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Safe Intermittent Reinforcement Learning for Nonlinear Systems

Yongliang Yang!, Kyriakos G. Vamvoudakis?, Hamidreza Modares®, Wei He',
Yixin Yin!, and Donald C. Wunsch?,

Abstract—1In this paper, an online intermittent actor-critic
reinforcement learning method is used to stabilize nonlinear
systems optimally while also guaranteeing safety. A barrier
function-based transformation is introduced to ensure that the
system does not violate the user-defined safety constraints. It is
shown that the safety constraints of the original system can be
guaranteed by assuring the stability of the equilibrium point
of an appropriately transformed system. Then, an online inter-
mittent actor-critic learning framework is developed to learn
the optimal safe intermittent controller. Also, Zeno behavior
is guaranteed to be excluded. Finally, numerical examples are
conducted to verify the efficacy of the learning algorithm.

Index Terms— Safety control, intermittent feedback, rein-
forcement learning.

I. INTRODUCTION

One of the fundamental issues in safety-critical applica-
tions of controller design is the ability of the controlled
system to achieve not only stability and safety but also a
user-defined performance [1], [2]. In addition, the decision
making designs are usually implemented on digital platforms
where sensors and controllers communicate through shared
resources [3], [4]. Traditional digital controller implemen-
tations depend on periodical execution that may result in
unnecessary sampling and communication between the con-
troller and the plant. Efficient utilization of the shared re-
sources is critical for large-scale cyber-physical and complex
systems [5].

Related work

In optimal control theory [6], enforcing safety and state
constraints is challenging. This is even more critical when
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reinforcement learning [7]-[9] is used to find the optimal
control solution in real time. The work of [1], [10] pre-
sented a barrier Lyapunov function to restrict the system
evolution within a given region while dealing with explicit
constraints. This method is later extended to more com-
prehensive constraints [11]-[13]. In [2], [14], the authors
provide user-defined performance in the presence of ex-
ogenous disturbances and system uncertainties using a set-
theoretic model reference adaptive control framework, where
the performance denotes the difference between the state
of the controlled system and the given reference model.
However, the aforementioned existing methods are based on
continuous feedback. It is desired to develop an intermittent
feedback control design to guarantee safety and optimal
performance.

In an intermittent feedback control design, the system runs
in an open-loop fashion until the feedback-loop is closed
when a user-designed triggering condition is satisfied [15]—
[18]. In the event-triggering design, the goal is to minimize
the communication burden while guaranteeing closed-loop
stability of the equilibrium point based on the input-to-state
stability (ISS) theory. Note that the ISS Lyapunov function
needs to be known a priori for the event triggering condition
design, which is difficult to obtain for general nonlinear
systems. This paper deals with this issue by using adap-
tive/approximate dynamic programming [19], [20], which
can efficiently learn the optimal value function in an online
manner [21] and has been widely used in control applications
[22]. The work of [23], [24] developed online actor-critic
learning algorithms with continuous feedback to deal with
input saturation while the work of [25], [26] developed
model-free intermittent actor-critic learning algorithms for
linear systems.

Contributions: The contributions of the present paper
are twofold. First, a novel barrier function based system
transformation method is used to transform the constrained
system to an equivalent system without state constraints. It
is guaranteed that if the initial state is within the prescribed
bound, the constraints of the original system will not be
violated if the transformed system remains stable. Then, a
novel intermittent actor-critic-barrier learning algorithm is
used to solve the constrained regulation problem in an online
fashion while excluding Zeno behavior.

Structure: The remainder of this paper is structured as
follows. Section II gives the preliminaries and problem for-
mulation. A barrier function based system transformation is
presented to consider the full-state constraints. In Section III,
an optimal control policy based intermittent feedback design
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is proposed. In Section IV, the online intermittent actor-
critic learning algorithm is developed. In order to validate
the effectiveness of the presented algorithm, a simulation
example is conducted in Section V. Finally Section VI
concludes and talks about future work.

