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Form Finding

Frei Otto was one of the most emblematic architects and
engineers of the twentieth century, renowned for his re-
search in lightweight tensile structures. In his book Find-
ing Form, Frei Otto discussed the application of the optimal
form in architecture:

Natural structures are optimized, having max-
imum strength for minimum materials.

Natural forces tend toward stable structures like a soap
film that is pulled tight by the force of surface tension. The
soap film finds a stable equilibrium where it has the least
area of any nearby surface with the same boundary. The
nineteenth-century Belgian physicist Joseph Plateau stud-
ied this experimentally, and the existence problem became
known as the Plateau problem (see Figure 1):

Given a closed curve Y, find the surface I' bound-
ing y with the least area.

The solution I’ is a minimal surface. The Plateau problem
was finally solved around 1930 by Douglas and Rado, who
worked independently. Douglas was one of two winners of
the first Fields Medals for his solution in 1936.

The classical Plateau problem searches for the
minimum of the area on the space of mappings of the disk
with fixed boundary. The space of mappings is infinite-
dimensional, introducing serious difficulties, but one can
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define the derivative (or first variation) of area and the no-
tion of a critical point. The critical points, known as min-
imal surfaces, were introduced by Euler and Lagrange in
the 1700s.

We will look for stable structures in four situations and
discuss what is known and unknown.

Finding Stable Structures

In mathematics, structural stability is a fundamental prop-
erty of a dynamical system that means that the qualitative
behavior of the trajectories is unaffected by small perturba-
tions. Given a smooth function f on a finite-dimensional
space, the gradient V{ points in the direction of steepest
ascent. The critical points of f are the points where Vf
vanishes. If p is a local minimum of f, then the second
derivative test tells us that the Hessian matrix of f at p
is nonnegative. More generally, the number of negative
eigenvalues of the Hessian is called the index of the critical
point. A fundamental method to find the minimum of f is
the method of gradient descent. Here, we make an initial
guess po and then iteratively move in the negative gradi-
ent direction, the direction of steepest descent, by setting
pi+1 = Pi — Vf(pi). This can also be done continuously
by defining a negative gradient flow:
dx
T VFx(t)). (1)
The function f (X (t)) decreases as efficiently as possible as
X(t) heads towards the minimum. The dynamics near a
nondegenerate critical point are determined by the index.
If the index is zero, then the critical point is attracting and
the entire neighborhood flows toward the critical point.
However, when the index is positive, a generic point will
flow out of the neighborhood, missing the critical point.
We will look for stable structures in four situations and
discuss what is known and unknown. Those four are: (1)
minimal hypersurfaces, (2) minimal submanifolds of high-
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Figure 1. Top: Soap films minimize surface area for a fixed
boundary. Bottom: Soap bubbles minimize area for a fixed
enclosed volume.

er codimension, (3) singularities that are stable or generic,
and cannot be perturbed away, for motion by mean cur-
vature of hypersurfaces, and, finally, (4) such singularities
for motion by mean curvature in higher codimension.

Minimal Surfaces

Let =" C RY be a smooth submanifold (possibly with
boundary).  Given an infinitely differentiable (i.e,
smooth), compactly supported, normal (orthogonal to X)
vector field V on X, consider the one-parameter variation

Ssv={x+sV(x) | x €Z}. (2)

This gives a path § — Zs,y in the space of submanifolds
with Soy = 2. The so-called first variation formula of
area or volume is the equation (integration is with respect
tod Vol)

d —_—
£ Vol = [ v, ()
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where H is the mean curvature vector. When X is a hyper-
surface, H is the unit normal times the sum of the princi-
pal curvatures. In general, H = — }’; A(e;, €;), where A
is the second fundamental form and e; is an orthonormal
frame for the tangent space of 3; A(e;, ej) = Ajj = Vé;ej,
where V is the Euclidean derivative and “ L” is the compo-
nent orthogonal to the submanifold. When X is noncom-
pact, 2y is replaced by Iy v = {x + sV (x) | x € T},
where T’ is a compact subset of 2 containing the support
of V.

