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ABSTRACT
We study the flow structure in 3D magnetohydrodynamic (MHD) simulations of accretion on
to Sagittarius A∗ via the magnetized winds of the orbiting Wolf–Rayet stars. These simulations
cover over 3 orders of magnitude in radius to reach ≈300 gravitational radii, with only one
poorly constrained parameter (the magnetic field in the stellar winds). Even for winds with
relatively weak magnetic fields (e.g. plasma β ∼ 106), flux freezing/compression in the
inflowing gas amplifies the field to β ∼ few well before it reaches the event horizon. Overall,
the dynamics, accretion rate, and spherically averaged flow profiles (e.g. density, velocity)
in our MHD simulations are remarkably similar to analogous hydrodynamic simulations. We
attribute this to the broad distribution of angular momentum provided by the stellar winds,
which sources accretion even absent much angular momentum transport. We find that the
magneto-rotational instability is not important because of (i) strong magnetic fields that are
amplified by flux freezing/compression, and (ii) the rapid inflow/outflow times of the gas and
inefficient radiative cooling preclude circularization. The primary effect of magnetic fields is
that they drive a polar outflow that is absent in hydrodynamics. The dynamical state of the
accretion flow found in our simulations is unlike the rotationally supported tori used as initial
conditions in horizon scale simulations, which could have implications for models being used
to interpret Event Horizon Telescope and GRAVITY observations of Sgr A∗.

Key words: accretion, accretion discs – black hole physics – (magnetohydrodynamics)
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1 INTRODUCTION

The accretion system immediately surrounding Sagittarius A∗ (Sgr
A∗), the supermassive black hole in the centre of the Milky Way,
offers an unparalleled view of the diverse physical processes at
play in galactic nuclei. Compared to other active galactic nuclei,
the luminosity of the black hole is strikingly small, only ∼10−9

times the Eddington limit, this places it firmly into the regime
of the well-studied radiatively inefficient accretion flow (RIAF)
models (see Yuan & Narayan 2014 for an extensive review).
The proximity of the Galactic Centre allows for the environment
immediately surrounding the black hole to be spatially resolved,
including �100 s of stars in the central nuclear cluster (Paumard
et al. 2006; Lu et al. 2009), the hot, X-ray emitting gas at the Bondi
radius (Baganoff et al. 2003), and the ionized mini-spirals streaming
inwards surrounded by the cold, molecular circumnuclear disc.
Direct constraints on the near horizon environment are now possible

� E-mail: smressle@ucsb.edu

with the detection of several localized infrared flares orbiting the
black hole within ∼10 gravitational radii (rg ≡ GM/c2, where M is
the mass of the black hole, G is the gravitational constant, and c
is the speed of light) by GRAVITY (Gravity Collaboration 2018)
and the first resolved mm images by the Event Horizon Telescope
(Doeleman et al. 2009; Event Horizon Telescope Collaboration
2019a, b) soon to come. With such a wealth of observational data,
Sgr A∗ can be used as a test-bed of accretion models in a way that
no other system can.

It is generally believed that the black hole’s gas supply is primarily
set by the stellar winds of the ∼30 Wolf–Rayet (WR) stars orbiting
at distances of ∼0.1–1 pc from Sgr A∗ (Paumard et al. 2006;
Martins et al. 2007; Yusef-Zadeh et al. 2015). The winds shock
with each other to ∼keV temperatures, producing X-rays around
the Bondi radius that are well resolved by Chandra (Baganoff et al.
2003). However, a spherical Bondi estimate vastly overpredicts the
observed Faraday rotation of the linearly polarized radio emission
(Agol 2000; Quataert & Gruzinov 2000a; Bower et al. 2003;
Marrone et al. 2007). Instead, only a small fraction �10−3 of this
gas reaches the horizon. It is this material that produces the X-
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ray and infrared flares as well as the 230 GHz emission targeted
by EHT.

What exactly prevents most of the material at the Bondi radius
from accreting is still an open debate. Several viable models have
been proposed, including those that appeal to strong outflows
(Blandford & Begelman 1999) and those that appeal to convective
instabilities that trap gas in circulating eddies (Stone, Pringle &
Begelman 1999; Narayan, Igumenshchev & Abramowicz 2000;
Quataert & Gruzinov 2000b; Igumenshchev & Narayan 2002; Pen,
Matzner & Wong 2003). The range of models corresponds to a
dependence of density on radius between the two extremes of r−3/2

and r−1/2, with the combination of multiple observational estimates
at ∼7 different radii supporting r−1 in the inner regions of the
flow (Gillessen et al. 2019) with a potential break near the Bondi
radius (Wang et al. 2013). Another key consideration is the angular
momentum of the gas being fed at large radii. In the absence of
magnetic fields or other processes, gas in axisymmetric flows can
only accrete if it has a specific angular momentum (roughly) less
than the Keplerian value at the event horizon. On the other hand
the magnetorotational instability (MRI; Balbus & Hawley 1991)
can amplify an initially weak field causing gas to accrete while
also driving strong magnetically dominated outflows in the polar
regions.

Most simulations of accretion on to low-luminosity active
galactic nuclei (AGN) operate either explicitly or implicitly on
the assumption that the MRI is the primary driver of accretion.
For instance, general relativistic magnetohydrodynamic (GRMHD)
simulations used to model the horizon-scale accretion flow in the
Galactic Centre (e.g. De Villiers & Hawley 2003; Gammie, McKin-
ney & Tóth 2003; McKinney & Gammie 2004; Mościbrodzka et al.
2009; Narayan et al. 2012; Sa̧dowski et al. 2013; Mościbrodzka et al.
2014; Chan et al. 2015; Event Horizon Telescope Collaboration
2019c; see also Porth et al. 2019 for a recent GRMHD code
comparison) almost uniformly start from equilibrium tori (e.g.
Fishbone & Moncrief 1976; Penna, Kulkarni & Narayan 2013)
seeded with weak magnetic fields that are unstable to the MRI.
No low angular momentum gas is initially present. In this picture,
understanding the physics of the MRI and how it depends on
physical parameters like the net vertical flux in the disc or numerical
parameters like resolution is essential for understanding accretion
physics.

Sgr A∗ is unique among AGNs in that we can plausibly expect
to directly model the accretion of gas from large radii where it
is originally sourced by the winds of the Wolf–Rayet stars. Since
the hydrodynamic properties of these winds (Martins et al. 2007;
Yusef-Zadeh et al. 2015) as well as the orbits of the star themselves
(Paumard et al. 2006; Lu et al. 2009) can be reasonably estimated
from observations, the freedom in our modelling is limited mainly
to the magnetic properties of the winds, which are less well known.
In principle, a simulation covering a large enough dynamical range
in radius could self-consistently track the gas from the stellar winds
as it falls into the black hole, determining the dominant physical
processes responsible for accretion and directly connecting the
accretion rate, density profile, and outflow properties of the system
to the observations at parsec scales.

With this motivation, Cuadra et al. (2005, 2006) and Cuadra,
Nayakshin & Martins (2008) studied wind-fed accretion in the
Galactic Centre with a realistic treatment of stellar winds and
Cuadra, Nayakshin & Wang (2015), Russell, Wang & Cuadra (2017)
added a ‘subgrid’ model to study how feedback from the black hole
affects the X-ray emission. In Ressler, Quataert & Stone (2018, here-
after RQS18), we built on this key earlier work by treating the winds

of the WR stars as source terms of mass, momentum, and energy in
hydrodynamic simulations encompassing the radial range spanning
from ∼1 to ∼5 × 10−5 pc (∼ 300 rg). One key result of RQS18 was
that even in hydrodynamic simulations the accretion rate on to the
black hole is significant and comparable to previous observational
estimates (e.g. Marrone et al. 2007; Shcherbakov & Baganoff 2010;
Ressler et al. 2017) due to the presence of low angular momentum
gas. This is in part a consequence of a coincidence that the WR
stars in the Galactic Centre have winds speeds comparable to their
orbital speeds, so that there is a wide range of angular momentum
in the frame of Sgr A∗. Another key result was that the higher
angular momentum gas that could not accrete did not build up into
a steady torus but was continuously being recycled through the inner
∼0.1 pc via inflows and outflows. Because of this complicated flow
structure, it is not clear what effect magnetic fields would have.
Would the rotating gas be unstable to the MRI? Would the MRI
growth time be short enough compared to the inflow/outflow time
in order to significantly effect the flow structure? If so, how is the
net accretion rate altered? How significant are large-scale magnetic
torques in transporting angular momentum? These and more are the
questions we address in this work.

Ressler, Quataert & Stone (2019, hereafter RQS19) presented
a methodology for modelling the accretion of magnetized stellar
winds by introducing additional source terms to account for the
azimuthal field in each wind. In that work, we showed that a single
simulation of fuelling Sgr A∗ with magnetized winds can satisfy a
number of observational constraints, providing a convincing argu-
ment that our model is a reasonable representation of the accretion
flow in the Galactic Centre. First, our simulations reproduce the
total X-ray luminosity observed by Chandra (Baganoff et al. 2003),
meaning that we capture at least a majority of the hot, diffuse
gas at large radii. Secondly, our simulations reproduce the r−1

density scaling inferred from observations that were taken over
a large radial range (Gillessen et al. 2019), implying that we are
capturing a majority of the gas at all radii and that our inflow/outflow
rates have the right radial dependence. Thirdly, our simulations can
reproduce the magnitude of the RM of both the magnetar (produced
at r � 0.1 pc, Eatough et al. 2013) and Sgr A∗ (produced at r �
10−4 pc, Marrone et al. 2007), demonstrating that our calculated
magnetic field strengths are reasonable at both small and large
scales. Fourthly, our simulations can plausibly explain the time
variability of the RM of Sgr A∗ (Bower et al. 2018), the time
variability of the magnetar’s RM, as well as the time variable part
of its dispersion measure (Desvignes et al. 2018). In this work, we
study the dynamics of this model in more detail, with the primary
focus of determining the degree to which magnetic fields alter the
flow structure seen in purely hydrodynamic simulations (e.g. Cuadra
et al. 2008, RQS18).

One key open question regarding the horizon scale accretion
flow on to Sgr A∗ is whether or not it is magnetically arrested.
This state can occur when coherent magnetic flux is consistently
accreted on to the black hole and amplified by (e.g.) flux freezing
(Shvartsman 1971) to the point that the magnetic pressure becomes
large enough to halt the inflow of matter. This configuration is
generally referred to as a ‘magnetically arrested disc’ (MAD;
Narayan, Igumenshchev & Abramowicz 2003). Simulations show
that accretion in the MAD state is much more time variable than
their standard and normal evolution (SANE) counterparts, have
much stronger jets, and the bulk of accretion occurs along thin
transient streams that are able to penetrate to the horizon (Igumen-
shchev, Narayan & Abramowicz 2003; Tchekhovskoy, Narayan &
McKinney 2011). The periodicity of the polarization vectors of
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the localized infrared flares detected by GRAVITY favours the
presence of a strong, coherent, vertical magnetic field at horizon
scales (Gravity Collaboration 2018), large enough to potentially
be in a MAD state. MAD models are also favoured over SANE
models of the emission from the supermassive black hole in M87
because they more naturally account for the energetics of the jet
(Event Horizon Telescope Collaboration 2019c). Simulations of
magnetized wind accretion in the Galactic Centre are uniquely
equipped to address the question of whether or not the winds of
the WR stars can provide enough coherent magnetic flux for Sgr A∗

to become MAD.
This paper is organized as follows. Section 2 reviews and

summarizes the governing equations of the system including the
magnetized wind source terms, Section 3 demonstrates in an isolated
stellar wind test that our method produces the desired results,
Section 4 presents the results of 3D MHD simulations of accretion
on to Sgr A∗, Section 5.1 compares and contrasts our results with
previous work, Section 6 discusses the implications of our work
for horizon scale modelling of the Galactic Centre, and Section 7
concludes.

