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Abstract

We compare the amount of information credibly transmitted by cheap talk when

information is centralized to one sender and when it is decentralized, with each of

several senders holding a distinct but interdependent piece. Under centralization, full

information transmission is typically impossible. Under decentralization, however, the

number of receivers is decisive: decentralized communication with one receiver is com-

pletely uninformative, but decentralized communication with multiple receivers can be

fully informative. We analyze the extent of such fully-informative communication, and

apply our results to the issue of transparency in advisory committees.

1 Introduction

The cheap-talk model and its many variants have served as workhorse models of communi-

cation across the social sciences, from political science to linguistics, for decades.1 Austen-

Smith (1992) provides an early summary of the literature in political science that includes

applications to veto threats, debate and advice by committees, campaign rhetoric in elec-

tions and lobbying, to name a few. In the canonical model a sender (e.g., a committee, a

candidate, or a lobbyist) has private information that is decision relevant for a receiver (e.g.,

the entire legislature, the electorate, or a representative). The sender chooses a message from

a set of available messages, and the receiver, who observes this message, makes a decision

that determines both participants’ payoffs. Communication is called cheap talk if the set of
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available messages does not depend on the sender’s information, and if his choice of message

does not directly influence payoffs. The central question in the cheap talk literature is, how

much information can be credibly communicated?

One main conclusion is that, unless sender and receiver preferences are sufficiently aligned,

it is not possible to credibly communicate all the information. There are two well-known

exceptions: when there is one sender communicating with multiple receivers (Farrell and

Gibbons, 1989), and when there are multiple senders with different preferences and perfect

information about a multidimensional state, communicating with one receiver (Battaglini,

2002).2 In this paper we show that a third case exists: the combination of multiple senders

with common preferences and multiple receivers with different preferences creates the oppor-

tunity for enhanced information aggregation beyond what can be achieved by the addition

of either variation alone.

Our paper is focused on the possibility of information transmission from advisory com-

mittees to decision makers and, in particular, on whether or not transparency requirements

can facilitate information transmission. There is a large literature examining the costs and

benefits of transparency in agency relationships,3 and recent studies have demonstrated a

clear cost to transparency in terms of its effect on information aggregation (Fehrler and

Hughes, 2018; Gradwohl and Feddersen, 2018). Modeling the members of an advisory com-

mittee as senders we show conditions under which the addition of a second receiver with

substantially different preferences than the first permits the advisory committee to transmit

more information to both decision makers. In addition, whereas transparency is an imped-

iment to information transmission in the case of a single receiver, it becomes an essential

feature that permits full information revelation when there are multiple receivers. Thus, our

formal analysis provides a rationale for mandated transparency in advisory committees.

To make things more concrete, suppose there are two cities, each of which must decide

whether or not to build a solar power plant. If the plant is cost effective both cities prefer to

build the plant, and if the plant is not cost effective they prefer not to build. However, the

city managers for each city are unsure whether the plant is cost effective or not. The cities

differ in their attitudes about the relative importance of each of the two possible kinds of

errors. The manager for the first city is very concerned about building the plant when it is

not cost effective and only wants to build it if there is at least a 75% chance that the plant

2There are additional examples in somewhat different settings, e.g., when information is certifiable
(Mathis, 2008; Hagenbach et al., 2014) and when communication is dynamic (Renault et al., 2013; Golosov
et al., 2014; Margaria and Smolin, 2018).

3This literature typically studies senders with career concerns—see Prat (2005) and Malesky et al. (2012)
for extensive reviews on the literatures in political science and economics.
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is cost effective. The manager for the second city is more concerned with failing to build the

plant when it is cost effective. She wants to build the plant if there is a 25% chance the plant

is cost effective. The city managers do not know the probability that a plant will be cost

effective, but there are several experts, each of whom has an independent assessment about

the probability the plant is cost effective. Unfortunately, the experts also have preferences

about whether solar power plants should be built. They prefer that cities build plants if the

probability the plant is cost effective is 50% or more.

Together the experts may possess information that is sufficient to persuade both city

managers to build the plant or to not build it. The question is, can the experts persuade

the managers? Imagine the experts serve on an advisory committee and vote simultaneously

on whether to recommend building the plant. The advisory committee uses a transparent

process if each expert’s vote is observable to the city managers and uses an opaque process if

the committee only issues a binary recommendation, e.g., to build the plant or not. Since the

committee is only advisory the results of the vote or recommendation are not binding. City

managers observe the results of the committee deliberation and then update their beliefs

about the probability the plant is cost effective.

In an earlier paper, Gradwohl and Feddersen (2018) showed that when there is a single

decision maker (DM) whose preferences are even moderately different from the experts’ a

transparent process produces no useful information. For example, if the experts communicate

only with the manager who has the 75% threshold for building the plant, then each expert

anticipates that in the event her signal is pivotal it must be the case that many others have

observed signals indicating that the plant is cost effective. Thus, she strategically disregards

her own signal and always votes in favor of the plant. An opaque process, on the other hand,

can produce partial information, and so is preferable to the transparent process. However,

it is not first-best from the manager’s perspective.

In this paper we show that the addition of a second DM with preferences sufficiently

different than the first changes the result entirely, but only when the committee uses a

transparent process. In our example above with two managers, consider an expert who

is contemplating whether to vote in favor of building the solar plant. Since the two city

managers have different preferences there are two possible pivotal events. In one pivotal event

the votes of the other experts are sufficiently positive that the addition of one additional

positive vote will cause the pessimistic city manager to want to build the plant. In the other

pivotal event the votes of the other experts are sufficiently negative that one additional

negative vote will induce even the optimistic city manager not to build the plant. Under the
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transparent process each expert must try to figure out which pivotal event is most likely. We

show that there is an equilibrium in which the expert’s positive signal is evidence that the

additional positive vote will cause both managers to build the plant while a negative signal

implies that an additional negative vote will cause both to not build the plant. This implies

that full information revelation is an equilibrium.

In our formal analysis we provide conditions under which full-information transmission

is possible, and apply this result to argue for the benefit of mandating transparency in

advisory committees. In particular, we show that if the committee’s information is of low

quality—there are few members or their signals are not very accurate—then transparency

leads to higher welfare for both the committee and the DMs. In this case, there is no need

to mandate transparency, as the committee would voluntarily choose to act transparently.

In contrast, if the information is of high quality, then the committee prefers opacity while

the DMs prefer transparency. In this case, the DMs benefit from mandating transparency.

The mechanism underlying our result can be understood quite intuitively without ref-

erence to committees by considering a very simple interaction between an informed sender

and an informed receiver. Consider first a sender who observes a good or bad signal, and

must decide which of two messages to send to a receiver. The receiver observes the sender’s

message, obtains additional information about the realization of an event, and then decides

either yes or no. To make things simple, suppose that there is only one event E in which the

receiver might be influenced by the sender’s information. If it is the case that the sender and

receiver’s preferences are aligned in that event then the standard result in the cheap-talk

literature is that there exists an informative equilibrium in which the receiver learns the

sender’s information prior to making her decision.

Let’s assume instead that, in the event E, the receiver prefers to choose yes if the sender’s

signal is good and no otherwise. However, the sender, knowing that event E has occurred,

prefers that the receiver choose yes regardless of his signal. In this case the cheap-talk model

predicts that the sender will be unable to credibly reveal any persuasive information to the

receiver. The intuition is that if there were a message the sender could send that would

cause the receiver to believe he had observed the good signal (and, as a result, persuade the

receiver to choose yes) then the sender would send that message even when he observes the

bad signal.4

Now suppose that there is a second event, E ′, in which the receiver might be influenced

by the sender’s information. Like event E, in event E ′ the receiver would like to choose

4This intuition underlies the results of Wolinsky (2002), Battaglini (2017), and Gradwohl and Feddersen
(2018) on the impossibility of information transmission from a committee to a receiver.
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yes if and only if the sender’s signal is good. But unlike event E, in event E ′ the sender

would always like the receiver to choose no. If, in addition, the sender’s signal is sufficiently

correlated with the events E and E ′, then the sender may prefer to truthfully report his

signal. More specifically, if observing the good signal causes the sender to believe event E

is more likely than event E ′, while observing the bad signal induces the opposite inference,

then truthful reporting may be incentive compatible.

In this paper we consider an environment in which there are multiple senders with com-

mon values, each with a bit of information, and each sending a cheap-talk message to a

receiver. From the point of view of each sender, the receiver observes not just that sender’s

message, but also an event that consists of the other senders’ messages. Hence, when the re-

ceiver’s preferences are known and sufficiently different from the senders’, truthful revelation

is not incentive compatible: If each sender truthfully reports his information, the event E in

which his message matters is one in which he wants the receiver to make the same decision,

regardless of his signal. However, when there are multiple receivers with preferences different

both from the senders’ and from each other, then truthful revelation may produce two differ-

ent kinds of events: ones in which the senders all want to lie in one direction (E), and ones

in which they want to lie in the other (E ′). We show that senders’ signals are sufficiently

correlated with the events, leading to the possibility of truthful reporting in equilibrium.

We will compare a setting in which information is centralized, with a single sender obtain-

ing all information, to one in which it is decentralized, with each of several senders obtaining

some information. In terms of the application to advisory committees, centralized informa-

tion corresponds to an opaque committee, whereas decentralized information corresponds to

a transparent committee.

Under centralization, standard cheap talk analysis concludes that, regardless of the num-

ber of receivers, one of the following occurs: either no persuasive information can be credibly

transmitted, or there is partial but not full information transmission.5 Which of the two pos-

sibilities is realized depends on the quality of information, as characterized by the number

and accuracy of the sender’s signals. Under decentralization, however, the amount of in-

formation transmitted depends on whether there is one receiver (and so one pivotal event,

E) or multiple receivers (and so multiple pivotal events, E and E ′). As discussed above, in

the former case no persuasive information can be communicated in equilibrium, whereas in

the latter case all information may be communicated. This comparison is summarized in

Figure 1, where the contribution of the current paper consists of the second column of each

5See, e.g., the analyses in Battaglini (2017) and in Gradwohl and Feddersen (2018).
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1 receiver 2 receivers
centralized none none

decentralized none all

(a) Low-quality info

1 receiver 2 receivers
centralized some some

decentralized none all

(b) High-quality info

Figure 1: Amount of information communicated in equilibrium

table.

