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Abstract—1In this paper, we formulate and find distributed
minimax strategies as an alternative to Nash equilibrium
strategies for multi-agent systems communicating via graph
topologies, i.e., communication restrictions are taken into ac-
count for the distributed design. We provide the conditions
that guarantee the existence of the minimax solutions in the
game. Finally, we present an off-policy Integral Reinforcement
Learning (IRL) method to solve the minimax Riccati equations
and determine the optimal and worst-case policies of the agents
by measuring data along the system trajectories.

Index Terms— Games, integral reinforcement learning,
graphs.

I. INTRODUCTION

Analyzing the performance and the decision-making pro-
cesses of groups of dynamical systems has become indis-
pensable as the number of autonomous systems increases
in industrial and urban areas. Applications of multi-agent
systems with individual goals include intelligent transporta-
tion systems, wireless sensor networks and machine interac-
tions in industrial processes. In most practical applications,
a system must use incomplete information available from
the environment to determine her best possible strategy to
achieve the global goals. Differential graphical games is
a branch of game theory that studies the interplay of a
set of dynamical systems with limited sensing capabilities
[25], [26]. Each player of the game, regarded as an agent,
observes the state information of only a subset of other
players, i.e., her neighbors. The agents are said to form a
Nash equilibrium when all of them use their best policies
simultaneously. [8], [4].

Related Work

There is an extensive research on cooperative control of
networked systems [15], [20], [23], [21], [11], [24], [7], [16].
Game-theoretic approaches have been formulated to provide
optimality, resilience, and robustness to the cooperative ([26],
[28]) and noncooperative ([22], [S]) behaviors of the agents.
Every admissible solution for a graphical game requires
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the use of distributed control policies by the agents. This
means that the agents are allowed to use only local infor-
mation received through the communication graph to design
their strategies. The distributed-policy requirement, however,
makes Nash equilibrium generally unattainable among the
agents. This fact can be intuitively explained by noticing
that an agent needs to know her neighbors’ best strategies
to determine her own best response towards them, but the
neighbors’ best policies are unknown. Thus, such informa-
tion restriction imposed by the graph topology prevents the
multi-agent system from reaching a Nash equilibrium.

The unattainability of Nash equilibrium in graphical games
can be addressed by leveraging alternative solution concepts.
In this paper, we analyze the behavior of the agents in a
communication graph when they use their minimax strategies
[25], [3] to achieve their goals, whereas, each agent develops
best policies towards the worst possible behavior from her
neighbors. From the perspective of an individual agent, the
resulting formulation of this graphical game is the same as an
H. control problem [29]. It is known that, the H,, problem
can be solved as as zero-sum game where the control input
acts as a minimizing player and an adversarial/disturbance
input acts as a maximizing one [14], [3], [13], [17], [6].

An additional requirement for a practical solution of
graphical games is the consideration of uncertainties in
the system dynamics. The usual minimax and H., designs
require complete knowledge of the physics of the system.
Different RL algorithms have been proposed to solve multi-
agent problems with partial or without any information
about the system dynamics [1], [12], [2], [10]. Off-policy
reinforcement learning algorithms have been proposed [9],
[19], [18] to provide a solution to the minimax problem
without any information of the agents.

Contributions: The main contributions of this paper are
as follows. Minimax strategies are developed to solve non-
adversarial differential graphical games. Different from the
Nash equilibrium solution, the minimax strategies are proven
to provide distributed policies under minor conditions in the
system dynamics and the performance functions. Finally, an
off-policy reinforcement learning algorithm is designed to
solve the minimax problem without any knowledge of the
system dynamics.

Structure: The paper is structured as follows. Section
IT presents an overview of graphical games and the Nash
equilibrium solution. In Section III, the minimax strategies
problem is presented and its solution is obtained. An off-
policy RL algorithm is presented in Section IV to solve
the minimax control problem, and simulation results of this
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algorithm are presented in Section V.
Notation: The space L4 is defined as the set of all
piecewise continuous functions z : [0,00) — R™ such that

Il = ( I xT<t>w<t>)l/2 dt < oo,

i.e., the space L1 defines the set of all square-integrable func-
tions x(t). Define the inner-product in the space L£5]0,c0)
as

@)= [ oo m
where z, y € L5[0,00).

