), we obtain:

given by C(u) =

RHS of Eq. (4)
¢+1

=02, > A™BBT(A")" 4 02 BB" — 02 AT BBT (A"
m=1

X (C(u)"(C(w)A*BBT (AT)S(C(u)")T
x C(p)ABBT (AT)TH(9)
¢+1
=0y, Y A"BBT(AT)" — o2 AT BBT(AT)C

m=0

< C)T (€T |gilt)] acmBTeany

<™ (C)T) |G| acmpreanyn
¢+1
=03, > A"BBT(AT)" — 02 AT'B
m=0
x [BT(AT)(C(11)" 01 jsupp(yea)1]
(C(u)ABBT (AT)¢(C(u1))")T 0
dl ; 0
g am
¢+1
=02, > A™BBT(AT)" — % AT BBT(AT)¢(C ()"
m=0
x (C(u)A*BBT (AT)S(C (1)) C (1) A BBT (AT)H,
(11)

where Eq. (9) uses the fact that (A™);;, = 0 for all
j € supp(u) whenever m € {0,1,...,¢ — 1}, which implies
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that C(u)A™B = 0 for all m € {0,1,...,¢ — 1}. Similarly,
Eq. (10) follows from the fact that C'(uz)A™B = 0 for all
m € {0,1,...,¢}. Denoting 1 £ C(u;)ASB € RIsuwp(r)l
and noting that ¢) # 0 from Assumption 2, one can show that
T (2pT)T9p = 1. We then have from Eq. (11):

RHS of Eq. (4)
¢+1
=0y Y A"BBT(AT)™

m=0

UEUAC+1BBT(AT)C+1

¢
=0y, > A"BBT(AT)™

m=0

Since 02, 3¢ _  A"BBT(AT)™ = 0, we know from Lemma
1 that the limit Z( ) is given by Eq. (7). We then obtain from
Eq. (6) that the limit X* () is given by Eq. (8) (when ¢ > 1).

Next, we consider any sensor placement p such that ¢ = 0,
i.e., a sensor is placed at the input vertex x;,. Using similar
arguments to those above, we can also show that Eq. (7)-(8)
hold when ¢ = 0. This completes the proof of the theorem. B

To verify the results in Theorem 1, let us consider the
following example.

Example 1: Consider the graph in Fig. 1, where x5 is the
1nput node (1e B = eg) with variance 02 1. Suppose

0.5 2

0 0
_ 03 0 1.5 0 = I, and V = 0444. Denote

= 0 05 ; =
’ 0.8
O 1 O OT and p14 = [0 0 0 1]7. It can be verified
0000
(1) = 86880] = BB, $*(1) = Ousa, S(us) =
5.5125 1.6065 1.6 2 504 )
|:11§(2)25 336109 0.%6 —0.83 4:| — Zm:O AmBBT(AT)nL and
—0.504 —0.7344 0  0.2304
. 4.41 0 1.26 0 L o AT
X (pa) = 1%6%0236% = Dm0 A" BB (AT)™, as pro-
vided by Theorem 1.
(G e &)

Fig. 1: Graph for Example 1

A. An Optimal Solution to GKFSP

Using the above discussions, we give the following result
that characterizes an optimal solution to GKFSP (Problem 1).

Theorem 2: Supposing that Assumptions 1-2 hold, an op-
timal solution, denoted as u*, to the priori (resp., posteriori)
GKFSP problem is to place a single sensor at a vertex x; in
order to minimize l;,;, i.e., the distance from the input vertex
x4, to x;, while satisfying the budget constraint.

Proof: Under Assumptions 1-2, we first note from Eq.
(7)-(8) that the a priori and the a posteriori error covariance
matrices only depend on (, i.e., the shortest distance from the
input node to the sensor nodes. Hence, it is sufficient to con-
sider sensor placements p € {0,1}" such that |supp(u)| =1
in terms of minimizing the trace of the a priori (resp., a
posteriori) steady-state error covariance of the Kalman filter.
Moreover, we know from Eq. (7) in Theorem 1 that ¥(u) =
02 3¢ _ AmMBBT(AT)™, where ¢ = N cqupp () Lij- NOt-
ing that the matrix A™BBT(AT)™ is positive semi-definite
for all m € Z>o, it follows that trace(A™BBT (AT)™) > 0

for all m € Z>¢. Hence, trace(X(p)) is minimized by finding
a sensor placement p* with |supp(u*)] = 1 such that ¢
is minimized while satisfying the budget constraint. Using
similar arguments, we can show that p* is also an optimal
solution to the posteriori GKFSP problem. [ ]