As noted above, we apply these results to the study of transparency in advisory com-

mittees, and show conditions under which mandating transparency is beneficial. We then

analyze the robustness of such beneficial transparency, and of fully-informative communi-

cation in general. We show that the result relies critically on the lack of observability of

communication between each sender and the receivers. That is, if communication with the

receivers is sequential rather than simultaneous, informative communication is once more

unattainable.

Finally, in an extension we consider the possibility and extent of partially-informative

communication when senders value the actions of one receiver significantly more than those

of the other.

The rest of the paper proceeds as follows. Immediately following is a review of the

relevant literature. Section 2 describes our model of receivers, and Sections 3 and 4 contain

our model of and main results on centralized and decentralized senders, respectively. These

are followed by Section 5 on advisory committees. The extension to partially-informative

communication is in Section 6, followed by the conclusion in Section 7. Most of the proofs

are deferred to the Appendix.

Literature review This paper fits into the large literature on cheap talk (see Farrell and

Rabin, 1996; Sobel, 2013, for excellent surveys). It is most closely related to a model of cheap

talk in which there are multiple receivers, introduced by Farrell and Gibbons (1989), in which

fully-informative communication may be possible (see also Goltsman and Pavlov, 2011). The

driving force behind their possibility result, however, is distinct from that of our paper. In

particular, in our model with multiple receivers fully-informative communication will not

be possible unless there are also multiple senders and a transparent committee process. In

effect, the multiple senders and transparent process ensure that, from the perspective of a

sender, the receivers have private information. In Appendix G we formalize the distinctions

between the main insight of Farrell and Gibbons (1989) and that of our paper.

Our paper is also related to the large literature on cheap talk with multiple senders.
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There are two strands of this literature, depending on whether the senders have identical

or different preferences. The first case has been extensively studied in various contexts, in-

cluding legislative politics (Gilligan and Krehbiel, 1987; Austen-Smith, 1993; Li et al., 2001),

polling (Morgan and Stocken, 2008), public protests (Battaglini, 2017), expect advice and

advisory committees (Wolinsky, 2002; Gradwohl and Feddersen, 2018). The main conclu-

sion from this literature is that preference differences between the senders and the receiver

lead to losses in the informativeness of communication. In Gradwohl and Feddersen (2018)

(henceforth GF), for example, we show that regardless of the structure of communication

between the senders and receiver, no communication is possible in equilibrium.6 The current

paper builds on the model of GF, and shows that this conclusion is reversed when there are

multiple receivers.

A second strand of the literature on multiple senders considers the case in which senders

have different preferences. Battaglini (2002) shows that full information transmission is

possible when the state space is multidimensional and the senders each have perfect infor-

mation. In subsequent work, Battaglini (2004) studies imperfectly-informed senders and

Ambrus and Takahashi (2008) consider a restricted state space, and both show that the pos-

sibility of fully-informative communication in those settings is limited. Meyer et al. (2019),

in contrast, show that when the receiver additionally faces uncertainty about the sender’s

preferences, fully-informative communication is possible.

Our paper is also related to work on information aggregation in committees, (e.g. Austen-

Smith and Banks, 1996; Gerardi et al., 2009; Plott and Llewellyn, 2015) and particularly to

the paper of Austen-Smith and Feddersen (2006). They show that when legislators deliberate

prior to voting, preference uncertainty increases their ability to reach informed decisions. Our

paper expands their insight to a general cheap talk environment.

Finally, the paper fits into the large literature on the costs and benefits of transparency

to decision making (e.g. Hansen et al., 2014; Fehrler and Hughes, 2018; Gradwohl and Fed-

dersen, 2018; Paetzel et al., 2018; Shambaugh and Shen, 2018, and many others).

2 Model

There are two possible, equally-likely states of the world, Θ = {G,B}, and one or two decision

makers (receivers), each of whom must decide between two possible outcomes, O = {y, n}.
In this paper we look at multiple receivers but the basic structure of the argument would

6Similar results in different contexts appear also in Wolinsky (2002) and Battaglini (2017).
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hold under two alternative interpretations: there is one receiver but uncertainty about her

preferences; or there is one receiver but uncertainty about the actions available to her. We

expand on these interpretations in Appendix A.

Let t ∈ {D,L,H} index the possible receivers: If there is one receiver index her by D,

and if there are two index them by L and H, as described below. Receiver t (denoted Rt)

taking action o ∈ O in state θ ∈ Θ derives utility ut(θ, o), where ut(G, y) > ut(G, n) and

ut(B, n) > ut(B, y). Given a belief β = P (θ = G) about the probability that the state is G,

Rt’s expected utility on choosing outcome o is Ut(β, o)
def
= β · ut(G, o) + (1− β) · ut(B, o). A

rational receiver will choose outcome y if and only if Ut(β, y) ≥ Ut(β, n).7 Since Ut(β, y) is

increasing in β and Ut(β, n) is decreasing in β, there exists a threshold βt such that receiver

t will choose y if and only if β ≥ βt.

Now, if there are two receivers, index them so that βL ≤ βH . For simplicity and tractabil-

ity we will assume throughout that βL = 1 − βH , but our main results do not depend on

this (see Appendix F). The important substantive feature of the two-receiver model is that,

relative to the senders, the low receiver is optimistic while the high receiver is pessimistic

about the value of the y outcome.

Before making a decision, the receivers may obtain information from either a centralized

or decentralized source, which we describe in Sections 3 and 4, respectively.

3 Centralized Information

We begin by supposing that all decision-relevant information is centralized and held by a

single agent called the sender. To facilitate the comparison with the decentralized setting, we

assume the sender has access to an odd number N of conditionally-independent, identically-

distributed signals (s1, . . . , sN) of accuracy p ∈ (1/2, 1), where each signal satisfies

P (si = g|θ = G) = P (si = b|θ = B) = p.

The sender’s utility u is additive in the actions of the receivers who are present. Specif-

ically, the sender obtains utility ut(θ, ot) from choice ot by Rt in state θ. If there is only

one receiver then the sender’s total utility is u(θ, oD) = uD(θ, oD). If there are two re-

ceivers then u(θ, oL, oH) = uL(θ, oL) + uH(θ, oH). As with the receivers, we suppose that

ut(G, y) > ut(G, n) and ut(B, n) > ut(B, y) for each t. Substantively this means that

senders prefer all receivers to choose y in state G and n in state B. The sender prefers

7Assume she always chooses y if indifferent.
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outcome y from Rt whenever his belief about the probability P (θ = G) about the state

being G is above some threshold γt. In most of this paper we will assume that, when there

are two receivers, γL = γH : that is, for any belief the sender may have about the state, he

prefers outcome y from one receiver if and only if he prefers it also from the other receiver

(but see Appendix G for a more general setting). For simplicity we will also assume that

ut(G, n) = ut(B, n) = 0 and ut(G, y) = ct = −ut(B, y). This symmetry assumption is made

for tractability – the important feature is that the sender’s threshold γ lies between those

of the different receivers. Note that the sender’s utility from the respective receivers may

be different, since uH(G, y) need not equal uL(G, y), but that he prefers outcome y from

both receivers whenever his belief about the probability P (θ = G) about the state being G

is above the threshold γ = 1/2, and outcome n from both otherwise. This means that the

sender strictly prefers outcome y if the number of good signals is above N/2, and otherwise

strictly prefers outcome n.

After observing the profile of signals, the sender sends a message m ∈M to the receivers,

where M is some arbitrary message space with |M | ≥ 2N . A sender’s strategy is denoted by

σ : {g, b}N 7→ M . Upon observing a message, each receiver then updates her prior over the

state, and takes an action that depends on whether the posterior surpasses her threshold βt

or not. Formally, given a strategy profile σ, denote the rational decision rule used by Rt on

message m as rt(σ,m), where for all m in the support of σ it holds that rt(σ,m) = y if and

only if P (θ = G | σ,m) ≥ βt, and rt(σ,m) = n otherwise.8 Denote a strategy profile for

senders in the multiple sender case by r(σ) ≡ (rL(σ, ·), rH(σ, ·)).
Observe that without any information, RH will choose outcome n and RL will choose

outcome y. A profile σ is persuasive if there exists a message m ∈ supp(σ) such that

rL(σ,m) = n or rH(σ,m) = y. Additionally, since we are interested in the possibility of

information transmission in equilibrium, denote a strategy profile σ as optimal if it is optimal

for the sender given the decision rules r(σ) of the receivers that it induces. Optimal profiles,

together with the corresponding r, form a Perfect Bayesian Equilibrium, the standard notion

of equilibrium in cheap talk games.9

Before stating our main result for centralized information we need one more definition:

Let βmaj be the posterior probability on (θ = G), given that at least half of the signals are

8Assume each receiver chooses y when indifferent. For messages m that are not in the support of σ the
choice of rt(σ,m) does not matter.

9With appropriately defined off-equilibrium beliefs, for example that on m 6∈ supp(σ) the posterior is
equal to the prior.
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good. Formally,

βmaj(p,N)
def
= Pr

[
θ = G | #{i : si = g} ≥ N

2

]
.

The following theorem characterizes the kind of information transmission possible in

equilibrium. The result is straightforward and is similar to results in Battaglini (2017) and

Gradwohl and Feddersen (2018), but we find it useful to restate and parametrize to allow

for two receivers.

Theorem 1 For any N and p

• there exists an optimal persuasive strategy σ of the sender if and only if

βt ∈
[
1− βmaj(p,N), βmaj(p,N)

]
for all participating receivers Rt;

• if σ is optimal and persuasive then the participating receivers choose outcome y if and

only if #{i : si = g} ≥ N
2

, and choose outcome n otherwise.10

An immediate implication of the second bullet is that unless the receivers’ utilities are

almost identical to the sender’s—namely, if they agree on the preferred outcome on every

possible realized signal profile—there does not exist an optimal σ in which the receivers

learn the realization of all the signals (see Claim 5 for a formal statement of this). That

is, fully-informative communication is not possible with a centralized sender. Furthermore,

note that Theorem 1 applies to both the case in which there is only one receiver and the

case in which there are two, and so the amount of information transmission, and particularly

whether there is any, does not depend on the number of receivers.

