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A Predictive Deep Learning Approach to Output Regulation: The Case of
Collaborative Pursuit Evasion
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Abstract—1In this paper, we consider the problem of con-
trolling an underactuated system in unknown, and potentially
adversarial environments. The emphasis will be on autonomous
aerial vehicles, modelled by Dubins dynamics. The proposed
control law is based on a variable integrator via online
prediction for target tracking. To showcase its efficacy we
analyze a pursuit evasion game between multiple autonomous
agents. To obviate the need for perfect knowledge of the evader’s
future strategy, we use a deep neural network that is trained to
approximate the behavior of the evader based on measurements
gathered online during the pursuit.

I. INTRODUCTION

Output tracking in dynamical systems is the practice of
designing decision makers which ensure that a system’s
output tracks a given signal [1], [2]. Well-known existing
methods for nonlinear output regulation and tracking include
control techniques based on nonlinear inversions [3], high-
gain observers [4], and the framework of model predictive
control (MPC) [5], [6].

Recently a new approach to output tracking has been pro-
posed by authors of this paper, based on the Newton-Raphson
flow for solving algebraic equations [7]. Subsequently it has
been tested on various applications, including controlling
an inverted pendulum and position control of platoons of
mobile robotic vehicles [7], [8]. While perhaps not as general
as the aforementioned established tracking techniques, it
seems to hold out promise of efficient computations and
large domains of stability. However, this approach has two
glaring limitations: It is model based, and its application
requires that the system’s input and output have the same
dimension. The objective of this paper is to circumvent
these limitations. To this end we analyze a particular but
challenging example which serves to illustrate initial ideas,
whose further developments and expositions in more-general
settings is currently under investigation.

The example in question consists of the pursuit-evasion
problem investigated in [9], where the strategies of both
pursuers and evader are based on respective games. In [9], the
pursuers know the game of the evader ahead of time, and an
MPC technique is used to determine their trajectories. This
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paper considers the case where the pursuers do not have an
a-priori knowledge of the evader’s game or its structure, and
they employ a neural network (NN) in real time to identify its
input-output mapping. We use our tracking-control technique
[7] which arguably can require simpler computations than
MPC, and obtain similar results to [9]. Furthermore, the
considered problem has lower-dimension input than output,
and we demonstrate an approach to overcome this limitation
which may have a broad scope in applications.

It is hard to exaggerate the importance of learning tech-
niques in control. The successful deployment of complex
control systems increasingly depends on their ability to
operate on highly unstructured — even adversarial — set-
tings, where a-priori knowledge of the evolution of the
environment is impossible to acquire. Moreover, due to
the increasing interconnection between the physical and the
cyber domains, control systems become more intertwined
with human operators, making model-based solutions fragile
to unpredictable. Towards that, methods that augment low-
level control techniques with intelligent decision making
mechanisms have been extensively investigated in the past
three decades (see [10]). Machine learning [11], [12] offers a
suitable framework to allow control systems to autonomously
adapt by leveraging data gathered from their environment.
To enable data-driven solutions for autonomy, learning algo-
rithms use artificial neural networks.

NNs have been used extensively to implement reinforce-
ment learning and machine-learning techniques in various
control application; see [13] for an early work, and [14] for a
recent survey. Prediction has been in the forefront of research
conducted on machine learning, with applications ranging
from cyber security [15], [16] to pursuit-evasion games [17].

The rest of the paper is structured as follows. Section II de-
scribes our proposed control technique and some preliminary
results on NN, and it formulates the pursuers-evader problem.
Section III describes our approach to the problem, based
on model-based and learning-based strategies. Simulation
results are presented in Section IV, and Section V concludes
the paper. An extended version of this paper appeared in
[18].