Based on Theorem 2, we can find the optimal solution
w* to the priori (resp., posteriori) GKFSP problem using
polynomial-time algorithms such as the Breadth-First Search

(BFS) algorithm which runs in time O(n + |E(A4)]) [42].

B. An Optimal Solution to GKFSA

Given a sensor placement y, we know from the insights
obtained above for GKFSP that the steady-state a priori and
the a posteriori error covariances of the Kalman filter (after
an attack that removes some of those sensors) only depend
on the surviving sensors that have the shortest distance from
the input vertex z;,. We then have the following result whose
proof is similar to that of Theorem 2 and is thus omitted.

Theorem 3: Suppose that Assumptions 1-2 hold. Given a
sensor placement p, an optimal solution, denoted as v*, to
the priori (resp., posteriori) GKFSA problem can be found by
maximizing the shortest distance from the input vertex z;, to
the surviving sensors, i.e., solving the following optimization
problem

max  min  l;
ve{0,1}m jesupp(p\v)
s.t. fTI/ < F,

(12)

where [; ; is the distance from vertex x;, to vertex x;, and
ligj = +oc if supp(p \ v) =

The optimal solution v* to the priori (resp., posteriori)
GKFSA problem described by Theorem 3 can be found as
follows. Given a sensor placement u, the adversary starts by
inspecting the placed sensors (indicated by p) that have the
shortest distance from the input vertex z;,. The adversary will
remove all of these sensors if the sum of the corresponding
sensor attack costs is less than or equal to the budget constraint
F', and terminate the process if otherwise. The above process
is then repeated for the placed sensors that have the second
shortest distance from the input vertex z;,, based on the
remaining budget. This process continues with the placed
sensors that have the third shortest distance from the input
vertex x;,, etc. Hence, polynomial-time algorithms such as the
BFS algorithm can be used to find the optimal sensor attack
v* for the adversary in time O(n + |E(A)]).

IV. SOLVING THE RGKFSP PROBLEM

We now turn to the RGKFSP problem (Problem 3). Recall
that Theorem 2 showed that it is enough to consider only
sensor placements p with |supp(u)| = 1 for the GKFSP
problem (i.e., the system designer does not necessarily need
to utilize all of the sensor placement budget H). However, an
optimal sensor placement u* for the RGKFSP problem does
not necessarily satisfy |supp(u*)| = 1, since the adversary
could have enough budget to remove the single sensor placed
by the system designer, which causes the trace of the a priori
(resp., a posteriori) error covariance of the Kalman filter to
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be infinite (if the system dynamics matrix A is not stable).
Note that the steady-state a priori and the a posteriori error
covariance matrices of the Kalman filter (after the attack) only
depend on the surviving sensors that have the shortest distance
from the input vertex z;,. Using similar arguments to those
for Theorems 2-3, we have that an optimal solution to the
RGKFSP problem can be found by minimizing the shortest
distance from the input vertex z;, to the sensors after the
corresponding optimal sensor attack, and a sensor placement

* is optimal for the priori RGKFSP problem if and only if
it is optimal for the posteriori RGKFSP problem.

We thus focus on the priori RGKFSP problem in this
section. Although we provided polynomial-time algorithms to
solve the GKFSP and GKFSA problems, we will show that the
RGKFSP problem is NP-hard, i.e., there exist classes of the
RGKFSP problem that cannot be solved by any polynomial-
time algorithm if P#NP. To do this, we first recall from
Remark 2 that Assumptions 1-2 hold for any system dynamics
matrix A that is row-stochastic and irreducible. Therefore, Eq.
(7) and Eq. (8) in Theorem 1 also hold for such A matrices.

To show that the RGKFSP problem is NP-hard, we reduce
the subset sum problem [32] to RGKFSP.