II. BACKGROUND AND PROBLEM FORMULATION

Consider a set of N agents (players) connected by a
directed communication graph G, = (V, E) where V is the
set of nodes and E the set of edges. The edge weights of the
graph are represented as a;;, with a;; > 0 if (v;,v;) € E
and a;; = 0 otherwise. The set of neighbors of node v; is
N; = {vj : a;; > 0}. The graph is assumed to have no
self-loops, i.e., a;; = 0 for all agents i. Define the graph
adjacency matrix as A = [a”] The weighted in-degree of
node i is defined as d; = 1 @5, and the in-degree matrix
of the graph is D = diag{d; }{ The Laplacian matrix is finally
defined as L =D — A.

A. Agent Dynamics
Consider that the local dynamics of each agent i, i =
1,..., N, are given by

where x;(t) € R™ and u; € R™ is the state and the control
input of agent ¢, respectively.

Define an additional agent, regarded as the leader or target
node, with uncontrolled dynamics as,

To = A(EO, t> Oa (3)

where the eigenvalues of A have non-positive real parts. The
communication links between the leader and the other agents
is represented by the pinning gains g; > 0, which must be
non-zero for at least one agent.

The local synchronization error of agent 7 is thus defined

to be
0; = Zam

and the local error dynamics are

+gz( 1_550)5

6—Za13 +gz(z_jf‘0)
N 4)
= Af; + (dl‘ + g;) Bu; — Z ai; Bu;.
j=1

Each agent 7 expresses her individual objectives in a local
game by means of a cost function,

Ji = Ji (03,04, Ui, u—s)

where J; (6;,0_;,u;,u_;) is a positive definite scalar func-
tion of the variables expected to be minimized by agent 1,
and 0_; and u_; represent the local errors and control inputs
of the neighbors of agent i, respectively. For synchronization
games, the cost function

00 N
Ji = / 53@151 + u;FRzul + Z aiju§Rijuj dt, (5)

0 =
with @; = 0, R; > 0 and R;; = 0 is usually employed.

B. Nash Equilibrium

The best response of agent ¢ given fixed neighboring
policies u_; is defined as the control policy w} such that
the inequality J;(0,uf,u—_;) < J;(d,u;,u—;) holds for all
policies u;.

A Nash equilibrium is achieved given that every agent
plays her best response towards her neighbors, i.e.,

(5, ur,ut ) < J; (5, ui,u*_i) , Vi.

It is proven in [26] that the best response of agent ¢ with
cost functional (5) is given by

1
uy = —5 (di +9:) Ry BTVV; (6:), (6)

with VV; (6;) := gdl, where the functions V;(4;) > 0 solve
the following Hamilton-Jacobi (HJ) equations

(d; + gi)?

57 Qi0; + VVTAg; — VV'BR;'B"VV;

N
1 _
+7 > aij(d; + g;)°VV]'BR; ' B'VV;

j—l
+ = Za”

Suppose now that the value function has a quadratic form
as follows,

 +9;)VV'BR;'B"VV; = 0.

Vi (6:;) = &; Pidi, @)
then the optimal policy of agent ¢ is given by

uf = — (d; + g;) Ry 'B"P,6; ®)

which is distributed in the sense that it only uses local
information 6; and P; = P} = 0 in (8) is the solution to
the following coupled HJ equations

5] (Qi+ PLA+ AP, —
N
+Y " aij(d; + g;)*6;P;BR; ' R R; ' B" P;5;
j=1

+2Za”

Note now that the Nash equilibrium solution for the
differential graphical games presents, however, a significant
drawback. Because (9) must hold for all values of §; and

(d; + 9:)*P,BR; 'B"P}) ¢

i +9;)0:P;BR;'B"P;5; = 0. (9)
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0, then the matrices P; and P;, j € N;, must solve
simultaneously the matrix equations

Qi+ P,A+ A"P, — (d; + ¢:)*PiBR; 'B"P; = 0,
P;BR;'R;;R;'B"P; =0,

P,BR;'B"P; = 0. (10)

Note that there are N sets of equations of the form (10)
that need to be solved simultaneously. It is clear that these
equations do not necessarily have positive definite solutions.
This is an expected result due to the limited knowledge of the
agents connected in the communication graph. Given that the
agent ¢ does not know the local information of her neighbors,
then it cannot determine the best response to the game.