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Tracking Control Technique

This subsection recounts results published in our previous
work in which prediction-based output tracking was used for
fully-actuated systems [7], [8]. Consider a system as shown
in Figure 1 with r(t) € R™, y(t) € R™, u(t) € R™, and

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 02,2020 at 15:01:03 UTC from IEEE Xplore. Restrictions apply.



r(t) u(t)

e(t) Controller y(t)
‘ontroller Plant —
) (

Fig. 1.  Basic control system scheme.

e(t) := r(t) — y(t). The objective of the controller is to
ensure that

Jim [Ir(t) — (]| < <,

for a given (small) € € R,

To illustrate the basic idea underscoring the controller, let
us first assume that (i) The plant subsystem is a memoryless
nonlinearity of the form

y(t) = g(u(®)), ()

for a continuously-differentiable function g : R™ — R™,
and (ii) the target reference {r(t) : t € [0,00)} is a constant,
r(t) = r for a given r € R™.! These assumptions will be
relaxed later. In this case, the tracking controller is defined
by the following equation,

0
i(t) = (52 (u(t))
assuming that the Jacobian matrix g—g(u(t)) is nonsingular at
every point u(t) computed by the controller via (2). Observe
that (2) defines the Newton-Raphson flow for solving the
algebraic equation  — g(u) = 0, and hence (see [19]) the
controller converges in the sense that lim;_,, (r(t)—y(t))
0. Next, suppose that the reference target is time-dependent,
while keeping the assumption that the plant is a memoryless
nonlinearity. Suppose that {r(¢)} is bounded, continuous,
piecewise-continuously differentiable, and {r(¢)} is bounded.
Define
| )

then (see [19]), with the controller defined by (2), we have
that

-1

(r—y(t), )

3)

7 := lim sup [|7(t)]
t—00

4)

Note that Egs. (1) and (2) together define the closed-loop
system as a dynamical system in the variable {u(¢)}. Its
stability, in the sense that {u(¢)} and {y(t)} are bounded
whenever {r(t)} and {r(t)} are bounded, is guaranteed by
(4) as long as the control trajectory {u(t)} does not pass
through a point u(t) where the Jacobian matrix ?—g(u(t)) is
singular.

Finally, let us dispense with the assumption that the plant
subsystem is a memoryless nonlinearity. Instead, suppose
that it is a dynamical system modeled by the following two
equations,

Tim [Ir() — y(0)]| < 7.

®)
(6)
"Henceforth we will use the notation {z(t)} For a generic signal

{z(t), t € [0,00)}, to distinguish it from its value at a particular point
t, z(t).
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where the state variable x(t) is in R™, and the functions
f:R*"xR™ — R" and h : R® — R satisfy the following
assumption.

Assumption 1. (i). The function f : R™ x R™ — R" is
continuously differentiable, and for every compact set I' =
R™ there exists K € RT such that, for every x € R" and
uwe L, ||f(z,w)] < K(||z|]| + 1). (ii). The function h :
R™ — R™ is continuously differentiable. O

This assumption ensures that whenever the control signal
{u(t)} is bounded and continuous, the state equation (5) has
a unique solution x(t) on the interval t € [0, o).

In this setting, y(¢) is no longer a function of w(t), but
rather of z(¢) which is a function of {u(r) : 7 < t}.
Therefore (1) is no longer valid, and hence the controller
cannot be defined by (2). To get around this conundrum
we pull the feedback not from the output y(¢) but from a
predicted value thereof. Specifically, fix a look-ahead time
T € RT, and suppose that at time ¢ the system computes
a prediction of y(¢t + T'), denoted by ¢(t + T'). Suppose
also that g(t + T) is a function of (x(t),u(t)), hence can
be written as §(t + T') = g(z(t),u(t)), where the function
g : R" x R™ — R™ is assumed to be continuously
differentiable.

Now the feedback law is defined by the following equa-

tion,

The state equation (5) and control equation (7) together
define the closed-loop system. This system can be viewed
as an (n + m)-dimensional dynamical system with the state
variable (z(t)T,u(t)T)T € R"*™ and input 7(t) € R™. We
are concerned with a variant of Bounded-Input-Bounded-
State (BIBS) stability whereby if {r(¢)} and {r(¢)} are
bounded then {z(¢)} and {u(¢)} are bounded as well. Such
stability no-longer can be taken for granted as in the case
where the plant is a memoryless nonlinearity.