Definition 6: An instance of the subset sum problem is given
by a finite set U and a positive integer K, where each s € U
has a size k(s) € Zso.

We use the following result from [32].

Lemma 2: Given an instance of the subset sum problem as
described in Definition 6, the problem of determining whether
there is a subset U’ C U such that ) ., k(s) = K is NP-
complete.

We are now in place to prove the following result.

Theorem 4: The RGKFSP problem is NP-hard even when
both of the following two conditions are satisfied: (1) the
sensor placement cost and the sensor attack cost satisfy
h; = f; forall i € {1,2,...,n}, and (2) there is a feasible
sensor placement for the system designer.

Proof: We prove the result by giving a polynomial-
time reduction from the subset sum problem. Consider any
instance of the subset sum problem defined in Definition 6.
Denote U = {s1,52,...,5y|}. Denote the number of bits
of the binary representation of the positive integer K as
b(K), ie., b(K) £ |log,(K)] + 1. We then construct an
instance of the priori RGKFSP problem as follows. The sys-
tem dynamics matrix A € RUVIFUE))x(UI+b(K)) ig chosen
such that the graph G(A) is an undirected path of length
[U| + b(K) — 1. Specifically, we set A;; = Aj; = & for
all i € {1,2,...,|U|+b(K)—1} and j =i+ 1, Apm = 3
forall m € {2,3,...,|U[+b(K)—1}, Ay = 2 forall m €
{1,|U| + b(K)}, and all the other entries in A are zero. The
vertex xp is set as the only vertex that has the stochastic input
with variance 02 = 1. The sensor placement cost vector is set
as h; = k(s;) for all i € {1,2,...,|U|}, and h; = 2-1UI=1
forall ¢ € {|U|+1, |U|+2,...,|U|+b(K)}. The sensor attack
cost is set as f; = h; for all 4 € {1,2,...,|U|+b(K)}. Note
that the sensor placement vector and the sensor attack vector
are given by u € {0,1}/VIH(K) and v € {0,1}IVI+b(K),
respectively. The sensor placement budget of the system
designer is set as H = K, and the sensor attack budget of

the adversary is set as F' = K — 1. We also note that the
matrix A that we constructed is row-stochastic and irreducible.
Therefore, Eq. (7) in Theorem 1 holds for the A matrix that
we constructed. We claim that the answer to the given subset
sum instance is “yes” if and only if the optimal solution to the
constructed instance of the priori RGKFSP problem, denoted
as p*, satisfies trace(X(u*\v*)) < trace(ZLZ'O_l A'BBT AY),
where v* is the optimal sensor attack given p*.

Suppose that the answer to the given subset sum instance is
“yes”, i.e., there exists U’ C U such that ) ., k(s) = K.
It follows that for the instance of the priori RGKFSP problem
as constructed above, there exists a sensor placement vector
[t such that leﬂ hifi; = K < H. Therefore, for any sensor
attack v that satisfies the sensor attack budget constraint, i.e.,
Z‘Ul fivi < F = K—1, we have supp(g\2)N{1,...,|U|} #
(), which implies that there exists j € {1,...,|U |} such that
Jj € supp(fa \ 7). Noting that AmBBT AM t 0 for all m €
Zzo and l1; = j — 1 < lyjjy) = [U| = 1, it then follows
from Eq. (7) that trace(2(71\ 7)) < trace(3/_y A'BBT A?) <
trace(3°1701 AT BBT A), for any sensor attack 7 such that
Z‘fill fiv; < F. Since trace(X(p* \ v*)) < trace(X(i \ 7)),
we have trace(X(u* \ v*)) < trace(3 1YL ATBBT A1),