The submanifold X is said to be a minimal if

%s=0 Vol(Zsy) =0 forallV (4)

or, equivalently, by (3), if H is identically zero. Thus X is
minimal if and only if it is a critical point for the volume
functional. Since a critical point is not necessarily a mini-
mum, the term minimal is misleading but time-honored.
It is easy to see that being minimal is equivalent to all the
coordinate functions of RV restricted to the submanifold
being harmonic with respect to the Laplacian, Ay, on the
submanifold. In higher codimension, the minimal surface
equation is a complicated system.

A computation shows that if X is minimal, then the sec-
ond derivative of volume is

d2
T oo Vol(Zsy) = — L(V,L vy, (5)
where LV = AsV + (A;;, V) A;j is the so-called sec-
ond variational (or Jacobi) operator. This is an operator
on the normal bundle of X and is the Laplacian plus a
zeroth order term. When the submanifold is a hypersur-
face, this simplifies and becomes LV = AsV + A2V,
where |A|? is the sum of the squares of the principal cur-
vatures. It simplifies further if one identifies V with its
projection ¢ = (V,n) onto the unit normal n. Then
L =Asp+ A1 .
A minimal submanifold is stable if it passes the second
derivative test:
dZ
ZS-EVOHZS’V) >0 forallV. (6)
Obviously, if a minimal surface is area or volume mini-
mizing among competitors with the same boundary, then
it is stable as well. However, stability is much more gen-
eral than being minimizing. Stability becomes a question
about whether the Jacobi operator L is nonnegative or not.
The operator L is much simpler for hypersurfaces, and, in
particular, it is easy to see that a minimal graph is stable
and, more generally, so are multivalued graphs. In higher
codimension, the question of stability becomes much
more complicated because of the vector-valued nature of
L and the curvature of the normal bundle. For example,
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Figure 2. Architect and structural engineer Frei Otto pioneered
the concept of “form finding.” In the top image he is
experimenting with stable structures. In the bottom image is
his famous Olympic stadium based on his experiments with
soap films.

minimal graphs are not necessarily stable in higher codi-
mension.

A classical theorem of Bernstein from 1916 shows that
entire (that is, where the domain of definition is all of
R?) minimal graphs in R® are planes. Whether this is
true in higher dimensions became known as the Bernstein
problem. This problem played an important role in the
field for decades and is closely related to regularity for area
minimizers. In 1965 and 1966, De Giorgi and Almgren
proved the Bernstein theorem for graphs in R* and R®. In
1968, Simons extended the Bernstein theorem to R®, R”,
and R®, which was shown to be sharp the next year by
Bombieri, De Giorgi, and Giusti. Simons'’s influential pa-
per introduced the second variation operator and stability
to minimal surface theory. Stability of hypersurfaces was
studied by Schoen-Simon-Yau, who showed that as long
as the dimension of the hypersurface is at most six and the
volume of balls is up to a constant the same as Euclidean

1By [M], Osserman’s minimal graphs X3 = %cos 2 (¥ —3e™) and

X4 = —% sinﬁzZ (e — 3e7*1) in R* are not stable.
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balls of the same radius and dimension, then all stable
minimal hypersurfaces are planes. In R3 Fischer-Colbrie
and Schoen showed the same but without assuming area
bounds. This was also proved independently by Do Carmo
and Peng. Schoen later showed a local version of this that
has had huge influence on the development of minimal
surfaces in three dimensions. See [CM2]-[CM4] and [P]
for more about minimal surfaces.

The situation is much more complicated in higher codi-
mension where there is no analog of the Bernstein the-
orem. A simple argument of Wirtinger from the 1930s,
using Stokes’s formula, shows that any complex submani-
fold of CV is volume minimizing among things with the
same boundary and, thus, is a stable minimal submani-
fold. This gives a plethora of area-minimizing, and thus
also stable, minimal submanifolds once the codimension
is at least two. Moreover, these examples can have arbitrar-
ily large areas. Remarkably, Micallef [M] proved a converse
in R*. Namely, he showed that a stable oriented, parabolic
minimal surface in R* is complex for some orthogonal
complex structure. Being parabolic is a conformal prop-
erty that holds, for instance, if the volume of balls grows
at most quadratically. Examples of Arezzo and Micallef
show that this converse does not hold for surfaces in codi-
mension larger than two.