We remark that a larger 7' means larger prediction errors,
and these translate into larger asymptotic tracking errors. On
the other hand, analyses of various second-order systems in
[7] reveals that they all were unstable if 7" is too small, and
stable if T is large enough. Therefore, a requirement for
a restricted prediction error stands in contradiction with the
stability requirement. This issue was resolved by speeding up
the controller in the following manner. Consider o > 1, and
modify (7) by multiplying its right hand side by «, resulting
in the following control equation:

o
It was verified in [7], [8] on several examples that regardless
of the value of T € R*, a large-enough « stabilizes the
closed-loop system; this statement seems to have a broad

scope and does not require the plant to be a minimum-phase
system. Furthermore, if the closed-loop system is stable then

dg

ou

a(t)

(a(t).u(®)) " (r(t+T) — gla(t),u(t))). @)

g
ou

(1) (@(t).u(®)) " (r(t+T) — gla(t), u®).
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the following bound holds (see [19]),
lim sup [r(t) — §(0)]] <
t—0o0 (0%

where 7 is defined by (3). Thus, a large gain « can stabilize
the closed-loop system and reduce the asymptotic tracking
error.

B. Problem Formulation

The application example consists of controlling the trajec-
tory of a planar Dubins vehicle providing a dynamic model
for fixed-wing aircraft at a constant elevation [20]. The model
is a three-dimensional dynamical system of the form

ZP(t) = VP cos 6P (1),
ZB(t) = VPsin 6P (t),
0°(1) = u(t),
where (2% (t), 25(t))T denotes the planar position of the ve-

hicle, 6P (t) its heading, and u(t) is the angular acceleration.
The vehicles speed, VP, is a given positive constant. u(t)
satisfies the constraint ||u(¢)|| < umax for a given umay > 0,
and this enforces the minimum turning radius of V? [ty In
the considered control application such a vehicle, henceforth
referred to as the pursuer, is tasked with tracking an evading
vehicle. The evader’s motion has the following single (two-
dimensional) integrator model,
|

V€ cos 0°
V€ sin 6°

4
dt

[zm] _

25(t)
where (2§(t),25(t))T denote the planar position of the
evader, and V¢ is its speed, assumed a constant smaller than
VP, We consider two cases; one where the evader is agnostic
to the pursuer and follows a known trajectory, and the other
where the evader is adversarial in nature and its trajectory
is not known to the pursuer. The next section will provide
two solutions for the problem of estimating the evader’s
trajectory based, respectively, on a model-based approach
and a learning-based approach.

III. PREDICTIVE FRAMEWORK
A. Model-Based Pursuit Evation

The considered system is underactuated because the two-
dimensional position of each pursuer , (2% (t),25(¢))7, is
controlled by a one-dimensional input, «(¢). In order to apply
the tracking framework described in Subsection II A, which
requires equal dimensions, we define a suitable function
F: R* - RY and set g(a(t),u(t)) := §,"" F(g#(r) —
g¢(7))dr, where §P(7) and 3¢(7) are the predicted positions
of the pursuer and the evader at time 7; we then apply the
Newton-Raphson flow to the equation g(x(t), u(t)) = 0. The
modified controller becomes

a(t) = fa(ag <x<t>,u<t>>)_1(g<x<t>,u(t))), £20. 8

ou
Since g(z,u) is a scalar, the modified algorithm works
similarly to the base case described in Section II.
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Assume general nonlinear system dynamics as in Egs. (5)
- (6). The predicted state trajectory, &(7), T € [t,t + T7,
is defined by the state equation (6) with a constant input,
u(7) = u(t), and the initial state £(¢) = x(t). Thus,

E(r) = fE(r) ul®), 7€ [t,t+T], 9

with the initial condition £(t) = x(t). The predicted output
at 7 = ¢+ T is defined as ¢?(7) = h(&(7)). Furthermore, by
taking the partial derivative of (9) with respect to u(t), we
obtain

¢\ _of 0¢ of
5ot (1) = ZHE ) 5 (1) + S uo),
with the initial condition %(t) = 0. This is a differential

equation in %(7); 7 € [t,t + T], which can be solved
numerically concurrently with (11). Egs. (11) and (12) give
g(z(t),u(t)) and S—Z(w(t),u(t)) thereby providing all the
elements required for the control law defined by (10).