2 COMPUTATIONAL METHODS

Our simulations use the conservative, grid-based code
Athena++1 coupled with the model for magnetized winds out-
lined in RQS19. This model is an extension of the purely hydrody-
namic wind model presented in RQS18 and treats the winds of the
WR stars as sources of mass, momentum, energy, and magnetic field
that move on fixed Keplerian orbits. The hydrodynamic properties
of the winds are parametrized by their mass-loss rates, Ṁw and
their wind speeds, vw. The magnetic fields of the winds are purely
toroidal as defined with respect to the spin axes of the stars and
have magnitudes set by the parameter βw, defined by the ratio
between the ram pressure of the wind and its magnetic pressure at
the equator (a ratio that is independent of radius in an ideal stellar
wind).

In brief, the equations solved in our simulations are

∂ρ

∂t
+ ∇ · (ρv) = f ρ̇w

∂ (ρv)

∂t
+ ∇ ·

(
PtotI + ρvv − BB

4π

)
= −ρGMBH

r2
r̂

+f ρ̇w〈vw,net〉
∂ (E)

∂t
+ ∇ · [(E + Ptot )v − v · BB] = −ρGMBH

r
v · r̂ + 〈ĖB〉

+1

2
f ρ̇w〈|vw,net|2〉 − Q−

∂B
∂t

− ∇ × (v × B) = ∇ × (
Ẽw

)
, (1)

where ρ is the mass density, v is the velocity vector, B is the
magnetic field vector, E = 1/2ρv2 + P/(γ − 1) + B2/(8π ) is the
total energy, γ = 5/3 is the non-relativistic adiabatic index of the
gas, Ptot = P + B2/(8π ) is the total pressure including both thermal
and magnetic contributions, Q− is the cooling rate per unit volume
due to radiative losses caused by optically thin bremsstrahlung and
line cooling (using Z = 3 Z	 and X = 0), f is the fraction of the
cell by volume contained in the wind, ρ̇w = Ṁw/Vw, Vw = 4π /3

1Athena++ is rewrite of the widely used Athena code (Stone et al.
2008) in the c++ language. For the latest version of Athena++, see
https://princetonuniversity.github.io/athena/.

r3
w, and vw, net is the wind speed in the fixed frame of the grid, 〈〉

denotes a volume average over the cell, ĖB is the magnetic energy
source term provided by the winds, and Ẽw is the average of the
wind source electric field, Ew, over the appropriate cell edge (see
equations 22–24 of Stone et al. 2008). Each ‘wind’ has a radius of
rw ≈ 2

√
3 �x, where �x is the edge length of the cell containing

the centre of the star.

3 ISOLATED, MAGNETIZED STELLAR WIND
TEST

To test that our implementation of the source terms drives a
magnetized wind with the desired properties, we place a stationary
wind in the centre of a 3D, 1 pc3 grid and run for 4 wind crossing
times. The mass-loss rate of the wind is Ṁw = 10−5 M	 yr−1, the
wind speed is vw = 1000 km s−1, and radiative cooling is disabled.
We choose βw = 100 to ensure that the magnetic field is non-
negligible but relatively weak.

The left-hand panel of Fig. 1 shows that the angle-averaged ϕ

component of the magnetic field matches the analytic expectation,
scaling as r−1 as determined by flux conservation. The other
components of the field are negligible. The right-hand panel of
Fig. 1 shows the dependence of Bϕ on polar angle θ at a distance of
10 times the wind radius. Since the ϕ source term in the induction
equation is ∝ sin (θ), a dynamically unimportant magnetic field
would also be ∝ sin (θ). For βw = 100, however, corresponding
to a magnetic pressure that is 1 per cent of the ram pressure, the
unbalanced Pm ∝ sin (θ)2 pushes the gas away from the mid-plane
and towards the poles. This leads to the field being slightly lower
than prescribed in the mid-plane and slightly higher near the poles,
by a factor of � 10 per cent. We emphasize that this result is not an
error in our model but a self-consistent consequence of magnetic
stresses in the wind, which tend to collimate the flow (Sakurai 1985).
However, it is also important to note that the sin (θ ) dependence of
the source term in the induction equation was chosen simply because
it vanishes at 0 and π and not based on detailed modelling of the
angular structure of MHD winds.

The angular structure of the wind seen in Fig. 2 becomes even
more pronounced for βw = 10, where the magnetic pressure is
now 10 per cent of the ram pressure. Here the wind becomes highly
collimated, as shown by the left-hand panel of Fig. 2, where the
density is now concentrated at the poles and the magnetic field is
roughly independent of polar angle. At the same time, the total
mass outflow rate and angle averaged wind speeds are still in good
agreement with the intended vw and Ṁw as shown in the right-hand
panel of Fig. 2.

As noted in RQS19, when βw is further decreased to �5 the
magnetic pressure becomes large enough to accelerate the wind and
make the solution inconsistent with the input parameters. Because
of this we limit our studies to βw � 10 and focus primarily on βw

≥ 102. We show later that our results are insensitive to βw for βw

∼ 102–106.

4 3D SIMULATION OF ACCRETING
MAGNETIZED STELLAR WINDS ON TO
SGR A ∗

4.1 Computational grid and boundary/initial conditions

We use a base grid in Cartesian coordinates of 1283 covering a box
size of (2 pc)3 with an additional 9 levels of nested static mesh
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Figure 1. Left: Angle averaged azimuthal magnetic field, 〈Bϕ〉, normalized to the r � rw analytic expectation for βw = 102 (solid red) and to its peak value
(dashed blue). The agreement with the analytic solution is excellent. Right: θ dependence of Bϕ at 10 wind radii (solid green) compared to sin (θ ) (dashed
purple). The magnetic field is slightly more spread out in θ than sin (θ ) because the imbalanced magnetic pressure tends to push the gas towards the poles. This
effect is more extreme for βw = 10 (Fig. 2).

Figure 2. Left: θ dependence of the azimuthal magnetic field, Bϕ (solid green), and the logarithm of the mass density divided by the purely hydrodynamic
solution, log10(ρ/ρhydro) (dotted orange), both evaluated at 10 wind radii for βw = 10 and compared with sin (θ ) (dashed purple). Right: angle averaged 〈Bϕ〉
(solid red), accretion rate normalized to the expected value, 〈Ṁ〉/Ṁw (dashed blue), and radial velocity normalized to the expected value, 〈vr〉/vw (dotted
black). Compared to the βw = 100 case in Fig. 1, the magnetic field is now strong enough to collimate the wind, enhancing the density by almost a factor of
100 at the poles. Despite this, the net accretion rate and wind speed are still consistent with the input parameters. None the less, we focus on βw ≥ 100 for our
simulations to avoid the collimating effect of magnetic fields on the stellar winds.

refinement.2 This doubles the effective resolution every factor of
∼2 decrease in radius so that the length of an edge of the smallest
cubic cell is ≈3 × 10−5 pc. No additional mesh refinement is used
(e.g.) near the stellar wind source terms. The inner boundary of our
simulation is approximately spherical, with a radius equal to twice
the length of an edge of the smallest cubic cell, corresponding to
rin ≈ 6 × 10−5 pc ≈ 1.6 × 10−3 arcsec ≈300 rg. All cells with
centre points within this radius are set to have zero velocity and
floored density/pressure, yet the magnetic field is allowed to freely
evolve. Even though we generally expect the solution just outside
this radius in our simulations to have large inwards radial speeds,
we chose to set the velocity to zero inside rin for simplicity and

2Note that in RQS18 and RQS19, it was stated that the box size of our
simulations was (1 pc)3. This was an error. The box size in both works was
actually (2 pc)3, as it is here.

have found that it does not strongly affect our results. First, we
have tested that simulations using this inner boundary condition are
able to successfully reproduce a spherical Bondi flow even when
the sonic radius is smaller than rin (that is, when gas within the
inner boundary radius is in causal contact with gas at larger radii),
and secondly, the simulations presented in RQS18 using the same
inner boundary showed that vr just outside the inner boundary was
still able to reach the local sound speed (see fig. 11 in that work).
The outer boundary of each of our simulations is set at the faces of
the computational box using ‘outflow’ conditions, where primitive
variables are simply copied from the nearest grid cell into the ghost
zones.

Our simulations use the Harten-Lax-van Leer + Einfeldt (HLLE;
Einfeldt 1988) Riemann solver and second-order piecewise linear
reconstruction on the primitive variables.

For the WR stars, we use the orbits, mass-loss rates, and wind
speeds exactly as described in RQS18, drawing primarily from
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Martins et al. (2007), Cuadra et al. (2008), Paumard et al. (2006),
and Gillessen et al. (2017). These values differ slightly from those
used in RQS19, where we modified the mass-loss rates and wind
speeds of four stars (within reasonable systematic observational
uncertainties) to show that our simulations could reproduce the
observed RM of the Galactic Centre magnetar. Each wind is given
a randomly chosen direction for its spin axis that determines the
azimuthal direction for the magnetic field; this random selection is
made only once for each star so that each simulation we run has the
same set of spin axes. Note that RQS19 used a different set of spin
axes, but we have found our results insensitive to this choice. Here
we also use a value of rin that is a factor of 2 smaller than RQS19.
We ran a total of five simulations; four in MHD with βw = 10, 102,
104, and 106, and one in hydrodynamics (i.e. βw → ∞).

In Section 3, we showed that stellar winds with βw = 10 in
our model become highly collimated. We have found that this
collimation has non-trivial effects on the resulting dynamics of the
inner accretion flow (in particular, altering the angular momentum
direction at small radii) in a way that makes separating the effects of
large magnetic fields from this extra hydrodynamic consideration
difficult. Furthermore, the precise nature of this collimation depends
on our choice of angular dependence of Ẽw in equation (1), which
was arbitrary. Thus we do not find it instructive to include βw = 10 in
our analysis, though we note that the main conclusions derived from
our βw = 102–106 simulations are consistent with those derived
from the βw = 10 simulations that we have run.

We initialize each simulation with floored density and pressure,
zero velocity, and no magnetic field, starting at 1.1 kyr in the past.
Here, for consistency with RQS18 2017 January 1, is defined as
this day, i.e. t = 0. The simulations are run for 1.3 kyr to a final
time of tf = 200 yr. In Appendix B, we argue that our results are
independent of the arbitrary choice of starting our simulations 1.1
kyr in the past by comparing with simulations that start 9 kyr in the
past.

Finally, we use floors on the density and pressure (see RQS18),
and a ceiling on the Alfven speed (which is effectively an additional
floor on density; see RQS19).

To ensure that our results are well converged, we ran an additional
simulation that used a factor of 4 finer resolution within ∼0.06 pc,
though with a shorter total run time. As shown in Appendix A,
we find that our simulations show no significant dependence on
resolution.