II. PROBLEM FORMULATION

Consider the following continuous-time affine nonlinear
dynamical system V¢ > 0,

jjl = T2
j?g = T3
j?n,1 = Tn
:tn = f (CL’) +4g (ZL’) u, ‘T(tO) = Zo (l)
where z = [ T T, ]T € R™ with z; € R is the

system state, u© € R is the control input, and f : R" — R
and g : R™ — R are Lipschitz continuous functions.

In order to reduce the communication burden, an inter-
mittent feedback control design is used. In such a design,
the system state is sampled sporadically at the instants char-
acterized by a monotone increasing sequence {tk}kgozo with

lim ¢ = oco. That is, the sampled state remains constant
k—o0
between two successive events. i.e.,

.  (tr) s L€ [ty tern)
x(t)={ e(), b=ty @

Problem 1. Consider the system (1), find an intermit-
tent feedback control input w(t) = u(Z(t)) with the trig-
gering instants {t;};_, such that the closed-loop system
has an asymptotic stable equilibrium while the state x =

[ 21 Tn, ]T satisfies the constraints defined as
x1 € (a1, Ar)
3)
Tn € (an, Ap),
where a; <0, A; >0,i=1,2,...,n. O

A. Barrier Function

We now define the barrier function as follows.

Definition 1. The function b(-) : R — R defined on (a, A)
is referred to as barrier function if it satisfies

1) The barrier function takes a finite value when its argu-
ments satisfy the constraints.

2) The barrier function approaches infinity as the state
approaches the boundary of the constraints, i.e.,

lim b(z;a,A) = —0
+

z—a

lim b(z;a,A) = 0. €]

z—A—

3) The barrier function defined in (6) vanishes at the
equilibrium of the system (1), i.e.,

b(0;a,A) =0¢€ (a, A). 3)

We select the barrier function as

b(z;a,A) =log (?Z:i),Vze(a,A) (6)

where a and A are two constants satisfying a < A. Moreover,
the barrier function is invertible on the interval (a, A), i.e.,

_y
e

bl (g0, 4) = aA-S S wyeR, (7)

aez — Ae™ 2
with a time derivative given as
db! (y;0,A) Aa® — aA? ®
dy  a2e¥ — 2aA + A2e Y’

B. System Transformation

Consider the barrier function based state transformation as
s; = b (x5 04, As),

S i=1,..,n ©)]

then,
= i 10
dt ds; dt’ (10)

which can yield,

Tit1 (5i+1)

$; =
db—1(y;ai,A4)
dy Y=si
Sigl _Siq1
i1 Aig1 (6 2o-e 2 ) AZe=%i — 2a;A; + aZe®i
- Clz‘JrlelgiTJrl — Ajpe” - Ajaf — a; A ’
= Fi (54, 8i41) i=1,...,n—1 (11)
. f@ e
" db N (yan,An)
dy y=sn
AZe=sn —2a, A, + alen
=[f(z)+g(z)u] Y —
= F, (8) + gn (8) u, (12)
where
O g R
" Apa2 —a, A2
F(L o (1) bt (sn) )
A2e75n —2a, A, + aZen
gn (s) = 2 2
Ana? —a,A2
g ([ b7 (s1) byt (sn) ). (13)

T
sn | can be ex-

[

The dynamics of of s =
pressed in a compact form as

s=F(s)+G(s)u, (14)
with
Fy (s1,52) 0
F(s) = : ,G(s) = . (15)
F, (s) o (5)
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Assumption 1. The system dynamics satisfy:

1) F(s) is Lipschitz with F'(0) = 0, and there exists a
constant by such that, for z € Q, |F (s)| < by |s|
where (2 is a compact set containing the origin.

2) G(s) is bounded on (2, i.e., there exists a constant by
such that |G(s)| < b,.

3) The system (1) is controllable over the compact set 2.

4) The performance functional (7) satisfies zero-state ob-
servability. ]

The barrier transformation (9) can be written in a compact
form as

s =b(x;a,A)
r=>0""'(s;a,A). (16)
Therefore, with the sporadic sampling in (2), one has
$§=0(Z;a,A) (17)
with
. R ~ 1T . .
82[81 Sn] ,sizb(xi;a,;,Ai).