Conversely, suppose that the answer to the subset sum
instance is “no”, i.e., for any U’ C U, we have ) ., k(s) #
K. Considering the instance of the priori RGKFSP problem
we constructed, for any sensor placement vector p such that
S p < H = K, we have Y17 hipy # K,
which implies Z'fi‘l hipi < K — 1. Denote Zlg‘l hip; =
K|y. Therefore, for any sensor placement vector p with
ZE'“’(K) hip; < H, there exists an attack © such that
ZEZ& fiti = Ky < K — 1, which implies supp(yu \
) N{L,2,...,|U|} = 0. Moreover, note that K = H >
H — Ky > F — Kjy|. Since we set the sensor place-
ment cost vector and the sensor attack cost vector to satisfy
hi = fi = 207 WWI= for all i € {|U| + 1,|U| +2,...,|U| +
b(K)}, where b(K) is the number of bits for the binary
representation of K, we have that for any U’ C U, there
exists U' C {|U| + 1,|U| + 2,...,|U| + b(K)} such that
> scu K(8) + > ;cgr hi = H. Therefore, the system designer
can always use all the sensor placement budget by placing
sensors at an appropriate subset of the vertices in the vertex
set {Z|u|+1, Z|U|+2,- - T|U|+b(k) ) and guarantee to have
at least one sensor left after any attack that satisfies the
sensor attack budget constraint. Formally, we have that for any
sensor placement L with Z‘UHb(K) hiu; = H, there exists
e {JUI+1,...,|U| + b(K)} such that J" € supp(p \ v),
where v is any sensor attack satisfying the sensor attack
budget constraint. Meanwhile, any sensor placement p such
that Z‘UHb K) h;u; < H is not a feasible sensor placement.
Therefore, there is always a feasible sensor placement for
the system designer under the constructed instance of the
priori RGKFSP problem when the answer to the subset sum
instance is “no”. Note that the matrix A" BBT A™ = 0 for all
m € Zxg and lyj» = j' —1 > Iy + 1 = |U]. Combining the
arguments above to%ether it then follows from Eq. (7) that for
any /v such that )~ VI ) s = H, we have trace(X(p \
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v)) > trace(Y) ' A'BBTAY) > trace(Y\V] AIBBT A7),
where v is any sensor attack satisfying the sensor attack
budget constraint. Since (A™)1; > 0 for all m € Zsg, we
have trace(AIVIBBT AIVl) > 0 and thus trace(S(u \ v)) >
trace(E:‘U| ' A'BBT A?). Since the above arguments hold
for any p with Z'U‘er K) hip; = H, they also hold for
the optimal solution p* to the constructed priori RGKFSP
instance, i.e., (S(u*\v*)) > trace(3|17"" AT BBT A?), where
v* is the optimal sensor attack given p*. This completes the
proof of the claim above.

Since the subset sum problem is NP-complete and RGKFSP
¢ NP, we conclude that RGKFSP is NP-hard even under the
additional conditions as stated. ]

A. An Algorithm for RGKFSP

It follows directly from Theorem 4 that there is no
polynomial-time algorithm that would solve all instances of
RGKFSP if P#NP. However, we now provide a pseudo-
polynomial-time algorithm? (Algorithm 1) for RGKFSP by
relating it to the knapsack problem defined as follows.

Definition 7: Given a finite set U £ {s1,s2,...,50}s
a size k(s;) € Zso and a value ¢(s;) € Zsqo for each
1€ {1,2,...,
problem is to find an indicator vector 7 € {0, 1}/V! that solves

|
Lmex ;(b(&')ﬂi
o (13)

s.t. Z/i(si)m- < K.
i=1

Denoting the given
{¢,k, K},where ¢ =

instance of knapsack as a tuple
(¢(s1), ¢(s2), -, ¢(s10])) and K =
(k(s1),(s2),--.,K(s7))),” the corresponding optimal indi-
cator vector for (13) is denoted as 7n*(¢,k,K), and the
corresponding optimal value of the objective function in (13)
is denoted as z(¢, x, K).

The steps of Algorithm 1 for RGKFSP are as follows.
Algorithm 1 starts by relabeling the input vertex as vertex x;
and relabeling the other vertices in terms of a non-decreasing
order of the distances from the vertex x; (Lines 1-2). Denoting
Inax 2 mMaXy e x(A) liyj, Algorithm 1 then finds the smallest
m € {0,1,...,lmax} such that by placing sensors (under the
budget constraint) solely at nodes that have distances less
than or equal to m from z; (after the relabeling), the sum
of the sensor attack costs of the placed sensors is greater
than the sensor attack budget, i.e., there is at least one sensor
that survives the corresponding optimal sensor attack. This is
done by iteratively solving a knapsack problem at increasingly
longer distances from the input node, where at each distance,
the goal is to find a set of sensor locations that fits within
the sensor placement budget constraint H but maximizes the

2A pseudo-polynomial-time algorithm is an algorithm that runs in time
that is bounded by a polynomial in the largest integer in its input [32].