4.2 Overview

Fig. 3 shows a 1 pc2 2D slice in the plane of the sky (centred on
the black hole) of the electron number density overplotted with
magnetic field lines for βw = 102, 104, and 106 compared to the
hydrodynamic case. Magnetic fields do not significantly alter the
dynamics at this scale because even for βw = 100 the magnetic
pressure in the winds is insignificant compared to their ram pressure.
Thus, all panels are nearly identical. Slices of the temperatures show
similarly small differences from the right-hand panel of fig. 7 in
RQS18 and are thus not included here. Fig. 3 shows that, as desired,
the magnetic fields lines wrap around the ‘stars,’ which show up
as dense circles typically surrounded by bow shocks. Again, since
the field is not dynamically important at this scale the field lines for
different βw’s all have essentially the same geometry.

The top four panels of Fig. 4 again show 2D slices of the
electron number density overplotted with field lines but on a scale
of ∼0.08 pc, ten times smaller than Fig. 3. The bottom four panels
of the same figure show 2D slices of temperatures. While the βw =

106 run still looks similar to the hydrodynamic simulation, the βw =
104 and (particularly) βw = 100 runs show significant differences.
This is because, as we shall show, the field in the latter cases starts to
become dynamically important at this scale. The field lines become
increasingly ordered with decreasing βw, going from mostly tangled
for βw = 106 (where the field is easily dragged along with the flow)
to mostly coherent for βw = 100 (where the field can resist the
gas motion). This will have important implications for the field
geometry at small radii in Section 4.6.

In the βw = 102 simulation alone, a prominent large scale, hot,
collimated outflow can be seen at particular times (at t = 0 in Fig. 4
it is relatively weak, though can be seen reaching to ∼0.01 pc below
the black hole in the top left temperature panel). Fig. 5 presents a
time series of the gas temperature, highlighting T ≥ 6 × 107 K and
spanning t = −540 yr to t = −480 yr in 20 yr increments. In the
initial frame, no clear outflow structure is seen, only strong shocks
between winds. As time progresses, however, a thin ≥108 K outflow
appears coming out from the right side of the black hole, ∼parallel
to the angular momentum direction at this time. This outflow is
magnetically driven and originates at small radii, as we shall show
in the next section.

Fig. 6 shows the angle-averaged root-mean-squared (rms) mag-
netic field strength and plasma β ≡ P/Pm, where Pm is the magnetic
pressure, as a function of radius for different values of βw. As
expected, at large radii (�0.1 pc), the rms field and β scale simply
as

√
1/βw and βw, respectively. At small radii (�10−2 pc), however,

there is a much weaker dependence of the rms field and β on βw.
In fact, both βw = 104 and βw = 102 reach β ∼ 2 and ∼1 G field
strengths by 10−4 pc. Even in the βw = 106 case, the field strength
(β) at small radii is only a factor of ∼2 less (3–4 larger) than in
the βw = 10 simulation. This is why RQS19 found that the rotation
measure of Sgr A∗ and the net vertical flux threading the inner
boundary of the simulation were roughly independent of βw, since
both quantities are set by the field at the innermost radii. Though
this result might seem like a clear signature of a field regulated by
the magnetorotational instability (MRI), we argue in Section 4.5
that this is not the case, and that instead the amplification is due to
flux freezing in the inflow.

Despite the clear morphological differences at the ∼0.08 pc scale
in the density/temperature (Fig. 4) and the fact that the flow can
reach β of ∼a few over orders of magnitude in radius (Fig. 6), the
radially averaged gas properties in the MHD simulations remain
strikingly similar to the hydrodynamic results at all radii even for
βw = 100. This is shown in Fig. 7, which shows the angle and time
averaged density, sound speed, radial velocity, angular momentum,
and accretion rate in addition to the accretion rate through the inner
boundary as a function of time for both the βw = 100 and the
hydrodynamic run. Here and throughout we refer to the ‘accretion
rate’ as the net accretion rate including both inflow and outflow
components, i.e. 〈Ṁ〉 = 〈4πρvrr

2〉. Though there can be as large
as a factor of three difference in accretion rate (corresponding to a
difference in density at small radii) at specific times, on average,
the accretion rate through the inner boundary is unchanged by
the presence of the magnetic fields, falling between ∼0.25 and
1.5 × 10−6 M	 yr−1.3 The differences in the average sound speed
and radial velocity are negligible. We have tested that this result
also holds for different values of the inner boundary radius.

3Due to the chaotic nature of our simulations, the instantaneous value of the
accretion rate at t = 0 is not as robust as the time-averaged value.
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Figure 3. 2D slice in the plane of the sky of electron number density overplotted with projected magnetic field lines for the inner ∼0.5 pc of our βw = 100
(top left), βw = 104 (top right), βw = 106 (bottom left), and hydrodynamic (bottom right) simulations. Each ‘star’ in our simulation provides a purely toroidal
magnetic field with direction determined by the random, independently chosen spin axes of the stars. No significant difference is seen in the simulations at this
scale because the magnetic fields are relatively weak compared to the ram and thermal pressures of the gas.

The net accretion rates shown in Fig. 7 (and in all our simulations)
are negative and roughly constant in radius from the inner boundary
out to r ∼ 10−2 pc. Then it rises in magnitude between r ∼ 10−2

and r ∼ 10−1 pc with a sign that fluctuates with time. Finally for r
� 10−1 pc, it is positive and increasing with radius. A net accretion
rate that is constant in radius is expected for a flow in steady-state
in the absence of source terms. Our simulations, however, have a
time-variable source of mass describing the contributions of stellar
winds, depending on the stellar wind properties and stellar locations,
the latter of which change as the stars proceed along their orbits.
In the limit of a large number of stars, this time dependence can be
small if at each radial distance from the black hole there are always a
similar number of stellar winds (or at least a similar total mass-loss
rate). This is roughly the case for the stellar winds in our simulations
for 10−1 pc � r � 0.4 pc, where a majority of the stars are located.
Thus the source term in mass for 10−1 pc � r � 0.4 pc is roughly
constant in time, and by t = 0 a steady state is reached with positive
accretion rate that increases with increasing radius. On the other
hand, at any given time, only a handful of the closest approaching
stars lie between 6 × 10−2 pc � r � 10−1 pc so the source term
in mass is time variable in this region. Because of this, the regions
between 10−2 pc� r� 10−1 pc never reach a steady state but instead
depend on the time-dependent location of the stars and the properties
of their winds, both of which are observationally constrained. For

reference, the mass-weighted inflow time, r/〈vr(vr < 0)〉ρ , is shorter
than the simulation run time for all radii �0.1 pc and shorter than
a third of the simulation run time for all radii �0.06 pc, so that
in the absence of source terms most of the gas between 10−2 pc
� r � 10−1 pc would have reached inflow equilibrium. The time
dependence of the location of the stellar winds, however, results
in the magnitude of the accretion rate in this region increasing
with radius though temporally fluctuating in sign. For smaller radii,
however, with r � 10−2 pc, there are no significant source terms
and the dynamical time is short compared to the time-scale for the
temporal variability of the stellar winds sourcing the flow so that the
flow reaches a negative accretion rate that is constant with radius.
Finally, the angle-averaged flow properties at r � 0.4 pc (outside
most of the stellar winds) approach those of a steady Parker wind
(Parker 1965), but our simulations are not run long enough to fully
reach this steady state. Since our focus is on the inner accretion
flow, however, this is not a concern.

To help understand why MHD and hydrodynamic simulations
display only small differences in the angle-averaged radial profiles
of fluid quantities (Fig. 13), Fig. 8 shows the various time and
angle-averaged components of the outwards radial force balancing
gravity for our βw = 102 simulation. This includes the thermal
pressure force, the Lorentz force, the centrifugal force, and the
radial ram pressure force. The magnetic field accounts for only
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3278 S. M. Ressler, E. Quataert, and J. M. Stone

Figure 4. 2D slice in the plane of the sky of electron number density overplotted with projected magnetic field lines (top four panels) and temperature (bottom
four panels) for the inner ∼0.05 pc of our simulation. Compared to the 0.5 pc scale in Fig. 3, the magnetic fields in the βw = 102 and βw = 104 simulations
are more dynamically important and thus clear differences are seen in the density distribution compared to the hydrodynamic case. In addition, the larger the
field strength in the winds, the larger the spatial scale over which the field lines are coherent.

�10 per cent of the total force, with the thermal pressure and
centrifugal forces accounting for ∼40 per cent each and the radial
ram pressure force accounting for ∼10 per cent. So although β,
which takes into account only thermal pressure, is ∼2 at small radii
for this simulation (Fig. 6), the effect of the magnetic field is reduced
because of the large centrifugal and ram pressure contributions.

4.3 Dynamics of the inner accretion flow

To facilitate analysis of the accretion flow at small radii it is useful
to define time intervals over which the angular momentum vector
of the gas is relatively constant in time. Due to the stochastic nature
of the simulations, this occurs at different times for each run, often
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Figure 5. Time series of jet formation over the course of 150 yr in the βw = 102 simulation. Plotted are 2D gas temperature slices in the plane of the sky for
the inner ∼0.04 pc; note that we only show the upper right quadrant of the simulation to highlight the jet. Here δt is the time elapsed since the first snapshot.
Time proceeds clockwise starting from the upper left panel. The colour scale differs from that used in Fig. 4 and was chosen to particularly highlight the highest
temperatures. As time progresses, a collimated, high-temperature outflow emerges asymmetrically from small radii until it reaches r ∼ 0.3 pc. This ‘jet’ is
present only sporadically during the course of the βw = 102 simulation and not at all in the higher βw simulations.

Figure 6. Comparison between the rms magnetic field strength (red),√
〈B2〉, and plasma β (blue), 〈P〉/〈Pm〉, for different values of βw, which

quantifies the magnetization of the WR stellar winds. Even though the field
strength varies by 2 orders of magnitude at large radii (corresponding to a 4
orders of magnitude difference in β), the field strengths at small radii are all
within a factor of �2 (β’s within a factor of �3). This is because the field
tends to be compressed and amplified by being dragged along with the gas
motion until β reaches ∼a few.

not centred at t = 0. The purpose of this analysis, however, is to
understand the general properties of the accretion disc, outflow, and
magnetic field structure, not to make overly specific predictions for
this day. We expect that the intervals we choose are representative
of the general accretion flow dynamics and structure.

Fig. 9 shows the three components of the angle and radius-
averaged (over the interval r = 5 × 10−4 and r = 3 × 10−2 pc)
angular momentum direction vector as a function of time for our
four simulations. We use this information to choose our particular
choice of time intervals for averaging the flow structure: [100, 200],
[0, 100], [0, 100], and [ − 100, 0] yr for βw = 102, 104, 106, and the
hydrodynamic simulation, respectively. All of these intervals have
angular momentum directions that are approximately constant in
time and nearly aligned with the stellar disc containing about half
of the WR stars. The angular momentum of the accretion flow is
aligned with that of the stellar disc most of the time, though for
the βw = 102 simulation it has more frequent and larger deviations
from the stellar disc than in the hydrodynamic simulation. The most
significant of these is seen near t= 0, where the angular momentum
of the gas in the βw = 102 simulation is nearly anti-aligned with
the stellar disc for a brief ∼50 yr period. Note that the magnitude
of the angle and time-averaged angular momentum is similar for
all simulations, being ∼0.5 lkep for r � 0.1 pc (see the left-hand
panel of fig. 14 in RQS18; the angle and time-averaged l in MHD
differs at most by 20 per cent from that in hydrodynamics as shown
in Fig. 7).