Finally, when βH > βmaj(p,N) there is no optimal and persuasive strategy—any optimal

strategy cannot be persuasive. For fixed βH and p, then, there is a minimum number

of signals for which communication is persuasive. Denote this minimum by NC(βH , p)
def
=

min{N ∈ Z+ : βmaj(p,N) ≥ βH}. We will show that under decentralized information fewer

signals are necessary.

4 Decentralized Information

Instead of one sender with N signals, suppose now that there are N decentralized senders,

numbered {1, . . . , N}, each with his own signal. Furthermore, the decentralized senders have

a common utility function u that is identical to that of the centralized sender of Section 3.

10Except for the degenerate case in which βH = βmaj and βL = 1− βmaj, in which case only RH chooses
these outcomes, whereas RL always chooses y.
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A strategy σi for sender i is a function from his signal to a distribution over {y, n}.
Denote by σ = (σ1, . . . , σN) a profile of strategies, and by σ(s) the profile of strategies given

signal profile s = (s1, . . . , sN). We will restrict ourselves to symmetric strategy profiles, ones

in which σi ≡ σj for all senders i and j. The only relevant aspect of realized profiles is thus

the realized number of y votes, which we call the vote profile v. Also, denote by σ(θ) the

distribution over vote profiles under σ is state θ.

After the senders vote, the receivers observe the realized vote profile v. As in the case of

a centralized sender, the receivers update their beliefs about the state and take actions that

depend on whether the posterior surpasses βt or not. Formally, given a strategy profile σ,

denote the rational decision rule used by Rt on realized voting profile v as rt(σ, v).

A strategy profile σ of the senders is informative if it conveys some information: if

there is some vote profile v that occurs with positive probability under σ, and such that

Pr[θ = G|σ, v] 6= 1/2. A strategy profile σ is persuasive if it sometimes leads some receiver

to choose differently: There is some vote profile v that occurs with positive probability under

σ, and for which either Pr [θ = G | σ, v] < βL or Pr [θ = G | σ, v] ≥ βH . Note that, as with

a centralized sender, if σ is not persuasive then the receivers base their choices only on the

prior distribution over states.

When the receivers update their priors they condition on both the vote profile v and on

the strategy profile σ. But what prevents a sender from deviating from σ, unbeknownst to

the receivers? In the case of the centralized sender, we required his strategy to be optimal

given the receivers’ decision rules. For decentralized senders we will require each σi to be

optimal for sender i conditional on the receivers acting rationally and given the strategies

of the other senders. That is, the profile σ must constitute a Nash equilibrium given the

receivers’ rational decision rule that it induces. In a standard voting game, where senders

vote and there is a fixed decision rule mapping vote profiles to outcomes, one may require

that the voting strategy be in equilibrium. The difference here is that there is no fixed

decision rule: instead, the decision rule is chosen endogenously by the receivers, given σ, t,

and v. A profile σ is then an equilibrium if it is in equilibrium given the decision rules that

it induces. Formally,

Definition 1 (equilibrium) A strategy profile σ is an equilibrium if for each sender i,

signal si, and strategy σ′i,

E [u(θ, r(σ(s))) | si] ≥ E [u(θ, r(σ′i, σ−i(s))) | si] ,
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where r(·) ≡ rD(σ, ·) when there is one receiver and r(·) ≡ (rL(σ, ·), rH(σ, ·)) when there are

two receivers, and the expectation is over θ, s−i, and σ.

Example 1 below illustrates the idea.

4.1 One receiver

Is decentralization better than centralization? The case of one receiver was studied by GF,

and the following example illustrates the main (negative) result.

Example 1 Let N be odd, and consider the strategy of fully-informative voting, in which

each sender i votes vi = y if and only if si = g. Such voting is not an equilibrium when

there is only one receiver with βD > p: To see this, suppose each sender votes according to

his signal, and note that on profiles in which only a bare majority voted y (specifically, if

exactly dN/2e voted y) the posterior of the receiver will be p. She will thus choose outcome

n on these profiles, and so the induced decision rule is a supermajority rule. But in this

case it is well-known that fully-informative voting is not an equilibrium (Austen-Smith and

Banks, 1996; Feddersen and Pesendorfer, 1998).

GF prove a general theorem about the impossibility of any communication between

decentralized senders and one receiver. For the theorem, define the threshold β(p)
def
=

p2/(p2 + (1− p)2).11

Theorem 2 (GF) Fix N and p > 1/2. If βD 6∈ [1 − β(p), β(p)] then there does not exist

any persuasive equilibrium strategy profile.12

Thus, if there is only a single receiver and preferences are not sufficiently close, centralized

information is better than decentralized information.

4.2 Two receivers

We next consider decentralized information when there are two receivers. This setting is the

main contribution of our paper.

We begin with some definitions. For a given strategy profile σ, let kL(σ) be the number

such that, if kL(σ) senders vote y then RL prefers outcome o = n, but if kL(σ) + 1 senders

11The interpretation is the following: Starting with a prior P (θ = G) = 1/2, if the receiver observes that
sender i has a good signal, then she updates to P (θ = G | si = g) = p. If she then also observes that sender
j 6= i has a good signal, she updates to P (θ = G | si = sj = g) = p2/(p2 + (1− p)2), which is precisely β(p).

12In fact, GF show that this impossibility extends beyond voting.
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vote y then she prefers outcome o = y. Similarly, Let kH(σ) be the same but for RH . We

will omit the dependence on σ when clear from context. Formally, under strategy profile σ,

for t ∈ T ,

P (θ = G|v = kt) < βt ≤ P (θ = G|v = kt + 1).

With some abuse of notation, we will also denote by kt the event that (v−i = kt).

Let pivi(σ) be the event that sender i is pivotal, namely that his vote will change the

chosen outcome of some receiver, when senders play strategy profile σ. Formally, pivi(σ)
def
=

(v−i = kL(σ)) ∪ (v−i = kH(σ)). Again, we will omit the dependence on σ when clear from

context.

Finally, recall that the senders’ utility is such that ut(G, y) = ct, u
t(B, y) = −ct, and

ut(θ, n) = 0. In what follows it will be useful to denote by h
def
= cH/(cH + cL) the weight the

senders put on the decision of RH relative to that of RL. We will also refer to ` = 1− h.

Fully-informative equilibrium Let τ be the fully-informative strategy profile. We are

interested in the question of when τ is an equilibrium—that is, when does a fully-informative

equilibrium (FIE) exist. In order for τ to be an equilibrium it must be the case that each

sender prefers to vote informatively. Since senders only affect the outcome when they are

pivotal, this is equivalent to each sender preferring to vote informatively, conditional on

being pivotal. Let r be the decision rules of the receivers, with thresholds kL and kH , under

τ . On signal si = g, then, sender i should prefer to vote y, which requires

E[u(θ, r(τ(s)))|si = g, pivi] ≥ E[u(θ, r(σi, τ−i(s)))|si = g, pivi],

where σi is the deviation of sender i to voting n on signal g. This is equivalent to

P (θ = G ∩ kL|si = g)cL + P (θ = G ∩ kH |si = g)cH

≥ P (θ = B ∩ kL|si = g)cL + P (θ = B ∩ kH |si = g)cH ,

which is equivalent to

`P (θ = G ∩ kL|si = g) + hP (θ = G ∩ kH |si = g)

`P (kL|si = g) + hP (kH |si = g)
≥ 1

2
.
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An analogous inequality must hold for si = b, and it is straightforward to see that both hold

if and only if

`P (θ = G ∩ kL) + hP (θ = G ∩ kH)

`P (kL) + hP (kH)
∈ [1− p, p]. (1)

The LHS of (1) can intuitively be understood as P (θ = G|pivi), except that the elements

referring to kL and kH are weighted by h and `, respectively.

Equation (1) can be further simplified under our assumption that βL = 1 − βH , as in

this case kL = N − 1 − kH , which implies that P (v−i = kL) = P (v−i = kH). Thus, in this

case there exists a FIE if and only if `P (θ = G|kL) + hP (θ = G|kH) ∈ [1 − p, p], where

P (θ = G|kL) is close to βL and P (θ = G|kH) is close to βH . Thus, there is a FIE if and

only if the weighted average of the posteriors on (θ = G) at the pivotal events, weighted

according to h and 1− h, is close to the senders’ threshold.

The intuition for the possibility of fully-informative equilibria builds on the impossibility

of such equilibria when there is only one receiver. Consider first this latter case, in which only

RD is present, as in Example 1. Suppose all decentralized senders play the fully-informative

strategy, and consider one sender’s reasoning. On either signal, he conditions on being

pivotal, as this is the only case in which his vote matters. If he is pivotal, this means that

the posterior on (θ = G) must be close to βD. On a good signal his posterior is even higher,

and so he certainly wishes to vote y, and on a bad signal the posterior is a bit below βD.

But if βD is sufficiently higher than 1/2 then his posterior on a bad signal is still above 1/2,

and so he wishes to vote y here as well. Thus, fully-informative voting is not an equilibrium.

Now consider the case in which there are two receivers. When a given sender is pivotal

for RH , his posterior is close to βH , whereas if he is pivotal for RL his posterior is close to

βL. The sender must then weigh the relative weights of being pivotal for each of the two

receivers, namely the probability (v−i = kH) weighted by h versus the probability (v−i = kL)

weighted by `. When βH = 1 − βL the probabilities of (v−i = kH) and (v−i = kL) are the

same, and so only h is relevant. When h is not too far from ` the two pivotal events are

roughly equally-weighted, and so the sender places roughly equal weight on the posterior

close to βL and the posterior close to βH . The average is close to 1/2, and so the sender’s

own signal is the determining factor in assessing which state is more likely. Thus, he votes

informatively.

