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We consider a bandit problem with K task types from which the controller activates one task at a time. Each
task takes a random and possibly heavy-tailed completion time, and a reward is obtained only after the task is
completed. The task types are independent from each other, and have distinct and unknown distributions
for completion time and reward. For a given time horizon 7, the goal of the controller is to schedule tasks
adaptively so as to maximize the reward collected until 7 expires. In addition, we allow the controller to
interrupt a task and initiate a new one. In addition to the traditional exploration-exploitation dilemma, this
interrupt mechanism introduces a new one: should the controller complete the task and get the reward, or
interrupt the task for a possibly shorter and more rewarding alternative? We show that for all heavy-tailed
and some light-tailed completion time distributions, this interruption mechanism improves the reward linearly
over time. Applications of this model include server scheduling, optimal free sampling strategies in advertising
and adaptive content selection. From a learning perspective, the interrupt mechanism necessitates learning the
whole arm distribution from truncated observations. For this purpose, we propose a robust learning algorithm
named UCB-BwI based on median-of-means estimator for possibly heavy-tailed reward and completion time
distributions. We show that, in a K-armed bandit setting with an arbitrary set of L possible interrupt times,
UCB-BwI achieves O(K log(zr) + KL) regret. We also prove that the regret under any admissible policy is
Q(K log(r)), which implies that UCB-BwI is order optimal.
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1 INTRODUCTION

In many real life problems, a server processes tasks with random completion times that are unknown
in advance, and the controller schedules these tasks so as to maximize the cumulative reward, e.g.,
the number of task completions, in a given time interval. In many social, economic and technological
systems, the service time distribution is often heavy-tailed, which implies that the mean residual
time to complete a task grows over time [4, 30]. As a consequence, in addition to the conventional
exploration-exploitation dilemma, the controller faces with a new dilemma: after initiating a task,
should it wait until completion and gather the reward, or make a new decision that could possibly
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serve faster at the expense of rejecting the reward and wasting the time already spent? As we will
show in this work, this interruption mechanism becomes crucial in maximizing the cumulative
reward in a given time interval. We model this problem as a continuous-time multi-armed bandit
(MAB) problem in which the controller has the option to interrupt a task any time and make a new
decision. Applications of this framework include task scheduling in a multi-server system (such as
a cloud computing system or a call center), adaptive routing in networks and optimal free-trial
strategy in marketing digital information goods (see Section 3).

In this paper, we consider a continuous-time bandit setting where the controller can make a
decision at any time. Each arm (or task type) is modeled as a renewal reward process, where
each task corresponds to a renewal epoch from the selected task type. Each task takes a random
completion time, which is unknown to the controller in advance, and a reward is obtained only
after the task is completed. The objective of the controller is to maximize the cumulative reward
until it runs out of time. Unlike the existing MAB models where the controller makes a decision
only after a task is completed [3, 34], we allow the controller to interrupt an ongoing task at any
time, and initiate a new task of possibly different type at the expense of rejecting the reward of
the last task. As we show in this paper, this interrupt mechanism becomes essential when the
completion time distribution is heavy-tailed.

From a learning perspective, implications of an interrupt mechanism are two-fold:

(1) The controller has to learn the whole distribution unlike the existing MAB models in which
learning only the first-order statistics is sufficient.

(2) This is an exploration-exploitation problem with possibly right-censored observations. In
order to see this, consider an interrupted task. Since the task is not finalized, the reward and
completion time realizations are not received, and the controller only receives the feedback
that the completion time exceeded a threshold. Also, the observation for a specific interrupt
time provides information about different interrupt times, therefore there is a structure in
this problem. As we will see, exploiting this structure in algorithm design becomes crucial in
optimizing the performance.

A good algorithm should address these considerations, and it must be statistically robust: in
most applications, the arms have diverse and potentially heavy-tailed completion time and reward
distributions, and an algorithm must be able to perform well under this heterogeneity. The objective
in this paper is to propose provably efficient and robust learning solutions to this problem.

1.1 Related Work

Multi-armed bandits have been the primary model for sequential decision problems that involve
exploration-exploitation trade-off in learning, which is said to be "a conflict evident in all human
action" by Whittle in [33]. As a result of this universality, there is a broad list of applications of MAB
models ranging from routing in networks to dynamic pricing. For excellent surveys in stochastic
bandit theory, we refer to [6] and [7].

Continuous-time bandits have been considered in different contexts. In [23] and [27], the problem
is explored from a classical bandit perspective, and Gittins index policies are proposed to maximize
cumulative reward. In [3, 19, 34, 35], continuous-time bandits are investigated from a frequentist
perspective. In all of these works, the completion times are assumed to be [0, 1]-valued random
variables. Also, the controller makes a decision only when a task is completed. However, in
many applications, especially in the ones that involve "human action", the completion times and
rewards naturally have heavy-tailed distributions [4], and thus an interrupt mechanism, i.e., a true
continuous-time bandit setting is required for optimal performance. Thus, the existing approaches
fall short to solve our problem, and the proposed algorithms cannot achieve sublinear regret.
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Bandits with heavy-tailed distributions were considered in [8, 26]. In both of these works, the
authors extend the existing results for sub-Gaussian distributions to the case where the reward
distributions are heavy-tailed. The setting in these works is still the classical discrete-time MAB
setting, and the challenge is to find robust estimators for heavy-tailed reward distributions. In
our setting, the duration of a task, which is subject to a constraint, is heavy-tailed, and thus new
dynamics are introduced to the problem.

1.2 Contributions
Our main contributions in this work are the following:

e We introduce the bandits with interrupts (BwI) framework. We identify the conditions on
the arm distributions under which interrupting an ongoing task is optimal. By using tools
from renewal theory, we determine an asymptotically optimal and tractable policy given arm
statistics (see Sections 2 and 4).

e We present concentration inequalities for renewal reward processes, which are fundamental
in algorithm design and analysis in our problem among many other applications (see Section
5.1).

e We propose a UCB-type learning algorithm for the BwI problem, called the UCB-BwI Algorithm,
which is non-parametric in the sense that it requires no other assumptions on arm statistics
than the usual moment assumptions (see Section 5.3). Then, in Section 6, we prove that
UCB-BwI achieves O(K log(r) + KL) over a time interval 7 with L being the cardinality of the
set of possible interrupt times. Moreover, we show that UCB-BwI is order-optimal in K, L and
7 by showing that the regret under any admissible policy is Q(K log r) as t — oo.

1.3 Notation

Throughout this paper, we denote the minimum of two numbers as min{a, b} = aAb, and maximum
of two numbers as max{a, b} = a V b interchangeably for any a, b € R. The cardinality of a set A is
denoted as |A], and the complement of a set A is denoted as A°. For any event E, I denotes the
indicator function.

2 PROBLEM FORMULATION
We consider a set of K statistically independent task types (or arms), denoted by K = {1,2,...,K}.
To follow the bandit terminology, we will use "arms" synonymously with "task types". Each arm
corresponds to a stochastic process {(Xﬁ,k), Rg,k)), n > 1}. If arm k is activated (i.e., a task of type k
is initiated) at the time of n-th decision, it takes a random completion time Xﬁ,k) to obtain the reward
R(nk) at the end. For a given time horizon 7 > 0, the sequential decision-making continues until
the time horizon expires. Both Xflk) and R(,,k) are unknown to the controller when the decision is
made. The stochastic process { (Xglk), Rslk))} corresponding to arm k is independent and identically
distributed (iid) over n, therefore it is a renewal reward process. We assume that Xflk) > 0 and
R(nk) > 0 are independent random variables, and the following moment condition is satisfied by all
arms:
max{E[(X*)1V ], E[(RP) ]} < oo, VK € K, (1)

for some y € (0, 1]. Therefore, this model includes heavy-tailed reward and completion time
distributions.

In the BwI problem, the goal is to maximize the cumulative reward collected within a given time
interval [0, 7]. Consequently, the completion time of a task is as important as the reward it yields.
As a distinctive feature of our model, we give the controller the option to interrupt an ongoing task
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if it takes too much time. If a task is interrupted, the reward of that task is rejected, and a new task
is initiated immediately for a possibly more rewarding alternative. This introduces a new control
dimension to our model, which is not present in the existing bandit models. As it will be seen in
the next section, this control dimension is vital for optimal performance in a broad class of arm
distributions.

Formally, in the BwI problem, the controller has to make two decisions: the task type and the
interrupt time. Let 8 C R, be the set of interrupt times that will be specified later. A policy
7 = {mn},., consists of two parts: 1, = (In,BSII”)) € K x B. A decision 7, = (k, b) implies that a
task of type k is activated at the time of n-th decision, and an interrupt time of b time units from
the activation time is declared. For a control 7, = (k, b), the completion time of a task is (X, Lk) AD),

the reward is Rglk)}l and therefore a stochastic feedback Y, is obtained as follows:

;) <by
k Kk
Yu(k,b) = (H{nggb}, X )I[{ch)g,}, R, )I[{xffkb})' ()

In words, the knowledge about (Xf,k), Rg,k)) is obtained only if the task is completed before b, and

only I (x® <py is obtained otherwise. Therefore, the problem at hand is an exploration-exploitation

problem in which the learning is conducted via right-censored feedback. Now we formally define
an admissible learning policy for this setting.