3Note that the elements in ¢ and k are ordered, and the ith element
of ¢ (resp., k) corresponds to the value (resp., weight) of s; € U for all
i € {1,...,|U|}. The dependency of {¢, x, K} on U is dropped since each
element of ¢ (resp., k) represents an element of U.

sum of the sensor attack costs. Algorithm 1 returns p = 0,1
if there is no feasible sensor placement. We now prove that
Algorithm 1 returns an optimal solution to RGKFSP.

Algorithm 1 Algorithm for RGKFSP

Input: An instance of the RGKFSP problem.
Output: A sensor placement p € {0,1}™.

1: Find the distance l;,; for all z; € X(A) \ {z;,} via BFS
and denote Iy £ max,cx(a) ligs-

2: Relabel the vertices of G(A) such that z; is the input
vertex and [, < [y for all zj,z; € X(A) \ {x1} with
J<t

3: ,LL:Onxl
4: for m =0 to lm(lx do
5: Find j,,, £ max{j : l1; = m,z; € X( )}
6: Find 7 ((fl""’f]m.) (hl,... ]m )
7: if Z((fl,...,fjm),(hl,... h’jm) H) > F' then
3 1 - T =
W*((fl,...,f]m) (hl,... m) H)
9: return

Theorem 5: Under Assumptions 1-2, Algorithm 1 returns
an optimal solution to the RGKFSP problem.

Proof: Denote an optimal solution to the RGKFSP prob-
lem as p* and denote the solution returned by Algorithm 1 as
1. Suppose that p’ is a feasible sensor placement. Suppose
that the vertices in G(A) are relabeled as indicated by Lines
1-2 in Algorithm 1, i.e., vertex z; is labeled as the input
vertex and the other vertices are labeled in terms of a non-
decreasing order of the distances from vertex x; (note that
the relabeling of the vertices does not change the optimal
solution to the RGKFSP problem other than permuting it).
Assume for the sake of contradiction that trace(X(u* \ v*)) <
trace(X(y’ \ v')), where v* and v/ are the optimal sensor
attacks given u* and p', respectively. Denote j* £ max.J
and j' £ max.J’, where J £ argmin,,equpp(u+\v+)lim and
J & arg min,,, cqupp(u/\v')l1m- In other words, among those
sensors that are closest to the input vertex in supp(u* \ v*)
(resp., supp(p' \ V'), j* (resp., j') is the largest index. Noting
that Y7 | fmps, > F (otherwise the optimal sensor attack
v* given 1 would remove the sensor placed at vertex x;- as
argued previously in Section III-B), it follows from Definition
7 that z((f1,..., fj+), (h1,..., hj=), H) > F, which implies
that z((f1,..., fi): (h1,..., hj,.),H) > F, where jy, is
defined in Line 5 of Algorithm 1 with m = [ ;-. We then know
from the definition of Algorithm 1 that the sensor placement
i’ returned by Algorithm 1 would satisfy j' < j,,, which
implies that [, < [;;« (by the way that Algorithm 1 relabels
the vertices). Moreover, we have from Theorem 1 that

Iy

S(pt\v*) =0y Y A"BBT(AT)™ (14)
m=0
and
llj
S(WA\V) =0p Y AmBBT(AT)™, (15)

m=0
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hold under Assumptions 1-2. Since the matrix
AmBBT(AT)™ » 0 for all m € Zso, we have from
the assumption trace(X(p* \ v*)) < trace(X(u' \ ') and Eq.
(14)-(15) that Iy ;« < ly;. Thus, we get a contradiction.