Defining a new ‘z’ direction as the direction of the time averaged
angular momentum vector, Figs 10 and 11 show time series of the
mid-plane (θ = π /2) mass density on ∼0.1 pc scales, weighted by
radius (see Fig. 7) in the hydrodynamic and βw = 102 simulations,
respectively. A time series for the βw = 104 (βw = 106) simulation
is not shown but it looks qualitatively very similar to the βw =
102 (hydrodynamic) case. Fig. 12 shows the Bernoulli parameter,
a measure of how bound the gas is to the black hole, in the same
frame for all four simulations at a representative time. These figures
show that the majority of the unbound, high angular momentum
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3280 S. M. Ressler, E. Quataert, and J. M. Stone

Figure 7. Comparison between the βw = 102 MHD simulation (solid) and a
purely hydrodynamic simulation (dashed). Top: present day angle-averaged
mass density, ρ (M	 pc−3), sound speed, cs (pc kyr−1), radial velocity, |vr|
(pc kyr−1), specific angular momentum, l (pc2 kyr−1), and net mass accretion
rate, Ṁ (M	 kyr−1), as a function of distance from the black hole. Positive
net accretion rates are green, while negative net accretion rates are orange.
Bottom: Mass accretion rate as a function of time measured at ≈2 mpc
≈9700 rg. Despite the relatively large magnetization of the stellar winds,
the magnetic field has an almost negligible effect on the radial profiles.
The small difference in density (and hence, accretion rate) is caused by the
slightly different time dependence of the accretion rate leading to a different
realization of the flow at t = 0 even though the statistics in time are similar.
These conclusions are independent of βw.

gas in the mid-plane at large radii is provided by the closest one or
two stellar winds (namely, those of E23/IRS 16SW and E20/IRS
16C) as they orbit the black hole in all simulations. As this material
streams inwards, however a clear difference is seen in the behaviour
at smaller radii in the different runs. In the hydrodynamic case, each
fluid element largely conserves its angular momentum and energy,
thus remaining unbound. Gravity is only strong enough to bend the
inflowing streams of gas around the black hole until they emerge
on the other side as a spray of outflow that sends the gas out to
larger radii without much accretion. The high angular momentum
gas does not spend enough time at small radii to circularize or form
a disc; instead the supply of matter at small radii is continually
being lost and replenished. The same is true of weakly magnetized
simulations (i.e. βw = 106 and higher).

In MHD with strong magnetic fields (i.e. βw = 102 and βw =
104), however, this picture is different. Now the strong fields (β ∼ a

Figure 8. Various components of the radial force exerted on a parcel of
gas relative to the gravitational force, ρGM/r2, as a function of radius in
our βw = 102 simulation. Plotted are the angle and time-averaged radial
component of the pressure gradient (solid), −∂P/∂r, Lorentz force (dashed),
r̂ · [(∇ × B)/(4π )] × B, the vr portion of the advection derivative (dotted),
−ρvr∂vr/∂r, and centrifugal force (dot–dashed), ρv2

ϕ/r . The Lorentz force
is ≈10 per cent of the gravitational force for most radii, comparable to the
‘ram pressure force’ of the vr component of the fluid velocity. Thermal
pressure and rotation each balance about 40 per cent of gravity, providing a
majority of the radial support.

Figure 9. Angular momentum direction as a function of time for the gas
in our βw = 102, 104, 106, and hydrodynamic simulations, averaged in
radius and angle over 5 × 10−4 to 3 × 10−2 pc. The blue shaded regions
represent the time intervals that we choose to analyse the inner accretion
flow, over which the angular momentum vector is relatively stable. Dashed
lines represent the three components of the angular momentum direction
vector of the clockwise stellar disc (Paumard et al. 2006; Lu et al. 2009).

few at small radii, Fig. 6) are able to efficiently remove some angular
momentum and energy from the gas via large-scale torques. This
results in the originally unbound material becoming bound as it falls
in so that its trajectory alters to form an inward spiral that ultimately
accretes instead of spraying out the other side to large radii. The
main difference, however, as we shall argue in Section 4.7, is that the
outflow present in the mid-plane of the hydrodynamic simulation is
now redirected to the polar regions. As in the hydrodynamic case,
the gas with high angular momentum does not spend enough time
at small radii to circularize or form a true disc. This is because it
generally accretes (after being subjected to magnetic torques) or is
dumped into an outflow before completing even a few orbits. Thus
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Figure 10. Sequence of mid-plane slices of the mass density weighted by radius separated by 25 yr intervals for the hydrodynamic simulation. Here, δt is the
time elapsed since the first snapshot and time proceeds clockwise starting from the upper left. Material provided by the nearest two stellar winds (E20/IRS 16C
in the upper left quadrant and E23/IRS 16SW in the upper right quadrant) streams inward but mostly has too much angular momentum to accrete without any
redistribution of angular momentum. Instead, the streams of material ultimately hit a centrifugal boundary and then ‘spray’ outwards on the opposite side of
the black hole from which they approached. The bulk of the gas neither circularize nor form a steady disc.

in both cases, the gas supply at small radii is continually being
recycled and is set mostly by the hydrodynamic properties of the
winds, in particular the wide range of angular momentum produced
by the stellar winds.

Focusing now on the poloidal structure of the flow, Fig. 13 shows
the ϕ and time-averaged accretion rates for our four simulations
while Fig. 14 shows the same for the Bernoulli parameter. The
hydrodynamic mid-plane structure described above results in a net
outflow of high angular momentum, modestly unbound material in
the mid-plane, while low angular momentum material freely falls
in along the poles. The polar inflow also contains some higher
angular momentum, unbound (Be/|�| � 10−2 but ≥0) material that
eventually hits a centrifugal barrier and turns aside and adds to
the mid-plane outflow. For βw = 106, where the field is relatively
weak, the same structure is seen. However, for βw = 104 and
102, the hydrodynamic accretion structure is completely reversed.
For these more magnetized flows, not only is there net inflow of
bound, Be/|�| < 0, material in the mid-plane, but also the energy
released from the gas as it loses angular momentum due to magnetic
torques is deposited into an unbound, Be/|�| ∼ 10 polar outflow.
As evidenced by the fact that the net accretion rates are comparable
in both cases, this outflow is similar to the one present in the
hydrodynamic simulation but redirected from the mid-plane to the
poles.

An additional consequence of the different poloidal dynamics is
that the βw = 104 and 102 simulations display a stronger density
contrast between the mid-plane and polar regions compared to the
βw = 106 and hydrodynamic simulations. This is seen in Fig. 15,
which plots the time and ϕ-averaged density folded over the mid-
plane at r = 5 mpc for the different simulations. Though the ‘disc’
of gas is still quite thick, the equatorial to polar density contrast

in the most magnetized case is now a factor of ∼5 versus only ∼2
in the hydrodynamic and more weakly magnetized cases. This is,
however, still a much lower density contrast than typical MHD and
GRMHD simulations of MRI driven accretion in tori, which show
outflows that are significantly more magnetically dominated, and in
which the density at the poles is orders of magnitude less than the
mid-plane.

4.4 Stresses

In order to quantify the relative contribution of the magnetic
field to angular momentum transport, we calculate the Shakura &
Sunyaev (1973) α-viscosity from our simulations. We do this in the
same frames defined by the angular momentum direction during
the time intervals shown in Fig. 9 as described in the preceding
subsection.

We follow Jiang, Stone & Davis (2019) by defining the time and
angle averaged Reynold’s stress

Sh ≡ 〈ρvrvϕ sin(θ )〉 − 〈ρvr〉〈vϕ sin(θ )〉 (2)

and Maxwell stress

Sm ≡ 〈BrBϕ sin(θ )〉. (3)

Then the Shakura & Sunyaev (1973) α viscosities are simply αh =
Sh/P and αm = Sm/P, where we have chosen to use the thermal
pressure instead of the total (thermal plus magnetic) pressure in the
denominator for fair comparison between hydrodynamic and MHD
simulations.

The resulting α’s for each simulation are plotted in Fig. 16. In the
hydrodynamic simulation, the total stress is by definition equal to the
Reynolds stress. This non-zero stress even without magnetic fields

MNRAS 492, 3272–3293 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/492/3/3272/5687347 by U
niversity of C

alifornia School of Law
 (Boalt H

all) user on 02 August 2020



3282 S. M. Ressler, E. Quataert, and J. M. Stone

Figure 11. Sequence of mid-plane slices of the mass density weighted by radius separated by 25 yr intervals for the βw = 102 simulation. Time proceeds
clockwise starting from the upper left panel. Note that δt = 0 is at a different absolute time relative to Fig. 10. Instead of simply streaming in and ‘spraying’
outwards as seen in the hydrodynamic case (Fig. 10), strong magnetic fields are able to redirect the outflowing, high angular momentum gas towards the polar
regions so that the mid-plane slice pictured here is mostly comprised of spiralling inflow. As in the hydrodynamic simulation, gas does not truly circularize
into a disc but either accretes or outflows after only �a few orbits around the black hole. While magnetic fields do provide a non-negligible torque that can
remove angular momentum from the gas, this torque has limited time to operate and does not significantly modify the accretion rate, which is very similar in
the hydrodynamic and MHD simulations (see Fig. 7). The two stellar winds providing most of the material in this plot are E20/IRS 16C in bottom left quadrant
and E23/IRS 16SW in the upper left quadrant.

or other sources of viscosity can be understood by considering the
inflow/outflow structure seen in Fig. 13. Accretion occurs via low
angular momentum (i.e. low vϕ) material in the polar regions where
the ϕ-averaged vr is large (i.e. close to free-fall) and negative while
the mid-plane consists of high angular momentum (i.e. large vϕ) ma-
terial with smaller in magnitude and positive ϕ-averaged vr. Thus,
〈ρvrvϕsin (θ )〉 is significantly different than 〈ρvr〉〈vϕ sin(θ )〉 ∝ Ṁl,
leading to a large αh. Thus, αh is not predominantly a turbulent
viscosity but a measure of the fact that there is a superposition of two
types of flows: low angular momentum accretion and high angular
momentum outflow. For βw = 106, the Maxwell stress provided by
the magnetic field is comparable to Reynolds stress and both work
together to transport angular momentum inwards. This picture is
altered for βw = 104 and βw = 102, where the total stress is a
competition between a large Maxwell stress and a non-negligible,
negative Reynolds stress (where a negative stress implies transport
of angular momentum inwards). For these more magnetized flows,
the magnetic field is strong enough to resist being wound up in
the ϕ direction, providing significant torque to rotating gas as it
falls in.

In all cases, the total stress, αtot = αh + αm, is similar for r �
10−2 pc, varying between ∼0.04 and 0.2. This simply reflects the
overall dynamical similarity of the flows independent of βw. In a
steady state accretion flow, the total stress can be written as (from
equations 2 and 3)

αtot = FJ − 〈Ṁ〉〈l〉
4πr3〈P 〉 , (4)

where FJ = 〈ρvrvϕsin (θ)〉 − 〈4πr3BrBϕsin (θ)〉 = is the constant
flux of angular momentum and l is the specific angular momentum.
The constant FJ is set by the accretion rate and angular momentum
at the inner boundary and is generally small. Thus, since Ṁ and
l are relatively unchanged in an angle averaged sense going from
hydrodynamics to MHD, the total stress is unchanged.

4.5 MRI

We have shown (Fig. 6) that the magnitude of the magnetic field at
small radii is only weakly dependent on βw, the parameter governing
the strength of the magnetic field in the stellar winds. A natural
mechanism to explain this is the magnetorotational instability,
which can amplify an arbitrarily small magnetic field to reach
β � 10 in differentially rotating flows, such as we have here.
However, we have also shown that the gas in our simulations never
circularizes and therefore does not spend many orbits at small radii.
Consequently, there is not sufficient time in a Lagrangian sense for
the MRI to grow.