Definition 2.1 (Admissible Policy). Let ¥, = o(Y1,Ya, ..., Y,_1) be the history of the received
feedback up to n-th decision, where o(Y) denotes the sigma-field of a random variable Y. We call a
policy 7 = {n,},, admissible if 7, € 7, for all n.

We call the period between n-th and (n + 1)-th decisions n-th epoch. In the traditional MAB
models, the number of epochs is a given deterministic quantity, which is equal to the time horizon.
However, in the BwI problem, the number of epochs until the time expires is random. In the
following, we define the number of epochs as a counting process.

Definition 2.2 (Counting Process). For a given admissible policy 7, let

n

S = Z Z L, =y (X A D), (3)
s=1 (k,b)eKxB

be the total time spent at the end of the n-th epoch. Given a time horizon 7z, the counting process
N, (7), which denotes the total number of completed tasks in [0, 7] is defined as follows:

N,(r) =sup{n:S] <t} 4)

Note that v,(7) = N(7) + 1 is known as the first passage time, and is a stopping time under any
admissible policy 7 [16, 18].

Definition 2.3 (Cumulative Reward under a Policy). Let & be an admissible policy. Then, the
cumulative reward under 7 is as follows:

Ny (7)

k
Rew, (1) = Z Z 11{7rn:(k,b)}R£l )I[{Xﬁlk)sh}’ )
n=1 (k,b)eKxB

where N, (7) is the counting process in (4).

In Figure 1, we illustrate a sample path from the BwI process.
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Fig. 1. lllustration of a sample path for the BwI process. The completion time Xill" of the n-th task exceeds

the interrupt time BE{"), so the task is interrupted. In the (n + 1)-th epoch, arm k is chosen, and the task is

R

completed before the interrupt time, yielding a reward of

Definition 2.4 (Regret). For a given time horizon r > 0, the optimal policy maximizes the
cumulative reward within [0, 7]:

7% = arg max E[Rewﬂ(r)] , (6)
T

where the maximization is over the set of all admissible policies. The objective in this paper is to
design online learning algorithms that have a good competitive performance with respect to 7°Pt.
The performance metric for this objective is the regret, which is defined as follows:

Reg,,(r) = B[Rewyont (r)] — E[Rewy(7)]. )

The regret of a policy 7 is the loss suffered due to suboptimal decisions in both arm and interrupt
time selection.

In the next section, we formulate some problems that can be solved within the BwI framework.

3 NOTABLE EXAMPLES

In many technological, economic and social systems, resource allocation is performed over alterna-
tive tasks with randomly varying resource consumption. As such, the controller has to track and
possibly interrupt the resource consumption of each activated task for efficient utilization of the
budget. The BwI framework that we introduce and investigate in the paper is aimed at forming
the foundation for developing effective learning solutions for optimal resource allocation in such
problems. In the following, we note some notable examples, for which our proposed BwI framework
and design can be utilized.

(1) Adaptive Routing in Communications: In the first example, we consider an adaptive routing
problem with the objective of throughput maximization. In a broad class of communication systems,
the transmission times are unknown to the controller at the time of scheduling, and learned
via ACK/NACK type feedback [29]. For these systems equipped with ARQ control, the packet
transmission times might possibly follow a heavy-tailed distribution depending on the channel
statistics [21, 32]. In the absence of any statistical knowledge about the channels, the goal of the
controller is to learn the best channel based on the feedback so as to maximize the throughput.

As an instance of the systems described above, consider a simplistic point-to-point communi-
cation scenario with K parallel and independent channels with ARQ control to transmit packets
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successfully. If channel k is scheduled to transmit n-th packet, it takes X, ,(1k) units of time to com-
plete the transmission. The statistical properties of the channels are unknown, and learned by
ACK/NACK type feedback. For a given time horizon 7, the goal of the controller is to maximize
throughput, i.e., transmit as many packets as possible in the limited time interval [0, 7]. Since the
time is limited, at each transmission, the controller determines an interrupt time of B<,,k) time units
to avoid extremely long transmission times. If the ACK signal does not arrive within B(,,k) time units
after the transmission, then the session is interrupted and a new session is initiated with a possibly
different channel. This adaptive scheduling procedure can be posed as an optimization problem as

follows:
Ny (1)

migx E[ Z I[{Xslk)sB(nk)}].
n=1

It is shown in [21, 32] that the retransmission protocol might lead to heavy-tailed completion
times Xflk) even if all the system components are light-tailed. As we will show in the next section,
there is a finite optimal interrupt time if the transmission time has a heavy-tailed distribution.
In the absence of channel statistics, the controller must learn the whole distribution of X ,(1k) via
ACK/NACK type feedback to choose the optimal channel and interrupt time. Thus, this adaptive
routing problem falls into the BwI framework.

Akin to the classical multi-armed bandit framework guiding the solution of many learning-
optimization problems, our BwI framework can form the foundation for the solution of a large class
of stochastic scheduling problems by extending the model to specific bandit scenarios. For example,
in a realistic communication system, if the transmission time is too long for a channel, then it will
possibly yield a long transmission time if it is scheduled immediately for retransmission. In order
to model such scenarios, the BwI model can be extended to a sleeping [24] or Markovian [1] bandit
setting. On the other hand, the controller might transmit a new packet without waiting for the
ACK signal of the previous transmission, which can be modeled by a delayed feedback extension of
the BwI framework [22].

(2) Task Scheduling in Data Centers: Consider a computing system with a single processor and K
different user types with distinct usage characteristics. Let the task length of a user of type k be
denoted as Xflk), and a payoff R(nk) is received at the end of the service. For example, if the goal is
to maximize throughput, there is a unit reward, i.e., RE{‘) = 1, after each service completion. For
a given time horizon 7, which is the duration of the busy period of the processor, the goal is to
maximize the total reward in [0, 7] by scheduling tasks. Empirical studies in a variety of private
enterprise, campus and cloud data centers indicate that the task sizes and arrivals exhibit highly
heavy-tailed characteristics in such systems [5, 20], therefore the sequential scheduling problem
subject to time constraints can be solved within the BwI framework.

(3) Optimal Free Trial Strategy: Advertising through free samples is ubiquitous in markets for a big
variety of goods such as games, software-as-a-service (SaaS) applications or material goods. In such
scenarios, there are multiple types of target populations with distinct utilization preferences. In
order to make use of the budget efficiently while maximizing the revenue, user characterization and
resource allocation must be performed in an optimal and data-driven manner. In a simplistic market
model, for a type-k user, the free-to-paid conversion takes X ﬁlk) time (or resource), and a reward
of RS{‘) is obtained if the user buys the product. Depending on the users’ behavioral preferences
such as free riding, X, f,k) might follow a heavy-tailed distribution. For empirical studies, we refer to
[15, 31]. This type of heavy-tailed behavior necessitates limiting the amount of free sampling for
some user types. In order to maximize the number of free-to-paid conversions within an allowed
campaign resource budget 7, the controller has to find the optimal target population along with
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an optimal length of free-trials. Thus, this problem can be formulated as an instance of the BwI
setting. We note that it is possible to address multiple customer types simultaneously by using a
combinatorial bandit [11] extension of the BwI framework, which is a direction of future research.

4 OPTIMAL POLICY WITH KNOWN STATISTICS

In this section, we investigate the characteristics of the optimal policy for the problem (6) when all

arm statistics are given as oracles. Note that (6) is a stochastic knapsack problem, and the solution

is NP-hard even if all distributions are known [14], which makes the learning and competitive

analysis intractable. In order to solve this problem, we focus on approximation algorithms for the

BwI problem. In the following, we propose a simple static policy, and show that the optimality gap

it is O(1) as ¢ — oo, which implies an effective finite time performance and asymptotic optimality.
We begin by formally defining the concept of static policies.

Definition 4.1 (Static Policy). Let k € K and b € 8. For any 7 > 0, the static policy 7¥)(b) pulls

the arm k with a fixed interrupt time b > 0 consistently until the time expires, i.e., (I, Bg”) ) =(k,b)
for all n under 7)(b).

Note that for any (k, b) € K x B, the observed stochastic process under the static policy 7 (b)
is iid over n, thus it is a renewal reward process. As a fundamental result of the renewal theory, the
time average reward per unit time under ﬂ(k)(b) converges to a positive constant as 7 — oo:

(k)
. E[Rew0)(7)] E[R H{Xi”sb}]
hm = 3] . (8)
r—00 T E[X A b

Hence, this constant, which is called the reward rate, is the growth rate of the reward over time,
and it will be the main quantity of interest throughout the paper.