In the intermittent feedback design, the controller depends
on the sampled state, i.e.,

u(t) = u(s(t)).

Let e(t) denote the gap between the sampled state §(¢) and
the current state s(t), i.e.,

(18)

e(t)=5(t) —s(t), (19)
with dynamics given as,
e(t)=—x(t), te[trtrr1)-. (20)
Then, the closed-loop dynamics of the system (14) is
sA)=F(s)+G(s)u(s+e), tete,trs1). (21

To solve Problem 1 with safety constraints using the
intermittent feedback (18), an equivalent problem without
constraints is considered as follows.

Problem 2. Consider the system (14). Find an intermittent
feedback control input « in (18) with the triggering instants
{tr} 7, such that the closed-loop system (21) has an asymp-
totically stable equilibrium point in the ISS sense. O

The following lemma guarantees that Problems 1 and 2
are equivalent in the sense that the intermittent feedback
controller of Problem 2 with state s satisfies of Problem 1
with state = and the full-state constraints (3).

Lemma 1. Suppose that u* (-) solves Problem 2 for the
system give by (14). Then, u* (-) also solves Problem 1
provided that the initial state xq of system (1) satisfies the
constraints in (3).

Proof. This proof follows from [1, Lemma 1]. O

III. INTERMITTENT FEEDBACK USING OPTIMAL POLICY

In this section, we investigate intermittent optimal feed-
back to solve Problem 2. It is shown that the optimal
continuous feedback with a user-defined event-triggering
instants solves Problem 1.

A. Optimal Control Policy

We consider the value function V¢ > 0 as

V(s (1) :J Uls,u)dr, Vs, t >0, 22)

t
where U (s,u) := Q (s) + uT Ru with Q(s) > 0 and R > 0.

Definition 2. (Admissible Policy) A control policy pu(s) is
said to be admissible with respect to (26) on €2 € R", denoted
by u(s) € (), if

o u(s) is continuous on 2,

. M(O) == O,
o u(s) = u(s) stabilizes (14) on €,
o V(s) is finite Vs € . 0

Given an admissible policy u, the Hamiltonian is defined
as

" (su 2‘;) _ (%‘:)T [F (s) + G (s)u] + U (5,u) , (23)

The corresponding value function V(x) (22) for a given
admissible policy u(-) satisfies the Bellman equation

0=H <5,u,?;>

av\"
=7 [F(s)+G(s)u] +U(s,u). (24)
Based on the optimal control theory [6], the stationary
condition in the Hamiltonian (23) yields the optimal control

policy

ov*
u* (s) = argminH (s,u, )
) uen(Q) Jz
ol oV* (s)
= RGN (s) = (25)
where V*(x) is the optimal value function defined as
0
V*(s(t)) = min J U(s,u)dr. (26)
(s(0) = min | Ul

Inserting the optimal control policy (25) into the Bellman
equation (24) yields the Hamilton-Jacobi-Bellman equation

. T
0= lavﬁs(s)] F (s) + AR" In [1,, — tanh® (D*)]

+Q(s), 7)

where 1,, is a vector of m ones.
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B. Intermittent Design
The following are classical assumptions [15]-[17].

Assumption 2. Lipschitz continuity of the controller with
respect to the gap e(t)

lu* (z) —u” (y)| < Lz —yl.
where L € R is the Lipschitz constant. ]

Assumption 3. Lipschitz continuity of the closed-loop sys-
tem with respect to the state and to the gap e(t). O

Lemma 2. Suppose that Assumptions 2 and 3 hold, with an

intermittent feedback given by

ovV* (3)
05

and the triggering instants are determined by the triggering
condition designed as

AMQ) (1 —0?)
L

where A(Q) is the minimum eigenvalue of Q and for some
user defined parameter o € (0,1), then the closed-loop
system (21) has an asymptotically stable equilibrium point
and the Problem 1 is solved. In addition, Zeno behavior is
guaranteed to be excluded.

u= —%R‘lgT () (28)

2 g 1 12
lel|” = (4 +EHU(S)H7

Proof. The proof is an extension of the proof provided in
[27]. ]

As shown in (25), the optimal constrained control solution
u*(s) depends on solving the HJB equation (27) for the
optimal value function V*(s). However, the HIB equation
(27) is a nonlinear partial differential and extremely difficult
to solve. In the following, an online algorithm is presented
to find an approximate solution to the HIB equation (27).