Figure 3. Surface tension pulls the bubble toward the shape
that gives the minimum surface energy —the lowest ratio of
surface area to volume.

Motion by Mean Curvature

Surface tension is the tendency of fluid surfaces to shrink
into the minimum surface area possible. Mathematically,
the force of surface tension is described by the mean curva-
ture. A one-parameter family of n-dimensional submani-
folds M; C RY is said to move by motion by mean curva-
ture if the time derivative of the position vector X moves
by minus the mean curvature. That is,

ox _
ot
Coordinate functions of the ambient Euclidean space re-

stricted to the evolving submanifolds satisfy the heat equa-
tion

—H. (7)

= = Ay, X. (8)
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Figure 4. Helicoid: A minimal surface discovered by Meusnier
in 1776. The helicoid is a ruled surface. Part of a helicoid is
stable and can be obtained as a soap film.

This equation is nonlinear since the Laplacian Ay, de-
pends on M;. Moreover, since the submanifolds are evolv-
ing, the induced metric is time-varying, so the Laplacian
Ay, is also time-varying. From the first variation formula
(3), it follows easily that mean curvature flow moves in the
direction where the volume decreases as fast as possible;
thus, mean curvature flow is the negative gradient flow of
volume. The motion is by surface tension. In higher codi-
mension (7) and (8) are complicated parabolic systems
where much less is known.

Since the coordinate functions on the evolving subman-
ifolds satisfy the heat equation, it follows from the para-
bolic maximum principle that the evolving submanifolds
remain inside the convex hull of the initial submanifold.
A straightforward computation shows that also the func-
tion |x|% — 2 n t satisfies the heat equation on the evolving
submanifolds. At the initial time t = O this is nonnegative
and therefore, by the parabolic maximum principle, it re-
mains nonnegative as long as the flow exists. Since we have
already seen that maxyy, |x| 2 remains bounded under the
evolution, it follows that the flow must become extinct in
finite time and, thus, singularities occur.

For a fixed constant ¢ > O, rescaling the flow paraboli-
cally,

t— CMC—2 = MC,I ’ (9)

gives a new solution to motion by mean curvature that has
the effect that the submanifolds are magnified by the con-
stant ¢. If we simultaneously with rescaling also repara-
metrize time, then we get a rescaled mean curvature flow.
It is easy to see that such a one-parameter family satisfies
the rescaled mean curvature flow equation

i (10)

ox _xt
2
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Figure 5. The catenoid, discovered by Euler in 1741: the only
minimal surface of revolution. Part of a catenoid is stable and
can be obtained as a soap film.

The rescaled mean curvature flow turns out to be the nega-
tive gradient flow for the Gaussian surface area.

The Gaussian surface area F of an n-dimensional sub-
manifold =" C RN is

x[2
1

F(Z) = (4m)~? J e T, (11)
>
The constant (4 77) % is a normalization that makes the
Gaussian area one for an n-plane through the origin. Fol-
lowing [CM3], the entropy A is the supremum of F over
all translations and dilations
A(Z) =sup F(c X + Xxg) .

C,Xo

(12)

If V is a normal vector field and v, as before, is the
variation 25y = {X+sV(x) | X € X}, then an easy com-
putation shows that

d x*

= (4m)} s
£S=OF(2S‘V) = (4 1) L(V,H > - . (13)

It follows that the Gaussian surface area F is monotone
nonincreasing under the rescaled mean curvature flow
and constant if and only if
1
X
H=—.
2

This equation is the shrinker equation and is equivalent to
the rescaled flow being static, or, also equivalently, the evo-
lution under the mean curvature flow being by rescaling.
That is, a later time slice is exactly like an earlier one, just
scaled down. That Gaussian surface area is monotone un-
der the rescaled flow corresponds to Huisken’s celebrated
monotonicity formula [H]. From this, it follows also that
the entropy is a Lyapunov function for both the mean cur-
vature flow and the rescaled mean curvature flow.