In the adversarial problem formulation the trajectory of
the evader is not known in advance, which can be overcome
in two ways. In the first approach, the pursuer(s) use game
theory to predict the approximate direction of evasion. In
the case of a single pursuer, [21] proved that the evader’s
optimal strategy is to move away from the pursuer in the
opposite direction from it if the distance between the two
is greater than the pursuer’s minimum turning radius, and
in a perpendicular direction from the line connecting them
if the distance is reduced to the minimum turning radius.
The problem-setting described below somewhat modifies this
setting by having the evader move towards a given stationary
goal instead of straight away from the pursuer, but we keep
the same non-holonomic evasive manoeuvre as in [21]. In
the case of multiple pursuers, it is assumed that the evader
applies the same strategy only to one pursuer at a time, the
one closest to it.

The second approach involves learning the evader’s be-
havior over time using NN. The pursuers take their positions
and the position of the evader as input, and the NN gives the
estimated evasion direction as the output.

We consider a pursuit evasion problem involving two
pursuing agents, but possible extensions to scenarios involv-
ing more pursuers are clear from the presentation. Such
problems are typically formulated as zero-sum differential
games [21]. Instead of solving the Hamilton-Jacobi-Isaacs
(HJT) equations formulated in [22], we apply the tracking
technique described in Subsection II-A, augmented by learn-
ing structures, to approximate the desired behavior.

In order to formulate the pursuit evasion problem, we
define a global state space system consisting of the dynamics
of the pursuers and the evader. The global state dynamics
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become,

(200 (1)] [VP1 cos OP1]
254 (1) VP1 gin 9P
OP1(t) uf
d 22(t) _ VP1 cos GP2 (10)
dt | 252 (t) VP2gin P2 |’
A0 ul
28(t) Ve cos 6°
| 25(¢) | | VEsing® |

where the superscripts indicate the autonomous agents. For
compactness, we denote the global state vector by x(t) €
RS, and the pursuers’ control vector by u(t) € R? Thus,
given the initial states of the agents zy € RS, the evolu-
tion of the pursuit evasion game is described by @(t)
fx(t),u,ue), ©(0) = xg, t = 0.

Subsequently, this zero-sum game can be described as a
minimax optimization problem through the cost index,

J(x,u,ue) = J )
dt,

0
11

0

e "' L(x)dt

did3
d3 +d3

J

where d; = /(2] — 2°)2 + (2 — 25)2, i € {p;,py} is the
distance between the i-th pursuer and the evader, 3;, (2 €
R* are user defined contants, and v € R" is a discount
factor. The first term ensures that the pursuers remain close
to the evader, while the second term encourages cooperation
between the agents. The cost decreases exponentially to
ensure that the integral has a finite value in the absence of
equilibrium points.

Let V(z) : R® — R be a smooth function quantifying the
value of the game when specific policies are followed starting
from state x(¢). Then, we can define the corresponding
Hamiltonian of the game as

oV
)

The optimal feedback policies of the pursuer and evader
of this game are u*(x), u’(x) of this game are known to
constitute a saddle point [22] such that,

e (ﬁl(df +d3) + fo

T
L) + O fle w44V, ()

H(x,u,ue,

(13)
(14)

u*(x) = argmin H(z,u, u.),
u

us(z) = argmax H (z,u, ue).
e

Under these optimal policies, the following HJI equation is

satisfied,
ov*

ox

Evaluating the optimal pursuit policies, yields the singular
optimal solutions described by, Vy,,u1 = Vp ,uz = 0, where
Vz, is the partial derivative of the value function with respect
to the state x;, calculated by solving (15). To obviate the
need for bang-bang control, as is derived by (13) and (14)
we shall employ the predictive tracking technique described

H(z,u*,ul, ) =0. (15)
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in Section II-A to derive approximate, easy to implement,
feedback controllers for the pursuing autonomous agents.
Furthermore, by augmenting the predictive controller with
learning mechanisms, the approximate controllers will have
no need for explicit knowledge of u}(x), the evader’s policy.