The following example formalizes this logic:

Example 2 Suppose N = 3, βH < p3/(p3 + (1 − p)3), and h = ` = 1/2. The bound on
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βH implies that if all senders have the good signal (respectively, the bad signal), then RH

(respectively, RL) would choose outcome y (respectively, n). Then under fully-informative

voting

`P (θ = G ∩ kL) + hP (θ = G ∩ kH)

`P (kL) + hP (kH)

=
` · P (kL|G) + h · P (kH |G)

` · P (kL|G) + h · P (kH |G) + ` · P (kL|B) + h · P (kH |B)

=
P (kL|G) + P (kH |G)

(P (kL|G) + P (kH |B)) + (P (kH |G) + P (kL|B))
=

1

2
,

since βH = 1− βL implies that kH = 2− kL, and so under fully-informative voting we have

that P (kL|G) = P (kH |B) and P (kL|B) = P (kH |G). Thus, there is a FIE. Furthermore, by

the assumption on βH , this FIE is persuasive.

Now suppose everything is as in Example 2, except that βH = p4/(p4 + (1− p)4). That

is, RH requires at least 4 good signals in order to choose y, and RL requires at least 4 bad

signals in order to choose n. If there are only 3 senders, however, there is never enough

information for either receiver, and so no equilibrium will be persuasive.

Increasing the number of senders will help: If N = 5, for example, then an analysis similar

to that of Example 2 will imply that there is a FIE. This FIE is persuasive, since RH will

choose y if all 5 voters vote y (and will choose n otherwise), and RL will choose n if all 5 voters

vote n (and will choose y otherwise). In fact, at least 5 senders are required to persuade both

receivers in this example. To generalize, denote byN(βH , p) the size of the smallest number of

senders that are able to persuade both receivers with thresholds βH and βL = 1−βH , namely

N(βH , p)
def
= min{N ∈ Z+ : βH ≤ pN/(pN + (1− p)N) and βL > (1− p)N/(pN + (1− p)N)}.

Observe that, in general, N(βH , p) < NC(βH , p), and so fewer signals are necessary for a

persuasive FIE under decentralization than any persuasive profile under centralization.

Note that h = ` is not necessary for the existence of a FIE, and instead there is an interval

of h’s for which they exist. Furthermore, as the following theorem states, this interval is

independent of N :

Theorem 3 For any βH and p there exists an interval HFIE = [h1, h2] with h1 < h2 such

that there is a persuasive FIE for every odd N ≥ N(βH , p) if and only if h ∈ HFIE.13

Remark 4 We note that although our model assumes a uniform prior on the states, a

threshold γ = 1/2 for the senders, and the symmetry βL = 1 − βH , the main insight of

13An identical theorem holds for even N , but the interval HFIE will be slightly different.
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Theorem 3 does not rely on these. For example, in Appendix F we show that a similar result

holds for asymmetric receivers. Furthermore, it will hold for any interior prior and threshold

γ, as long as βL < γ < βH .

5 Advisory Committees

In this section we view the decentralized senders as forming an advisory committee, and

examine the potential benefit of transparency from the point of view of the receivers, in light

of Theorem 3. We then analyze the robustness of this benefit, as well as the existence of a

FIE, to variations in the structure of the committee’s communication.

5.1 Transparency vs. Opacity

Suppose that the senders, who now comprise a committee, observe their respective signals

and vote. The information observed by the receivers before choosing y or n is then one of

the following:

• Under transparency, the receivers observe the entire profile of votes.

• Under opacity, only the committee observes the profile of votes, whereas the receivers

observe a message m ∈ M subsequently sent by a specific member of the committee

called the committee chair.

Observe that transparency is analogous to the decentralized setting of Section 4, whereas

opacity is analogous to the centralized setting of Section 3. Note that we assume that under

transparency, the committee members do not communicate prior to voting. If they were

allowed to share information before voting, and the receivers only observed their votes, then

this would be analogous to the opaque setting.

A first question is, when senders’ strategies are an equilibrium, do the receivers prefer

transparency or opacity? A second question is, when is there a benefit to mandating trans-

parency? Note that if all parties prefer transparency, then there is no reason to require it –

the committee will conduct itself transparently by choice. Mandated transparency will be

beneficial if the receivers prefer transparency whereas the senders prefer opacity.

The senders’ and receivers’ preferences partly depend on the strategy profile played by

the committee. For example, an uninformative (babbling) profile always exists under both

transparency and opacity, rendering all parties indifferent. In the following, then, we sup-

pose that the committee plays a profile that is Pareto optimal for the receivers, out of all
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equilibrium profiles. We note that under both opacity and transparency, whenever there

exists a persuasive equilibrium profile that is Pareto optimal, it is unique.

In their study of transparency, GF use Theorem 2 to show that mandating transparency

is harmful.

Proposition 1 If there is one receiver with βD > β(p) then the committee and the receiver

prefer opacity.

The intuition is straightforward: under transparency, Theorem 2 shows that there is no

persuasive communication. Under opacity, however, persuasive communication is possible

when βD ≤ βmaj (by Theorem 1), in which case committee members and receiver are strictly

better off.

When there are multiple receivers, however, transparency can be beneficial:

Proposition 2 If there are two receivers and h ∈ HFIE then

• both receivers prefer transparency;

• the committee prefers transparency if βH > βmaj, and opacity otherwise.

When βH > βmaj all parties prefer transparency. When βH ≤ βmaj, however, there is

a benefit to mandating transparency: the receivers prefer it, but the committee would not

voluntarily choose it, as they prefer opacity.

The intuition for Proposition 2 is also straightforward. By Theorem 3, if h ∈ HFIE then

under transparency there is a persuasive FIE. This is best-possible for the receivers, and

so they always prefer it. For opacity, in contrast, Theorem 1 states that there is either no

persuasive equilibrium (when βH > βmaj) or a partially-informative persuasive equilibrium

in which the senders obtain their optimal outcomes (when βH ≤ βmaj). The senders prefer

the latter most and the former least, with the FIE in the middle.

5.2 Sequential Voting

We now argue that the existence of a FIE, and hence also the benefit of transparency, relies

crucially on the structure of communication between the senders and the receivers. Theo-

rem 3 shows that fully-informative voting is an equilibrium when senders vote simultaneously.

But when senders vote sequentially, no information transmission is possible in equilibrium:
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Theorem 5 Suppose senders vote sequentially. Then there is no persuasive equilibrium

profile for any h, p, N , and βH > β = p2/(p2 + (1− p)2).

The intuition is that when senders vote sequentially, senders near the end of the sequence

already know which receiver they have a chance of persuading. For example, a sender who

observes more y votes than n votes knows he will not be able to persuade RL, but may be able

to persuade RH . Thus, from the point of view of this sender he is only facing one receiver,

in which case he will not vote informatively (by Theorem 2). In this manner, information

transmission completely unwinds.

6 Partially-Informative Equilibria

Under decentralization, when h is too large to admit a FIE, there may still be a partially-

informative equilibrium (PIE), in which senders play a mixed strategy. Such an equi-

librium is more informative than any equilibrium under centralized information if βH 6∈[
1− βmaj(p,N), βmaj(p,N)

]
, as in that case there is no information transmission in any

equilibrium. Does there always exist a PIE? The immediate answer is no: if h = 0 or h = 1

then there is effectively only one receiver, and so we know from Theorem 2 that there is no

persuasive equilibrium. But what if h ∈ (0, 1)? We will argue that if h is sufficiently large

(or small), then there is no PIE, regardless of the number of senders.

Observe first that every symmetric PIE σ must have one-sided mixing : senders mix either

on si = g or on si = b, but never on both. Notice also that each strategy profile σ implies

unique pivotal thresholds kH(σ) and kL(σ). An equilibrium with mixing on signal si = w is

then a profile σ such that P (θ = G|pivi(σ), si = w) = 1/2. If mixing on si = g then this is

equivalent to P (θ = G|pivi(σ)) = 1 − p, and if mixing on si = b then this is equivalent to

P (θ = G|pivi(σ)) = p.

Suppose senders mix on signal si = b, so that they vote y on with probability σi(b) > 0

when si = b. Then for each k ∈ {1, . . . , N}, the posterior on (θ = G) given exactly k votes

for y decreases as σi(b) increases. This is because the more senders mix on a bad signal, the

less informative a y vote becomes. Thus, as σi(b) increases, kH(σ) and kL(σ) also increase.

Similarly, if senders mix on signal si = g, then as σi(g) increases, kH(σ) and kL(σ) decrease.

Is there always a PIE? Suppose h 6∈ HFIE, and consider a pair of thresholds mH ,mL ∈
{0, . . . , N − 1} with mH > mL. For each such pair, it is possible that there is a profile σ

with one-sided mixing such that mH = kH(σ) and mL = kL(σ). However, for each such pair

mH and mL there is a maximum amount of mixing in equilibrium, subject to these being the
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thresholds—if senders were to mix more, then the posteriors on the thresholds would be too

high or too low, and the thresholds would change. Now, given mH and mL, as well as this

maximal amount of mixing, it holds that if h is too large then there is no equilibrium with

these thresholds. This follows from the observation that increasing h increases the posterior

on (θ = G) conditional on sender i being pivotal, at some point surpassing p. Thus, for any

pair of thresholds there is a maximal h for which the thresholds potentially correspond to a

PIE. For a fixed number of players, if h surpasses the maximum of all these (over all pairs

of thresholds), there will be no PIE.

However, if the number of players increases, then so does the set of possible maximal h’s.

One might then conjecture that for every h ∈ (0, 1) there is a PIE if there are sufficiently

many players. Theorem 6, however, disproves this conjecture.

Theorem 6 For every p and βH > p2/(p2 + (1 − p)2) there exists a nonempty set HNP =

[0, h1)∪ (h2, 1] for which the following holds: if h ∈ HNP then there is no persuasive PIE for

any N .

In words, if h is too high or too low then increasing the number of voters will not help.

To see the intuition, observe that although changing the level of mixing may alter the pivotal

thresholds kL(σ) and kH(σ), the posterior on (θ = G) at each such threshold stays roughly

the same: around βL at kL(σ) and around βH at kH(σ). The main effect of mixing is to

thus vary the probabilities of the pivotal events kL and kH . The main idea of the proof is

to show that for any level of mixing the ratio of these latter probabilities cannot be either

too large or too small, and in particular that it is bounded above and below independently

of the number of senders.