Definition 4.2 (Renewal Reward Rate). For any (k,b) € K X B, the (renewal) reward rate under
the static policy 7¥)(b) is defined as follows:

(k)
E[R] ]I{Xik)sb}]

r®(b) = ©)

EX® Ab]
r®)(b) is the ensemble average reward per unit time.

Intuitively, if the arm k is chosen, and each task is interrupted at a fixed time b > 0 consistently,
then the total reward obtained between [0, 7] is O(z - r'®)(b)).
Let the optimal interrupt time be defined as follows:

b = sup{b € B:rO(b) > rP '), vb’ € B}. (10)
In the following, we investigate the nature of b; depending on the joint distribution of (Xflk), Rglk))
in the most general case of 8 = R} U {co}.

ProPOSITION 4.3 (OPTIMAL INTERRUPT TIME). Interrupting a task before its completion is optimal,
ie, by < oo if and only if the following holds:

ElX - px® > b > BIx ). (11)

for some b > 0.
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Proor. Take (k,b) € KxBandletq=P(X; < b)and1, =1 We can write ]E[ka) AD] =

E[X¥1,] + b(1 - q). Then,

(x®<py

(k)
r(k)(b)— E[Rl ] — E[ (k)

k 1
E[x")]

( : -— )

ExP1,]+b(1-q) EXP]

_EX0 - 1)1 - b0 - @) - EIX}Y]
E[X A bIEXF)/ERP)

By using the identity
E[XP —bx® > b = BIxF(1 - 1,)] - b(1 - g),
we can deduce that:
E[RM] BV - bx* > b] - BIxY]

®)(p) — —
o) EXP) BX® A bEXF)/ERP)

Therefore, b; < o if and only if E[Xik) - bIXik) > b] > E[Xik)] for some b € (0, o). O

The quantity E[Xik) - b|X§k) > b] that arises in (11) is called mean residual life, and it quantifies
the mean waiting time to get the reward given that the controller has already waited for b > 0 time
units.

The intuition behind Proposition 4.3 is as follows. At each time instance after a decision, the
controller faces a dilemma: continue the ongoing task to get the immediate reward, or interrupt
and re-initiate a new task. If there exists b > 0 that satisfies (11), then the controller has to wait
longer than the average completion time to get the reward, thus interrupting is optimal.

Interruption improves the reward rate for a large class of completion time distributions, including
all heavy-tailed and some light-tailed distributions. In the following, we consider some specific
classes of distributions, and investigate the behavior of r¥)(b) with respect to the interrupt time b.

COROLLARY 4.4 (INTERRUPTS FOR SOME SPECIFIC DISTRIBUTIONS). Consider the case where RE{” is
independent ofX,(lk>.

(1) IfX,(lk) has a heavy-tailed distribution, then interrupting is optimal, i.e., b, < co.

(2) IfE[Xflk) - b|X£lk) > b] is an increasing function of b > 0, then b; < oco.

(3) Iin,k) ~ Exp(A) for some A > 0, then r®)(b) = r®)(b") for all b, b’ > 0. Exponential distribution

is the only completion time distribution with this property.

(4) IfE[Xflk) - b|X£lk) > b] is a monotonically decreasing function of b > 0, then by, = co.

Remark 1. We make the following observations from Corollary 4.4:

e Tails are important for optimal performance: for two distributions with the same first-order
statistics (E[Xﬁlk)], ]E[Rglk)]), tail statistics might yield very different reward rates r*)(b) when
the interrupt mechanism is employed. If interruption is not employed and b, < oo, then there
is a loss that grows linearly in 7.

e Most light-tailed distributions have decreasing mean residual life functions, including Gauss-
ian, uniform, logistic, Laplace and gamma distributions [30]. Part (4) of Corollary 4.4 implies
it is optimal to wait until a task is completed for such distributions.

e Exponential distribution serves as a barrier case: interruption does not make a difference if the
completion time is exponentially distributed as a consequence of the memoryless property.
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o Although the optimal interrupt time is finite for all heavy-tailed, and infinite for most
light-tailed completion time distributions, there exist light-tailed distributions for which
interruption at a finite time is optimal. Part (2) suggests an example class of completion time
distributions that includes hyperexponential distribution.

ProOF. (1) is a direct consequence of Property 2.2 in [9]. For (2) and (4), we have E[Xik)|X§k) >
0] = ]E[Xik)] since Xﬁ,k) > 0, and therefore monotonicity of the mean residual life implies the
corresponding results. For exponential random variables, it holds that E[X ik) -b|X Ek) > b] = E[X ik)]

for all b, which is an alternative form of the memoryless property.
]

We illustrate the above results for Xflk) ~ Pareto(1,1.2) in Fig. 2 (a) and X,(,k> ~ Lognormal(1,2.75)
in Fig. 2 (b) with R,, = 1 for all n.

a (b)
0.4 @ - 2.5 ‘ ‘ : @
—r®)(p) —r(b)
0351
ol
03+
0.25¢ 15+
= 02f
=
= 1
0.15
0.1
05
0.05
ot ‘ i o0 ; ‘ ‘ ; ;
10° 102 104 10® 10® 10* 102 1 10% 10*

b b

Fig. 2. The renewal reward rate r(k)(b) with respect to b for (a) Xilk) ~ Pareto(1,1.2) and (b) X,(,k) ~
Lognormal(1,2.75). Interruption yields significant gains in the average reward per unit time for heavy-tailed
completion time distributions.

Note that interrupting a task at the optimal interrupt time yields significant gains for Pareto
distribution, and the impact of interruption becomes drastic in the case of a log-normal distribution
with high variability.

From (8), it is seen that a natural approximate algorithm to the optimal policy 7P is the static
policy which maximizes r*)(b) over all (k, b) pairs, which we formally define in the following,

Definition 4.5 (Optimal Static Policy). The optimal static policy, denoted by 7*, makes the follow-
ing choice at n-th epoch:

= argmax rOb),
(k,b)eKxB

*
TTn

for all n until the time expires.

In the following, we analyze the performance of this static policy by considering the optimality
gap with 7°%, and conclude that it achieves an almost-optimal finite-time performance, as well as
asymptotic optimality as 7 — co.
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PROPOSITION 4.6 (PERFORMANCE OF THE OPTIMAL STATIC PoLicY). The optimality gap for the
optimal static policy #* bounded for all T > 0:

max E[Rews ()] ~ E[Rew(r)] < 2 max E[RM], vz > 0.
/4 €
Consequently, m* is asymptotically optimal as T — oo.

Proor. Proof of Proposition 4.6 is based on the concept of stopped random walks, and given in
Appendix A for the interested reader. O

Remark 2. Proposition 4.6 has a very important consequence: the expected reward under the
simple static policy 7* has only a bounded gap with the best possible expected reward, which can
only be achieved by an NP-hard algorithm for all 7 > 0.

In the next section, we propose a UCB-type learning algorithm for the BwI problem.

5 ALGORITHM DESIGN

In this section, we propose a learning algorithm for the BwI problem that converges to the optimal
static policy 7* fast enough to yield minimal regret. The learning algorithm has a two-fold objective:
(1) learning the optimal interrupt times for all arms, (2) choosing the arm with maximum reward
rate. As it was pointed out in Remark 1, interrupt times heavily depend on the tails. Therefore,
unlike the traditional bandit models where learning only the first moment suffices, the learning
algorithm in this problem must learn the whole distribution.

In most real-life problems, the controller has to decide the interrupt time within a discrete set.
For example, in the optimal free trial strategy example of Section 3, the duration of free trials is
usually measured in terms of days. In digital systems, the processors make decisions discrete in
time. Therefore, in this paper, we consider a given finite but arbitrary 8 that includes infinite
interrupt time (i.e., no interrupt) as an element.

Assumption 1 (Finitely Many Interrupt Times). For L > 1, let the set of interrupt times be
B ={b1,b,,...,b} for any user-determined {b;, i = 1,2,...,L}. Let

0<by<by<...<bp=o00,
without loss of generality.

The design strategy will be as follows: each arm-interrupt time pair (k, b) will be a distinct
decision, and the objective will be to learn the (k, b) pair with maximum reward rate. In the absence
of the arm statistics, an upper confidence bound for the reward rate r*)(b) will be used as a
surrogate. This will be accomplished in three steps:

(1) In Section 5.1, we propose an estimator for the reward rate r®)(b) based on median-of-means
technique, and show that it has an exponential convergence rate by novel concentration
inequalities.

(2) In Section 5.2, we examine the specific information structure of the problem to boost the
learning rate.

(3) Finally, in Section 5.3, we develop a UCB-type algorithm based on the concentration inequal-
ities we propose, which exploits the information structure of the problem to achieve low
regret.

5.1 Concentration Inequalities for Renewal Reward Processes
Recall that for each (k, b) € K x B, the observed stochastic process:

(X7 A b BT oy )om = 1) (12)
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is a renewal reward process, and the aim is to find concentration inequalities for r*)(b) from the
first s observations. In the next lemma, we present a concentration result for estimating the ratio of
two expected values, e.g., reward rate, by a generic estimator.