IV. INTERMITTENT FEEDBACK USING ONLINE
ACTOR-CRITIC-BARRIER LEARNING

In this section, we employ the actor-critic online RL
algorithm to learn the optimal feedback policy in an adaptive
fashion while using an intermittent actor.

A. Value Function Approximation

Definition 3. (Persistency of Excitation) A vector signal
y(t) € R? is exciting over the interval [¢,¢ + T'] with T € R
if there exist 5; € R™ and B, € R such that V¢,

t+T
/Bllpxp < J y(T) yT (T) dr < /82Ip><p7
t

where I, is an identity matrix of order p. ]

Assumption 4. There exists a basis function such that the

optimal value function V*(s) and its gradient VV* (s) :=
*
(WT(S) can be uniformly approximated with a critic network,

within a set {2 € R”™ that contains the origin, as

V¥ (s) =W (s) +e(s)
VV*(s) = [V (s)]"W + Ve (s)

(29)
(30)

where W € RY is the critic weight, ¢(+) : R™ — RY is the
critic basis, £(s) and Ve(s) are the bounded approximation
errors satisfying |e (s)| < b. and [|[Ve (s)| < bge, ¢ (5)
and V¢ (s) satisfying ||¢ (s)| < by and |V (s)| < bag
Vs e Q. O

The ideal weight, W in (29), provides the best approx-
imate to the optimal value function V*(s) on the compact
set 2 and is unknown. Therefore, the estimation of W is
implemented by the critic network with the approximations
of the value function and value gradient

€2y

Vi(s)=Wlo(s)
v (32)

VV () = [Vo ()] We.

Then, for a given policy wu(-), the residual of Bellman
equation approximation can be determined as

ec(t) 1 = U (s(t),u(t)) + W, (t)o(t) (33)
where o is a N-dimensional vector signal defined as
o:=Vo(s)[F(s)+G(s)u*]. (34)

For the optimal control policy u* (s), the Bellman equation

(24) approximation error using the value function approxi-
mation (29) can be expressed as

ep =U(s,u*) + W'o. (35)

Define the critic weight approximation error as W, =W —

W.. Then, from (35), the relation between Bellman residual

e and the Bellman equation approximation error £ can be

written in terms of the critic weight error W, as

ec=ep—Wlo. (36)

The policy evaluation for an admissible control policy u(-)

can be formulated as adapting the critic weight W, to
minimize the objective function [21]

[ec (O]

. 37
(1+0T0)? &7

1
E. ==
2

Then e. — ep as W, — W. Using the chain rule yields the
gradient descent algorithm for minimizing E,. given by [21]

oE. o T
aCaWc =—a [cTW. + U (s,u)].(38)

Wc = - c D)
(14+0T%0)

Theorem 1. Let u be any admissible control policy. Let
the critic network (31) with the adaptive tuning law (38)
be used to evaluate the given control policy. Suppose that

the signal ¢ = H(g(i(tt)w(t) satisfies the PE condition. Then,

W, is uniformly ultimately bounded (UUB).

Proof. The proof follows from [21]. ]

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 02,2020 at 15:10:12 UTC from IEEE Xplore. Restrictions apply.



B. Intermittent Actor Learning
The intermittent feedback given by (28) using the optimal
policy u*(-) can be re-written in terms of the value function
approximation (30) as
1
wt = =5 RN (3) (Vo (3) W + Ve (3)]
te [ty ths1), (39)
which can written as,

w(8) = (W) ¢a (3) + 4 (3),

where [le]| < bea, [al < bpa and [@a (s)] < |kal [s] for
s € Qg with W an unknown weight to be approximated by
using a actor network as

ua (8) = (Wa) " (3).

