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The form factors of the energy-momentum tensor can be accessed via studies of generalized par-
ton distributions in hard exclusive reactions. In this talk we present recent results on the energy-
momentum tensor form factors and densities in the bag model formulated in the large-N, limit.
The simplicity and lucidity of this quark model allow us to investigate many general concepts
which have recently attracted interest, including pressure, shear forces and angular momentum
density inside the nucleon. The results from the bag model are theoretically consistent, and com-
ply with all general requirements.
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1. Introduction

The nucleon form factors of the symmetric energy-momentum tensor (EMT) Tﬁv [1,2] can be
defined as follows
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with the kinematical variables defined as P = 1 (p+p'), A= (p’ — p), t = A%. The form factors for
different types of partons (a = g, u, d, ...) are renormalization scale dependent which we do not
indicate for brevity, whereas the total form factors are renormalization scale independent. EMT
form factors satisfy the constraints }',A*(0) = 1 and Y, J%(0) = 1/2 reflecting the fact that the
constituents carry the total mass and spin of the particle. The other fundamental property of matter,
the D-term defined by Y, D“(0) = D, is not constrained. The last form factor satisfies ), c*(¢) =0
due to EMT conservation, d,, THY =0 where THV =Y, T/,

The physical content of EMT form factors in terms of densities can be revealed in the Breit
frame where the momentum transfer A* is purely spatial. In the Breit frame one can define the

static energy-momentum tensor as (with E = /My + A® /4 [3]

d*A P
Tyy(r,s) = 2EQn] exp(—irA) (p',S'|Tuv(0)[p,S). (1.2)

The components of 7,y (r,s) can be interpreted as follows. The Ty (r,s) component corresponds to
the energy density inside the nucleon. The components /7 iTo(r,s) correspond to the distribution
of angular momentum inside the nucleon. The components of Tj(r,s) characterize the spatial

distributions of pressure and shear forces experienced by the partons inside the nucleon [3,4].

2. EMT form factors in large-N, limit

In the large-N, limit, as the number of colors increases in the color gauge group SU (N, ), the
mass of the nucleon increases linearly, My = ¢/(N,), while the nucleon size R = ¢(N?) remains
stable [S]. Hence in the large-N, limit the nucleon becomes denser, heavier and it’s motion becomes
non-relativistic. For the kinematic variables this implies that P* = &(N,), P = 0(N?), A= O(N?),
A’ =O(N ).

On the other hand, the EMT form factors have the following scaling behavior in the large-N,
limit for the isoscalar (Q = u+ d) flavor combinations [6]

AC(r)=O(ND), Jo(1)=0O(N), D°(1)=0(N7), &°(t)=ONp). 2.1)

Considering the kinematic variables in the large-N, limit and (2.1), the EMT form factors (1.1) in
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the large-/N, limit become
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where 8,y and Oy, denote xj, X, and x;, o). respectively, and , denotes the nucleon two-spinor.

3. EMT form factors in the bag model

In this section we present results [7] for the form factors in the large-N, limit in the bag
model [8]. In this model one describes the nucleon by placing N, = 3 non-interacting quarks in
a color-singlet state inside a "bag" with boundary conditions to confine quarks inside the bag. In
its rest frame the bag is a spherical region of radius R carrying a positive energy density B. The
bag model EMT form factors have first been studied by Ji et al. [9] for finite N.. In our approach
we choose to work in the large-N, limit where the motion of the heavy nucleon becomes non-
relativistic.

The EMT in bag model has quark and bag contributions. The symmetric quark EMT operator
is given by

uv 1_ 'Hu v Sy -H,u v, oiav
T) =7V —id*yY —idVyt + oty +idv Y |y, (3.1

where the arrows indicate which wave functions are differentiated. Evaluating the operator (3.1)
in the bag model yields the form factors depicted in Figure 1. As the figure shows, the whole
momentum and spin of the nucleon is carried by the quarks since A2(0) = 1 and J¢(0) = 1/2. The
D-term is, on the other hand, not constrained and we obtain the value D€ = —1.145 for massless
quarks. The last form factor ¢2(¢) is non zero due to the fact that the quark EMT (3.1) is not
conserved. Taking into account the bag contribution one finds that the constraint },¢*(0) = 0 is
satisfied. The results shown in Figure 1 refer to the large-N, limit and are consequently valid for
|t| < M. Considering the large-N, limit the results agree with [9].
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Figure 1: EMT form factors in the bag model for the contribution of quarks (Q = u+ d) in the large N,
limit (solid lines, this work). For comparison we also show results by Ji et al., Ref. [9], computed in the bag
model without (dotted lines) and with (dashed lines) considering boosts [7].
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4. EMT densities in the bag model