The following theorem presents bounds on the optimality
loss induced by the use of the look-ahead controller approx-
imation.

Theorem 1. Let the pursuit evasion game evolve according to
the dynamics given by (10), where the evader is optimal with
respect to (11) and the pursuers utilize the learning-based
predictive tracking strategy given (8). Then, the tracking error
of the pursuers and the optimality loss due to the use of the
predictive controller are bounded if JA € R*, such that,
A(z(t),a(t),a(t)e) < A, Vt = 0, where A(x,q,1.) =
Vi Ve(cos tle — cosuy) + Vi, ve(sin te — sinug) + Vo,1(uf —
1) + Vg,2(us — dz), with Ve denoting the partial derivative
of the game value with respect to the state component ().
Proof: Consider the Hamiltonian function when the ap-
proximate controller, denoted #(t) and the NN-based pre-
diction of the evader’s policy, 4. (t) are used,
ov
ox
Taking into account the nonlinear dynamics of the system
(10), one can rewrite (16) in terms of the optimal Hamil-
tonian as,H (z,4,t.) = H(z,u*,u}) + A(d, ), where
H(z,u*,u}) = 0 is the HJI equation that is obtained after
substituting (13) and (14) in (12). Now, take the orbital
derivative of the value function along the trajectories using
the approximate controllers as, V = (%)T fla, a, ).
Substituting (16) yields V = —L(z) — vV + A(z, @, Ge).
Thus, since L(x) > 0, Vz € R®\{0},

V < =V + Az, G, 0) = V < —yV + A.

H(z, 0, 4:) = L) + (5=) f(z,@,d) +V.  (16)

>

Hence for V > A/y, we have V < 0. Thus {z €
R® | V(z) < A/v} is a forward invariant set, which implies
that the tracking error and the optimality loss over any finite

horizon is bounded. |

B. Deep Learning-Based Pursuit Evasion

A deep NN, consisting of L > 2 hidden layers, describes
a nonlinear mapping between its input space R" and output
space RP. Each layer receives the output of the previous
layer as an input and, subsequently, feeds its own output to
the next layer. Each layer’s output consists of the weighted
sum of its input alongside a bias term, filtered through an
application-specific activation function [11].

Specifically, let R™ be the input space of a specific layer,
and RP' the corresponding output space. Then the layer’s
output is,

i) = o

U2

2

Vi X +Uz‘0>7 1=1,2,...,p,
=1

T . .
where X’ = [X; X,,,] € R™ is the input vector,
gathered from training data or from the output of previous
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layers, v;; € R is a collection of n; weights for each layer,
v;0 € R the bias term and o : R™ — R is the layer’s
activation function. We note that it is typical to write the
output of layer compactly, with slight abuse of notation, as,

Y = o(W'' (X)),

where Y = [V; Y| € R, W = [v;;] € Rm+D)xp
and o’ : R™ — R™ is the activation function of tThe previous
layer, taking as input the vector X = [X /T 1]

It is known [23], that two-layer NNs possess the universal
approximation property, according to which, any smooth
function can be approximated arbitrarily close by an NN
of two or more layers. Let S < R™ be a simply connected
compact set and consider the nonlinear function x : S — RP.
Given any €, > 0, there exists a NN such structure such that,

k(z) = o(W'o'(z)) + € Vo €S,

where || < €,. We note that, typically, the activation
function of the output layer o(+) is taken to be linear.