We can further evaluate the role of the MRI by using an estimate
of the fastest growing wavelength for perturbations given by

λMRI,θ ≈ 2π |Bθ |√
4πρ�

, (5)

where � ≡ vϕ /(rsin (θ )) is the rotational frequency. At least two
criteria need to be met in order for the MRI to operate in numerical
simulations: (1) λMRI, θ needs to be resolved, that is, the cell length
�x needs to be � λMRI, θ , and (2) λMRI, θ needs to be smaller than
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Figure 12. Mid-plane contours of the Bernoulli parameter, Be≡ |v|2/2 + γ /(γ − 1)P/ρ − GM/r , divided by the gravitational potential, |�| = GM/r, in the
four different simulations at representative times. Orange denotes bound material while purple denotes unbound material. Absent magnetic fields, the relatively
high angular momentum gas provided by the nearby stellar winds is mostly unbound with too much angular momentum to accrete (see also Fig. 10). Strong
magnetic fields (as present in the βw = 102 and 104 simulations), however, can torque the gas enough that it loses some angular momentum and becomes
moderately bound to the black hole. The energy released by this process drives polar outflow.

Figure 13. Time and ϕ-averaged accretion rate on mpc scales for each simulation, where the z-direction is defined as the net angular momentum of the gas
(Fig. 9). Red represents inflow, blue represents outflow, and the accretion rate has been folded over the mid-plane and normalized such that the absolute value
at 5 mpc is unity. For sufficiently large magnetic fields, the inflow/outflow structure seen in the hydrodynamic case is reversed, because the field is strong
enough to redirect the outflow and confine it to the polar regions.
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Figure 14. Time and ϕ-averaged Bernoulli parameter, Be, normalized to the gravitational potential, |�| = GM/r on mpc scales for each simulation, where the
z-direction is defined as the net angular momentum of the gas (Fig. 9). Orange represents bound, purple represents unbound, and the Bernoulli parameter has
been folded over the equator. Without magnetic fields, the material is slightly unbound throughout the domain except for some slightly bound material near
the polar axis. Magnetic fields provide torque, releasing energy from the high angular momentum gas in the mid-plane and depositing it in the polar outflow
(Fig. 13).

Figure 15. Time and ϕ averaged mass density at r = 5 mpc, normalized
at θ = π /2, and folded over the mid-plane. Strong magnetic fields lead
to a larger contrast in density between the mid-plane and polar regions as
compared to the hydrodynamic and more weakly magnetized flows.

the scale height of the disc, otherwise the perturbations have no
room to grow.

Fig. 17 shows λMRI, θ in the mid-plane of the disc compared to the
scale height of the disc, defined as H ≡ r〈ρ|θ − π /2|〉/〈ρ〉, and the
resolution of our grid. We find that λMRI, θ is sufficiently resolved at
all radii but that it is larger than the scale height for all of our MHD
simulations. This implies that even if the gas in our simulations were
to circularize, which we reiterate does not in fact occur, the MRI
would have no room to operate. Therefore, we conclude that the
MRI is not an important source of magnetic field amplification or

Figure 16. Comparison between the time averaged Maxwell (blue solid),
Reynolds (dashed yellow), and total (dotted black) α viscosities as defined
in Section 4.4 for each of our simulations. In the hydrodynamic case, non-
axisymmetric structure and the presence of low angular momentum gas
leads to a relatively large ‘stress’, and hence, accretion rate. For MHD
simulations, while the total stress remains basically unchanged from the
hydrodynamic case (see Section 4.4), the Maxwell stress can become larger
than the total stress with αm ≈ 0.2, with the Reynolds stress becoming
negative to compensate.

angular momentum transport in our simulations. This finding, along
with the fact that β ∼ a few at small radii in our lower βw runs,
is also observed in MAD simulations (Igumenshchev et al. 2003;
White, Stone & Quataert 2019). Instead of the MRI, we explain the
saturation of the magnetic field at small radii displayed in Fig. 6
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Figure 17. Wavelength of the most unstable mode for the MRI computed in
the mid-plane for our three MHD simulations as compared to the scale height
of the disc, H, and the resolution of our grid, �x. λMRI, θ is well resolved
but is larger than the scale height of the disc. The MRI is suppressed by the
strong β ∼ few magnetic field (Fig. 6) produced by compression as the gas
flows in.

Figure 18. Magnetic flux threading the inner boundary as a function of time
for our three MHD simulations, φin, in units such that the MAD value is ∼50
in GR (see equation 6). Orders of magnitude difference βw corresponds to
only a factor of ∼few difference in φin because the field strength at small
radii is only weakly sensitive to βw (Fig. 6). In all cases φin is � 10 per cent
of the GR MAD limit, but the βw = 102 simulation is near or has reached the
expected Newtonian MAD limit of �10 appropriate for these simulations.

with simple compression/flux freezing. An initially weak field at
large radii will be compressed as it is pulled inwards by the bulk
motion of the gas. It will continue to do so until β ∼ a few, when the
field becomes dynamically important and starts to resist the fluid
motion. At this point, the field maintains β ∼ a few as it continues
to accrete. For small βw, this happens at large radii, while as βw

increases the field reaches β ∼ a few at progressively smaller radii.
If we were able to reach even smaller radii with our simulations, we
predict that even the βw = 106 run will ultimately reach β of ∼a
few and the field would become dynamically important (see also
Section 4.8).

4.6 Magnetic field structure

We now turn our attention to the structure of the magnetic field
at small radii. RQS19 predicted that the amount of magnetic
flux ultimately threading the inner radii of the domain, φin, is
roughly insensitive to βw and roughly constant in time, falling
between ≈1 and 6 in units such that the MAD limit in GR is
≈50 (Tchekhovskoy et al. 2011). To demonstrate this result more
clearly, Fig. 18 plots φin, defined as

φin ≡ 1/2
∫ |Br|r2d�

r

√
|Ṁ|vkep

∣∣∣∣∣∣
r=rin

, (6)

for our three MHD simulations. Across four orders of magnitude in
βw, φin varies by only a few, and for each run it is roughly constant
in time. Averaged over the interval (−100 yr, 100 yr), the values
are 4.4, 3.5, and 1.1 for βw of 102, 104, and 106, respectively. These
differences in φin are even smaller when extrapolated to smaller
radii, which we do in Section 4.8. Briefly, we expect that for all
reasonable βw, φin at the horizon will be around the βw = 102 value
shown in Fig. 18, independent of βw. The result that φin becomes
quasi-steady despite the fact that matter is continually being
accreted (bottom panel of Fig. 7) is noteworthy. We hypothesize that
this is a consequence of the magnetic field being accreted changing
direction with time so that the incoming field reconnects with the
field in the boundary in a way that regulates the value of φin. If
instead the incoming field had the same orientation at all times, φin

would show a continual rise until the field threading the boundary
became strong enough to arrest accretion. Alternative possibilities
include that the outflow preferentially removes magnetic fields, or
that a balance of advection and diffusion regulates the value of
φin (as seen in simulations of magnetically ‘elevated’ discs, Zhu &
Stone 2018; Mishra et al. 2019).

It is important to note, however, that the amount of net magnetic
flux threading the event horizon required for a simulation to reach
the MAD state in GR (φin ≈ 50) is not necessarily the same for
the Newtonian simulations we have here. GR effects cause gravity
near the event horizon to be effectively stronger, requiring more
magnetic flux (i.e. more magnetic pressure) to arrest the accretion
flow. In Newtonian simulations the threshold value for φin is likely
lower. To effectively arrest the flow, the magnetic field must be
strong enough to exert an outward radial force that is at least
as large the radial ram pressure, ρv2

r , and perhaps as large as
the gravitational force. Conservatively, then, if we assume that a
MAD state is reached when the magnetic pressure at the inner
boundary roughly balances gravity, then by equating the gradient
of the magnetic pressure with ρGM/r2 one finds a rough threshold
value of φin ∼ 2π

√
vkep/vr

∣∣
r=rin

, of the order of 6–10 if vr is
a little less than free fall at r = rin as it is here. Note that in
deriving this threshold value on φin we have assumed that B2

scales roughly as r−2 (Fig. 6) and neglected the contribution of
magnetic tension. Relaxing these assumptions, the dashed line in
Fig. 8 plots the outward Lorentz force (including both magnetic
pressure and magnetic tension forces, ∝ [{∇ × B} × B] · r̂) relative
to the gravitational force. We find that the Lorentz force provided
by the magnetic field is a factor of 10 smaller than the gravitational
force at the inner boundary even though φin is near the previous
simple estimate of the MAD threshold. On the other hand, Fig. 8
also shows that the Lorentz force is as large as or larger than the
vr ram pressure. So while our simulations do not appear to be fully
magnetically arrested based on the fact that the accretion rate is
comparable in both hydrodynamic and MHD simulations (Fig. 7),
the amount of magnetic flux at the inner boundary must be only
modestly less than the MAD limit.

One possible concern is that just outside of the inner boundary
our simulations are unresolved, where r/�x � 2 and �x is the size
of an edge of a cubic cell. This could potentially lead to numerical
diffusion of magnetic fields and prevent a larger amount of flux from
accumulating. Two things suggest that this locally limited resolution
is not effecting our calculation of φin. First, φ(r), i.e. equation (6)
evaluated at a radius r instead of rin, is roughly independent of r in
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Figure 19. Magnitude of the time and angle-averaged magnetic field vector
divided by the rms magnitude of the field for βw = 102 (solid blue), βw =
104 (dashed orange), and βw = 106 (dotted green). This measures the degree
to which the magnetic field is ordered, and increases with decreasing βw

because stronger fields are able to resist fluid motion and more effectively
retain a coherent structure.

the βw = 102 simulation, equal to φin. This includes larger radii that
are much better resolved where the typical grid spacing is r/�x ∼
128. Secondly (and more convincingly), we ran an additional βw =
102 simulation with an inner boundary radius that was a factor of
8 times the size of the smallest cell edge instead of our fiducial factor
of 2, meaning that the region just outside the boundary was 4 times as
well resolved. This additional simulation displayed approximately
the same value of φin as a simulation with the same rin but only 2
cells per rin. Ultimately, much better resolved simulations will be
required to definitively assess the impact of numerical diffusion on
the values of φin determined here.

We quantify the relative strength of the vertical magnetic field by
computing the ratio between the magnitude of the average magnetic
field vector, |B|, to the root-mean-squared field strength,

√
〈B2〉.

For a completely vertical field this quantity would be 1, while
for a completely toroidal or random field it would be 0. Fig. 19
plots 〈|B|〉/

√
〈B2〉 averaged over angle and the inner 5 × 10−4 to

3 × 10−2 pc in radius for βw = 102, 104, and 106, where we find that
the relative strength of the ordered field increases with decreasing
βw. This same trend is seen in the poloidal field lines (Fig. 20 where
they are plotted on top of mass density), where the direction of the
field goes from mostly random at βw = 106, to nearly vertical at
βw = 102. The weaker the magnetic field, the more it is able to be
twisted by the motion of the gas and lose its original structure.