7 Conclusion

In this paper, we developed a model of cheap talk communication with multiple senders

and multiple receivers, and showed that fully-informative communication may be possible.

The possibility applies beyond this specific setting, to ones in which there is one receiver

with multiple alternatives, and to the presence of uncertainty about the preferences or avail-

able alternatives of the receiver. Drawing an analogy between decentralized senders and a

transparent committee, our analysis also provides a rationale for mandating transparency in

advisory committees.

There are several interesting questions left open by this paper. First, to what degree do

our possibility results extend to more general settings? Although the symmetry assumptions
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in our model are made solely for simplicity of exposition (see Remark 4 and Appendix F),

the situation is more complicated when the set of signals is not binary. For example, consider

a different information structure, in which senders are either informed or not: in the latter

case they obtain no informative signal, and in the former they obtain a signal as in our

model. With this information structure, we can show that our results go through as is. On

the other hand, if, for example, senders obtain one of four signals—b, g, b′, or g′, where b and

g have accuracy p and b′ and g′ have accuracy p′ ∈ (1/2, p)—then there will not be a FIE,

since no sender ever has an incentive to reveal b′ or g′. However, decentralized senders will

reveal whether their signal is one of {b, b′} or one of {g, g′}, and so some information will

be transmitted in equilibrium. Whether or not this is more informative than the centralized

setting will depend on p, p′, the number of senders, and the receivers’ thresholds.

The situation is also more nuanced if the set of outcomes is not binary. Multiple out-

comes implies multiple pivotal events, since senders here are pivotal not just for the different

receivers but also for the same receiver’s different choices. Thus, in principle, the intu-

ition underlying our results holds here as well. We leave for future research the question of

characterizing the conditions on preferences that will lead to a FIE.

Another interesting direction is to consider a different model of preferences for the senders

in which their utilities depend not on the chosen outcome and the realized state, but rather

on their individual recommendation and the state, similarly to the career concerns literature.

In subsequent and ongoing work, we show that many of the insights of this paper persist

under such preferences.
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Appendix

A Alternative Interpretations

We now discuss two analogous interpretations of multiple receivers. The first is that instead

of two receivers there is just one receiver, but with uncertainty about her bias: Namely, she

can be one of two types, high or low, where the high type is realized with probability h and

the low type with probability `. The utilities of the high and low type of receiver are equal

to the utilities of RH and RL, respectively. Furthermore, the common utility function of the

senders is u : Θ × O 7→ R, where u(G, n) = u(B, n) = 0, u(G, y) = 1, and u(B, y) = −1,

regardless of the realized receiver choosing the outcome. This model with bias uncertainty

is analogous to the multiple receivers model.

Claim 1 The two-receivers model is identical to the bias uncertainty model with h = cH/(cH+

cL), modulo innocuous scaling of the senders’ utilities.

The proof is at the end of this section.

The second alternative interpretation, easily seen to be analogous to the first, is that

instead of uncertainty about the type of receiver, there is only one receiver but exogenous

uncertainty about the options available to her: with probability h she must choose between

outcomes yH and nH , and with probability ` she must choose between outcomes yL and

nL. The senders’ preferences are as above, with u(G, n) = u(B, n) = 0, u(G, y) = 1, and

u(B, y) = −1, and where y ∈ {yL, yH} and n ∈ {nL, nH}. The receiver’s preferences for yL

and nL (respectively, yH and nH) are like those of RL (respectively, RH) for y and n.

Proof: Denote the actions of RH and RL by oH and oL. The utility of the senders is

u(θ, oH , oL) = uH(θ, oH) + uL(θ, oL), where ut(θ, ot) is the senders’ utility from the action ot

of Rt. Finally, recall that for each t it holds that ut(θ, y) = ct if θ = G, ut(θ, y) = −ct if

θ = B, and ut(θ, n) = 0.

Fix a strategy profile σ for the senders, and let rH and rL be the corresponding decision
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rules of the receivers. In the two-receiver model, for each θ ∈ Θ it holds that

E[u(σ, rH(σ, σ(θ)), rL(σ, σ(θ)))] = E[uH(θ, rH(σ, σ(θ))] + E[uL(θ, rL(σ, σ(θ))]

= cH · E[u(θ, rH(σ, σ(θ))] + cL · E[u(θ, rL(σ, σ(θ))]

= (cH + cL)

(
cH

cH + cL
· E[u(θ, rH(σ, σ(θ))] +

cL
cH + cL

· E[u(θ, rL(σ, σ(θ))]

)
= (cH + cL)E[u(σ, rt(σ, σ(θ)))],

where the expectation is over θ, σ, and t, where the type t = H with probability cH/(cH+cL)

and t = L otherwise. Thus, for every strategy profile the senders’ utility is identical in the

two-receiver model and in the bias uncertainty model (except that the latter is scaled by

cH + cL). This implies that the incentive compatibility constraints are identical, as are thus

the equilibria and utility comparisons.

B Proof of Theorem 1

Proof: Suppose h > 0, and so there are either two receivers, or if h = 1 then just the high

receiver (a symmetric proof holds if h = 0).

Consider first the case in which βH > βmaj(p,N) (a symmetric case holds for βH <

1 − βmaj in the case of one receiver). Suppose towards a contradiction that there is some

optimal persuasive σ. Without loss of generality, suppose RH is persuaded. Let rt be the

corresponding decision rule of RH , where rt : M 7→ {y, n}. If rH is such that RH always

chooses y when #{i : si = g} ≥ N
2

, then P (θ = G|rt = y) ≤ βmaj. But since βH > βmaj(p,N)

this cannot be an optimal decision rule for RH , a contradiction. Suppose then that the

outcome is not always y when #{i : si = g} ≥ N
2

. Persuasiveness implies that there is some

message my ∈ M such that rH(my) = y. Thus, a profitable deviation for the sender is to

send message m whenever #{i : si = g} ≥ N
2

, contradicting optimality.

Next, consider the case in which βH < βmaj(p,N) (and βH > 1− βmaj in the case of one

receiver). One optimal persuasive strategy sends a message my whenever #{i : si = g} ≥ N
2

,

leading to outcome y for both receivers, and a message mn otherwise, leading to outcome n

for both receivers. Suppose that there is some other optimal persuasive strategy σ in which

the receivers do not choose y if and only if #{i : si = g} ≥ N
2

.

We first claim that since σ is persuasive, both receivers must be persuaded. Suppose not,

and only one is persuaded, say RH . This means that there is some message my such that

both receivers choose outcome y on message my. Optimality implies that RH chooses y if
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and only if #{i : si = g} ≥ N
2

(otherwise the sender will have a profitable deviation). But

this implies that the posterior on (θ = G|rH = n) = 1 − βmaj, as a majority of the signals

must have been bad. This further implies that there is some message sent by the sender, say

mn, such that (θ = G|mn) ≤ 1− βmaj. This message persuades RL, as claimed.

Thus, persuasiveness implies that there are two messages my and mn such that both

receivers choose y on message my and n on message mn. Now, suppose that under σ there

is some signal profile with fewer than N/2 good realizations, on which one of the receivers

chooses y with positive probability. Then the sender has a profitable deviation from σ –

namely, to send mn on this signal profile. Similarly, if there is a signal profile with more

than N/2 good realizations on which one of the receivers chooses n with positive probability,

a profitable deviation of the sender would be to send my on this signal profile. Either case

contradicts feasibility. This contradiction implies that if σ is a persuasive equilibrium then

the receivers choose outcome y if and only if #{i : si = g} ≥ N
2

.

C Proof of Theorem 3

Proof: For this proof, let us assume an alternative interpretation of the proof, in which

there is one receiver with threshold βH with probability h and with threshold βL with proba-

bility ` = 1−h, and in which the senders’ utilities are u (see Section A). For simplicity, denote

by h (respectively, `) also the event that the realized type of receiver is high (respectively,

low).

When is sincere voting an equilibrium? It must be the case that, conditional on being

pivotal, each voter weakly prefers to vote sincerely for both possible signals. Formally, it

must be the case that P (θ = G|pivi) ∈ [1− p, p]. For ease of notation, denote the number of

senders by N + 1. For a fixed sender i, the pivotalness probability is calculated with respect

to the remaining N senders. Now,

P (θ = G|pivi) =
P (G ∩ pivi)

P (pivi)

=
P (G ∩ kL ∩ `) + P (G ∩ kH ∩ h)

P (kL ∩ `) + P (kH ∩ h)

=
` ·
(
N
kL

)
pkL(1− p)N−kL + h ·

(
N
kH

)
pkH (1− p)N−kH

Z
,
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where

Z = ` ·
(
N

kL

)
pkL(1− p)N−kL + h ·

(
N

kH

)
pkH (1− p)N−kH

+ ` ·
(
N

kL

)
(1− p)kLpN−kL + h ·

(
N

kH

)
(1− p)kHpN−kH

and where kL and kH are the pivotal events given the low and high types of receiver, respec-

tively, when the senders play the fully-informative profile.

The assumption that the receiver is symmetric, namely that βH = 1 − βL, implies that

kH = N − kL, and so we get that

P (θ = G|pivi)

=
` · pkL(1− p)N−kL + h · pkH (1− p)N−kH

` · pkL(1− p)N−kL + h · pkH (1− p)N−kH + ` · (1− p)kLpN−kL + h · (1− p)kHpN−kH

=
` · pkL(1− p)N−kL + h · pkH (1− p)N−kH

` · pkL(1− p)N−kL + h · pkH (1− p)N−kH + ` · (1− p)N−kHpkH + h · (1− p)N−kLpkL

=
` · pkL(1− p)N−kL + h · pkH (1− p)N−kH

(`+ h) · pkL(1− p)N−kL + (`+ h) · pkH (1− p)N−kH

=
` · pkL(1− p)N−kL + h · pN−kL(1− p)kL

(`+ h) · pkL(1− p)N−kL + (`+ h) · pN−kL(1− p)kL

=

(
pkL(1− p)kL

) (
` · (1− p)N−2kL + h · pN−2kL

)
(pkL(1− p)kL) · ((1− p)N−2kL + pN−2kL)

=
` · (1− p)N−2kL + h · pN−2kL

(1− p)N−2kL + pN−2kL
.