Evaluating the weight matrix ¥ in a network is the main
concern of the area of machine learning. In this work, we em-
ploy the gradient descent based backpropagation algorithm.
Given a collection of Ny training data, stored in the tuple
{xk, KK}k, where x € R, ki € RP, Yk = 1,..., Ny, we
denote the output errors as ry = x(x)— k. Then, the update
equation for the weights at each optimization iteration ¢ is
given by,

o(rgrr)
(9wij ’

where 7 € Rt denotes the learning rate. We note that the
update index t; need not correspond to the sample index
k, since different update schedules leverage the gathered
data in different ways [23]. It can be seen that in order
for the proposed method to compute the pursuers’ control
inputs, an accurate prediction of the future state of the evader
is required. However, this presupposes that the pursuers
themselves have access to the evader’s future decisions; an
assumption that is, in most cases, invalid. Thus, we augment
the pursuers’ controllers with a NN structure, that learns to
predict the actions of the evader, based on past recorded data.

Initially, we assume that the evader’s strategy is com-
puted by a feedback algorithm, given her relative posi-
tion to the pursuers. This way, the unknown function we
wish to approximate is f R2N . R2, with, u¢ =
F(021 0281, . 024N, 628N, where, (0217,025") denote
the distance of pursuer ¢ to the evader in the X and Y axes,
respectively. In order to train the network, we let the pursuers
gather data regarding the fleet’s position with respect to
the evader, as well as her behavior over a predefined time
window T; > 0. We point out that the choice of 7; comprises
a balance between the effectiveness of the learning procedure
and its computational efficiency.

Subsequently, we denote by 4°(z), the current prediction
function for the evader’s strategy, i.e., i¢(z) = o (W' (x)),
[621 by bry dyn] € RV, w

wij(ty + 1) = wi;(te) —n Vi, € N,

where xy =

denotes the current weight estimate of the NNs output
layer, and 67(+) is the current estimate of the hidden layers,
parametrized by appropriate hidden weights. We remark
that the learning algorithm for the evader’s behavior is
implemented sequentially, in batches (rather than continuous
time) throughout the duration of the pursuit.

IV. SIMULATION RESULTS

This section presents results for the problems described
in the previous section. First, the agnostic evader case is
considered followed by the adversarial case. For the second
case, single and multiple pursuer systems are considered sep-
arately. The controller is implemented on a Dubins vehicle.
For the purpose of tracking, we define the system output to

%

. T .
be y' = [zl zé] , 1€ {p1,pa,e}.
A. Single Pursuer - Agnostic Target

In this subsection an agnostic evader moves along a
known trajectory without practicing an evasion strategy. In
the simulation we set the pursuer’s speed to VP = 2 m/s,
and its input saturation to 27 rad/s. The evader moves along
two semicircular curves with a constant speed of 0.47 m/s.

Figure 2 depicts the trajectories of the pursuer and evader.
It is seen that whenever the pursuer catches up with the
evader, it goes around a whole circle at its minimum turning
radius; this is due to the fact that it has a constant speed. A
graph of the tracking error vs. time is shown in Figure 3, and
its periodic nature is due to the circles along its trajectory.

A better tracking performance can be obtained if the
pursuer has a smaller minimum turning ratio. We tried that on
a simulation where the saturation input is 5 rad/s, a quarter
of what it was in the previous example. The results, not
shown here but depicted in [18], exhibit radii and maximum
errors at 25% of those shown in Figure 2 and Figure 3.

Reference Trajectory
Vehicle Trajectory

Y [m]

5 0 5 10 15 20 25 30 35 40
X [m]
Fig. 2. Agnostic evader.

8 T T T T T T T T T
Tracking Error
Turning radius

Tracking Error [m]

VAR

15 20 25
Time [s]

L\ \VANER VA
5 10 30 35 40 45

50

Fig. 3. Evolution of an agnostic evader tracking error.
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B. Single Pursuer - Adversarial Evader

The pursuer is again modelled as a Dubins vehicle, while
the evader is modelled as a single integrator with a maximum
velocity less than the speed of the pursuer. Hence, while the
pursuer is faster, the evader is more agile, and can instantly
change its direction of motion. In this and subsequent cases,
the evader is considered adversarial in nature and uses game
theory to choose evasion direction.