The quantities plotted in Figs 19 and 20 do not effectively probe
the ϕ component of the field, which in principle could be significant.
To quantify this, we compare the relative strength of the mean Bϕ to
the mean Br and Bθ field components. We define an ‘antisymmetric’
average of Br as

〈B̃r〉 =
t2∫

t1

2π∫
0

π/2∫
0

Brdθdϕdt −
t2∫

t1

2π∫
0

π∫
π/2

Brdθdϕdt, (7)

where t1 and t2 are the endpoints of the time interval for averaging.
The minus sign in equation (7) prevents the radial field from
averaging to zero over all angles. For βw = 106, the toroidal field
dominates with 〈Bϕ〉2/

(〈B̃r 〉2 + 〈Bθ 〉2 + 〈Bϕ〉2
) ≈ 0.8 − 1 for r�

2 × 10−2 pc because the field is weak enough to be completely
stretched out by the orbital motion of gas. For βw = 104, on the

Figure 20. Time and ϕ-averaged mass density weighted by radius in a
coordinate system such that the z-direction is aligned with the angular
momentum of the gas (Fig. 9), normalized, and overplotted with magnetic
field lines for βw = 102 (top), 104 (middle), and 106 (bottom). The stronger
the field, the more it is able to resist being dragged along by the random
motions of the flow and retain a coherent structure.

other hand, the field is able to resist the orbital motion (seen also
in the torque that it exerts; Fig. 16) and retain a predominantly
poloidal structure, with 〈Bϕ〉2/

(〈B̃r〉2 + 〈Bθ 〉2 + 〈Bϕ〉2
)
� 0.2 for

r � 3 × 10−3 pc. This is even more true for βw = 102, which has
〈Bϕ〉2/

(〈B̃r〉2 + 〈Bθ 〉2 + 〈Bϕ〉2
)
� 0.1 for r � 4 × 10−3 pc.

4.7 Physical interpretation of the role of magnetic fields

Thus far we have presented seemingly paradoxical results. On one
hand, for sufficiently magnetized stellar winds (e.g. βw = 102,
104), the magnetic field at small radii reaches near equi-partition
with the plasma, achieving β ∼ a few, reversing the polar inflow
seen in hydrodynamic simulations, and driving accretion in the
mid-plane. On the other hand, the net accretion rate through the
inner boundary and the radially averaged fluid quantities are largely
unaffected by the presence of magnetic fields. How can this be? In
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the conventional picture of MRI driven accretion from a rotationally
supported torus, it would require an improbable cooincidence,
where the mid-plane accretion driven by the MRI exactly equals the
original hydrodynamic polar accretion despite the fact that they are
governed by different physical considerations. As we have shown,
however, our simulations do not fit this conventional picture. The
gas with significant angular momentum clearly does not circularize
into a configuration where the velocity is primarily in the azimuthal
direction (e.g. Figs 10 and 11), but instead retains significant radial
velocity of order free fall throughout the domain. Simply put, gas
accreting from large radii is quick to either flow through the inner
boundary or flow right back out. Magnetic fields are not strong
enough to modify these flows by more than order unity even at β

∼ 1. Moreover, even in the hydrodynamic simulation, inflow is not
occurring only in the poles as Fig. 13 would imply but at all polar
angles. It is only in an azimuthally averaged sense that vr is positive
and small in the mid-plane because there is also significant outflow
present (at different ϕ). The primary role of magnetic fields, then,
is not to drive accretion but to redirect the outflow from the mid-
plane to the pole. This means that (1) the same physical processes
govern accretion in the hydrodynamic and MHD simulations and
(2) the net accretion rate is essentially determined by hydrodynamic
considerations, namely, the distribution of angular momentum at
large radii, a quantity set by the winds of the WR stars.

The lack of circularization in our simulations, the crucial factor
in determining this accretion structure, is at least in part due to
radiative cooling being inefficient at removing dissipated energy
in the gas streamers seen in Figs 10 and 11. As the gas comes in
along nearly parabolic orbits it heats up and (because it can’t cool)
expands outward, making it more difficult for it to circularize. This is
analogous to the difficulty that simulations of tidal disruption events
have in forming a circular accretion disc (for recent discussion, see
e.g. Stone et al. 2019; Lu & Bonnerot 2019).

4.8 Dependence on the inner boundary radius

The simulations we have performed, while modelling a radial range
of just over 3 orders of magnitude, are not able to penetrate all the
way to the event horizon of Sgr A∗ but have inner boundary radii
still a few hundred times farther out. Thus, it is important for us to
understand how the artificially large inner boundary of our simula-
tion (which acts as the black hole) affects the results. By varying
the inner boundary, RQS18 showed that the predicted accretion rate
through the inner boundary in our hydrodynamic simulations is
Ṁ ≈ 2.4 × 10−8 (rin/rG)1/2 M	 yr−1, where the dependence on rin

is set by the distribution of accretion rate with angular momentum
at large radii; for a smaller inner boundary radius, less material has
angular momentum low enough to ultimately accrete. This predicted
accretion rate is consistent with both observational constraints and
emission models (see RQS18).

In MHD, we have shown that even for strong magnetic fields
the radially averaged fluid variables are mostly unchanged going
from hydrodynamics to MHD (Fig. 7), including the accretion rate.
Thus the above relation between Ṁ and rin still holds. As we have
argued in the preceding section, this counter-intuitive result is a
consequence of the fact that the supply of infalling gas at small radii
is still mostly set by the distribution of accretion rate with angular
momentum at large radii. The gas provided by nearby stellar winds
has a typical distribution of dṀ/dl ≈ const. which results in Ṁin ∝√

r (see appendix A in RQS18). Note that since the winds emit at
all angles, this is the distribution of infalling gas for both the poles
and the mid-plane. Fig. 21 confirms this expectation, showing that

Figure 21. Top: Comparison between the time and ϕ-averaged accretion
rate in the mid-plane for the βw = 102 simulation (solid blue) versus the pole
for the hydrodynamic simulation (dashed orange). Both of these regions are
dominated by inflow and show Ṁ ∝ √

r as expected for the dṀ/dl ≈ const.
distribution provided by the stellar winds. Bottom: Comparison between the
time and ϕ-averaged accretion rate in the pole for the βw = 102 simulation
(solid blue) versus the mid-plane for the hydrodynamic simulation (dashed
orange). Both of these regions have a net outflow and show Ṁ ∝ r , implying
a roughly constant velocity outflow since ρ ∝ r−1 (Fig. 7).

Ṁ ∝ √
r for the inflow in both hydrodynamics (in the polar region)

and βw = 102 MHD (in the mid-plane).
Fig. 6 shows that β tends to decrease with decreasing radius

until it reaches ∼a few, at which point it becomes independent of
radius. For βw = 102 β is ≈1–2 and roughly constant throughout
the domain, for βw = 104 it decreases from β ≈ 200 at large radii to
β ≈ 2 at r ≈ 6 × 10−4 pc and remains constant for r� 6 × 10−4 pc,
while for βw = 106 it decreases from β ≈ 2 × 104 to β ≈ 4 near the
inner boundary. It is natural to suppose that if the inner boundary
radius of the simulation was reduced then the βw = 106 run would
ultimately also reach β ≈ 2. Regrettably this is not something we
can test with our current computational resources; however, we can
increase the size of the inner boundary and infer how β depends
on rin in the same way that we used to extrapolate Ṁ in RQS18.
Doing so we estimate that all models with βw ≤ 107 will reach β

of ∼a few by 2 rg (the event horizon radius of a non-rotating black
hole). Thus βw ∼ 107 is a critical value that determines whether
or not the horizon scale accretion flow will more closely resemble
the hydrodynamic simulations (βw � 107) or the more magnetized
wind simulations (βw � 107).
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Figure 22. Magnetic flux threading the inner boundary of our simulation,
φin (equation 6), averaged over the time interval (−100 yr, 100 yr) and
plotted as a function of inner boundary radius for βw = 102 (blue solid) and
βw = 106 (orange dashed). φin is independent of rin for βw = 102 where β

has reached ∼ few (Fig. 6), while it increases with decreasing rin for βw =
106 because β is decreasing with decreasing rin. For βw = 106, we find φin

∝̃ r0.6 and thus expect it to reach ∼5 (the βw = 102 value) for an inner
boundary at the event horizon.

Similar behaviour is seen with the magnetic flux threading the
inner boundary. Fig. 22 shows the time-averaged φin for βw = 102

and βw = 106 and four values of the inner boundary radius. As
was the case for β, φin is independent of rin for βw = 102. This is
again because the βw = 102 simulation has already reached β ∼
few at r � rin. Since Ṁ ∝ r

1/2
in vkep(rin) ∝ r−1/2

in , equation (6) gives
φin ≈ const. For βw = 106 on the other hand, φin increases with
decreasing rin. Empirically, we find in Fig. 22 that for βw = 106,
φin ∝ r0.6

in , predicting that it will reach ≈ 5 by rin = 3 × 10−6 pc ≈
20 rg. At that point, we expect φin to stop increasing in the same
way that φin is independent of rin for βw = 102.

5 COMPARISON TO PREVIOUS WORK

In analysing our simulations, we have found it instructive to
compare and contrast our results with previous simulations in the
literature that considered the problem of accretion on to Sgr A∗ and
related systems via large-scale feeding. In this section, we do so for
two key works.

5.1 Proga & Begelman (2003)

Proga & Begelman (2003a, b; hereafter PB03A and PB03B)
presented the results of 2D inviscid hydrodynamic (PB03A) and
MHD (PB03B) simulations of accretion on to supermassive black
holes as fed by gas with a θ -dependent distribution of angular
momentum at large radii. This approach differs from the standard
method of initializing simulations with equilibrium tori without any
feeding at large radii and is perhaps a better approximation of the
feeding of gas via stellar winds in the Galactic Centre. In fact, in
many ways the results of PB03A and PB03B are strikingly similar
to the results of RQS18 and those presented here. We both find
that accretion in hydrodynamic simulations occurs via low angular
momentum gas falling in mostly along the polar regions while the
higher angular momentum mid-plane is (on average) outflowing. We
both also find that this structure is reversed in MHD for sufficiently
large magnetic fields, with the low angular momentum polar inflow

getting quenched by magnetically driven polar outflow while gas in
the mid-plane accretes. PB03B, however, found that the accretion
rate in the MHD case was significantly reduced compared to the
hydrodynamic case because the induced mid-plane accretion was
not enough to compensate for the loss of polar inflow. In this
work, on the other hand, the mid-plane accretion in MHD seems to
roughly equal the original hydrodynamic polar inflow so that the net
accretion rate is relatively the same in MHD and hydrodynamics.

The key difference lies in the structure of the high angular
momentum gas in the mid-plane. PB03A found that this gas was able
to circularize and build up into a nearly constant angular momentum
torus that blocked the inward flow of gas for polar angles close
to the equator. We find that the high angular momentum gas in
our hydrodynamic simulation never circularizes but mostly flows
right back out after falling in to small radii. This is more easily
accomplished in 3D where flow streams can avoid intersecting; in
2D axisymmetry (used in PB03A and PB03B), collisions between
the infalling and outflowing high angular momentum gas are
unavoidable and can dissipate radial kinetic energy and efficiently
circularize the material. Because of this circularization in PB03A,
by adding even a weak magnetic field, the MRI is able to grow as the
gas in the torus orbits and becomes the dominant driver of accretion.
Thus, the accretion rate in PB03B is mostly set by completely
different physical considerations (the properties of the MRI) than
in PB03A (the availability of low/zero angular momentum gas).
In our simulations, however, even in MHD the dominant source
of accretion is still the supply of low angular momentum gas with
an order unity correction for global torques provided by strong
magnetic fields that have been compressed to β ∼ few at small
radii. This means that the local supply of mass available to accrete
is set mostly by hydrodynamic considerations (i.e. the distribution
of angular momentum versus accretion rate provided by the nearest
stellar winds).