We then suppose that the solution p’ returned by Al-
gorithm 1 is not feasible, i.e., supp(x’ \ v/) = 0. Again,
we assume that trace(X(p* \ v*)) < trace(Z(y' \ v)),
ie., supp(p* \ v*) # (). Via similar arguments to those
above, we have that there exists 7% € {1,...,n} such
that z((f1,..., fj*), (h1,...,hj=),H) > F, which implies
that z((f1,..., fj,.), (h1,..., hj,.), H) > F, where jy, is
defined in Line 5 of Algorithm 1 with m = [;;~. There-
fore, Algorithm 1 would also return a solution ' such that
supp(p’ \ ) # @, which is a contradiction. We then conclude
that trace(X(u* \ v*)) = trace(X(u’ \ V'), i.e., Algorithm 1
returns an optimal solution to the RGKFSP problem. ]

Since the knapsack problem is NP-hard, there is no
polynomial-time algorithm to solve it optimally (if P#£NP)
[32]. Various algorithms exist to approximate or optimally
solve it, including greedy algorithms, linear programming
relaxation and dynamic programming [43]. When imple-
menting Algorithm 1, we can use existing algorithms for
knapsack to find 7*((f1,..., f;,.), (h1,...,h;,,), H) in Line
6 and z((f1,...,fj.),(h1,...,h;,),H) in Line 7 when
we range m from 0 to ly.x. Specifically, we call a
pseudo-polynomial-time algorithm for knapsack (that solves
it optimally) at most [,x + 1 times to achieve this.
For example, a typical dynamic programming approach
for knapsack finds 7*((f1,..., f;.), (h1,...,hj, ), H) and
2((f1ye- s fin)s (hye o Ry, ), H) in time O(j, H) for each
m € {0,...,Imax} [43]. Since BFS runs in time O(n+|E(A4)|),
Algorithm 1 runs in time O(InxnH +n + |E(A)]).

V. NOISY SENSOR MEASUREMENT CASE

The results we obtained so far hold under the assumption
that V' = 0,,x,. In this section, we provide a bound on the
suboptimality of the proposed strategies when there is sensor
measurement noise. We will use the following result whose
proof is in the appendix.

Lemma 3: Consider a system dynamics matrix A € R"*",
an input matrix B € R™*™, a sensor measurement matrix
C € R™*" an input covariance matrix W € ST, and
a sensor measurement noise covariance matrix V & She.
Suppose that the pair (A, BW'/?) is stabilizable and the pair
(A, C) is detectable. Denote by (resp., ) as the steady-state
a priori (resp., a posteriori) error covariance of the Kalman
filter corresponding to the measurement noise covariance V,
and denote X (resp., X*) as the steady-state a priori (resp.,
a posteriori) error covariance of the corresponding Kalman
filter when V' = 0,,xn,. Then, )y < ¥+ F and »* <
¥* + (I,, — LC)E, where E is given by

B2 i (A— KO)"KVK"((A- KC)")™,

m=0

with K 2 AXCT(CXCT)~' and L 2 ©CT(CxCT)~14

(16)

4The inverses are interpreted as the Moore-Penrose pseudo-inverses if the
arguments are not invertible [35].

Note that F' exists and is finite since the matrix A — KC
is stable. See the proof in the appendix for more details. We
have the following result for the GKFSP problem.

Theorem 6: Suppose that Assumptions 1-2 hold. Let 3(z)
(resp., X*(u)) be the steady-state a priori (resp., a posteri-
ori) error covariance matrix of the Kalman filter associated
with ¢ when V = V e S?. Denote fiy (resp., fi3) as
the optimal solution to the priori (resp., posteriori) GKFSP
problem when V = V, and denote 1* as the optimal solution
to the priori (resp., posteriori) GKFSP problem when V =
0,,xn. Then, trace(X(u*)) < trace(X(i%)) + trace(E(u*))
and trace(X* (u*)) < trace(X*(ji5)) + trace((E*(u*)), where
E(p*) and L(p*) are defined in Lemma 3 with C' = C(u*),
and E*(u*) £ (I, — L(u")C () E(*). )