In order to compute EMT densities we need to take the Fourier transform of (p’, S|,y (0)|p, )
with respect to A as expressed in (1.2). In bag model one can also directly evaluate the matrix
elements of the EMT in coordinate space. Both approaches yield the same result for quarks [7].

The energy density Tyo(r) receives contributions both from quarks and the bag density B.
The quarks (the bag) contribute % (%) of the total nucleon mass for any N, in massless case. We
show our numerical result for Tyo(r) in Figure 2(a). The components Tj,(r) receive a contribution
only from quarks. The angular momentum density is defined by J; (r) = €7*r/T*(r) and receives
monopole and quadrupole contributions [10] which are related to each other in a model independent
way [11] which holds also in the bag model. The 7;;(r) components of the static EMT encode the
information on the distribution of pressure and shear forces and can be decomposed as

rirj 1

Tij(r) = s(r) < 23 5ij> +p(r) 8. 4.1)

where the trace part p(r) describes the radial distribution of the “pressure”, and the traceless part
s(r) describes the distribution of the “shear forces” inside the nucleon [3]. Both functions are
related to each other due to the EMT conservation by the differential equation

2 ds(r) N 2s(r)  dp(r)

i T e =0 (42)

Another important property which can be directly derived from the conservation of the EMT is the

von Laue relation

/dr p(r)=0. (4.3)
0

Notice that the von Laue relation requires the pressure distribution inside the nucleon to change
sign, at least once. In bag model p(r) receives contributions both from quarks and the bag density
B, whereas s(r) receives contribution only from quarks. We depict our numerical results for p(r)
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Figure 2: The total (Q+ bag) contributions to (a) energy density Tno(7) and (b) stress tensor T;;(r) densities
s(r) and p(r) as functions of r in the bag model. (c) Illustration how the von Laue condition is realized in
the bag model: 7°p(r) as function of r. The areas above and below the r-axis are equal and compensate
each other in the integral f(f dr r*p(r) = 0 according to Eq. (4.3). The results refer to massless quarks. The
vertical lines mark the position of the bag boundary at R ~ 1.71 fm.
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and s(r) in Figure 2(b) and for the von Laue relation in Figure 2(c). Notice that in general p(r), s(r)
as well as other EMT densities do not vanish at the bag boundary. The bag model results satisfy the
differential equation (4.2) as well as the von Laue relation (4.3). First phenomenological insights
on the pressure distribution inside the nucleon were discussed in [12, 13].

The conservation of the EMT also provides two equivalent expressions for the D-term,

4
D= — G My /d3r rs(r) = MN/d3r r p(r), (4.4)
which both yield the result D = —1.145 for massless quarks and N, = 3, in agreement with numer-

ical results for the form factor D(¢) at r = 0, cf. Sec. 2 and [7,9].

5. Conclusions

We have studied EMT form factors and their densities in the large-N, limit in the bag model.
We have shown that the bag model results comply with all general properties of the EMT form
factors and densities, and exhibit similar features as observed in earlier theoretical studies [15—
28]. Thus, the bag model is an attractive and simple theoretical playground which provides an
internally consistent description of the nucleon, and allows to investigate in detail the generic EMT
of hadrons [7]. This encourages to explore this model for further studies of the newly introduced
EMT concepts [29-34]. An interesting application of the bag model was reported in [35] where it
was shown in general that the D-term of a fermion vanishes in the free-field case. The bag model
was used in [35] to provide an internally consistent dynamical example illustrating how the D-term
of a fermionic system vanishes when interactions are absent.
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