LEmMMA 5.1 (CONCENTRATION OF RATES). Let {(Uy,, V), n = 1} be a sequence of iid vectors with
finite mean, and ji; = (Us, V) be a generic mean estimator for (E[U; ], E[V1]). Let

E[Vl] €
A =11 —, V 0. 13
=1+ o) e Yo )
Then, for any p-norm ||.||,, p > 1 defined over R?, the following inequality is satisfied:
Vs _ E[Vi] _
— -A <P - , 14
(G < oy~ (@) < Bl — sl > © (14)

foralls > 1.

Note that the above concentration inequality yields an upper confidence bound for the reward rate
by considering the deviations of U,, and V;, from their means.

Proor. For any € > 0, let the high-probability set As(e) be defined as follows:
As(€) = {llas — pllp < €}
For any outcome w € Ag(€), it is easy to verify the following:
V(@)
Us(w)

since the minimum value possible of V; and the maximum value of U in the set A;(¢) are E[V;] — €
and E[U;] + €, respectively. Therefore, the following set inclusion holds:

>r— Ao(e),

Vs _ E] } { _ }
—-— < -A C - > ,
{Us S0~ M@ < s =l > e
which directly implies the result. O

For the observed process (12), the empirical reward rate with s samples is defined as follows:

S
(k)
» RV

P (x® <py
W) = =

. . (15)
(k)
(X;" A D)
i=1
By the fundamental renewal theorem, it is well-known that the empirical reward rate converges
to the reward rate almost surely: fgk)(b) — r®)(b) almost surely as s — oo [2, 16]. Therefore, the
empirical estimator f*ﬁk)(b) shows up as a natural candidate for estimating r*)(b). However, for
heavy-tailed distributions that satisfy the moment condition (1) for some y € (0, 1], it can be shown
by using Lemma 5.1 and Chebyshev’s inequality that the following holds:
B(#9b) < 1 by) - Aa(e) = 05— ).

i.e., convergence rate of 75(by ) is polynomial rather than exponential. Moreover, as it is shown with
a lower bound for the convergence rate in [8, 10], this bound is tight. This immediately implies
that the empirical reward rate is weak for heavy-tailed distributions, and thus falls short for our
application.

For estimating the reward rate, in the following, we present a robust estimator called median-of-
means estimator based on [8, 28], which provides exponential convergence rate.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 43. Publication date: June 2019.



43:12 S. Cayci, A. Eryilmaz, R. Srikant

Definition 5.2 (Median-of-Means Estimator). Let {(Uy,), n > 1} be a sequence of random variables.
For § € (0,1) and s samples, let

w = l8 log(eé(s_l) A %J,
be the number of blocks, and m = |s/w] be the block-length. For j = 1,2,...,w, let
Uj = — Ui,
™ i=(—Dm+1
be the sample mean of block j. The median-of-means estimator is computed as follows:

U; = median{U, Us, . .., Uy }.

Definition 5.3 (Median-of-Means Estimator for Reward Rate). Given a renewal reward process
{(Xflk),R(nk)), n > 1}, forany b € B, let
(k) _ plk)
‘/l' - Ri I[{ng>ﬁb}’ (16)
U® = x% Ao,

foralli=1,2,...,s. Let Us(k)(b) and Vs(k)(b) be the median-of-means estimators for {(Ui(k)), i <s}
and{(Vi(k)), i < s}, respectively. Then, the median-of-means estimator fgk)(b) for the reward rate

r®)(b) is defined as follows:

70 ®)

O}
Intuitively, the median-of-means estimator boosts the confidence of a sequence of independent

weak estimators (sample mean estimator in this case) by taking the median of them. This successfully

eliminates the effect of the outliers due to the heavy tails, and provides fast convergence. In the
following, we analyze the performance of the median-of-means estimator for the reward rate.

ROb) =

(17)

PROPOSITION 5.4 (CONCENTRATION INEQUALITIES FOR RENEWAL PROCESSES). Consider a renewal
reward process {(Xf,k),Rglk)), n > 1} that satisfies the moment assumption (1) for somey > 0. For any
be B, let Ul.(k) = ng) A b and Vl.(k) = RE.k)JI{ng)d} foralli <s, and

max {B[U - B[O BV - 3] = .
Then, for any b € B and § € (0, 1), the median-of-means estimator, 7(b), satisfies the following:
P(RO®) < rOb) - Ao(e(@)) < 5,

where

€(6) = (12t (11BN (18)

s
and

Ao(e) = 1+ r(k)(b)).

—
E[UM] + e

Proposition 5.4 uses the concentration properties of the median-of-means estimator to yield an
upper confidence bound on the reward rate in conjunction with Lemma 5.1.
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Proor. By taking p = oo, Proposition 5.1 with union bound yields the following upper bound:
P(fgk)(b) < r®(p) - Ao(e)) <P(OX > E[UP] + ) + PP <BVP] - ).

Taking € = €(J), application of Lemma 2 in [8] to each term on the RHS above gives the upper
bound. O

Note that the inequalities in Prop. 5.4 require knowledge of arm statistics, which are assumed to be
unknown in our case. For the learning problem, we make the following assumptions.

Assumption 2. For the BwI problem, we assume that the following quantities are known a priori:
(1) y €(0,1] and u € R such that
k k)71 k k)91
max {B[]X{ - B[], B[RY - BR[| < u, (19)

forall k € K.
(2) A lower and upper bound on the mean completion time and reward, respectively:
Rmax > max E[ng)],

keK (20)

. k
Hmin < ;2171} E[Xi A bi].

The following corollary to Prop. 5.4, which requires much less knowledge about the arm statistics,
will be fundamental in algorithm design and analysis.

COROLLARY 5.5. Given the parameters in Assumption 2, let

X
A =1+ Rmax/fmin | —> 21
() = (14 R pimin ) -——— (21)
for any x > 0. Then, the following inequality holds for any § > 0:
B(#(b) < r9(b) - A(e9) ) < 0, (22)

where €(9) is defined in (18) and fgk)(b) is the median-of-means estimator for the reward rate.
Proor. With the corresponding parameter choices, for any € > 0, it is easy to show the following:
A(e) > Ao(e),
where A is defined in (13). This implies that
P((b) < r9(b) - Ae)) < B(79(6) < rP(B) - Ag(e)).
Thus, we get the inequality in (22). O
In the next subsection, we examine a specific information structure of the BwI problem.

5.2 Information Structure

The decision (k, b) € K x B yields the following stochastic observation:

Y, (k, b) = (1[ P R®1

toem )
For any pair of interrupt times b; < by, we have the following relation between the observation
vectors:

xP <y xP<by

Yu(k, br) € o (Ya(k, br)),
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where 0(Z) denotes the sigma field of a random variable Z. Accordingly, the completion time and

reward for (k, b;) is obtained from the observation for (k, by/) as follows:

X,(jo Aby = (X,(1k) A bl’) A by,
(23)
RO ROT I

<oy = B T ) )L -
This immediately implies that any observation vector for the decision (k, b;) can be directly used for
(k, by) via the transformation in (23). Note that the feedback for the decision (k, b;) provides some
information for (k, by) for I < I’, but it is not very useful as the right tail is censored. Therefore,
the information structure is asymmetric.

As a consequence of the aforementioned structure, for fixed k, each decision (k, b;) has available
samples from (k, by) for all I’ > 1. In order to quantify the improvement in the convergence rate due
to the information structure, for [ € {1,2,...,L}, let Tl(k)(n) =xr, I[{Ii=k,B(.k)=b[}

(k, by) decisions among the first n decisions. Then, the effective sample size of the decision (k, b;) is
as follows:

be the number of

TP () = Z T (). (24)
j=l
Note that the effective sample size Tl(k)(n) is significantly larger than Tl(k)(n), which implies a much
faster convergence in estimation. The effect of this structure in the regret performance will be
examined in Section 6.
In the following section, we propose a UCB-type algorithm that exploits the information structure.

5.3 UCB-BwI Algorithm
In this subsection, we will introduce a low-complexity and order-optimal algorithm called the
UCB-BwI Algorithm and denoted as 7T,

Design strategy: If all arm statistics, thus {(r(k)(b)), (k,b) € K x B} are known, then one can
express the optimal static policy 7}, as the solution of the following optimization problem:

(I, B™) = argmax r®(b), Vk € K, (25)
(k,b)eKxB

In the absence of the knowledge of rK)(b), the controller has to learn the arm statistics while
maximizing the cumulative reward. The basic idea behind UCB-BwI is to use upper confidence
bounds proposed in Corollary 5.5 as a surrogate for r¥)(b).

Observation sequence: Under the UCB-BwI Algorithm, the sequence of observations for (k, b;)
is the following:

(O A b RO oy ) 21 <0< maPT = (k,b), VE< 1), (26)

Each time a decision 72T = (k, by) is made for I’ > I, a sample is obtained for (k, b;) via the

transformation in (23). Recall that the number of samples for (k, b;) after n-th decision is Tl(k)(n),
the effective size defined in (24).