Proof: First, we know from Lemma 3 that ¥(u*) =
S(p*)+ E(u*), where X(p*) is the steady-state a priori error
covariance of the Kalman filter corresponding to p* when V' =
0. This implies trace(X(u*)) < trace(X(p*)) 4 trace(E(u*)).
Since p* is the optimal solution to the priori GKFSP prob-
lem when V' = 0, we have trace(X(p*)) < trace(3(ji})).
Moreover, one can show that the error covariance of the
Kalman filter is always lower bounded (in the positive semi-
definite sense) by the error covariance of the Kalman filter with
zero measurement noise covariance (with the other system

matrices fixed). We obtain trace(X(i})) < trace(X(i7)). It

then follows from the above arguments that trace(X(u*)) <

trace(X(f7)) + trace(E(p*)). Similarly, we can show that
trace(X* (p*)) < trace(X* (fi5)) + trace(E*(u*)). [ |

The above result has the following interpretation. Consider
an instance of the priori (resp., posteriori) GKFSP problem
with V = V € S7. If we simply take V' = 0 and apply
the algorithm described in Section III-A, we will obtain an
optimal solution, denoted as p*, to the corresponding instance
of the priori (resp., posteriori) GKFSP problem (with V' = 0).
Theorem 6 shows that the performance (i.e., suboptimality) of
this sensor placement (i.e., u*) for the original priori (resp.,
posteriori) GKFSP instance with V = V can be bounded
by trace(X(p*)) < trace(X(it)) + trace(E(u*)) (resp.,
trace(X* (u*)) < trace(X*(ji3)) + trace(E* (u*))), where /it
(resp., fi3) is the optimal solution to the instance of the priori
(resp., posteriori) GKFSP problem when V = V. Moreover,
we have from Eq. (16) that as V goes to zero, trace(E(u*))
(resp., trace(E™*(u*))) will go to zero, which implies that
trace(X(u*)) (resp., trace(X*(u*))) will go to trace(X(fif))
(resp., trace(X*(ji3))). Similar performance bounds can be
obtained for the GKFSA and RGKFSP problems, respectively.

We provide simulations to show the performance of the al-
gorithms in Section III-A, Section III-B, and Section IV, when
applied to solve the GKFSP, GKFSA, and RGKFSP problems
with measurement noise, respectively. Specifically, consider a
strongly connected graph G(A) with X(A) = {z1,...,z10}
and |E(A)| = 15, where node x; has the stochastic input with
variance 012” = 0.1. Set the measurement matrix C' = Iy and
the sensor noise covariance V = 02I;, where 02 € Rxo.
Under a fixed cost h; € Z>( to place sensor at x;, a budget
H € Z>, a fixed cost f; € Z>q to attack sensor at x;, and an
attack budget I’ € Z>, we randomly generate the correspond-
ing system dynamics matrix A € R19%10 by selecting each
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nonzero element of A from a standard normal distribution.
Fig. 2(a) and Fig. 2(b) show the performance of the algorithm
described in Section III-A, when applied to solve the (priori)
GKFSP instances with V = o21;,. Specifically, Fig. 2(a) is
obtained for a single realization of A, which compares the gap
(i.e., difference) between the optimal solution to the GKFSP
problem (found by brute force and denoted as OPT') and the
solution returned by the algorithm (denoted as ALG), with
the bound (on the difference) provided in Theorem 6, when
o2 ranges from 0.01 to 0.5. Fig. 2(b) shows a histogram of the
suboptimality of the algorithm, computed as ALG=OPT ' gyer

OPT
1000 realizations of A, when o2 = 5. Similarly, Fig. 2(c)-

(d) and Fig. 2(e)-(f) show the performance of the algorithm
described in Section III-B for GKFSA and Algorithm 1 for
RGKEFSP, respectively. Note that we fix a sensor placement 1
when solving the GKFSA instances. Moreover, the objective
function of RGKFSP associated with the solution returned by
Algorithm 1 is computed against the corresponding optimal
sensor attack when V' = ¢211. The simulations show that the
bounds in Theorem 6 are conservative and that the algorithms
(for zero sensor noise) give solutions that are close to optimal
for the noisy measurement instances, particularly for RGKSP,
even when o2 /02 becomes small.

