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Abstract: The increasing availability of information-rich data sets offers an invaluable opportu-
nity to complement and improve the performance of existing model-based feedback algorithms.
Following this principle, in this paper we present a novel class of Data-Enabled Extremum
Seeking (DEES) algorithms for static maps, which make use of current and recorded data
in order to solve a convex optimization problem characterized by a variational inequality. The
optimization dynamics synergistically combine ideas from concurrent learning and classic neuro-
adaptive extremum seeking in order to dispense with the assumption of requiring a persistence
of excitation condition in the closed-loop system. Using analytical tools for nonlinear systems
we show that for a general class of optimization dynamics it is possible to tune the parameters
of the controller to guarantee convergence in finite time to an arbitrarily small neighborhood of
the set of optimizers. The results are illustrated in a scalar constrained minimization problem.
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1. INTRODUCTION

Recent years have seen an increase of interest in data-
driven control techniques that exploit the large amounts
of data available in many practical applications. However,
while areas such as machine learning, reinforcement learn-
ing, and gradient-free optimization have made significant
breakthroughs during the last years, there is still a need
to develop data-driven algorithms with provable and certi-
fiable robustness properties for certain applications where
safety is a critical concern. This necessity has motivated
the study of novel robust feedback mechanisms that com-
bine data-driven techniques with model-based principles,
i.e., learning-based controllers, see for instance Benosman
(2016), Vamvoudakis et al. (2015) and the recent survey
papers of Benosman (2018) and Poveda et al. (2019).

In the area of real-time optimization, extremum seek-
ing (ES) control has emerged as a promising feedback-
based methodology with certifiable stability and robust-
ness properties. The first stability analysis of ES was pre-
sented in Krsti¢ and Wang (2000) and Ariyur and Krsti¢
(2003) using averaging and singular perturbation theory
for ordinary differential equations. Semi-global practical
results were later developed in Tan et al. (2006), and
further generalized in Ne§i¢ et al. (2010); Poveda and
Teel (2017a) for a broader class of optimization dynam-
ics. Other averaging-based algorithms have been recently
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studied in Diirr et al. (2013); Mills and Krsti¢ (2014);
Poveda et al. (2017a, 2018); Grushkovskaya et al. (2018);
Feiling et al. (2018). ES architectures based on sampled-
data systems have been studied in Popovic et al. (2006);
Khong et al. (2013) and in Poveda and Teel (2017Db).
In the context of ES with a persistence of excitation
(PE) condition, the works of Guay and Zhang (2003);
Guay et al. (2015); Dougherty and Guay (2017) and refer-
ences therein, have developed significant results for single-
agent and multi-agent optimization problems. A set-point-
based relaxed PE condition with sinusoids is presented in
Adetola and Guay (2007). Hybrid ES architectures that
combine continuous-time and discrete-time dynamics, and
that require a PE condition during the flows were also
presented in Poveda et al. (2017b). These techniques have
all been developed under the assumption that the con-
troller has access only to current data. However, as shown
in Chowdhary and Johnson (2010), in some adaptive con-
trollers it is possible to relax the classic PE condition by
using “sufficiently rich” recorded data. Nevertheless, to the
best of our knowledge, the development and analysis of ES
architectures that use current and past data concurrently
during the seeking process are absent in the literature.

In this paper, we present a novel class of ES algorithms
that dispense with the classic PE condition. In particular,
we show that the ideas behind concurrent learning and
extremum seeking control can be synergistically combined
to achieve real-time optimization in settings where there
exists sufficiently rich stored data. The resulting Data-
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Enabled Extremum Seeking (DEES) algorithms are appli-
cable to general optimization problems described as convex
variational inequalities where the cost function is only
accessible via measurements or function evaluations. One
of the requirements that we impose on these dynamics is
that the optimizing state needs to evolve in a compact set
defined a priori for all time. Given that there exists several
Lipschitz continuous gradient-based optimization dynam-
ics with projection that guarantee forward invariance of
compact sets, the compactness requirement does not seem
to impose major restrictions on the type of optimization
problems that we can study. To illustrate this point, we
present a Lipschitz DEES algorithm based on projected
gradient dynamics. To the best of our knowledge, the
results of this paper correspond to the first ES algorithms
that exploit the idea of concurrent learning using recorded
data instead of dithering signals.