To find the tuning for the actor approximator, we need to
define the error e, in the following form

(40)

(41)

ea = WX, (5) + %R*lgT (3)[Vo (3)]"W,. 42

The objective for the actor is to minimize the following
squared error performance,

E, = %eE (t)ea (1) (43)

The actor is updated only at the event instants ¢y, for k =
0,1,2,.... Therefore, the actor weight is constant during the
inter-event interval, i.e., W, = 0, t € (tg, tx+1). At the event
instant, the jump equation to compute W, is determined by
using a gradient descent law

o oF,
“ow,
= Wa — aada (s (1)) [da (5 ()] W
S (s () WIVo (5 (1)) g (s (1) R~ (44)
for ¢t = ty, k =0,1,2,.... Define the actor weight approx-

imation error W, = W} — W,. Then, the dynamics of the
actor weight error can be expressed as

W;_ = Wa (t) — QaPa (S (t)) [(ba (S (t))]TWa (t>
— 0 Pq (5 (t)) [¢n (5 (t))]TEa

— 530t (5 (0) WV (s () g (s () R~

—%aa% (s (£) Veg (s (1)) B, t =t

Wa=0, te (tp,tpsr)-

Wi =W, -

a

(45)

Also, one can obtain the dynamics of the critic weight error
W, (t) based on the critic learning (38) as

. T
W, = —04670“0“ sW.
(1+0Ta,)

” 0
7 [—f (F+ Gua)]at € (th, thy1)

tp—0
¢ (1+ Ugaa)2 0s

_

~-
Ec

WF=0,t=t, (46)

with e ]| < be and |Ve.| < bgec. By defining the
augmented state ¢ := [sT T WI WI ]T with the flow
dynamics on t € (rj,tx11], j€ N as

P )+ 66| (W2 = 172) 6u9) 1]
G- 0 (47)

PN - PR v _ oa
Q¢ (1+0'g‘7a)2 WC + Q¢ (1+Ug‘7a)2 8(:7
0

and the jump dynamics at event instant ¢ = ¢ as

(48)
vec (D (t))

with vec(:) being the vectorization operator obtained by
stacking the columns of a matrix on top of one another

@ (t) 1= —aqda (5 (1) [0 (5 (6) Wa (1) + duls (6) "z

~ 200 (s(t)) _ Oec _
W —">G(s(t))R! SG(s(t)R.
+We—o. (s@) R+ =G (s(t))
Theorem 2. Consider system given by (14) with the actor
(41) and the critic (31) with online learning (38) and (45),
respectively. Then, there exists a compact set = (€5 x
Qs x Q% QWG) such that the augmented state 1) converges

exponentially to the set §) given tht the event instants {tk}fzo
are determined by the following triggering condition,

G\ ()] A(R)
L2X\(R) L2X(R)

2

lell® < Isl® +

[Wa¢a(3)

(49)

where \(-), A(), define the minimum and maximum eigen-

values respectively, 5 € (0,1), a. > % ﬁ for the critic

b2, —3
and 0 < @ < 2(“5;472); bpa > \/gfor the actor. In

addition, Zeno behavior is excluded.

Proof. We prove closed-loop stability of the system with
flow dynamics (47) and jump dynamics (48) using an im-
pulsive system approach. Consider the Lyapunov candidate
V1 R?" x R?" x R" x R"? — R for the continuous part (47)
of the impulsive model,

V() =V*(s)+V*(8) + Ve + Va, (50)
where V*(s) and V*(8) are the state s(t) agd its sampled
version §(t). The functions V. := HWC and V, =

;1 tr{WTW,} are the Lyapunov functions for the critic and
actor error dynamics given by (46) and (45).