—e— True difference
—— Bound on difference

Difference

01 0.2 03 0.4 0.5 o 2 4 6 8 10
o2 Suboptimality
Y
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Fig. 2: Performance of the algorithms

VI. CONCLUSION

We considered networked dynamical systems affected by
a stochastic input. Under this setting, we first studied the
problem for a system designer to optimally place sensors

over the network subject to a budget constraint in order to
minimize the trace of the steady-state error covariance of the
corresponding Kalman filter. We then studied the optimal sen-
sor attack problem where an adversary can attack the placed
sensors under an attack budget constraint in order to maximize
the trace of the steady-state error covariance of the Kalman
filter corresponding to the surviving sensors. Using the graph
structure of the networked system, we provided polynomial-
time algorithms to solve these two problems. Furthermore, we
studied the resilient sensor placement for the system designer
when faced with an adversary. We showed that this problem
is NP-hard, and provided a pseudo-polynomial-time algorithm
to solve it. Although these results are obtained when there is
no sensor noise, we provided bounds on the suboptimality of
the proposed strategies in the presence of sensor measurement
noise. Future work on charactering optimal solutions when
there is sensor noise and providing algorithms for systems
with multiple stochastic inputs are of interest.

APPENDIX
Proof of Lemma 3:

Denote X 1 (resp., Xx) as the a priori (resp., a
posteriori) error covariance of the Kalman filter at time step &
when V' = 0, and denote ¥ /51 (resp., Xy 1) as the a priori
(resp., a posteriori) error covariance of the Kalman filter at
time step k when V' = V. Denoting W £ BW BT, we have
(from [35]):

ik-}-l/k = (A — KkO)ik/k_l(A - R}CC)T +W+ f(kVKJZ17

where k > 0 and Ky, £ AY, 10T (CSy /1 CT + V)" Lis
the corresponding Kalman gain at time step k. For any time
step k, the Kalman gain K, satisfies

K, = argmin {(A— JC)Sy 41 (A= JC) T+ W+ IV T},
J

(17)
where the minimization is in the positive semi-definite sense
[35]. Since the pair (4, BW'/2) (resp., (4, C)) is stabilizable
(resp., detectable), we know from a more general version of
Lemma 1 for general system matrices in [35] that the limit
¥ = limp o0 ikﬂ/k exists, and satisfies

Y=(A-KC)X(A-KC)' +W + KVKT,
where K 2 AXCT(C2CT + V)~! is the corresponding
(steady-state) Kalman gain. Similarly, we have
Y=(A-KO)X(A-KOT +W, (18)

where K £ AX.CT(CXCT)~!. Noting the optimality of the
Kalman gains from Eq. (17), there exists, as argued in [35],
a suboptimal filter (when V = V) with a (time-invariant)
suboptimal gain given by K such that the corresponding a
priori error covariance at time step k + 1, denoted as ik-i—l Jk>
satisfies

Spiik = (A-KCO)Ey 1 (A-KC)'+W+KVKT. (19)

Furthermore, the limit P limyz oo f)k_H /k €xists and sat-
isfies ¥ = X [35]. We then obtain from Eq. (18) and (the
steady-state version of) Eq. (19) the following:

E=(A-KC)E(A-KC)T + KVKT, (20)
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where E = 3 — X. Since the matrix A — KC' is stable [35],
we have that there exists a unique finite positive semi-definite
matrix F that satisfies Eq. (20) and can be written as £ =
S o(A=KC)"KVET (A= KC)T)™ (e.g., [35)). It then
follows from the arguments above that S=E+Yr-3.

Slmllarly, we have from [35] that Zk /k satisfies Ek /k =
( *LkC)Zk/k 1s where Lk = Ek/k 10 (C’Ek/k 10 +
V) . Moreover, the limits PO im0 Zk/k and X* =
limg o0 X5 exist and satisfy Y = (I, — LC)E and X* =
(I, — LC)%, respectively, where L 2 SCT(CLCT + V)~
and L & YCT(CXCT)~!. Similarly, the a posteriori error
covariance at time step & of the suboptimal filter (when V' =
V) as described above, denoted as Zk /k» 18 given by

Sisk = (In — LO) Sk g1

Since the limit 3 = hmk_)Oo Ek+1 Jk exists, we know from
Eq. (21) that the limit S 2 im0 Zk/k also exists. Usmg
similar arguments to those in [35], one can show that o* > O*.
Thus, we have ©* —%* = (I,, — LO)(2 - %) = (I, — LC)E

which implies ©* < %* + (I,, — LC)E. [ ]

21
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