In the following section, minimax strategies are proposed
as a practical alternative to the Nash equilibrium solution of
the graphical games.

III. MINIMAX STRATEGIES

Despite the lack of global information about the state of
the agents, we can still expect the agent ¢ to determine a
best policy for the information it has available from her
neighbors. Intuitively, minimax strategies are obtained when
each agent prepares herself for the worst behavior of her
neighbors. As it is shown below, the corresponding equations
for the distributed minimax strategies are generally solvable
for linear systems.

A. Formulation

Assume that agent ¢ derives her minimax strategy by
making the conservative assumption that the goal of her
neighbors is to maximize her own performance index, i.e.,
J;. The following definition formalizes such a concept.

Definition 1 (minimax strategies.): In a differential graph-
ical game, the minimax strategy of agent ¢ is given by

w; = arg minmax J; (0;, u;, u—;) .

U U—4

O
Now the performance index that was defined in (5) needs
to be modified. To this end, define the function

Ji = / (53@52‘ + (di + ;) u} Ryu;
0

N
—’YQZaijUJTRjUj>dt (11)
j=1

where Q; = 0, R;,R; > 0 and v € R*. To determine
her minimax strategy, agent ¢ assumes that the goal of her
neighbors is to maximize her own performance index as
given in (11).

Define now the Hamiltonian function associated with the
cost index (11) as

N
VY aigu) Ryuy + VVI(8:)6, (12)
j=1

with 52» given from (4). Assume now that the value function
V; has a quadratic form, i.e., (12) can be expressed as

H; = 67Qi6; + (di + g;) ul Ryu; —

2 E a”uJR U,

+ 26lTPz Adz + (dl + g,-) Bui — ZaijBUj

Jj=1

13)

The optimal control policy for agent 1 is now obtained by
using the stationary condition Gul = 0, that yields

uf = —R;'BTP;. (14)
Similarly, the worst-case policy of the neighbors of agent ¢
can be obtained as

; (15)

vl = %Rj‘lBTPiéi.
v

Note that v} is not necessarily the actual control policy
employed by agent j, i.e., u;.

The coupled HJ equations to be solved for the matrix P;
are finally obtained by substituting the policies (14) and (15)
in (13). This procedure yields the following algebraic Riccati
equations (ARE)

Qi+ P,A+ A"P, — (d; + g;) P,BR; 'B"P,
1 N
+— ZaijPiBRngTa =0. (16)

J=1

The following theorem shows that the control policy (14)
with P; the solution of (16) provides the minimax strategy
for agent 1.

Theorem 1: Let the agents of a differential graphical game
with dynamics (2) and a leader with dynamics (3) use the
control policies (14) where matrices P; are the solutions of
the coupled AREs (16). Moreover, assume that these control
policies stabilize the local synchronization error dynamics
(4) for all agents ¢ . Then, all agents form their minimax
strategies and the minimax value of the game is V;(d;(0)).