1) For the flow dynamics, note that V, = V*(§) = 0.
Therefore,

V- (5"(;8(5))T {F () + G (s) (Ws - Wa)bea (é)}

V*(s)

(63
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oVe
oW,

Ve

oW,

00 04"
o,Yo, +12

Oq

oo, + 1)2

Wc+ac< )T(

€c

a;l

: tr{[Wa (t) + ® (tk)]T [W (tx) + @ (tk)} }(55)

) s

From the HJB equation (27), one has,

After multiplying each terms in the bracket, one has

AVa = = {W] (1) ba (s (t4)) Ba (s (40)) Wa (t0) }

ov*(s)" ov* (s)" — {WI (1) b (5 (t8)) a(s (1)) e}
F = - G * - U * 51 _ -~ 0d (s
% (s) pR (s)u” (s) = U(s, u’(s)) 5D e[ 0 0 5 ) WD 6 1) )
. T o
Since "8‘/8 G(s) = —Ru*(s)T we have, 7tr{Wg (tx) da (s (tx)) O;S”G(s (tk,))R—l}

v* (s) = —%STQS + %u*(s)TRu*(s) —u* (S)TRW;¢a(§). (52) +a7atr{ ¢a (s (tk)) [¢“(S (t6) Wa (tk) + a5 (th)) eu
s 1 c _ 2
From Assumption 2, one has, + WJWG(S (te)) BT + a; G(s(tx)) R 1] }(56)

—u*(s)TRWaTan (8) + %u*(s)TRu* (s)

Based on the actor error jump dynamics (45), applying

1_ . 2 1 2 , . . . .
= -\(R) Hu (s) — WaT¢a ) = AR HWaT(ba (3) Young’s inequality to (5§) yields the results 1n.(57) (see top
2 2 of next page), where p is the known bound since we have
< 1 L*X(R) |s|* - EA (R) [Wqada (3) 2 (53) proved that the critic estimation error is UUB. Therefore, it
2 2 is guaranteed that AV (W,) < 0 when W, lies outside the
By substituting (5?;) in (52) we havi compact set 0, = {Wa : HWa < 5 }
Vi) < —5BAQ) IsIP - 50— BIAQ) Isl® O
1 o5 g 1 T a2 To guarantee that the tracking error s(t) remains in the
+§L AGR) [sl” = ié(R) HW“ %a(3) compact set 2, € R", define the following compact set
1 .5 2
< —50Q) Il Qe = {5 € RV(t) < Vinax)} € R?
after using (49). Now for the term V, we have, where Viax is chosen as the largest constant so that Qy,
. NS . Since by assumption s(0) € Qs, and Q; < Q then we can
Ve < —20)(0) HWC Tl ”We bec, conclude that s(0) € €. While s(t) remains inside 2, we
- 1 S21 o, have seen that V < 0 and therefore s(¢) must remain inside
S —<2a)\(0) - 804) HWC + %bec' (G4 Qp_ .. c Q. The fact that s(t) remains inside a compact
) ~ set also excludes the possibility of finite escape time and
One has V. < 0 whenever W, lies outside the compact therefore one has global existence of solution.
set Q= {WC . HWC < bee 1 . which 3) We shall now prove the absence of the Zeno behavior
¢ 16&2&(5)*1 by showing that the inter-event time T; := {311 —t;, VjeN

guarantees that W, is UUB.

2) For the jump dynamics given by (48), we consider the
following difference Lyapunov function candidate,
v* (s (t;)) —V*(s(te)) + V" (g (t;)) —V* (3 (tr))

AV*(s)
(1) (1)) -
AV,

+ Ve (We () = Ve (We ()

AV,

AV (¥)

AV*(3)
—1
a

2

—1
all

* 2

w{ W] {Wo (t) Wa (1)

From the previous analysis, the state s converges asymp-
totically to zero, and the critic estimation error WC is UUB,
thus we have that V*(s*) < V*(s(ty)) if s lies outside
the compact set €, and VC(W;’) < VC(Wc(tk)) if W, lies
outside the compact set €y . It follows that during jumps
one has s = §*, we have that V*(§7) < V*(8). Then one
can write AV(8) := V*(8%) = V*(8(tx)) < —k(|3] ) where
k is a class-KC function [28].