Observing that N − 2kL = N − kL − (N − kH) = kH − kL yields

P (θ = G|pivi) =
` · (1− p)kH−kL + h · pkH−kL

(1− p)kH−kL + pkH−kL
.

Finally, since kH − kL depends only on βH and βL, and is independent of N (but note

that it depends on the parity of N), it holds that whether or not P (θ = G|pivi) ∈ [1− p, p]
depends only on h, βH , and βL, and not on N . In particular, it holds whenever

h ∈
[

(1− p) · pkH−kL − p · (1− p)kH−kL
pkH−kL − (1− p)kH−kL

,
pkH−kL+1 − (1− p)kH−kL+1

pkH−kL − (1− p)kH−kL

]
.
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D Proof of Theorem 5

Proof: Consider a strategy profile σ of the senders, where each sender’s strategy now

depends on both his signal and the realized votes of senders who precede him in the sequence.

Suppose towards a contradiction that σ is a persuasive equilibrium.

Let us view the sequence of voting as a tree, where in each level of the tree a different

sender votes. Consider the last level of the tree, after which the receiver makes a decision. If

for every sender at this last level, the actions of both types of receiver are unchanged by this

sender’s vote, then we can delete the last level and consider the tree with one fewer level.

So suppose that some sender’s vote on the last level is pivotal for some receiver, and denote

the sender by i and the sequence of votes leading up to this sender’s pivotal vote as w.

Now, if sender i is pivotal for the high-type receiver, then P (θ = G|w∩mi = y) ≥ βH and

P (θ = G|w ∩mi = n) < βH . Similarly, if sender i is pivotal for the low-type receiver, then

P (θ = G|w∩mi = y) ≥ βL and P (θ = G|w∩mi = n) < βL. Because βH > p2/(p2 +(1−p)2,
sender i can be pivotal for at most one type of receiver. Without loss of generality, suppose

he is pivotal for the high type. But then P (θ = G|w ∩mi = y) ≥ βH implies that P (θ =

G|w) > p. Thus, even if sender i gets the low signal he will vote y. This implies that for σ

to be an equilibirium, sender i always votes y on history w. Thus, we can delete sender i’s

action at history w from the tree.

Since we can repeat the argument above for any pivotal sender at the last level, feasibility

implies that we can remove the entire last level of the tree. Iterating this argument leads to

an empty tree, and so feasibility implies that σ is not informative and so also not persuasive,

a contradiction.

E Proof of Theorem 6

To simplify notation, in this section we let N + 1 be the number of voters. Furthermore,

in this section we will use the bias uncertainty interpretation of the model: there are two

types of receiver R, namely RH and RL, where the former is realized with probability h and

the latter with probability ` = 1− h. Furthermore, with some abuse of notation also denote

by h the event (R = RH) and by ` the event (R = RL). This has the benefit of simplifying

notation, as then we can denote by pivi(σ)
def
= (` ∩ v−i = kL(σ)) ∪ (h ∩ v−i = kH(σ)).
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E.1 When is there no mixed equilibrium?

Fix some strategy profile σ. Let kL = kL(σ) and kH = kH(σ), when there are N + 1 senders.

Fix an arbitrary voter i, and again denote by kL (respectively, kH) the event that, out of the

remaining N voters, kL (respectively, kH) vote y. Then there is some real c ≥ 0 for which

P (kL) = c · P (kH). Thus, we can write

P (θ = G|pivi) =
P (G ∩ kL ∩ `) + P (G ∩ kH ∩ h)

P (kL ∩ `) + P (kH ∩ h)

=
` · P (G|kL) · P (kL) + h · P (G|kH) · P (kH)

` · P (kL) + h · P (kH)

=
c`P (G|kL) + hP (G|kH)

c`+ h
.

Now, if under σ the voters mix on signal si = g, then σ is not an equilibrium when

P (θ = G|pivi) =
c`P (G|kL) + hP (G|kH)

c`+ h
> 1− p

⇔ c` (P (G|kL)− 1 + p) > h (1− p− P (G|kH))

⇔ c <
h (P (G|kH)− (1− p))
` (1− p− P (G|kL))

.

If, on the other hand, voters mix on signal si = b, then σ is not an equilibrium when

P (θ = G|pivi) =
c`P (G|kL) + hP (G|kH)

c`+ h
> p

⇔ c <
h (P (G|kH)− p)
` (p− P (G|kL))

.

Thus, if c = P (kL)/P (kH) is bounded above by a constant independent of N then

Theorem 6 will follow by choosing a sufficiently large h (and, by symmetry, a sufficiently

small h).

We will proceed by consider two potential equilibrium profiles σ: the first are ones in

which voters mix on signal si = g, and the second are ones in which the mix on signal si = b.

Note that mixing on both signals cannot be an equilibrium.

We begin with a claim.

Claim 2 Let kH and kL be the thresholds for the high and low type of receiver, respectively,

when senders vote fully-informatively: kH = kH(τ) and kL = kL(τ). Then for any strategy
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profile σ, the respective thresholds kH = kH(σ) and kL = kL(σ) satisfy kH − kL ≤ 2(kH −
kL) + 2.

Proof: We first make two preliminary claims. First, since kL and kL are pivotal for the low-

type receiver under σ and τ , respectively, it must be the case that P (G|v = kL + 1, σ) ≥ βL

and P (G|v = kL, τ) < βL, and so P (G|v = kL + 1, σ) > P (G|v = kL, τ). Similarly,

P (G|v = kH + 1, τ) ≥ βH > P (G|v = kH , σ).

Second, we argue that the informational value of two y votes under σ is higher than the

value of one y vote under τ . More formally, fix some β ∈ (0, 1). Consider two senders, i

and j, playing according σ, fix some profile of votes v−(i,j) of the other voters, and suppose

P (θ = G|vi = vj = n, v−(i,j), σ) ≥ β. Consider also one sender, k, playing according to the

fully-informative strategy τ i, fix some profile of votes v′−k of the other voters, and suppose

P (θ = G|vk = n, v−k, τ) = β. Then we claim that P (θ = G|vi = vj = y, v−(i,j), σ) ≥ P (θ =

G|vk = y, v−k, τ).

To see this, consider first the case in which senders mix on signal si = g under σ. This

means that when vi = vj = y, it must be the case that si = sj = g. What about vi = vj = n?

In the limit, when senders mix with probability 1, the event vi = vj = n yields no information.

Thus, P (θ = G|vi = vj = n, v−(i,j), σ) ≤ P (G|v−(i,j), σ). Thus,

P (θ = G|vk = n, v−k, τ) = β ≤ P (θ = G|vi = vj = n, v−(i,j), σ) ≤ P (G|v−(i,j), σ).

Note that P (G|vk = n, v−k, τ) = P (G|sk = n, v−k, τ). Adding two good signals is equivalent

to changing sk = b to sk = g, yielding

P (G|vk = y, v−k, τ) = P (G|sk = g, v−k, τ)

≤ P (G|si = sj = g, v−(i,j), σ) = P (G|vi = vj = y, v−(i,j), σ),

as claimed. Similarly, if σ is such that senders mix on signal si = b, then when vi = vj = n, it

must be the case that si = sj = b. Additionally, in the worst case of mixing with probability

1, the event vi = vj = y yields no information, and so P (G|vi = vj = y, v−(i,j), σ) ≥
P (G|v−(i,j), σ). Thus,

P (G|vk = n, v−k, τ) = β ≤ P (G|vi = vj = n, v−(i,j), σ) = P (G|si = sj = b, v−(i,j), σ).

Again, note that P (G|vk = n, v−k, τ) = P (G|sk = b, v−k, τ). Adding two good signals is
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equivalent to changing sk = b to sk = g, and canceling the signals si = sj = b, yielding

P (G|vk = y, v−k, τ) = P (G|sk = g, v−k, τ)

≤ P (G|v−(i,j), σ) ≤ P (G|vi = vj = y, v−(i,j), σ),

as claimed.

Given these two preliminary claims, we can now argue that kH − kL ≤ 2(kH − kL) + 2.

Suppose towards a contradiction that kH − kL > 2(kH − kL) + 2. We begin with a profile

v = kL, and ask how many n votes must be changed to y votes in order to yield a profile

with v′ = kH . Changing one n vote to a y vote leads to the profile v1, and using our first

observation from above we know that P (G|v1, σ) > P (G|kL, τ). Now, change 2 more n

votes to y votes in v1 leading to v3, and note that the second observation above implies that

P (G|v3, σ) ≥ P (G|kL + 1, τ). Iteratively keep changing 2 more n vote to y votes, each time

changing vm to vm+2, and do this kH−kL more times. This leads to a profile v2(kH−kL)+2, with

the property that P (G|v2(kH−kL)+2, σ) ≥ P (G|kH + 1, τ). Recall the first observation above,

that P (G|kH + 1, τ) > P (G|kH , σ). Since it implies that P (G|v2(kH−kL)+2, σ) ≥ P (G|kH , σ),

it must be the case that v2(kH−kL)+2 ≥ kH and so kL+2(kH−kL)+2 ≥ kH . This contradicts

the assumption that kH − kL > 2(kH − kL) + 2, completing the proof.