Let yP(t) and y°(t) be the position vector of the pursuer
and evader respectively at time t. First, the pursuer makes
an estimate of the optimal evasion direction based on the
relative position of the evader and itself at time ¢ using its
knowledge of the evader’s game. Assuming this direction of
evasion to be fixed over the prediction window from ¢ to
t + T gives the predicted position of the evader at all time
instances in this interval, denoted as §°(7),7 € [t,t + T1.
Next, the pursuer estimates its own predicted position if its
input is kept constant, called ¢?(7),7 € [t,t + T']. Finally,
g(t) is set as ||[§¢(t + T) — gP(t + T)||*> and the value of
%Z(x(t), u(t)) (z(t) being the ensemble vector of the states
of the pursuer and the evader) is used to compute the input
differential equation (8).

Figures 4 shows the trajectories of the pursuer and the
evader, with the goal for the evader set to the point (150, 60).
It can be observed that the evader moves towards the goal
while the pursuer is far away and starts evasive maneuvers
when it gets close to it, by entering its non-holonomic region.
Figure 5 displays the tracking error, defined as the distance
between the pursuer and the evader, which is almost periodic.
This is because the evader’s maneuver forcing the pursuer to
circle back. The peak tracking error after the pursuer catches
up is slightly more than twice the turning radius, as expected.
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C. Multiple Pursuers - Adversarial Evader

Consider the case of two pursuers and a single evader.
Having multiple pursuers requires a cooperation between
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them for an effective utilization of resources. Thus, a pursuer
can no longer make decisions solely based on the position of
the evader relative to itself, but it must take into account the
positions of the other pursuers. To achieve that, we redefine
the expression for g(x, u) as shown below for the case of two
pursuers. Let d;, be the distance between the two pursuers,
and let
+ 5 BB
&(7) + d3(7)

+ ﬂge_wd"(T)}dT, vt > 0.

g(x(t), u(t)) :

| HT{ﬁl (@(r) + dB(r))

The first term ensures that the pursuers remain close to
the evader, while the second term encourages cooperation
between agents [9]. The last term is added to repel pursuers
apart if they come close to each other.

Figure 6 shows the trajectories of the pursuers and the
evader when the goal for the evader is set to the point
(15,—1). In this case, the pursuers close in on the evader
and trap it away from its goal due to their cooperative
behavior. The evader is forced to continuously perform an
evasive maneuver on one pursuer at a time while the other
pursuer makes a turn. This can be seen more clearly in the
tracking error plot given in Figure 7, where after catching
up with the evader, one pursuer is at its maximum distance
when the other one is close to its minimum distance. This
result, reflecting on the coordination between the pursuers,
is qualitatively comparable to those obtained in [9].

Lastly, we present the results under the learning-based
prediction described in Section III. Figure 8 depicts the
trajectories of the pursuers and evader, and Figure 9 presents
a comparative result of the tracking errors of the model-
based algorithm vis-a-vis the NN-based control. Figure 10
compares the performance quality defined by (11) for the
NN-based control and the model-based control. From these
figures, it can be seen that the NN structure offers predictive
capabilities to the controller, and a comparable tracking-
performance to the model based control.

V. CONCLUSION AND FUTURE WORK

This work extends the framework of prediction-based
nonlinear tracking in the context of pursuit evasion games.
We present results for vehicle pursuit of agnostic targets,
modeled as moving along known trajectories, as well as
adversarial target tracking, where the evader evolves accord-
ing to game-theoretic principles. Furthermore, to obviate the
need for explicit knowledge of the evader’s strategy, we em-
ploy learning algorithms alongside the predictive controller.
The overall algorithm is shown to produce comparable results
to those in the literature, while it precludes the need for
solving optimal control problems in real time.

Future work will focus on developing robustness guaran-
tees will allow for more realistic scenarios, where noise and
external disturbances are taken into consideration.
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