For V,, one has

—1
a

‘“2 tr{W;TW;} -

-1
a

“2 o {Wa(tk)TWa (tk)}

AV, =

is strictly positive.
At the triggering instant ¢y, one has,

1-)AQ) A(R) N
2 > (77 2 = wr
HeH L2)\(R) HSH + LQ}\(R) H a ¢a(8)
(1-BHAQ) 2
— . 58
TR (58)
Therefore, y := % evolves from 0 to K, := %

during each inter-event interval. The dynamics of s(¢) using
the intermittent actor-critic learning satisfies

131 < (bg +bg [Wa'|[ Ikall) (Is] + el
=K

Based on [3], the evolution of y satisfies
) < Ko(1+9)° t e [t trer)
by using the comparison lemma [28], one has

(t—tr) Ks

< —————,te |, t .
Yy 1_(t_tk)Ksa I:ka k+1)
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() 2]

AV(Wa) < — (b3, —

~ 2
e o)

2
boabagA (R1)]" + L[boaba:A (R71)]

2 4 12
d)abaa

+ %

19002, W "82,A ()2 4 55 02,03 MR + B (wabd,2, ) + Babsabasd (R[] | =0 57
+4aabsabacd (R7Y) + daabsabeabasd (RT) |We| + Saabacbasd (RT) |We

Evaluate the above inequality at event instant ¢54; yields

le (1) (te+1 —tr) Ks
P s () T 1= (B — te) K
which is equivalent to the fact that
K,y

K, (1+K,)

,Vk

(the1 — tr) = ,Vk e N.

Therefore, the inter-event interval is strictly positive. This
completes the proof. [ ]
V. SIMULATION STUDY

Consider the controlled Van der Pol oscillator with dy-

namics given by,
0
+ U.
) T2 I

|

In this scenario, it is desired that the state x = [x7 x2]T
satisfies the following constraints,

T2

—z1+0.5 (1 — a3 (59

21 € (—0.6,0.2) , 25 € (—0.2,0.2) (60)

According to the converse HJB method [29], when the

05

= == :Safety Region Boundary
Converse HJB method
intermittent Safety RL

= == :Safety Region Boundary
Converse HJB method
intermittent Safety RL

X

g2 mmmmm e e m -

Fig. 1. The evolution of the states of the system with and without our
proposed framework.

performance parameters are selected as @) = Iyxo and
R = 1, the optimal controller would be u*(z) = —x122.
When applying this optimal control policy to the system (59),
the state evolution of z(¢) is shown in Figure 1, where the
solid lines represent the state evolution and the dashed lines
denote the asymmetric bounds for the states. The system
state trajectories of x(¢) in the two-dimensional space are
shown in the left of Figure 2, where the black box denotes
the safety region. It is desired to drive the system states to
the origin without violating the safety constraints. Even the
states are regulated to the origin asymptotically, the full state
constraints can not be guaranteed.
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Next, we apply the safe reinforcement learning algorithm
with the actor-critic-barrier structure developed in Section
IV, where the corresponding state evolution of x(t) is given
in the right of Figure 1. In this case, we start the system
from the same initial condition. The system state trajectories
in two-dimensional space are shown in the right of Figure
2. In contrast to the previous case, one can observe that the
state approach to the origin without violating the full state
constraints. Both the full-state constraints and the closed-
loop stability can be guaranteed when using the actor-critic-
barrier learning algorithm. Finally, the state evolution of s(t)
as well as its sampled version §(t) is shown in Figure 3.

04 04

20
20

04 04
07 08 05 04 03 02 o1 07

<

o o1 o0z 03 08 05 04 03 02 o1

B

o o1 o0z 03

Fig. 2. Two-dimensional phase plot of state trajectories using the converse
HJIB approach [29] and the actor-critic-barrier algorithm. The black box
denotes the safety region.

Time/sec

Fig. 3. Evolution of the state trajectories when applying the actor-critic-
barrier algorithm.

VI. CONCLUSION

This paper presents a barrier-function-based system trans-
formation to capture the full-state constraints in the regu-
lation problem. With the presented system transformation,
the full-state-constrained regulation problem is equivalent to
an unconstrained problem. Then, a novel actor-critic-barrier
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algorithm with intermittent feedback is presented to solve

the

constrained regulation problem in an online fashion.

It is shown that the boundedness and convergence of the
actor-critic weights to the optimal ones is guaranteed, and
Zeno behavior is excluded. Future work will focus on using
different kinds of intermittent protocols.
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