From Huisken’s monotonicity [H] and work of lmanen
[1] and White [W], one knows that every sequence ¢; — 00
has a subsequence (also denoted by ¢;) so that M, con-
verges to a shrinker Moo ¢ (50 Moot = +/—t Meo,—1) with
sup; A (M) < sup; A(M;). Such a limit is said to be
a tangent flow at the origin. Similarly, one can magnify
(blow up) around any other point in space-time. If one
doesn't fix the point around where one blows up, but still
looks at limits of a sequence of blowups, then the limiting

(14)
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flows are not shrinkers, but even then the limiting flows
will exist for all negative times and are said to be ancient
flows.

We have already seen that shrinkers are critical points
for the Gaussian area. When 2 is a shrinker, we therefore
look at the second derivative. A calculation (see [CM5])
gives

d2

das? s= (15)

Here LV = LV + (A;;,V) Ajj + 3 V is the Jacobi opera-
tor,and LV = Az V—3 V3V is the Ornstein-Uhlenbeck
operator on the normal bundle. For hypersurfaces, there
is a simplification of the operator L similar to what we saw
for the second derivative of volume.

F(Ssy) = —(41)"3 J V,LVye %
0 b}

Figure 6. A complex curve is a stable minimal surface in the
complex plane.

Translation of a submanifold in the direction E € RY is
infinitesimally given by the normal part E* of E. Similarly,
rescaling is given by the normal vector field x?

For any shrinker, translations and scaling give directions
where the Gaussian area decreases [CM5], so there are no

stable shrinkers in the usual sense. This corresponds to E*
(with E € RN)and H = % being eigenvectors of L with
eigenvalues —% and —1, respectively. Perturbing by either
translation or scaling has the effect of moving the same
singularity to a different point in space or time. However,
the singularity is not avoided; it just occurs at another time
or place for the flow. For this reason, we say [CM5] that a
shrinker is F-stable if

d2

—  F(Zsv) =0 forall V orthogonal to H
ds?s=0 '

andtoall E-. (16)
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Here orthogonal means with respect to the Gaussian inner
product on the space of normal vector fields. For noncom-
pact shrinkers, it turns out that the right notion of stability
is that of entropy stability; however, for compact singular-
ities those two notions of stability are the same [CM5]. A
shrinker is entropy-stable if it is a local minimum for the en-
tropy A. Entropy-unstable shrinkers are singularities that
can be perturbed away, whereas entropy-stable ones can-
not; see [CM5]. The paper [CIMW] showed that for hyper-
surfaces round spheres are the shrinkers with smallest en-
tropy. It is easy to see that spheres and planes are F-stable
in any codimension.

Figure 7. Surface tension is the Figure 8. Cylinders

tendency of fluid surfaces to
shrink into the minimum
surface area possible.

shrinking homothetically
under mean curvature flow.
By [CM5], shrinking
cylinders and spheres are
the only stable
hypersurface singularities.

Even for hypersurfaces, examples show that singulari-
ties of mean curvature flow are too numerous to classify;
see Figures 9 and 11. The hope is that the generic ones
that cannot be perturbed away are much simpler. Indeed,
in all dimensions, generic singularities (that is, entropy-
stable shrinkers) of hypersurfaces moving by mean curva-
ture flow have been classified in [CM5]. These are round
generalized cylinders S’f/—z—]z X Rk The generic singulari-

ties in R3 are the sphere S3, cylinder Sf/ﬁ X R, and plane

R?. In contrast to the Bernstein theorems for minimal hy-
persurfaces, this classification of generic singularities holds
in every dimension.