Proof: Consider the value function (7) and express the
performance index (11) as

Ji = / <5iTQi5i + (d; + g;) uj Riu;
0

N &S]
0

j=1

e N
0 =1
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Using the inner-product notation (1) we can express J; as

Ji = (0, Qi0i) + (di + gi) (wi, Riuy)

N
=7 Y aij (uj, Rjug) + Vi(8(0)) + 2 (6, PAS;)
j=1
N
j=1

where we have used the fact that [; V;(6;)dt = V;(8;(7)) —
V;(8:(0)), and that, since the system has stable equilibrium
point, then V;(0;(7)) = 0 in the limit as 7 — oco. Since P,
is the solution to the ARE (16), we can write,

2
E a” Z,RU

—? Z aij (uj, Rjug)

j=1

N
— Q(dL =+ gi) <u7*, R7U1> + 2")/2 Z Qij <’U;(7 Rjuj>
j=1

Ji =(di + gi) (uj, Ry

+ (dl + gi) <ui, Rlul>

+ V;i(6(0))
=(d; + g;) (u; — u}, R;(u; — u}))
N
S ) + Vi(8(0)).
j=1

7 Ry(uy —

Therefore, v} in (14) with F; as in (16) is the minimax
strategy of agent ¢, and (15) represents the worst-case poli-
cies of the neighbors, with the value of the game given by
Vi(6:(0)). u

Remark 1: Control policies (14) are always distributed, in
contrast to the policies based in the Nash solution given by
(6). ]

Remark 2: The equations of the form as in (16) are known
to have solutions for P; if (A4,+/Q;) is observable, (A, B)
is stabilizable, and (d; + g:;)R; ' — & >3, Ry = 0. O

In the following section we shall analyze the stability
properties of the minimax policies (14).

IV. OFF-POLICY LEARNING

In this section, an off-policy reinforcement learning algo-
rithm is proposed to determine the solutions of the Riccati
equations (16) and obtain the control policies (14) that solve
the minimax strategies problem. This method is designed
such that the agents learn their optimal policies using only
data measured from their environment, without any knowl-
edge of the system dynamics (2).

The subsequent design procedure is similar to the one

dynamics (4) as

N
5.1' = Ad; + (di + gL)Buf — Z:aijBUJ]»C
j*l

Za” - Uf) .

Here, the variables u} and vj are the policies to be updated.
Notice here that the input u; corresponds to the actual policy
employed by agent j, while v;-“ is agent ¢ estimation of the
worst-case neighbor policy.

Let V¥ = 67 P¥6; represent the value function V; at the
kth iteration of our algorithm, and note that the expression,

W@W=[”W@W

t+T .
=2 / 6T PFo,dr,
t

holds. Using the dynamics (17) in (18), we obtain

+ (di + 9i)B (us A7)

VEO:(t+ 1)) -
(18)

VR +T)) — SVEEW)

t+7T N
:/ 0f PF | A + (d; + gi)Buf = ai; Bf | dr
t Jj=1

t+7T
+ (d; + ¢:) / 5}PikB (u1 - uf) dr
t

t+T N
—/ 5}Pikzai]‘B u
t i=1

From the Hamiltonian (13), we can obtain the kth-iteration
for the Bellman equation as

—v¥)dr. (19)

N
0=0;Qi0; + (di + g;) Ut T Ryul —+2 Z aijvaijf
Jj=1
+26; PP | A6 + (di + g:) Z%Bv (20)

Using (20) in (19) yields
t+T
VE@Gi(t+T)) = V(i) = —/ (53622-5#
t
N
— 72 Z aijvaR]U;?> dr
j=1
t+T
— Q(di + gi) / ’U/Z:H_lTRi (ui — ’U,f) dr
t

t+T7 N
k1T
+2/ E a;;v; R; (uJ
t j=1

where we have also used the fact that the control policies

+ (di + gi)uf " Ryul

vf)dr, @21

in [1 h ff-policy algorith Ive the H . .
used in [19], where an off-policy algorit m to so ve:t e 0 ufﬂ and Uk+1 at iteration k -+ 1 are defined as
control problem was proposed. Start defining the variables u;
and vf as auxiliary control policies and express the system uf“ =-R; IBTPf(Si (22)
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and

k+1 _ —1 T pks.
vkt = —R7'BTPFS,

(23)

respectively. Lemma 1 shows the equivalence between (21)
and (20).
Lemma 1: The solution V; = 6T P;§; of (21) is the same
as the solution of the Bellman equation (20).
Proof: Using (18), we can express (21) as

t+7T .
/ (VZk(KSz) + 2(dL =+ gi)uf—i_lTRi (ui — uf)
t
N t+T
-2 Z Clij’U;H_lTRj (Uj - Uf))dT = —/ (53@151
j=1 ¢