Definition 5.6 (UCB-BwI Algorithm). For (k, b;), the median-of-means estimator for the observation

sequence (26) of size s = T;k) (n), denoted by ffl]fg(bl), is computed by using (17). Let

O
Buy = (12u) 7 3277, (27)
where u is the centralized moment of order (1 + y) defined in (19), and

log (\/EeTlé(n +1)%) 15
s

€n,s = u,y[ ,Vn,s € N. (28)
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Then, the arm and interrupt time pair is chosen under UCB-BwI as follows:

(In+1)
U B5) € argmae, 17 00+ (e
where A is defined in (21). At each epoch, the above optimization can be performed in two steps:
first, the optimal interrupt time BE; +)1 is determined for each arm k, and then the optimal (k, B(k)l)
is chosen. The UCB-BwI Algorithm is summarized in Algorithm 1.

Remark 3. We know that the optimal static policy under known statistics selects the arm with
the maximum reward rate. A natural idea under unknown statistics is to use an empirical estimator
for the reward rate and add an upper-confidence correction to encourage exploration. However,
due to the fact that the distributions can be potentially heavy-tailed, the following modifications
must be made compared to traditional UCB-type algorithms:

(1) 7% (b) is a median-of-means estimator instead of the usual sample mean estimator. As it
was noted in Section 5.1, the empirical reward rate will not have exponential concentration
around the reward rate, whereas the median-of-means estimator does.

(2) The UCB correction term typically involves Tl(k)(n), the number of (k, b;) decisions in the
first n epochs. As mentioned in Section 5.2, each decision yields information about others
as a result of the information structure. Therefore, the UCB correction term involves the
effective sample size, T(k)(n), of the relevant decisions. Additionally, the heavy-tail parameter

y appears in the exponent of the UCB correction term. Note that if y = 1, i.e., Var(Xik)) and

Var(R(lk)) exist, then we obtain the same convergence rate and the correction term as the
sub-Gaussian case up to a coefficient, which implies the effectiveness of the estimator. On
the other hand, the coefficients f3,, , can be very large, which makes the UCB conservative in
practice.

In order to investigate the value of exploiting the information structure in the numerical examples,
we also propose the following UCB-based naive algorithm which does not exploit the information
structure.

Definition 5.7 (UCB-N Algorithm). Let r T(k)(n)(b) be the median-of-means estimator based on
>0l

observations from only (k, b) decisions up to n-th epoch. The UCB-N Algorithm, which is denoted
as 7", makes a decision as follows:

(In+1) ' (k)
(In+1, B, 37 ) € (liglg)?l?ffi { ¥ (n )(bl) + A( n, Tl(n))}’

where €, is defined in (28).

6 PERFORMANCE ANALYSIS

In this section, we analyze the performance of the UCB-BwI Algorithm by providing a distribution-
dependent regret upper bound, and then showing that this performance is order-optimal in K, L
and 7 by a regret lower bound.

6.1 Regret Upper Bound for UCB-BwI

The main result of this section is the following regret upper bound for the UCB-BwI Algorithm.

THEOREM 6.1 (REGRET UPPER BOUND FOR UCB-BwI). Under Assumption 2, let (Rinax, min, U) be

given as in (19) and (20). Then, the regret under 151 is upper bounded for all T > 0 as follows:
— L
Reg,ou(r) < [C(k) log ( ) + o(—l)] + O(KL),
k:d®)>0 Hmin (daha)
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Algorithm 1: UCB-BwI Algorithm
input: B: Set of interrupt times, 7: Time

1 Initialization:

2 5§ =05

3 n=0;

4 Rew, = 0;

5 fork=1,2,...,Kdo

6 forli=1,2,...,Ldo
7 n=n+1;
5 I, =k, By = by;
9 ST =57 +min{X¥, b};
10 if X,(,I”> < Bg") and S < 7 then
k
11 L Rew, = Rew,_; +RE,) ']I{Xﬁ,k)sb,};
12 while S7 < r do
13 n=n+1;
14 fork=1,2,...,Kdo
15 L Compute Bsik); // Interrupt time for arm k.
16 Start the process I,; // Arm selection at step n. S;; = S7_ + min{Xy"), B(nI")};
17 if Xg") < Bg") and S} < 7 then
k
18 L Rew,, = Rew,,_; +R£1) 'H{Xﬁk)ﬁbz};
where
c® i i:?j o1 134
- Y — )
128(24u) ( i ) [( e )"+ () ] 29)
min
for

(k) _ . k * k
ot = gmin 1000 — o).

, (30)
d® = max r*) () - rP 7).
(k. b)
According to Theorem 6.1, the regret grows at a rate O(K log(r) + KL). Similar to the traditional
bandit settings, an increasing number of potential actions obliges the controller to make more
suboptimal decisions in the learning process, leading to a higher regret. Therefore, a larger set
of interrupt times, B, incurs a higher regret as expected. However, as a result of the specific

information structure, the coefficient of the time-dependent term in the regret, C*), is independent
of L = |8B]|.

Proor. We will provide a proof sketch for Theorem 6.1 here. The complete proof can be found
in Appendix B. A similar proof strategy is followed in [35] in the context of budgeted bandits.

First, note that the decision times are random and depend on the sample path as well as the
policy. Moreover, the total number of decisions, N,(7), is a random variable that depends on the
realizations. In the following, we tackle these difficulties in two steps: first we express the regret of
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a policy in terms of the number of suboptimal decisions. In the second step, we analyze the number
of suboptimal decisions under 72! to obtain a regret upper bound.

Step 1. Regret in terms of the number of suboptimal decisions:

The objective in this step is to express the regret in terms of the number of epochs when a
suboptimal decision (k, b) is made.

Let r* = max, ;, r®)(b). The overshoot function, which upper bounds the expected reward of
the last initiated and uncompleted task, is defined as follows:

D, (1) = r* ZP(M(,) = (k, bl))E[X(VI;)(T) Abyl, (31)
k1

where v, (7) = N,(7) + 1 is the first passage time under 7. Then, for any 7 > 0, the regret under =
can be upper bounded as:
- Nx(7)
Reg, (1) <B| D" 3 Timumttotn) (1 = 700 ) tmax | + 2max BIRFT+ 0,0, (32)
n=1 kI k

The RHS of (32) can be interpreted as follows: for each decision (k, b;), the difference r* — r®)(b;)
corresponds to the regret rate (per unit time), and multiplication of the regret rate by p,ax, an
upper bound for the average completion time, yields an upper bound for the regret of an epoch.

Let 1 > 0 be a given integer. Under an admissible policy 7, the regret upper bound in (32) can be
decomposed into two parts:

Reg, () < 3 BTV @1(r* =00 iman
k,1

+ KL -1 fimax Z P(N;(t) > n) + (1) + Zmlflx E[R(lk)]. (33)

n>n

Intuitively, the upper bound in (33) corresponds to the regret when the process continues for 7
pulls, and then maximal possible regret is incurred for every pull until the time 7 expires. Therefore,
the natural choice for 7 is a high-probability upper bound for N, (7). For any § € (0, iin), let
il =fs,; = T/(fmin — 6). Then, the following result can be obtained:

> B(Na(r) > n) = o(%), (34)

n>ngs ¢

by using the renewal relation {N,(r) > n} C {S7 < r} and a concentration inequality for the
controlled random walk S77. This implies that:

Reg,(v) < 3 BT 5 )11 = rObn) Jimas + 0x(0) + 0(57). (35)
k,1

The results we obtained so far dealt with the continuous nature of the problem, and provided
a connection between the continuous-time process and the number of pulls {Tl(k)(n)} under an

admissible policy 7. In the last step, we investigate the performance of 7% in terms of {T;k) (n)}
to prove the upper bound.

Step 2: Number of suboptimal decisions under 7°"*:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 43. Publication date: June 2019.



43:18 S. Cayci, A. Eryilmaz, R. Srikant

In this part, we investigate the performance of the UCB-BwI Algorithm. Let d*) and dg;?n be as
defined in (30). Under 7 = 71, for all k, we have the following results for the number of epochs a
suboptimal interrupt time is chosen:

k), - k k
B[TP)] < (¢ - cff)

) log(#) + O(1), VI > I*(k),

BT m)) = o((d),) ), vi < I'(k).

min
where x* = max{x, 0} for any x € R, and
1 1+r0@% L”
M) = 128(24u)” (#) v
dMEX® A by]

From this, the following upper bound for the expected number of suboptimal time decisions can be
established:

Z E[T " (7)] < max C*'log(i) + O( (kL> ).
1 (k) 1>1(k) (dyin)¥
Consequently, the coefficient of the logarithmic term is independent of the size of the interrupt set,
which implies low regret even for a large interrupt set. Also, this result implies that the overshoot
under 75 is O(1).