For the mean curvature flow in higher codimension, we
search again for the stable singularities. Recall that sta-
ble singularities are those that are entropy stable, which is
equivalent to F-stable for closed shrinkers. When X is an
F-stable shrinker diffeomorphic to a sphere, [CM6] shows
that

A(Z) <4 =eA(S3). (17)

The sharp constant is unknown, but (17) is at most off by
a factor of e. By [CM6], similar bounds also hold for other
closed shrinking surfaces of any finite index where the en-
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The shrinking cube. Half of the shrinking cube.

A numerical example of Chopp, Exper. Math. 1994.

Figure 9. A shrinker in R3 found numerically by Chopp. By
[CM5] it is unstable.

Figure 10. Minimal submanifolds of round spheres are
shrinkers. The illustration is a projection of the Clifford torus
(product torus) Si/i X Sf/i that is minimal surface in the round

three sphere S3 of radius 2 and is thus a shrinker in R*.

tropy bound depends on the genus and index. Gemgnedp
with-1CM6], this implies that any such F-stable shrinker
that a priori lies in a high-dimensional Euclidean space in
fact lies in a linear subspace of some fixed small dimen-
sion. The sharp bound for the dimension of the linear
space is unknown, though [CM6] provides sharp dimen-
sion bounds in various other important situations.

There is no analog of (17) for minimal surfaces in R?.
Namely, viewing R? as C2, one sees that the parametrized
complex submanifold z — (z,z™) is a stable minimal va-
riety that is topologically a plane for each integer m. It
has Area(B, N'X) > Cmr? for v = 1. In contrast,
[CM6] implies that Area(B, N'Z) < C (1 + y)r? for
a closed stable 2-dimensional shrinker X of genus y. Sim-
ilarly, there is no analog of the codimension bound for
minimal surfaces. Indeed, for each m, the parametrized
surface z —» (z,22,73,...,2z™"1) is a stable minimal va-
riety that is topologically a plane. Its real codimension is
2 m and it is not contained in a proper subspace.

Once one has the entropy bound in (17), to conclude
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that stable singularities have low codimension, one needs
a result about the number of linearly independent coordi-
nate functions. The coordinate functions on a mean cur-
vature flow produce a linear space of caloric functions, i.e.,
solutions of the heat equation, that grow at most linearly.
The bound on the codimension is a consequence of a much
more general result about polynomial growth caloric func-
tions on an ancient mean curvature flow that has a variety
of other useful applications.

Let M{" C R be an ancient mean curvature flow of n-
dimensional submanifolds with entropies A (M) < Ag <
00. Recall that ancient flows are solutions that exist for
all negative times. The space P; of polynomial growth
caloric functions consists of u(x,t) on J; My X {t} so
that (0; — Ap,) u = 0 and there exists C depending on u
with

lu(x,t)] < C(1+ |x|9+ |t|%) forall (x,t)
withx € M;, t<0. (18)

The simplest example is when the flow consists of a static
(constant in time) hyperplane R". In this case, P;(R")
consists of polynomials in (t,X1,...,X,), known as the
caloric polynomials, and, using the special structure in this
case, it is easy to see that dim Pz (R") = ¢, d". The paper
[CMo6] showed sharp bounds for dim P, forall d > 1 for
an ancient flow with A (M;) < Ag:

dim Py < CpAod". (19)

One remarkable consequence when d = 1 is a bound for
the codimension. Namely, the flow sits inside a linear sub-
space of dimension at most dim 72;, since a linear relation

for coordinate functions specifies a hyperplane containing
the flow.

Figure 11. A shrinkerin R3 shown to exist by Kapouleas,
Kleene, and Mgller. Its existence had been conjectured by
limanen using numerics. By [CM5] it is unstable.
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When the manifold M" is fixed (and does not vary
in time), there is a natural subspace of P; consisting of
the harmonic functions of polynomial growth of degree
at most d. The study of harmonic functions of polyno-
mial growth has a long history in geometry and analysis.
In 1974, S. T. Yau conjectured that these spaces were finite-
dimensional for manifolds with nonnegative Ricci curva-
ture; this was proven in [CM1]. See [CM7], [LZ] for results
about caloric functions of polynomial growth on such a
fixed manifold and the survey [CM8] for other results and
the history.
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