E.2 Bound on P (kL)/P (kH) when mixing on si = g

Let q = σ(g), the probability of voting mi = y on signal si = g. For each t ∈ {h, `} define

β̂t
def
= P (G|kt) =

P (kt|G)P (G)

P (kt)
,

the posterior on (θ = G) when kt out of N voters vote y. Recall that if kt voters out of

N + 1 vote y then this is insufficient to persuade the receiver of type t, whereas if kt + 1 out

of N + 1 vote y then this is sufficient. From this, it follows that

1− p
p
· βt ≤ β̂t <

p

1− p
· βt.
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Now,

c =
P (kL)

P (kH)
=
β̂H

β̂L
· P (kL|G)

P (kH |G)

=
β̂H

β̂L
·
(
N
kL

)
(pq)kL(1− pq)N−kL(

N
kH

)
(pq)kH (1− pq)N−kH

=
β̂H

β̂L
· kH !(N − kH)!

kL!(N − kL)!
· (1− pq)kH−kL

(pq)kH−kL

<
β̂H

β̂L
· kH !(N − kH)!

kL!(N − kL)!
·
(

1

pq
− 1

)kH−kL
. (2)

Observe that
kH !(N − kH)!

kL!(N − kL)!
<

(
kH

N − kH

)kH−kL
. (3)

We will now bound
(

1
pq
− 1
)kH−kL

from above. We know the posterior on (θ = G) given

a profile of kL votes for y out of a total of N + 1 votes must be at most βL. Furthermore,

P (G|kL) = P (kL|G)
P (kL|G)+P (kL|B)

. Thus,

1

P (G|kL)
= 1 +

P (kL|B)

P (kL|G)
= 1 +

((1− p)q)kL(1− (1− p)q)N−kL+1

(pq)kL(1− pq)N−kL+1
≥ 1

βL

⇔
(

1− p
p

)kL (1− q + pq

1− pq

)N−kL+1

≥ 1

βL
− 1

⇔ 1− q + pq

1− pq
≥

((
1

βL
− 1

)(
p

1− p

)kL) 1
N−kL+1

⇔ q ≥ R− 1

pR + p− 1
,

where

R
def
=

((
1

βL
− 1

)(
p

1− p

)kL) 1
N−kL+1

.

The above inequalities hold if and only if

1

q
≤ p+

2p− 1

R− 1
=
pR− (1− p)

R− 1
.

This holds if and only if
1

pq
− 1 ≤ 2p− 1

p(R− 1)
.
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Let us now bound R − 1 from below, which will provide the desired upper bound on

1/(pq)− 1.

Claim 3 There is a positive number D, independent of N , for which R− 1 > D · kL
N−kL+1

.

Proof: Suppose not. Then for any positive D

((
1

βL
− 1

)(
p

1− p

)kL) 1
N−kL+1

− 1 ≤ D · kL
N − kL

⇒

((
1

βL
− 1

)(
p

1− p

)kL) 1
N−kL+1

≤ 1 +D · kL
N − kL + 1

⇒
(

1

βL
− 1

)(
p

1− p

)kL
≤
(

1 +D · kL
N − kL + 1

)N−kL+1

≤ eDkL

⇒
(

1

βL
− 1

) 1
kL

· p

1− p
≤ eD.

Note that
1

βL
− 1 >

1

1− β
− 1 =

p2

(1− p)2
> 1,

and so the LHS above,
(

1
βL
− 1
) 1

kL · p
1−p , is strictly greater than p/(1− p) > 1. In contrast,

the RHS, eD, approaches 1 from above as D decreases. This is thus a contradiction for small

enough D > 0.

Plugging in the conclusion of Claim 3 we get that

1

pq
− 1 ≤ (2p− 1)(N − kL + 1)

pDkL
,

and so (
1

pq
− 1

)kH−kL
<

(
2p+D − 1

pD

)kH−kL (N − kL + 1

kL

)kH−kL
.

Combining this with (3) into (2) yields the bound

P (kL)

P (kH)
<
β̂H

β̂L
·
(

kH
N − kH

)kH−kL
·
(

2p+D − 1

pD

)kH−kL
·
(
N − kL + 1

kL

)kH−kL
=
β̂H

β̂L
·
(

2p+D − 1

pD

)kH−kL
·
(
kH(N − kL + 1)

kL(N − kH)

)kH−kL
.
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Observing that (
kH
kL

)kH−kL
=

(
1 +

kH − kL
kL

)kH−kL
< e(kH−kL)

2

and that (
N − kL + 1

N − kH

)kH−kL
=

(
1 +

kH − kL + 1

N − kH

)kH−kL
< e(kH−kL+1)2

yields

c =
P (kL)

P (kH)
<
β̂H

β̂L
·
(

2p+D − 1

pD

)kH−kL
· e2(kH−kL+1)2 .

To see that this bound is independent of N , notice first that β̂H/β̂L is bounded above

independently of N . Furthermore, the difference kH −kL is bounded above independently of

N (for fixed βH and βL) by Claim 2 and the observation that kH − kL is independent of N .

E.3 Bound on P (kL)/P (kH) when mixing on si = b

Let q = σi(b) be the probability of voting mi = n on signal si = b.

Recall that

β̂t
def
= P (G|kt) =

P (kt|G)P (G)

P (kt)
.

Thus,

c =
P (kL)

P (kH)
=
β̂H

β̂L
· P (kL|G)

P (kH |G)

=
β̂H

β̂L
·
(
N
kL

)
(1− (1− p)q)kL((1− p)q)N−kL(

N
kH

)
(1− (1− p)q)kH ((1− p)q)N−kH

=
β̂H

β̂L
· kH !(N − kH)!

kL!(N − kL)!
·
(

(1− p)q
1− (1− p)q

)kH−kL
. (4)

Now,
kH !(N − kH)!

kL!(N − kL)!
<

(
kH

N − kH

)kH−kL
.

If N − kH > kH/C for some positive constant C then the above inequality is at most

CkH−kL . Furthermore, as (1−p)q
1−(1−p)q ≤

1−p
p

, this bounds P (kL)
P (kH)

from above by some constant

(that depends on C). We will choose C below, in the proof of Claim 4.

WhenN−kH ≤ kH/C we need a tighter bound. To bound
(

(1−p)q
1−(1−p)q

)kH−kL
≤
(

(1−p)q
p

)kH−kL
from above in that case, let us bound q from above. We know the posterior on (θ = G) given
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a profile of kH + 1 votes for y out of a total of N + 1 votes must be at least βH , and that

P (G|kH) = P (kH |G)
P (kH |G)+P (kH |B)

. Thus,

1

P (G|kH)
= 1 +

P (kH |B)

P (kH |G)
= 1 +

(1− pq)kH+1(pq)N−kH

(1− (1− p)q)kH+1((1− p)q)N−kH
≤ 1

βH

⇔
(

p

1− p

)N−kH ( 1− pq
1− (1− p)q

)kH+1

≤ 1

βH
− 1

⇔ 1− pq
1− (1− p)q

≤

((
1

βH
− 1

)(
1− p
p

)N−kH) 1
kH+1

⇔ q ≤ R− 1

(1− p)R− p
,

where

R
def
=

((
1

βH
− 1

)(
1− p
p

)N−kH) 1
kH+1

.

Now, βH > p2/(p2+(1−p)2), and so 1/βH−1 < (1−p)2/p2. Plugging this into the definition

of R we get that

R <

(
1− p
p

)N−kH+2

kH+1

< 1.

Thus, we have

q ≤ R− 1

(1− p)R− p
=

1−R
p− (1− p)R

≤ 1−R
2p− 1

.

We will now bound R from below, thus bounding 1−R from above, leading to an upper

bound on q.

Claim 4 There is a number D < kH+1
N−kH

, independent of N , for which R > 1−D · N−kH
kH+1

.

Proof: Suppose not. Then for any D < kH+1
N−kH((

1

βH
− 1

)(
1− p
p

)N−kH) 1
kH+1

≤ 1−D · N − kH
kH + 1

⇒
(

1

βH
− 1

) 1
N−kH

· 1− p
p
≤
(

1−D · N − kH
kH + 1

) kH+1

N−kH

≤ e−D.

Recall that βH > β, and so

1

βH
− 1 <

1

β
− 1 =

(1− p)2

p2
< 1.
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Thus, (
1

βH
− 1

) 1
N−kH

>
1

βH
− 1,

and so it must be that (
1

βH
− 1

)
· 1− p

p
≤ e−D.

The is a contradiction for large enough D, since the LHS is a positive constant, whereas the

RHS approaches 0 from above as D increases.

The remaining detail is to confirm that one can indeed make D large enough, while

still maintaining the inequality D < kH+1
N−kH

. Recall that N − kH ≤ kH/C, and note that

kH/C < (kH + 1)/C. Thus, kH+1
N−kH

> C, so D < kH+1
N−kH

whenever D ≤ C. So as long as C is

chosen to be large enough, we can choose D = C and simultaneously satisfy(
1

βH
− 1

)
· 1− p

p
> e−D.

Plugging in the previous claim we get that

q ≤ 1−R
2p− 1

≤ D · N − kH
(2p− 1)(kH + 1)

.

and so (
(1− p)q

1− (1− p)q

)kH−kL
≤
(
D · (1− p)(N − kH)

p(2p− 1)kH

)kH−kL
.

Combining this with (4) yields

P (kL)

P (kH)
<
β̂H

β̂H
·
(

kH
N − kH

)kH−kL
·
(
D(1− p)
p(2p− 1)

)kH−kL
·
(
N − kH
kH

)kH−kL
=

(
D(1− p)
p(2p− 1)

)kH−kL
,

which is independent of N since the difference kH − kL is bounded above independently of

N , for fixed βH and βL (by Claim 2 and the observation that kH − kL is independent of N).
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F Asymmetric Receivers

The situation is a bit more complicated when the receivers are not symmetric. If there is no

FIE for some N , then P (θ = G|pivi) 6∈ [1− p, p]. Whether or not increasing the number of

senders leads to the existence of a FIE depends on whether P (θ = G|pivi) is greater than p

or less than 1− p.

Proposition 3 Suppose βH ≥ 1 − βL and that P (θ = G|pivi) 6∈ [1 − p, p]. Then there is a

number p > p for which the following holds:

• If P (θ = G|pivi) 6∈ [1− p, p] then increasing the number of senders will not lead to the

existence of a FIE.

• If P (θ = G|pivi) ∈ (1− p, 1− p) then sufficiently increasing the number of senders will

lead to the existence of a FIE.

A symmetric proposition holds for the case in which βH ≤ 1− βL.