The rest of this paper is organized as follows: In Section 2
we present some preliminaries and definitions. In Section 3
we present the main results. Section 4 presents a numerical
example, and finally Section 5 ends with the conclusions.

2. PRELIMINARIES AND NOTATION

The set of (nonnegative) real numbers is denoted by (R>¢)
R. The set of (nonnegative) integers is denoted by (Z>o)
Z. We use B to denote a closed unit ball of appropriate
dimension, pB to denote a closed ball of radius p > 0, and
X + pB to denote the union of all sets obtained by taking
a closed ball of radius p around each point in the set X.
We use ¢o X to denote the closed convex hull of X', X to
denote its closure, and int(X) to denote its interior. We say
that f € C? if the function f is at least twice differentiable.
A constrained ODE of the form

&t=F(z), z€C, (1)
is said to render a compact set A uniformly globally
asymptotically stable (UGAS) if there exists a KL function
B such that |z(t)|a < B(|z(0)],t), for all t € dom(x) and
all z(0) € C. If dom(z) = [0, 00), the solution x is said to
be complete.

3. DATA-ENABLED EXTREMUM SEEKING

The standard ES setting in static maps aims to solve an
optimization problem of the form

subject z € K, (2)

where f : R™ — R is an unknown continuously differen-
tiable objective function defined on an open set containing
the closed set K C R™. The objective function is assumed
to be accesible only by measurements or evaluations. If f
is also a convex function and the set K is convex, a point
x* € K is a solution of (2) if and only if it satisfies the
variational inequality

(x—2")Vfz*) >0, VzeK, (3)
where Vf(x) is the gradient of f(z), (Rockafellar and
Wets, 1998, Thm 6.12). Consequently, for convex optimiza-
tion problems, ES can be seen as a feedback-based data-
driven algorithm designed to converge to the solutions of
(3). Since, in general, it is difficult to verify a priori a
convexity condition on the cost function f(x), typical ES
controllers assume that (3) holds only “locally”. Because of

minimize f(x)

this, and in order to impose some regularity conditions to
problem (2), we make the following standing assumption.

Assumption 1. The function f is convex and continuously
differentiable on an open set D D K, and the set K is
compact, convex, and nonempty.

We denote by A the set of all feasible points x* satisfying
(3), that is

A={z"eK: (x—z")Vfz*) >0, Ve K}. (4)

By Assumption 1, this set is nonempty and compact
(Facchinei and Pang, 2003, Corolloray 2.2.5).

There exist several approaches in the literature to solve the
ES problem (2), including averaging-based architectures,
sampled-data based controllers, stochastic algorithms, and
neuro-adaptive schemes, to just name a few. In this paper,
we focus on the later type of ES controllers, which exploit
ideas from adaptive control and neural networks in order
to obtain uniform approximations of V f(z) on compact
sets.

3.1 Feedback Structure

In order to solve problem (2), consider an ES algorithm
characterized by the following ODE:

W= Fy (0, é(x),e), (5a)
3 =ceF, (0w V(z),2), z€C,, (5b)

where z := [x7,57]" € R*" and s € R” is an auxiliary
state of dimension r € Z>o. The mapping F, is assumed
to be continuous, and the set C, C R"" is assumed to be
compact. The pair (F,,C,) is application-dependent and
designed to solve problem (3) based on the structure of K.
The error signal e in (5a) is defined as

e =0 6(x) - f(a), (6)
and the state w € RP is an auxiliary state used to estimate
the ideal weights w* € RY of a parameterization of the
objective function, given by

fla) =w""¢(z) +e(z), YaeK, (7)
where w* € RP belongs to the set of ideal weights

Wi i= {0 € R if(2) — 0T 6(a)| < ela),z € K},

which we assume to be compact, i.e., there exists w >
0 such that Wy x C wB. The vector valued regressor
function ¢ : K — RP is assumed to be known and ¢ € C2.
The regressor function ¢ = [¢1,¢2,...,¢,]  should be
selected such that the functions ¢;, j € {1,...,p}, define
a complete independent basis set for f(x). Typical choices
of ¢; include quadratic functions, radial basis functions,
or sigmoid functions, see Vamvoudakis and Lewis (2010).