One of the main conclusions of PB03B was that the MRI driven
accretion seen in their simulations was roughly independent of
the angular momentum distribution of material sourced at large
radii, ultimately resembling simulations that are initialized with an
equilibrium torus seeded by a weak magnetic field. This served
as partial motivation and justification for future work to mostly
ignore large radii and instead focus on horizon scale (�100–1000rg)
simulations starting from equilibrium tori. Our results, however,
suggest that when a more complicated treatment of accretion
sourced by stellar winds in full 3D is considered, the properties
of the accretion flow at small radii are very strongly influenced.
We suspect that the major source of this difference is the non-
axisymmetric nature of how the gas is fed by the winds, which
inhibits circularization (see Janiuk, Proga & Kurosawa 2008).

5.2 Pang et al. (2011)

Pang et al. (2011, hereafter P11) presented 3D MHD simulations
in which gas is fed through the outer boundary with uniform
magnetic field, spherically symmetric density and pressure, and
purely rotational velocity such that the specific angular momentum l,
varies as sin (θ ). This set-up is quite similar to PB03B except for the
field geometry (uniform versus radial in PB03B), the field strength,
and the addition of a third dimension. Unlike PB03B, however, P11
found that global magnetic torques and not the MRI were the gov-
erning physical mechanisms driving accretion in their simulations.
This difference relative to PB03B is probably a consequence of the
initial magnetic field in P11 being much stronger, with the initial
β being ∼102 in P11 compared to β ∼ 105–107 in PB03B. This
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causes the magnetic field to become dynamically important before
the gas can circularize (if it ever would have) and also suppresses
the MRI. Dissipation of the field also leads to an unstable entropy
profile, driving convection. A steady state is reached in which the
gas is in near hydrostatic equilibrium, slowly falling inwards with
magnetic pressure resisting the upward buoyancy force. Several
aspects of the P11 simulations are similar to what we have found
in ours. Both show a lack of circularization, both have the MRI
suppressed by strong magnetic fields, and both find a density profile
of ∼r−1 with a corresponding Ṁ ∝ √

rin relationship. At the same
time, the accretion flow structures are very different in the two
sets of calculations. Unlike P11, the gas in our simulations is not
hydrostatic, because the ram pressure, ρv2 is comparable to or larger
than the magnetic and thermal pressures throughout the domain. We
also find significant and coherent outflow, something absent in P11.

The root cause of these differences is related to the more
complicated, asymmetric way that the winds of the WR stars
supply gas (and magnetic field) to the black hole. While both sets
of simulations can contain relatively large and coherent magnetic
fields at large radii, the steady state of P11 is one in which the gas is
being sourced in an approximately spherically symmetric way with
rotation playing only a minor role. This is because after the initial
transient in which the sourced gas first free falls and then transitions
to a PB03A-like configuration, the build up of gas at small radii pro-
vides radial pressure support for the gas at large radii, significantly
increasing the time it takes to accrete. At this point the magnetic
torques have enough time to remove a large amount of the angular
momentum at large radii, ultimately resulting in a quasi-spherical
steady-state. In contrast, because the feeding in our simulations
occurs in more of a stream-like manner (Figs 10 and 11), we have
no build-up of gas to provide radial pressure support. Instead, radial
velocities remain large and thus the effect of even significant (β
∼ few) magnetic torques are limited by the short inflow/outflow
times. This means that rotation of gas is important throughout our
simulations, with the distribution of angular momentum being the
primary determinant of the accretion rate.

6 IMPLICATIONS FOR HORIZON-SCALE
MODELLING

The main properties of nearly all GRMHD simulations used to
model the Galactic Centre are governed by the evolution of the
MRI. The supply of gas is determined by an initial rotating torus
while low angular momentum material is absent. Our results suggest
that for the Galactic Centre it may be critical to consider a more
detailed model for how the gas is fed into the domain, particularly
with respect to the distribution of angular momentum coming in
from larger radii.

One large remaining uncertainty is how strong the outflows are
from near the horizon and whether they significantly modify the
dynamics at ∼1000 rg found here. Fig. 5 shows that, at times, we do
see strong outflows that can modify the gas out to ∼0.3 pc scales.
Since we find that Ṁ ∝ √

rin, the energy released in outflows should
scale with the inner boundary as ∝ Ṁv2

kep ∝ r−1/2
in , meaning that the

strength of this outflow would be a factor of �
√

150 ≈ 10 times
higher if our simulation reached the event horizon. Additionally,
if the black hole is rapidly rotating the magnetic field can extract
a significant amount of energy from the black hole and further
increase the energy in the outflow (Blandford & Znajek 1977).

The time variability of the polarization vector observed in the
GRAVITY flares (Gravity Collaboration 2018) at ∼10 rg has been

interpreted as the results of an orbitting ‘hotspot’ embedded in a
face-on rotating flow threaded by a magnetic field primarily in the
vertical direction. Qualitatively, the geometry of the magnetic field
at small radii in our βw = 102 simulation agrees with this picture
(Fig. 20), with the poloidal field being larger than Bϕ . On the other
hand, the angular momentum direction of the inner accretion flow
in Fig. 9 is rarely as face-on as that of the best-fitting orbit of the
three flares (Lz/L ≈ 0.94 ± 0.06).

Psaltis et al. (2015) showed that preliminary EHT measurements
of the size of the emitting region for Sgr A∗ 230 GHz are smaller
than the expected ‘shadow’ of the black hole: the distinct lack of
emission caused by the presence of a photon orbit. The authors use
this measurement to constrain the angular momentum direction of
the disc/black hole (which they assume to be aligned), and find that
an inclination angle roughly aligned with the clockwise stellar disc
is preferred. This is consistent with measurements of the position
angle of the 86 GHz and X-ray emission performed by the VLBA
on a scale of ∼10 s of rg (Bower et al. 2014) and by Chandra on
a much larger scale of ∼1 arcsec (Wang et al. 2013), respectively.
Our results are in good agreement with these observations, as the
angular momentum of our innermost accretion flow is typically
aligned with the stellar disc (Fig. 9). Forthcoming higher sensitivity
EHT measurements will be important for resolving the discrepancy
with the leading interpretation of the GRAVITY data.

7 CONCLUSIONS

We have presented the results of 3D simulations of accretion
on to the supermassive black hole in the Galactic Centre fueled
by magnetized stellar winds. Our simulations span a large radial
range, having an outer boundary of 1 pc and an inner boundary of
∼6 × 10−5 pc (∼300rg), with approximately logarithmic resolution
in between. The mass-loss rates, wind speeds, and orbits of the
stellar wind source terms that represent the ∼30 WR stars are
largely constrained by observations while the relative strength of the
magnetic field in each wind is parametrized by a single parameter
βw, defined as the ratio between the ram pressure and mid-plane
magnetic pressure of the wind. In previous work, we have shown
that our simulations naturally reproduce many of the observational
properties of Sgr A∗ such as an accretion rate that is much less than
the Bondi estimate, a density profile ∝̃ r−1, a total X-ray luminosity
consistent withChandrameasurements, and the rotation measure of
Sgr A∗. In this paper, we have focused on the dynamics of accretion
on to Sgr A∗ from magnetized stellar winds.

Our most significant and a priori surprising result is that the
accretion rate on to the black hole, as well as the radial profiles
of mass density, temperature, and velocity are set mostly by
hydrodynamic considerations (Fig. 7). This is true even when
plasma β is as low as ≈2 over a large radial range (Fig. 6). Without
magnetic fields, the accretion rate and density profiles are set by the
distribution of angular momentum with accretion rate provided by
the stellar winds, a distribution which extends down to l ≈ 0. This
broad range of angular momentum is a consequence of the fact that
the WR stellar wind speeds (∼1000 km s−1) are comparable to their
orbital speeds. As a result, the stellar winds provide enough low
angular momentum material to result in an extrapolated accretion
rate that is in good agreement with previous estimates for Sgr
A∗. With magnetic fields, global torques provide only order unity
corrections to this picture, with the accretion rate still mostly being
determined by the supply of low angular momentum gas. This is a
consequence of the fact that the high angular momentum material
in our simulations does not circularize but mostly flows in and out
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with large enough radial velocity that the inflow/outflow times are
short compared to the time-scale for magnetic stresses to redistribute
angular momentum.

Simulations with strong magnetic fields at small radii do however
differ from hydrodynamic simulations in one important way. Hy-
drodynamic simulations are dominated by inflow along the poles,
while the mid-plane is on average outflowing but composed of both
inflow and outflow components at different θ and ϕ. By contrast,
MHD simulations are dominated by inflow in the mid-plane, while
the polar regions are on average outflowing but composed of both
inflow and outflow components at different θ and ϕ. This is a
consequence of the β ∼ few magnetic fields redirecting the high
angular momentum outflow away from the mid-plane.

We find that the magnetic field increases rapidly with radius so
that β tends to eventually saturate at small radii to a value of order
unity independent of βw (Fig. 6). This growth of the field is caused
by advection/compression as gas falls inwards and not by the MRI.
There is neither sufficient time for the MRI to grow before gas is
accreted or advected to larger radii, nor is there sufficient space
for the instability to grow because flux freezing builds up a field
for which the most unstable MRI wavelength is comparable to or
larger than the disc scale height (Fig. 17). Thus the conventional
MRI-driven torus simulations that dominate the literature do not
appear to have reasonable initial conditions for studying accretion
in the Galactic Centre, at least on the scales that we can simulate
here.

Elaborating on the result first presented RQS19, we have shown
that our model predicts that the magnetic flux ultimately threading
the event horizon, φin, will be on the order of 5, independent of
βw for βw � 107 (Fig. 22). This prediction relies on extrapolation
to smaller radii, ignores the effects of GR, and assumes that the
scaling between φin and the inner boundary radius that we found
(Fig. 22) holds at smaller radii than our simulations probe. Not
accounting for GR effects, this amount of flux threading the horizon
is potentially large enough to induce a MAD state near the horizon,
with the outward Lorentz force reaching �10 per cent of the inward
gravitational force in our simulations (Fig. 8), which is � the ram
pressure due to vr. It is worth noting that our lower βw simulations do
in fact display many similar properties to GRMHD MAD accretion
flows, for instance, the MRI is suppressed by strong vertical fields,
the poloidal component of the field dominates over the toroidal
component, and the angular velocity of the gas is roughly half
the Keplerian value (Narayan et al. 2012), though we find the
latter to be true in both MHD and hydrodynamic simulations.
We also find that φin is relatively independent of time (Fig. 18).
There are, however, a number of ways in which the simulations
in this work do not appear to be fully magnetically arrested. For
example, the hydrodynamic and MHD simulations show similar
accretion rates and radial profiles (Figs 7 and 13), which explicitly
demonstrates that the magnetic field is not dynamically critical
for establishing the flow properties. In addition, our simulations
find very different angular distributions of density (Fig. 15) and
plasma β from traditional MAD simulations (and, in fact, most
GRMHD simulations). Because of the significant amount of low
angular momentum material provided by the stellar winds, the
polar regions are only a factor or 3–5 less dense and have only a
slightly lower β than the mid-plane. In contrast, a typical GRMHD
MAD simulation would show near-vacuum, highly magnetized
polar regions with orders of magnitude less mass than in the mid-
plane, where most of the mass is condensed into a relatively thin
disc compressed by the magnetic field. The evacuation of the funnel
is caused by both the strong jets present in MADs (Igumenshchev

et al. 2003; Tchekhovskoy et al. 2011) as well as the fact that
the rotating hydrodynamic configurations used as initial conditions
in GRMHD simulations generally do not allow material close to
the poles (Abramowicz, Jaroszynski & Sikora 1978; Kozlowski,
Jaroszynski & Abramowicz 1978). We do not at all, however, rule
out that by the time the gas reaches the event horizon of the black
hole that a MAD state could be reached. This may also depend
on whether or not the black hole is rotating, since a rotating hole
provides an additional source of energy for outflows that could
strongly impact the dynamics in the polar region.