N
+ (d; 4 g:)ufT Ryul — ~* Z aijUfTRjU?> dr.
j=1

Letting Vik = VVlk(L and using (17), (22) and (23) we get

t+T N
[ v (A6 g Bk =Y aBk | o
t

J=1

t+7T
t

N

2 KTk
- g a;jvi” Rjvj |dr,

Jj=1

which clearly holds if and only if (20) holds. |

Now, the off-policy RL algorithm consists of solving (21)
for V*, uF*1 and Uf“. A useful method to solve (21) using
measured data along the system trajectories is described in
[19].

Algorithm 1 presents am iterative procedure for each agent
1 to determine her minimax policy (14).

Algorithm 1: Off-policy RL for Minimax Strategies

1: procedure

2: Select initial stabilizing control policies u. and v? for all
jENMN.

3: Apply a fixed policy u; # u¥ and collect the required
system information at M different sampling intervals.

4: Use the information collected in Step 1 to solve the Bellman
equation (21) for V;*, uf™" and v+ for all j € N;.
5: Go to Step 3. On convergence, stop.

6: end procedure

The following theorem shows the convergence properties
of Algorithm 1.
Theorem 2: Algorithm 1 converges to the policies (14)
and policies (15), where the matrix P; solves the AREs (16).
Proof: Follows directly from Lemma 1 and the proof of
convergence of the iterative procedure of solving the Bellman
equation (20) and updating the policies (22)-(23) presented
in [27]. ]

V. SIMULATIONS

A numerical example is presented to show the validity of
our theoretical results. Consider a set of 5 agents and one
leader node connected in a communication graph as shown

Fig. 1.

Graph topology.

Leader
Agent 1
Agent 2
Agent 3
Agent 4
Agent 5

State X,

State x,
Fig. 2. Evolution of the state trajectories.

in Figure 1. If j € N, let a;; = 1. Each agent has linear
dynamics given by (2), with

1 2 3 0
=l d]oe=[0 5]

The minimax performance indices of the agents are defined
by (11) with Ql = Qg = 2[, QQ = Q5 = 3I and Q4 = I,
where [ is the identity matrix. Let all agents use the same
values for R = 2] and v = 2.

Algorithm 1 is used to learn the solution of the AREs (16).
The resulting matrices P; are shown below.

p _ [ 05103 0.0305 p, _ [ 12004 0.1316
71 0.0305 03537 [0 "2 7 | 0.1316 0.7588 |’
p. _ [ 06756 0.0589 p _ [ 04993 0.0705
371 0.0589 0.4440 |° ~* 7 | 0.0705 0.3073 |’

p._ [ 08051 0.0547
571 0.0547 0.5558 |-

The minimax control policies are now given by (14). Using
these policies, the agents successfully achieve synchroniza-
tion with the trajectories shown in Figure 2, 3. Figure 4
shows the convergence of the estimated matrices P; for all
agents to the optimal values.
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10 Leader
Agent 1

Agent 2
Agent 3
Agent 4
Agent 5

[}
E
= 4
2
O)
5
6
State X, 5, 2
State x,
Fig. 3. Synchronization in time.
m! T T T
9 P‘ -
P2
8 Pyl 1
P
7 NE
5
s E
=
I st E
&

0 o &
0 5 10 15 20
Iteration

Fig. 4. Convergence of the estimated matrices P; to their optimal values.

VI. CONCLUSION

Minimax strategies were designed and analyzed as an
alternative solution concept for differential graphical games.
The resulting control policies are always distributed in the
sense that the agents use only local information obtained
from the graph topology. The proposed off-policy RL algo-
rithm is a practical method to determine the minimax strate-
gies of the agents without any knowledge about the system
dynamics; moreover, this algorithm allows to compute the
worst-case neighbor policy v; even when this is not the
control policy used by the neighbors. Future work will focus
on extending the results to nonlinear systems.
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