We shall need the following technical assumption on the
approximation (7).

Assumption 2. The approximation error function €(-) in
(7) is continuously differentiable.

By computing the gradient of f(x) in (7) we can obtain
the following parameterized expression for V f:

Vf(z) = V() w* + Ve(x), VazckK. (8)
where V¢(x) is the Jacobian matrix of ¢(x). Since K is
compact and the mappings V f(z) and Ve(z) are contin-
uous, by the Weierstrass high-order approximation theo-
rem (Dudley, 2002, Thm. 2.4.11), the approximation error
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converges to zero as the number of basis p increases, i.e.,
€(z) — 0 and Ve(xr) — 0 as p — oo, uniformly on K.
Moreover, due to Assumption 2, the compactness of K
and the fact that ¢(x) is C2, we have that ¢(z), Vé(z),
€(z), and Ve(x) are all uniformly bounded in K.

3.2 Online Learning with Persistent of FExcitation

Let f(z) be an approximation of the objective function
(7), defined as

VzeK. (9)

Consider the mapping (5a), defined as

. o ¢(z(t))
Fw(w,¢(x),e) T a(l ¥ ¢(I(t))T¢(I(t)))26(t)7 (10)
where o > 0 is a tunable constant. If e(z) = 0, it is

well-known, e.g., Toannou and Sun (2012), Vamvoudakis
and Lewis (2010), Narendra and Annaswamy (1987), that
all solutions of (5a) with vector field (10) will satisfy
w(t) — w* as t — oo, uniformly in (g, w(0)), if and only
if the normalized regressor function ¢(x(t)), defined as
L+ ¢(x(t) To(x(t))’
is persistently exciting, i.e., there exists a7 > 0 and v > 0
such that

(11)

T

[ 0Tz (12)
¢

for all ¢ > ¢y and all ¢¢ > 0. When e(z) # 0 in (10),
the PE condition (12) guarantees convergence of w(t) to
a neighborhood of w* that is proportional to the upper
bound of €(z), see for instance Vamvoudakis and Lewis
(2010).

Since the PE condition (12) needs to be satisfied for
all present and future time, the PE condition can be
restrictive and unfeasible for certain applications. On the
other hand, as shown in Chowdhary and Johnson (2010),
if the learning dynamics use current data ¢(x(t)) that is
not PE, but which is complemented with a finite sequence
of sufficiently rich stored past data {¢(z(tx))}r_,, it is still
possible to achieve learning of the optimal weights w™.

8.8 Online Learning with Recorded Data

To establish the main ideas behind the DEES algorithms,
let k € {1,2,...,k} denote the index of a stored data point
Tk, i.e., xp = x(tk), and let ¢(xy) be the regressor vector
evaluated at that point. We still denote by e(t) in (10) the
estimation error corresponding to the data collected at the
current time ¢, but we now also introduce an estimation
error associated with the data previously collected at time
tx, given by

= f(x(tr) —
— ()T p(x1) — e(x). (13

b)
for all t € {1,2,...,k}. Note that the estimation error @
still depends on the current time t.

e(ty,t) f(z(tr)) (13a)

Definition 3. The sequence of stored data {q&(wk)}’zi’f is
said to be k-sufficiently rich if the following inequality is
satisfied

k
> dan)dilz) " =0, (14)
k=1
S ._ (z(t))
with ¢(2k) = 56001 T o O

According to Definition 3, the sequence of stored data
is k-sufficiently rich if its elements form a basis for the
parameterized uncertainty during the window of discrete
time {1,2,...,k}. Indeed, by defining the regressor matrix

¢mem = [¢(‘r1)a ¢(x2)7 R ¢(]"k))]T7
the condition rank(¢™c™) = p is sufficient to satisfy (14).