For each suboptimal arm k, we can prove the following upper bound for the expected number of
epochs a suboptimal arm is chosen together with its optimal interrupt time:

14 Bmax yu
(k) Hmin Y _
BT, (1) < 128(24u)7 ( T ) log(7) + O(1). (36)
The equation (36) implies that each suboptimal arm, paired with its optimal interrupt time, is chosen
for at most logarithmically many epochs under the UCB-BwI Algorithm.
Substituting the upper bounds for E[Tl(k)(fz)] to (35), and minimizing the resulting upper bound
over § € (0, min) yields the the regret upper bound in Theorem 6.1. O

6.2 Regret Lower Bound for Admissible Policies

In this section, we will analyze the regret lower bounds for the class of admissible policies that
include UCB-BwI. As it will be seen, the regret under any such policy grows at a rate Q(K log 1),
which implies that UCB-BwI is order optimal.

Consider a K-armed bandit with 8 = {b1,b;,...,b.}. For each arm k € K, the arm process
is distributed according to a parametric distribution (Xﬁ,m,R;k)) ~ Py where %) € @y for a
parameter set O, and let ® = ©1 X O, X ... X Ok be the parameter set for the problem. Note that
the arm distributions do not need to belong to the same family of distributions in this case. As in
(2), an observation from arm k with interrupt time b; is denoted as a vector:

Ya(k,b) = (I

( (X® <pyo X;,k)l[ RE,k)I[

(X0 <by {X‘n’“sh})'

Given 0 = (9(1), 0@ .., H(K)), the distribution of Y, (k, bZ) is denoted as P(gk). For each k € K, we
define the following subset of ©:

er ={0Y,...,05) e 0: rP®r) = r*(by,), VK € K.

Note that ) is the set of parameters for which arm k is optimal. After these definitions, we make
the following assumptions which are analogous to those in [25].

Assumption 3. For a given 8 and 0, we assume the following:
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e Interior of any ©} is non-empty, i.e., int(8;) # 0 for any k.
e The true parameter 6 = (1,0, ..., 8%)) lies in the interior of a partition:

0 € int(O7),
where we assumed that Arm 1 is optimal without loss of generality.

If this technical assumption is satisfied by the problem instance, the following regret lower bound
holds for all admissible policies.

THEOREM 6.2 (REGRET LOWER BOUND FOR ADMISSIBLE PoLICIES). Under Assumption 3, consider
an admissible policy & that satisfies the uniform optimality condition:
E[TV(n)] = o(n®), Ya > 0,n — o, Vk. (37)

Let
ap®

" o_ [ *
Dy (6116") = E[log _dng) (Yi(k, bp))],

be the Kullback-Leibler (KL) divergence between Pék) and ng). Then, the following lower bound holds
forany§ > 0:

Reg (1) d®) 1
liminf ——"—— > up; . -0 ), (38)
o log (=) K ’"’"; 6;2£ZD,<(9||9') (51+y

where d®) = 1(1}12}3)( r&(p) — r(k)(bZ), Hmin = g&ilg E[X A b] and pmax = m]?x E[Xik)]-

Theorem 6.2 implies that the regret under a "good" policy that satisfies (37) is Q(K log(z)) for a
K-armed bandit problem with a set of L interrupt times. Recall that the regret under UCB-BwI is
O(K log(r)) by Theorem 6.1. Hence, these two results imply that UCB-BwI is order-optimal in K, L
and 7.

Proor. The proof is given in Appendix C. O

6.3 Discussion

It is interesting to note that the regret under UCB-BwI grows over time at a rate O(K log ), which
is independent of L. The main reason for this is the information structure of the problem. If instead
there were no such correlation between the interrupt time decisions, it is straightforward to obtain
a regret lower bound of Q(KLlog 7) by using a Lai-Robbins style approach. As such, a scaling gain
of O(1/L) is achieved from the use of the information structure by our design. This result is similar
in spirit to earlier results in [13] or [12, 17] in that they also exploit different information structures
to achieve scaling gains. However, our setting has a different particular information structure that
stems from the dynamics of the renewal processes, which is optimally exploited in terms of 7, K
and L by UCB-BwI.

7 NUMERICAL RESULTS

To corroborate the theoretical results we obtained in Section 6, we investigate the regret performance
of UCB-BwI in various settings. In order to investigate the effect of exploiting the information
structure, we also evaluate the performance of UCB-N.

(1) Adaptive Task Scheduling with Interruptions:

In the first example, we consider the adaptive task scheduling problem during the busy period
of a single server. The completion time of n-th task is X, learned by the controller via feedback
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only after the completion. At the beginning of the task, the controller determines an interrupt time
BS). If the task is not completed within BE,I) time units after the initiation, it is discarded and the
succeeding task is initiated. The goal is to maximize the number of completed tasks within [0, 7] by
learning the optimal interrupt time, thus RY =1 forall n.

In communication systems with ARQ control, the task completion times have a heavy-tailed
distribution [21, 32]. In order to model such systems, we consider a scenario where the task
completion time has a Pareto(1,1.4) distribution. We consider the following set of interrupt times:

B =1{3,6,9,...,3(L—1),00}, L > 1, (39)

In Figure 3, the regret performances of UCB-BwI and UCB-N are presented for L € {4,12}.

3500

- - 7.rBwI7 B4
U= - ", By
— ", By

N
—", B

3000

2500

2000 -

Regret

1500 [

1000

500 -

BwI and zN for the adaptive task scheduling problem. An expanding set

BwI is

Fig. 3. The regret performances of &
of interrupt times has a drastic effect on the regret under 7" while the increase in the regret under
not significant.

From Figure 3, we observe that the regret under UCB-N grows significantly as the size of the
information set increases from 4 to 12. On the other hand, the increase in the regret under UCB-BwI
is considerably small. This verifies the result of Theorem 6.1: the exploitation of the regret yields
significant scaling gains over time as the interrupt set expands.

(2) Adaptive Task Scheduling with Multiple Types:

In the second example, we investigate the performance of UCB-BwI in a bandit setting with
three arms of distinct statistical characteristics. This example models the adaptive task scheduling
problem with three task types. For a given time horizon 7, the objective of the scheduler is to
maximize the number of completed tasks in [0, 7] by learning the optimal arm and interrupt time
pair. In order to exhibit the effectiveness of the non-parametric approach, we consider a highly
diverse set of completion time distributions:

e Arm 1: X,(f) ~ Pareto(1, 1.4).
o Arm 2: X2 ~ Exp(1/3).
e Arm 3: Xﬁ,z) ~ Uniform(0, 6).
The reward rates for these distributions are plotted in Figure 4. From Figure 4, we observe that

both Arm 2 and Arm 3 yield higher reward rates than Arm 1 without interruption. However, Arm
1 yields the optimal reward rate if it is paired with the optimal interruption time. Therefore, an
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Optimal interrupt time
for Arm 1 — k=1, X\ ~ Pareto(1,1.4)

— k=2, X? ~ Eap(1/3)
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10° 10’ 102 10°
b

Fig. 4. The renewal reward rates for Pareto(1, 1.4), Exp(1/3) and Uni form(0, 6) completion time distributions.
Without interruption, Arm 2 and Arm 3 yield higher reward rates than Arm 1. However, Arm 1 achieves the
optimal reward rate with optimal interruption.

algorithm must learn not only the first-order statistics but the complete distribution of an arm to
achieve sublinear regret.

The regret performance of the UCB-BwI Algorithm is presented in Figure 5 for the set of interrupt
times B}, defined in (39). In this example, large interrupt sets are considered to include potentially
large optimal interrupt times due to the unknown and diverse arm statistics. From Figure 5, we

2500 :
7.l.BwI7 B4
- - 71_BwI7 B8
Bwl
2000 f T Bigl
— ", By
1500
©
o
(5]
o
1000
500

T x10*

Fig. 5. The regret performance of UCB-BwI for a three-armed bandit with Pareto(1,1.4), Exp(1/3) and
Uniform(0,6) completion time distributions.

observe that although the set of interrupt times grows significantly from 4 to 64 possible interrupt
times, this has little effect on the regret performance of the UCB-BwI. This suggests that BwI provides
an effective solution to the statistically diverse problem instances where the set of interrupt times
is large.
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In Figure 6, for each (k, b) € KX By4, we present the fraction of (k, b) decisions for a time horizon
7 = 4 x 10* under the UCB-BwI Algorithm. From Figure 6, we observe that by is chosen more fre-

0.6
0.5
0.4

0.3

Fraction of (k, b) decisions

3 Interrupt time (b)

Fig. 6. The fraction of (k, b) decisions under the UCB-BwI Algorithm. UCB-BwI makes a balanced exploration
of the most informative interrupt time by, yielding low regret.

quently than other suboptimal interrupt times under UCB-BwI. Note that by is the most informative
decision among all interrupt times since it provides a complete feedback for each decision as a
result of the information structure. Consequently, UCB-BwI makes a balanced exploration of by, and
the optimal interrupt time for each arm is learned with low regret even for a large set of interrupt
times.