Proof: The assumption βH ≥ 1− βL implies that kH ≥ N − kL. We have

P (θ = G|pivi) =
P (G ∩ pivi)

P (pivi)

=
P (G ∩ kL ∩ `) + P (G ∩ kH ∩ h)

P (kL ∩ `) + P (kH ∩ h)

=
` ·
(
N
kL

)
pkL(1− p)N−kL + h ·

(
N
kH

)
pkH (1− p)N−kH

` ·
(
N
kL

)
pkL(1− p)N−kL + h ·

(
N
kH

)
pkH (1− p)N−kH + ` ·

(
N
kL

)
(1− p)kLpN−kL + h ·

(
N
kH

)
(1− p)kHpN−kH

=
` ·
(
N
kL

)
pkH+kL−N (1− p)kH−kL + h ·

(
N
kH

)
p2kH−N

` ·
(
N
kL

)
pkH+kL−N (1− p)kH−kL + h ·

(
N
kH

)
p2kH−N + ` ·

(
N
kL

)
(1− p)kH+kL−NpkH−kL + h ·

(
N
kH

)
(1− p)2kH−N

=
`C(N, kH , kL)pkH+kL−N (1− p)kH−kL + hp2kH−N

`C(N, kH , kL)pkH+kL−N (1− p)kH−kL + hp2kH−N + `C(N, kH , kL)(1− p)kH+kL−NpkH−kL + h(1− p)2kH−N

=
`C(N, kH , kL)pkH+kL−N (1− p)kH−kL + hp2kH−N

`C(N, kH , kL) (pkH+kL−N (1− p)kH−kL + (1− p)kH+kL−NpkH−kL) + h (p2kH−N + (1− p)2kH−N )

where C(N, kL, kH)
def
=
(
N
kL

)
/
(
N
kH

)
. Let kH = N/2 + k̂H and kL = N/2− k̂L. The assumption

that βH ≥ N − βL implies that k̂H ≥ k̂L. With this change of variables, we get that

kH + kL −N = k̂H − k̂L, that 2kH −N = 2k̂H , and that kH − kL = k̂H + k̂L. Thus, all three

kinds of exponents above depend only on k̂H and k̂L, and in particular are independent of

N . It remains to examine the dependence of C(N, kL, kH) on N .
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We will show that C(N, kL, kH) decreases as N increases. Note that

C(N, kL, kH) =

(
N
kL

)(
N
kH

) =
kH !(N − kH)!

kL!(N − kL)!
,

and so
C(N + 1, kL, kH)

C(N, kL, kH)
=
N + 1− kH
N + 1− kL

≤ 1,

since kH ≥ kL. Thus, increasing N has the same effect as decreasing ` relative to h. This

has the effect of increasing P (θ = G|pivi). Thus, if the posterior P (θ = G|pivi) > p, then

this same inequality will also hold for larger number of voters.

If the posterior P (θ = G|pivi) < 1 − p, increasing the number of voters will lead to a

slightly higher posterior, and so may render sincerity an equilibrium. However, this is not

possible for all parameters. Observe first that limN→∞C(N, kL, kH) = 1. Let 1− p be equal

to

`pkH+kL−N(1− p)kH−kL + hp2kH−N

` (pkH+kL−N(1− p)kH−kL + (1− p)kH+kL−NpkH−kL) + h (p2kH−N + (1− p)2kH−N)
.

This is the final value of the posterior from above, but setting C(N, kL, kH) = 1. Note that

it is independent of N . If 1 − p ≤ 1 − p then increasing the number of voters will not lead

to a posterior that is greater than 1 − p, and for any finite N the posterior will be strictly

less than 1− p. Thus, there will be no FIE for any number of senders.

If 1−p > 1−p, however, then for sufficiently many senders the posterior will be sufficiently

close to 1− p, and so strictly greater to 1− p. At this point there will be a FIE.

G Comparison with Farrell and Gibbons (1989)

In this section we contrast our insight on the possibility of fully-informative communication

with that of Farrell and Gibbons (1989). In particular, we consider a more general setting

than the rest of the paper, focusing on a centralized sender. We show in Theorem 7 below that

applying the insight of Farrell and Gibbons (1989) to our setting will lead to the existence

of a FIE only under very specific circumstances, thus providing a formal contrast between

their insight and the one in our paper.

In this section we drop the assumptions that βL = 1 − βH and that γL = γH . Recall

that the centralized sender’s utility from action o ∈ {y, n} of Rt is ut(θ, o), and where the

total utility of the sender is u(θ, oL, oH) = uL(θ, oL) + uH(θ, oH). As above, for each t there
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is a threshold γt such that the sender prefers action y by Rt if and only if his posterior on

(θ = G) is at least γt. However, we now allow γL to be distinct from γH , and both to be

distinct from βL and βH . For example, the sender may prefer outcome y from RL whenever

the posterior is above 0.25, and from RH whenever it is above 0.4. Also, denote by γ the

threshold of the sender relative to the aggregate receiver: Namely, it is the threshold such

that the sender prefers both receivers to choose y over both receivers to choose n if and only

if the posterior is at least γ.

For any N and p, two thresholds β, β′ ∈ [0, 1] are (N, p)-equivalent, denoted by β ≈ β′

when N and p are clear from context, if for every profile s ∈ {g, b}N of signals with accuracy p

it holds that P (θ = G|s) < β ⇔ P (θ = G|s) < β′. This means that although the thresholds

β and β′ may be not be exactly equal, every realized signal profile lies on the same side of

both.

In this section, assume (without loss of generality) that when there is a centralized sender

the message space is equal to the set of possible signal realizations, M = {g, b}N . We begin

with a claim. Suppose there is only one receiver, with preferences captured by the threshold

βD. Furthermore, let the sender’s preferences over the receiver’s actions be captured by the

threshold γD. Then:

Claim 5 When N ≥ N0 (βD, p) the sender has an optimal, fully-informative strategy if and

only if βD ≈ γD.

This is an implication of Theorem 1. Of course, even if βD 6≈ γD, there may be some

informative communication between the sender and receiver in equilibrium. The point here,

however, is that not all information is disclosed.

Proof: It is clear that there is a persuasive FIE when βD ≈ γD. Suppose then that

βD 6≈ γD, and without loss suppose γD < βD. Then there is a signal profile s for which

the sender prefers outcome y while the receiver prefers outcome n. Thus, there cannot be

a FIE: on realization s, the sender strictly benefits from deviating and reporting the profile

s′ = (b . . . b), where rD(s′) = n.

Next, suppose there are two receivers with βL ≤ βH and arbitrary γL and γH . Then

there may be an optimal, fully-informative strategy under centralized information, but only

in two cases:

Theorem 7 When N ≥ N0(max{βH , 1−βL}, p) the sender has an optimal, fully-informative

strategy if and only if at least one of the following holds:
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• γL ≈ βL and γH ≈ βH ;

• βL ≈ βH ≈ γ.

In the first case, the addition of a second receiver does not facilitate fully-informative

communication, as such communication would be possible with only one receiver as well, by

Claim 5. The second case is essentially the insight of Farrell and Gibbons (1989) applied to

our setting. That is, fully-informative communication is possible by the mechanism described

by Farrell and Gibbons (1989) only in the case in which βL ≈ βH ≈ γ. When neither case

of Theorem 7 is satisfied then there is no fully-informative communication under centralized

information. In particular, the main setting studied in most of this paper, with βL = 1−βH
and γL = γH = 1/2 is such a case whenever βH 6≈ 1/2, and so here decentralization can be

strictly beneficial to the receivers.

Proof: It is clear that under the first bullet there is a persuasive FIE. Now suppose

βL ≈ βH ≈ γ, and that the sender plays the fully-informative strategy. Since βL ≈ βH both

receivers always choose the same action. Any deviation by the sender will thus either leave

the outcomes unchanged, or will lead outcomes (n, n) to (y, y) or (y, y) to (n, n). However,

since γ ≈ βH none of these deviations will be strictly beneficial to the sender. Thus, there

is a FIE.

For the “only if” direction, suppose that neither of the bullets in the theorem hold, and

that the sender plays the fully-informative strategy. If βL ≈ βH then γ 6≈ βH . Thus, there is

some signal profile s such that the receivers prefer outcomes (y, y) whereas the sender prefers

outcome (n, n), or vice versa. A profitable deviation for the sender is thus to send message

s′ = (b . . . b) on realization s (or s′ = (g . . . g) in the vice versa case), leading to outcome

(n, n) (or (y, y) in the vice versa case). Thus, there is no FIE.

If βL 6≈ βH then there is some profile s such that given this realization, RL prefers

outcome y whereas RH prefers outcome n. Furthermore, either γL 6≈ βL or γH 6≈ βH .

Suppose γL 6≈ βL (the other case is analogous). If γL < βL then there is a signal profile s

such that the sender prefers outcome y from RL, but on which RL prefers outcome n (which

implies that RH also prefers outcome n). There are now two cases: If on realized profile s

the sender prefers outcome y also from RH , then she can deviate to the message (g . . . g).

This is a strict improvement, since it leads to her most preferred outcomes, (y, y). If on

realized profile s the sender prefers outcome n from RH , then she can deviate to message s,

leading to her most preferred outcomes.
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If, on the other hand, γL > βL, then there is a signal profile s such that the sender prefers

outcome n from RL, but on which RL prefer outcome y. Furthermore, we can assume that

RH prefers outcome n on realization s. Again there are two cases: If on realized profile s the

sender prefers outcome n also from RH , then she can deviate to the message (b . . . b). This

is a strict improvement, since it leads to her most preferred outcomes, (n, n). If on realized

profile s the sender prefers outcome y from RH , then she can deviate to message (g . . . g),

which, while not leading to her most preferred outcome, is still a strict improvement: it leads

from outcomes (y, n) to outcomes (y, y), which she prefers.

A natural question is whether or not decentralization can be harmful—that is, are there

situations in which there is fully-informative communication under centralization but not

under decentralization? The following claim answers negatively:

Claim 6 Fix a centralized sender with N signals of accuracy p as well as one or two re-

ceivers, and suppose that the sender has an optimal, fully-informative strategy. Then under

decentralization there is a FIE.

Proof: If there is a FIE under centralization, then the fully-informative strategy τ is

optimal for the receiver given the induced decision rules r(τ). By the main observation

of McLennan (1998), a strategy profile that is optimal amongst all strategy profiles is an

equilibrium in a common value game. Thus, τ is an equilibrium profile in the decentralized

setting, given r(τ). Thus, it is an equilibrium, and constitutes a FIE.
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