Remark 4. Unlike the PE condition (12), which applies
to the past and future behavior of ¢(t), the condition
(14) only needs to be verified for past data. This data
can be obtained by performing repetitive experimental
tests, or by exciting the system during an initial finite
amount of time. This approach exploits information-rich
data sets that are available in several applications, e.g.,
transportation systems, robotics, energy systems, etc. [J

(15)

Using data that satisfies condition (14), we can consider
learning dynamics (5a) that dispense with the PE condi-
tion. To streamline the presentation of the algorithm, and
with some abuse of notation, we will use t5 = ¢ to denote
the current time, and we define

e(to, t) := e(t).

Using this notation, we replace the mapping F, in (10) by
the data-enabled mapping

E
» o(a(tr))
2 otetin

)To(a(tr)) +1)°

(16)

Fy(, p(z e(ty,t).

(17)
Lemma 5. Suppose that Assumptions 1-2 hold and that
the signals ¢(x(tx)) in (17) are k-sufficiently rich. Then,
for each pair (7,¢) € R2, such that 7 < v/2c there exists
a sufficiently large p* € Z~( such that for each [p]| > p*

there exists a UGAS compact set A, . C Wy + 7B x C,
for the dynamics (5) with e = 0 and (5a) restricted to the

compact set Wy i + v/ 2cB. O

Proof: The proof of the following Lemma follows similar
ideas as the proofs in Chowdhary and Johnson (2010) and
Vamvoudakis and Lewis (2010). We divide the proof in
three main steps.

Step 1: Let w := w —w*, and consider the error dynamics

k
ZGE (tr))P(x(ty)) T @

I |
o

which can be written as
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k=1
k -
P(x(tr))
+ OlkZ:O o(x(te) To(x(tr)) + le(xk)
Define P( )
k
P(t) := p(x(t)d(x(t) " +>_ b= .
k=1

Using that {d)(x(tk.))}k:l is k-sufficiently rich, that x(t,) is
constrained to a compact set, and that ¢(-) is continuous,
there exists d1,d2 > 0 such that

Kk

0alp = ) G (t))d(e(te)) " = 81y, (21)
st

and since ¢(x(t))P(z(t))T in (20) is symmetric, positive
semidefinite, and umformly bounded there exists d3 > 0
such that

931, = P(t) = 611, (22)
for all t >ty and all tg > 0.
Step 2: Let p(x ) be given by
= Z =) wtk)() T RS
Consider the quadratlc Lyapunov function
V(@) = 0.50 ", (24)
which satisfies
V< =gslaf + o' p(a), (25)

where we used the upper bound in (22) and the definition
of P in (20). If the approximation error e(x) is zero in (7),
we have that p(z) = 0 and @(t) converges exponentially
fast to zero. Moreover, the level sets L. := {w € RP :
V(w) < ¢} are positive invariant for each ¢ > 0. On the
other hand, when p(z) # 0, by the definition of the entries
p in (23), the fact that x is constrained to a compact set,
the continuity of ¢(:), and the approximation properties
of the regressions in (7), for any v > 0 there exists a
sufficiently large p* € Zs¢ such that for all [p] > p*
the residual term satisfies |p(z)| < v. Thus, for [p] > p*
equation (25) satisfies

V < —84|w)? + v]i],

= —(1 = 0),|W|* — 00,]w|* + v]w|,

—(1 = 0)d,@|?, V|w|>w, 6e(0,1), (26)

where 7 = (65,) 'v. Combining inequalities (24) and
(26) we get ultimate boundedness of w(t) with residual
set proportional to v.