8 CONCLUSIONS

In this work, we introduced a novel continuous-time multi-armed bandit framework where each arm
corresponds to a distinct renewal process. In this setting, each arm pull initiates a task, and a reward
is obtained after the completion of the task. We showed that enabling the controller to interrupt
a task yields significant gains in the expected cumulative reward within a given time interval.
We characterized the optimal policy given arm statistics, and observed that all heavy-tailed and
some light-tailed completion time distributions require such an interrupt mechanism for optimal
performance. For the learning problem, the interrupt mechanism obliges the learner to learn the
whole distribution rather than just the mean, and this is done via censored observations due to task
interruption. For this purpose, we proposed a non-parametric algorithm based on median-of-means
estimator called the UCB-BwI Algorithm. By construction, UCB-BwI exploits the specific information
structure of the problem. We proved that the regret under UCB-BwI is O(K log 7 + KL) for a set of L
interrupt times. By a regret lower bound, we also proved that UCB-BwI is order optimal in 7, K and
L.
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A  PROOF OF PROPOSITION 4.6

Proor. The proof consists of two stages: for a given 7 > 0, we first find a lower bound for the
expected reward under the optimal static policy 7*. Then, we find an upper bound for the maximum
expected reward among all admissible policies. The difference between these quantities gives an
upper bound for the optimality gap.

(1) Lower bound for E[Rew,;+(7)]
For any k, let the static policy 7X) be defined as 7T,(1 ) = = (k, by) for all n where b, = arg max r&(b)

is the optimal interrupt time for arm k. Recall that the first hitting time v &) (7) = ﬂ(k)(T) +1lisa
stopping time. Thus, by Wald’s equation, we have:

~E[RY 1

E[Rew .0 ()] = E[v,a0(r)|E[R®T A o

k
1 xP<br /] (40)

W) )<b;‘(}]-
By the key renewal theorem, we have E[v_« (7)] > T/E[Xik) A bi] [2]. Thus, we can lower bound

the expected reward under 7% as follows:
E[Rew 0 (7)] = er®(b5) — B[R], (41)
> ]E[R<k) ] holds, and R(lk) and v¥)(r) are independent. Therefore,

®)()
vK)(zr)
we have the following lower bound for the expected reward under 7*:

since ]E[R N

VR () xR <br }]

E[Rew-(r)] 2 7 max r®(b) - max E[RP)], (42)
forall r > 0.

(2) Upper bound for E[Rew o0t (7)]

Consider an admissible policy 7. The total time spent until the completion of the n-th task, S,
defined in (3) is a controlled random walk with positive increments, therefore we have I (57 <;) <
I{sz_ <r} with probability 1. Thus, we can upper bound the cumulative reward under r as follows:

S k
E[Rew,(7)] = E[ Z Z Tisz <o)L {mn=k, 0)} R )I[{Xgpgb}],

n=1 (k.b)
[Z Z Lisz  <oylimu=(k, b)}E[R I{X<k)<b}]]
1 k,b
[ H{”nz(k’b)}E[Rgl )I[{Xi,k)gb}]] + ml?x E[R(l )],
n=1 k,b

where the second line holds as a result of the independence of RS{‘) I x® <py and I st <t =k, b)}
under an admissible policy. Note that the upper bound above corresponds to the expected reward

under 7 including the reward of the incomplete final task. Since E[R(,,k)]I 1 = r®BE[X flk) Ab],

X3 <b)
we have the following upper bound:

Ny (7)
B[Rews (7)] < max xr® ) -E[ Ttk 0y} (X0 A )] + max E[RP), (43)
n=1 kb
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For the first term on the RHS of (43), we have the following inequality:

Ng(7)
Z Zﬂ{ﬂn:(k,b)}(xfj‘) Ab) <, (44)
n=1 k,b

which holds for all sample paths since it is the total time passed before the last activated (but
uncompleted) task. Hence, from (43) and (44), we have the following upper bound that holds for
any admissible policy 7:

E[Rewn(7)] < 7 max r® ) + max E[RM], (45)
for all 7 > 0. Since the above upper bound holds for any 7, it also yields an upper bound for

E[Rew opt (7)].
From (41) and (45), we have the following upper bound for the optimality gap:

E[Rew e (v)] ~ E[Rews (¢)] < 2 - max E[RM], (46)

for any 7 > 0.
The following holds for the asymptotic performance of 7*:

1< lim E[Rew opt ()]
7= E[Rewy+(7)]
T rilzzx rO)(b) + maxy E[R(lk)]

lim — =L (47)
T ¢ max r®)(b) — maxy E[R]"']

IA

where the second line follows from (41) and (45). (47) directly implies that
. E[Rewnopt (T)]
lim ————— =1,
t—oo E[Rew,+(7)]

and therefore 7* is asymptotically optimal as 7 — oo. O

B PROOF OF THEOREM 6.1

The proof of Theorem 6.1 builds on three lemmas that we prove in this section. First, we establish
the connection between the regret and the number of suboptimal decisions by the following lemma.

LEMMA B.1. For jipmq, = maxy E[Xik)] and r* = maxy p r&(b), let

Or(r) = 1" > By (r) = (6, B))EIX ) Aby].
k,1

Va(T)

Then, the regret under any admissible policy = can be upper bounded as follows:

Nx(7)

Reg,(r) <B| 0 3 Lompmtiony (1" = OO0 pimar | + 2max ERP 4 04(0), (49)
n=1 k1l

forallt > 0.

PRrROOF. In order to prove the lemma, we first find an upper bound for the cumulative reward
under the optimal policy E[Rew oot (7)], and then find a lower bound for E[Rew, ()], both in terms
of the counting process N, (7).

(1) Upper Bound for E[Rew opt(7)]
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By (45), we have the following inequality:
E[Rew ot (7)] < 17 + max E[R(lk)]. (49)
Under policy 7, the following holds for any 7 by the definition of N, (7):

N, (7)+1

k
rs Z{ gﬂ{1n=k,3(nk)=l}(x'(“ "N by). (50)
Hence, by (49) and (50), we obtain the following upper bound for the optimal reward:
Ny (r)
BlRew, o (D) <E| D D" Limymtion P B A bi)| + max ERY ) + 020, (51)
n=1 kI

(2) Lower Bound for E[Rew,(7)]
In order to find a lower bound for E[Rew, ()], we follow a similar proof technique with the
proof of Proposition 4.6.

00

k
E[Rew,(7)] = E[Z Z Tisz <o)L {mn=k, 0)} R )E{Xgmgb}],
n=1 (k.b)

)

(k)
> E[Z Z Lism  <eylimu=(k,0)} B[Ry I[{X;kgb}]],
n=1 (k,b)

N)T(T)
> E[ > L=ty PO B A b]] - max E[R™), (52)
(k,b)

n=1

The upper bound is obtained by taking the difference between (51) and (52).
|

The number of arm pulls, N,(7), in Lemma B.1 is a random variable that depends on the
observations. Note that the regret is an increasing function of N, (r), therefore we can simplify the
analysis by using a high-probability upper bound for N, (7).

LemMaA B.2. For§ € (0, min), let

_— T
or Hmin — 8’
and
exp(—Zﬁg,,(Sz/bf)
xs(1) = T o asi
1 — exp(262/b7)
Then,

Reg.()< . BTG50 (r = b)) smax + Ox(r) + 2max BRY)
(k, D):rR)(by)<r* k

+K-L-r- Xﬁ(r) *Pmax- (53)
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Proor. By using the fact that Iy, — ) s7 <r} < Ir,=(k b)), We can decompose the regret upper
bound in (52) as follows:

Reg,(r) < 3 BT @)1(r* = (b0 imax + @r(0) + 2 max B[R]
k.1

FK-L7" fimay - ) P(Ng() > ). (54)

n>n

for any 7 € N. By using the renewal relation
{N.(zt) > n} c {S] <1},

and since b; < b; for all [, we have the following:

n
k
(Na(r)>nyc{>. > I[{Ijzk’Bﬁ_k)zbl}(xj. "Aby) <7}
J=1 k,1

c {Z Z L=y (X0 A by) < 7. (55)
j=1 k

For § € (0, min), let i = Ais,; = 7/(Umin — ) in (54). Then, since all random variables in (55) is
bounded in [0, b;], we have the following inequality:

P(Nx(z) > n) < P(i DIy A by < 7),
JET

2nd? B
< exp ( — 7), Vn > fis,q,
1
by Azuma-Hoeffding inequality. From this, it immediately follows that
D B(Nx(r) > n) < xs5() = 0(1/8%),

n>ngs ¢

which concludes the proof. O

The results so far made a plausible connection between the regret and the number of suboptimal

decisions Tl(k)(fl(s’ )- In the final step, we find upper bounds for the number of suboptimal decisions

under 7T,

LEMMA B.3. Let d;k) = r®r) - r®(py), d® = r* = r®(br), and recall that
mae {B[1X{ — B ] B[R - BRI} <

Then we have the following results.

(a) Forl # I*(k), let

s 14 rRp) (5
C§k>=128(24u)5( r () ]) v

dPEXD A,
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with C(L]i)l = 0. Then,

2

2, BT ] < max ¢ log (1.257) + L7, (56)
I>1*(k) > (k)

K, L
>, BTl =0 ). 7
I<l*(k) (dl ) iy

foralln > 0.