For sufficiently magnetized winds (i.e. βw = 102 here), the
magnetically driven, polar outflow can, at times, reach scales as
large as ∼0.3 pc (Fig. 5). Since we expect the energy associated
with this outflow to increase with decreasing inner boundary radius,
it could potentially be a factor of >10 times stronger in a simulation
that reached the event horizon. This is even without considering
the rotation of the black hole itself, which can also be an efficient
mechanism for driving magnetized jets (Hawley & Krolik 2006).
Though there is no clear signature of a jet in the Galactic Centre,
strong outflows from Sgr A∗ have been invoked as one possible
explanation for the recent ALMA observations that show highly
blueshifted emission from unbound gas in a narrow cone (Royster
et al. 2019).

The magnetic field structure at small radii depends on the
parameter βw (Fig. 20). For smaller βw (102 and to a lesser extent,
104) the field is strong enough to resist being wound up in the ϕ

direction and remains mostly poloidal at small radii. For larger βw

(�106), the field is easily dragged along with the motion of the gas so
that it becomes predominantly toroidal by the time β reaches order
unity. The leading interpretation of the GRAVITY observations of
astrometric motion of the IR emission during Sgr A∗ flares (Gravity
Collaboration 2018) requires that the horizon scale magnetic field be
mostly perpendicular to the angular momentum of the gas. We find
qualitative agreement with this result in our simulations that have
more magnetized winds. A more quantitative comparison to the
observations using full radiative transfer in GRMHD simulations
using such a field as initial conditions will require additional
work.

Cuadra et al. (2008) found that the winds of only 3 WR stars
(E20/IRS 16C, E23/IRS 16SW, and E39/IRS 16NE) dominated the
t = 0 accretion budget in their simulations that used the ‘1DISC’
orbital configuration. This is both because of the proximity and
relatively slow wind speeds (∼600 km s−1) of these winds. Since
we adopted the ‘1DISC’ configuration from Cuadra et al. (2008)
with only slight changes, it is not surprising that the same three
stellar winds seem to be the most important for determining the
properties of the innermost accretion flow in our simulations4 (e.g.
Figs 10 and 11). Future observations that place stronger constraints
on the mass-loss rates, wind speeds, and especially the magnetic
field strengths of these stars would thus go a long way towards
reducing the uncertainty in our calculation.

Several observations suggest that gas surrounding Sgr A∗ is
aligned with the clockwise stellar disc both near the horizon and
just inside the Bondi radius (Wang et al. 2013; Bower et al. 2014;
Psaltis et al. 2015; though see also Gravity Collaboration 2018).
Our simulations are consistent with this result for βw ≥ 102 (Fig. 9)

4Unlike the particle based calculation of Cuadra et al. (2008), we do not
have a rigourous way to track the gas from each individual wind in our
current implementation. We can only infer which stellar winds dominate the
accretion budget from, e.g. the poloidal and toroidal animations.
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but not for βw = 10 due to wind collimation altering the distribution
of angular momentum in the winds (not shown). If a large fraction
of the accreting gas (and associated magnetic field) were sourced
from material outside the region where the majority of the WR stars
reside, then it would also be unlikely for its angular momentum to
coincide with the stellar disc. In all of our simulations, the direction
of the angular momentum of the inner accretion flow is not strictly
constant in time over the ∼1000 yr duration of our simulation
(Fig. 9). Therefore, the angular momentum of the gas sourcing the
horizon scale accretion flow must be tilted with respect to the spin
of the black hole at least moderately often since the time-scale for
the spin of the black hole to change is much longer than 1000 yr.
Simulations of tilted accretion discs (like those of Fragile & Anninos
2005; Liska et al. 2018; Hawley & Krolik 2019; White, Quateart, &
Blaes 2019) are thus likely necessary for horizon scale modelling
of Sgr A ∗.

Our results could have a significant impact on current state of
the art models of horizon scale accretion on to Sgr A∗. GRMHD
simulations to date almost universally rely on the MRI as the
mechanism to drive accretion. It is not clear how much the results
of these simulations and their observational consequences might
change using the dynamically different flow structure found here.
For instance, if the disc is less turbulent without the MRI, how
does this effect the time-variability properties of the emission?
Would nearly empty, magnetically dominated jets still be robustly
present in GRMHD and does this depend on black hole spin and
horizon-scale flux in the same way as in current simulations (e.g.
Tchekhovskoy et al. 2011)? Such questions and more will be
important to answer in order to further our understanding of the
emission from Sgr A∗ and other low-luminosity AGNs.
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APPENDIX A: RESOLUTION STUDY

We have argued in the main text in Section 4.5 that the MRI is
not the governing mechanism for accretion in our simulations even
though the most unstable wavelength is well resolved (Fig. 17).
However, to be assured that resolution is not affecting our results,
we performed two additional simulation with βw = 10 and an inner
boundary radius of rin ≈ 1.2 × 10−4 pc. The first simulation was run
for 1.025 kyr until t = −0.075 kyr with our usual base resolution
of 1283 cells with 8 levels of mesh refinement that increase the
resolution by a factor of 2 each time the radius decreases by a factor
of 2. The second simulation increased the resolution by a factor of
four within ∼0.06 pc and ran for 25 yr after being restarted from
the lower resolution simulation at −0.1 kyr. 25 yr is approximately

Figure A1. Demonstration of convergence for βw = 10 simulations.
Dashed lines are from a simulation at the fiducial resolution while solid lines
are from a simulation with a factor of 4 higher resolution for r � 0.06 pc.
The angle averaged mass density, ρ (black), sound speed, cs (blue), radial
velocity, vr (red), and net accretion rate, Ṁ (green for positive, orange for
negative), are essentially identical after being run for 25 yr (one orbital time
at ≈0.007 pc) and thus converged at the fiducial resolution used throughout
this work.

an orbital time at 0.007 pc and thus spans many orbital times for the
small radii of interest. Both calculations were done without radiative
cooling in order to reduce the computational cost. Fig. A1 shows
that the resulting radial profiles of angle-averaged fluid quantities
in the two simulations are nearly identical. Thus we are confident
that the general properties of our simulations are well converged
and not limited by resolution.

APPENDIX B: SIMULATIONS WITH LONGER
RUN TIMES

In this Appendix, we show that our results are not sensitive to the
start time (t0) of our simulations, that is, the length of time we run
our simulations before theis day at t = 0. In principle, t0 should
be chosen to represent the typical duration of the WR phase (∼100
kyr), however, such a simulation would be extremely expensive and
perhaps unnecessarily so if the resulting dynamics of the accretion
flow are mostly sensitive to the t = 0 location of the WR stars
and not the accretion history. Previous work (e.g. Cuadra et al.
2008, RQS18, RQS19) has argued that a run time of ∼ 1.1 kyr
is sufficient to study accretion at t = 0. As this manuscript was
in press, however, Calderón et al. (2020, hereafter C20) released
new results of conservative, grid-based, hydrodynamic simulations
of accretion via stellar winds on to Sgr A∗ that suggest otherwise.
Using theRAMSES code (Teyssier 2002) with the same wind speeds,
orbits, and mass-loss rates of the WR stars used in this work, they
studied the effect of starting their simulations further back in time.
The results of their control run with t0 = −1.1 kyr (as used in
the main text of this work) were generally consistent with ours. In
their t0 = −3.5 kyr simulation, however, they found that a cold,
dense disc of gas formed after ∼2 kyr that significantly increased
the accretion rate through the inner boundary and altered the radial
profiles of density and temperature at t = 0. Presumably the longer
the simulation is run the more massive the disc becomes. Based
on this finding, they conclude that simulations using t0 = −1.1 kyr
(including Cuadra et al. 2008, RQS18, RQS19, and now this work)
are modelling a ‘quasi-steady state’ that may not be representative
of the current accretion flow around Sgr A∗.

In light of this result, we revisited the question of how sensitive
our results are to the choice of t0 by running an additional t0 =
−9 kyr simulation in hydrodynamics. By reaching a final time of
tf = 0.2 kyr, this simulation is thus run ∼9 times longer than the
simulations described in the main text and ∼2.6 times longer than
the t0 = −3.5 kyr simulations of C20. To make the computational
cost more manageable, we use only 7 levels of nested refinement,
corresponding to rin ≈ 2 × 10−4 pc. Fig. B1 shows the accretion rates
through r ≈ 5 × 10−4 pc for the t0 = −9 kyr simulation compared
to the hydrodynamic simulation with t0 = −1.1 kyr. Near t = 0
the t0 = −1.1 kyr and t0 = −9 kyr simulations display remarkably
similar accretion rates, suggesting that the t= 0 dynamics are largely
determined by this day locations and velocities of the WR stars. We
find this to be true also of the radial profiles of gas quantities. In
Fig. B1, the t0 = −9 kyr simulations show no evidence for the ‘disc
phase’ seen in C20, nor do we find any build-up of mass with time.
Thus, we find that the dynamical picture outlined in the main text
(such as the lack of circularization and lack of disc formation) is still
valid for simulations run a factor of 9 times longer than our fiducial
model. We reach similar conclusions from MHD simulations run
with t0 further back in time than −1.1 kyr. Though we cannot
run a simulation going as far back as the ∼−100 kyr time-scale
appropriate for the lifetime of a typical WR star, we would not
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Figure B1. Accretion rate versus time at r≈ 5 × 10−4 pc for hydrodynamic
simulations with t0 = −1.1 kyr (solid) and t0 = −9 kyr (dashed). The longer
run time (i.e. earlier start time) has a negligible effect on the resulting
accretion rate around t = 0. This demonstrates that t0 = −1.1 kyr is
sufficiently far back in time before tis day to start our simulations.

expect to find any significant differences from the t0 = −9 and t0 =
−1.1 kyr simulations.

Since the physics and numerical methods of our models and those
of C20 are similar (at least for our hydrodynamic calculations), it
is not clear what causes such a striking discrepancy in results. The
biggest difference in our implementation seems to be the specific
treatment of the stellar winds: C20 use the technique described in
Lemaster, Stone & Gardiner (2007) that overwrites certain cells with
the analytic solution of a spherical wind while we treat the winds as
source terms spread over a certain number of cells (see Section 2)
that ultimately drive a spherical wind. Overall, our resolution is
a factor of ∼2 higher than C20, though they use adaptive mesh
refinement to place finer grids in the stellar wind regions giving
them better local resolution where these winds are being generated.
That said, it is not obvious which (if any) of these seemingly
small numerical details might be linked to the ensuing formation
or absence of a cold disc; this will be an important issue to resolve
going forward.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 492, 3272–3293 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/492/3/3272/5687347 by U
niversity of C

alifornia School of Law
 (Boalt H

all) user on 02 August 2020