Step 3: Finally, since Step 2 implies that for each w(0) €
L. and each v > 0 there exists a sufficiently large p* > 0
such that for each [p] > p* there exists a T' > 0 such that
[@(t),z(t)]T € VB x C, for all t > T, by (Goebel et al.,
2012, Corollary 7.7), there exists an asymptotically stable
set Ay, C Wy x+B x C, for the dynamics (5) withe =0
and w restricted to a compact set. |

After characterizing a data-enabled learning mechanism
for the online estimation of the gradient Vf, we can

proceed to design the optimization dynamics to solve
problem (3).

3.4 Robust Gradient-Based Optimization Dynamics

The optimization dynamlcs (5b) are designed under the as-
sumption that Vf(x) = V¢(z) ". In particular, to solve
the VI problem Q We consider optimization dynamics
with state z = T € R given by

Z(Vf(m),Z), zeC., (27)

where the function F, and the set C, are designed to
satisfy the following Assumption.

Assumption 6. The dynamics (27) satisfy the following:

(a) The mapping F, is continuous with respect to both
arguments.

(b) The set C, satisfies C,
compact set.

(¢) There exists a nonempty compact set S C S such that
the set A x S is UGAS.

(d) There exists an § > 0 such that for each measurable
function e : R>o — R satisfying sup,sq |e(t)] < J, the
perturbed system B

=F.(Vf(z)+ez), z€C,, (28)

generates complete solutions from each z(0) € C,. O

= K x S, where S CR" is a

In words, Assumption 6 asks that system (27) solves
problem (2) under the assumption of perfect knowledge
of the gradient, and generates complete solutions under
vanishing perturbations acting on the gradient. In some
cases, item (d) can be relaxed and complete solutions are
only required from compact subsets of C,.

3.5 Main Result

Having characterized the data-enabled learning dynamics
(17) and the optimization dynamics (27) that comprise the
DEES algorithms (5), we are ready to present the main
result of this paper.

Theorem 7. (Convergence of DEES Algorithms) Suppose
that Assumptions 1, 2 and 6 hold, and that the sequence
of data {¢(x(tx))}i_, in (17) is k-sufficiently rich. Then,
for each pair A > v > 0 there exists a p* € Zs; such
that for [p] > p* there exists e* € Ry such that for
each ¢ € (0,e*) there exists a T, € Rsq such that the
x-component of every solution of the DEES dynamics (5)
with [@(0)|w, , < A satisfies

z(t) € A+ VB, (29)
forallt >7T,.. O
Proof: The proof Theorem 7 makes use of tools from
singular perturbation theory, robustness results for well-

posed systems, and -limit sets. In particular, the closed-
loop System is given by

Z z(tx))

W= —a

= [p(x(te) T¢>(x( )+ 117 (7 6e) = (o)
(30a)
i=eF, (W' Ve(zy),z), z€C.. (30b)
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Let 7 = et be a new time scale. When p is sufficiently
large this system can be seen as a perturbed version of the
nominal system in the 7-time scale

gdw Xk: z(t)) (@07 (1))

& ) w(( w17
(31a)

& R (Vo)) zeC. (31b)

When ¢ > 0 is sufficiently small and @ is restricted to
evolve in the compact set Wy x + pB, system (31) is in
singular-perturbation form, see Wang et al. (2012). The
boundary layer dynamics are given by system (17), which,
by the proof of Lemma 5, generates trajectories w that
converge to Wy x whenever p is sufficiently large. Thus,
the slow dynamics correspond precisely to the gradient
dynamics (27), which by item (c¢) in Assumption 6 renders
UGAS the set A := A x S. Using singular perturbation
results e.g., (Wang et al., 2012, Thm. 1), we obtain that
for each v/2 > 0 there exists €* > 0 such that for each

€ (0,e*) there exists a T, , > 0 such that if |@(0)| < A,
the solutions of (31b) satisfy z(7) € A + 0.5vB for all
7 > T. The convergence result for the original system
(30) follows now directly by taking p sufficiently large and
by robustness results for ODEs of the form (1) with a
continuous mapping F' and a closed set C' (Goebel et al.,
2012, Thm. 7.21). |