(b) For k such that r(k)(bZ) <r*, let

. 1+ r®pr r+
Ch = 128(24u)5( (%) ) Y
]

dREXH Abr

Then,
2
E[1,5, ()] < C®log (1.25%) + % (58)

for any .

1 -
PrOOF. (a) Let Agkr)l = A(ﬁu,y [M] " ) from Definition 5.6, and define the following

¥ (n)
events:
(k) _ ) =(k) (k) () 1t }
Ein = {rnj;j?k)(n) + Ao ST (BR)]
® - (0 ®) (&
Ez,n = U {rn O > Al,n + )(bl)},
I>i*(k) Ot
k k k) .
_ ; L
Egr)l = U {Tl( )(n) < Tlog(\/éelénz)}_
1>1*(k)

Then, it can be shown by contradiction (similar to Theorem 2.1 in [7]) that the following relation is
true:
k * k k k
{Ler =k, BE), > ()} c BN UES UES). (59)

n+1

Since Tl(k)(ﬁ) = 2>l Tj(k)(fl) for all I due to the information structure, we can express Egkr)L in a more
explicit form:
ES < | {Tl(k)(n) < (- cg’i)l)+ log (1.257) }
I>1(k)
where x* = max{x, 0}. This directly demonstrates the effect of the information structure: the
exploration of the suboptimal interrupt time decisions is greatly reduced by the mutual feedback
coming from the higher interrupt time decisions.
Thus, we have the following:

k), k o\" _ - k k
> ErP@rs Y (c;)_cggl) 1og(1.zsn)+z(P(Eg,g)m(E;,)l)). (60)
1> (k) I>T7(k) n=1

Note that 2,>,*<k)(c§") - C;i)l)J“ = maxjs +(k) C;k) with the definition C(Lli)l = 0, and the RHS of (60)

is upper bounded by Lz?/3 by the concentration inequality in Lemma 5.5. This concludes the proof
of (56).
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The equation (57) is proved by using the same argument for [ < [*(k). Note that every sample
from the optimal interrupt time is useful for [ < [*(k) due to the information structure. This implies
that the effective sample size Tl(k)(n) grows linearly over time for all [ < [*(k), i.e., T(k)(n) = 0(n),

while only O(log 1) exploration is necessary. Hence, E[Tl(k) (7)] = 0(1) for all I < I*(k).

(b) This part is proved in an identical way as Part (a).
O

The function ® e (7r) is O(1) for all light-tailed completion time distributions as the mean of

the stopping summand E[Xffr)(f)] is bounded if the variance exists [2]. When the variance of the
completion time does not exist, i.e., the completion time distribution is heavy-tailed, not interrupting
the task is suboptimal by Corollary 4.4. Therefore, the probability of not interrupting the final task
vanishes as 7 — oo, which implies that the overshoot function is bounded.

So far, we established a connection between the regret and the number of suboptimal decisions
under a policy, and then provided upper bounds for the number of suboptimal decisions under
UCB-BwI. In the final stage, we substitute the upper bounds for E[Tl(k)(fl&r)] into the regret rate
expression in (53) to establish the main result:

Reg,eu(T) < ,ﬁf [c<’<> log (Hmi:_ 5) + O((d(k) )% )] + O(%)
= min

where C0) = max;s (k) CEk) + R,

C PROOF OF THEOREM 6.2

In order to prove the theorem, we first find a regret lower bound based on the regret rate notion
that was used in the proof of Theorem 6.1.

LemMma C.1. Foranyk € K, let

4% = ®)(p) — ) (p*),
maxr (b) = r™(by)
and iy, = ming E[Xik/) A b1]. Then, for any admissible policy i, we have the following regret lower
bound:
Reg,(v) = pimin ), d® -E[T) (15 )] - O(D), (61)
k:d®) >0

— T
whereng . = T foranyé > 0.

The intuition behind Lemma C.1 is as follows: each suboptimal arm decision under r yields a
regret rate of r* — r(k>(b,’;). Since pip,in is a lower bound for the mean completion time of each epoch,
the RHS of (61) yields a lower bound for the regret.

Proor. The proof follows from the identical steps as Lemma B.1 and Lemma B.2, so we will
provide a proof sketch here.

In the first step, by bounding E[Rew, (7)] similar to Lemma B.1, we can show the following result
for all n:

Reg(r) 2 pimin - (3 d®) EIN(2) An] = ) Bln - T ] V) - 20,(0) - 0(1),  (62)
k k
where @, (1) is the overshoot function defined in (31).
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In the second step, we show that the following holds under any policy that satisfies the universal
optimality condition (37):

1
BINA(r) Ay ) =y, = O 577 ): (63)
This result is proved by using concentration inequalities similar to the proof of Lemma B.2. Substi-
tuting (63) into (62) yields the result. O

Lemma C.1 establishes a connection between the number of suboptimal decisions under a good
policy 7 and its regret. In the following, we provide lower bounds for the number of suboptimal
decisions based on [25].

LeEmMaA C.2. Under Assumption 3, for any & that satisfies
]E[T;k(;c)(n)] = o(n%), Ya > 0,n — oo, (64)

for any suboptimal arm k, the following lower bound holds:

E[T®) (m)] *)
lim inf IIL > Z ﬁ (65)
n—eo ogn 0 g, x(61107)°
where
dP(k)

Di(6116") = Ellog —5 (Va(k, b)),
dp,,

is the Kullback-Leibler (KL) divergence between Pék) and ng).

Proor. We present a Lai-Robbins style lower bound here, which makes use of the change of
measure argument as in [25]. Consider a suboptimal interrupt time indexed by k # 1 and 6 € ©7.
First, by Assumption 3, we can find 0’ € @z such that the following holds for sufficiently small
€>0:

Di(016) < (1 + €) inf Di(6]|9). (66)
96@2

Let
)

Zlog —(Ys(k. b)),

be the empirical Kullback-Leibler distance. For the € > 0 in (66), let deterministic sequences of real
numbers a, and ¢, be defined as follows:

1—¢€ 1
a, = ————logn,
" T Do) 8

(1+¢€/2)an - Di(0]10").

Cn

Thus, we can express P(T, (k)(n) < ayp) as follows:

P(T;k(;c)(n) <ay) = P(Tl(k&)(n) < an,Dp < cn) + P(Tl<’3<)(n) < an,Dp > cn). (67)
In the following, we show that both terms on the RHS of (67) is 0(1) as n — co.
In order to show that the first term on the RHS of (67) vanishes as n — oo, we make use of the

change of measure along with the universal optimality of the policy. Let A = { 1( k)(n) = ng, Dy e <
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cn} for a given deterministic sequence (c,,). Then, it is easy to show the following by using a change
of measure argument:

P(A) < e P'(A),
where P and P’ are the joint distribution of the history under 6 and ¢’, respectively. Similarly, let
E’ be the expectation under 6’. Then, we have the following:

IA

BT\ (1) = nie, Dy Scn) < eI () < an), (68)

k
. B/ln =T, ()]~ o(n)
¢ n-—a, ’

o(1), n — oo,

IN

where the first line follows from the above change of measure argument, the second line follows
from Markov inequality and the universal optimality assumption for suboptimal interrupt times,
and the last line follows from the assumption that the policy is universally optimal.

In order to prove that the second term on the RHS of (67) vanishes as n — oo, first observe that

(k) A A
{Tl*(k)(n) < an’DTl(:?k)(n) > Cn} c {?1%): Ds > Cn}- (69)
Let A’ = {Tl(k&)(n) < a”’DT,(f()k)(n) > ¢, }. Then, for
An = cn = an - Di(01160") = € - an - Dr(0110")/2,

the following inequalities hold:

P(A")

IA

P(max Ds > cn), (70)

s<an

IA

P(max |Ds — s - D(0]]6")] > An)
s<ap

dP(k)
< A—zVar( log 5 o (Yo(k, bk)))
where the first line follows from the relation (69), and the last line follows from Kolmogorov’s max-
imal inequality for martingales [16]. Note that Var( log 4Py (k) (Y (k,b; ))) < 4 for any distribution,

and /1—;’ — 0 as n — oo. Thus, the second term on the RHS of (67) vanishes as n — oo as well, which
implies that,

B () < a) = 1= BN, (1) > an) = o(1), n — oo.
Hence, by Markov inequality, the following inequality holds:

_
SR > 1+ 0(1), n — oo. (71)

n

By using (66), we deduce that the following holds:

k
BTG 1o
lim inf > -,
n—oo logn 1+e€ _inf Dy(0]10)
96@)7C

(72)

which completes the proof. O

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 43. Publication date: June 2019.



Le

arning to Control Renewal Processes with Bandit Feedback 43:31

Substituting the lower bound for the number of suboptimal decisions in Lemma C.2 to the regret

lower bound in Lemma C.2 yields the result.
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