Remark 8. Unlike the classic ES architectures, the DEES
algorithms do not require the injection of a dithering signal
to the nominal state x. Instead, they rely on the dynamics
(17) with rich recorded data, and a time-scale separation
that can be achieved by selecting ¢ sufficiently small. [

4. APPLICATION: REAL-TIME OPTIMIZATION
WITH LIPSCHITZ PROJECTION

We consider an optimization problem (2) where the cost
function f(z) is only accessible by measurements, and As-
sumption 1 holds. In particular, we consider the following
DEES algorithm:

W= —« o (x(tr)) e(ty,t 32a

;) [D(x(te) T p(x(tr)) + 1) (et (320

i=¢e[-z+Px(z—0"Vo(2))], (32b)
where

Pg(z) = argmin, ¢ [l — ull2. (33)

The projection dynamics (32b) are Lipschitz continuous
since Pk (x) satisfies the non-expansive property | Pk () —
Pr(y)| < |z —y|. Also, dynamics (32b) render forward
invariant the set K (Xia and Wang, 2000, Thm. 3.2).
Moreover, when ' V¢(z) = Vf(x) small perturbations
acting on the gradient do not affect the forward invariance
of K since Px(z—V f(z)+e) € K for any e. Additionally,
since by Assumption 1 the function f is convex, we have
that V f(x) is a monotone gradient mapping (Rockafellar
and Wets, 1998, Thm. 12.17). Thus, by (Gao, 2003, Thm.
3), the monotonicity and Lipschitz continuity of V f(z),
plus the convexity and closedness of K, imply the conver-
gence of the solutions of the projected gradient dynamics
& = e[—x+ Pg(x — Vf(x))] to the set A. Since K and
A are compact, and the vector field in (32b) is Lipschitz

S E I E NN NN NN NN NN NN NN ENEEEEEEEEEE

0 10 20 30 40 50 60 70 80
time [sec]

Fig. 1. Evolution in time of the state z(t) with PE
condition (12) on the regressor vector ¢(t). The dotted
lines describe the limits of the set K.

S I EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEENESR
rank(¢™m) =1

z(t)

(1) )

) rank(¢™m) =3

1f%llwpliolliollll*Illl!llllqllll!lllll‘lllll‘

0 10 20 30 40 50 60 70 80
time [sec]

Fig. 2. Evolution in time of the state x(t) with no PE
condition and using memory-based ES with recorded

sequence {¢(xg)}.

continuous, the convergence is uniform in K. Therefore,
Assumption 6 is satisfied.

Figures 1 and 2 show simulations of the solutions of the
dynamics (32) with and without memory for the case when

fla)=(z-2?* K=[14]. (34)
For the simulation shown in Figure 1 no recorded data was
used and a dithering signal was injected into the closed-
loop system to satisfy the standard PE condition (12).
On the other hand, in Figure 2 we show two simulations
where the DEES algorithm (32) was used. The algorithm
uses a vector-valued regressor ¢ : R — R3, given by
¢(r) = [22,2,1]T. For the case when rank(¢™™) = 3
condition (14) is satisfied and the DEES converges to
the optimizer of the cost function. On the other hand,
when rank(¢™™) < 3, the inset shows that the algorithm
does not converge to z*. The recorded data {¢(xg)}
was generated by exciting the state during 5 seconds and
sampling the state every 0.1 seconds. The red dotted lines
describe the limits of the set K.

5. CONCLUSION

We presented a novel class of data-enabled ES algorithms
that exploit information-rich data sets and avoid the
injection of persistent dithering signals in the closed-loop
system. The proposed scheme uses recorded data during
the learning phase concurrently with current data in order
to guarantee convergence to an e-neighborhood of a convex
optimization problem where the mathematical form of the
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cost function is unknown. Our results are general enough
to be applied to different types of optimization dynamics
that evolve on compact sets. We anticipate that our results
can also be extended to settings where the cost function is
generated by a stable dynamical system, to optimization
problems with slowly varying cost functions, as well as to
distributed optimization problems in multi-agent systems.
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