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Abstract 11 
As IoT-enabled manufacturing is still in its infancy, there are several key research gaps that need 12 
to be addressed. These gaps include the understanding of the characteristics of the big data 13 
generated from industrial IoT sensors, the challenges they present to process data analytics, as well 14 
as the specific opportunities that the IoT big data could bring to advance manufacturing. In this 15 
paper, we use an inhouse-developed IoT-enabled manufacturing testbed to study the characteristics 16 
of the big data generated from the testbed. Since the quality of the data usually has the most impact 17 
on process modeling, data veracity is often the most challenging characteristic of big data. To 18 
address that, we explore the role of feature engineering in developing effective machine learning 19 
models for predicting key process variables. We compare complex deep learning approaches to a 20 
simple statistical learning approach, with different level or extent of feature engineering, to explore 21 
their pros and cons for potential industrial IoT-enabled manufacturing applications. 22 
Keywords: Internet-of-Things, smart manufacturing, big data, data analytics, feature engineering, 23 
deep learning, statistical learning 24 
 25 

1 INTRODUCTION 26 
The emergence of the industrial Internet-of-Things (IoT) devices and ever advancing computation 27 
and communication technologies have fueled a new industrial revolution. Although the application 28 
of IoT devices in manufacturing processes has been limited, there have been high expectations that 29 
IoT will be a key enabler for making manufacturing systems smarter, safer and more efficient. 30 
Specifically, the small size and low cost of IoT devices make it possible to equip manufacturing 31 
systems with a large number of IoT sensors. As a result, the big data generated by the IoT devices 32 
and other sensors is expected to offer unprecedented opportunities to significantly advance smart 33 
manufacturing. 34 
Big data is arguably a major focus for the ongoing worldwide transformation of advanced 35 
manufacturing. How to extract manufacturing intelligence from huge amount of process data to 36 
support evidence-based and timely decision-making will likely play a key role in determining the 37 
competitiveness, productivity growth and innovation of the manufacturing industry (Manyika et 38 
al., 2011). However, currently there are limited studies on the challenges associated with analyzing 39 
big data generated from IoT devices and how to address them (Zhong and Ge, 2018). This is likely 40 
due to the lack of IoT big data from real applications to work with. To address this challenge, we 41 
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have developed several IoT-enabled manufacturing testbeds in-house, including a flow system 1 
equipped with 5 IoT vibration sensors and a continuous stirred-tank reactor equipped with 28 IoT 2 
temperature sensors. With real big data collected from the IoT-enabled manufacturing testbeds, 3 
we can examine the characteristics of the IoT big data, the challenges they present for data 4 
analytics, and explore the potential of IoT devices for advancing smart manufacturing. In this 5 
paper, using IoT big data collected from the flow system testbed, we aim to answer the following 6 
two questions: first, can we extract useful information from IoT big data? Second, if yes, what 7 
would be an efficient way to obtain such information? In particular, with the renewed interests in 8 
artificial neural networks (ANN), we aim to examine the role of feature engineering by comparing 9 
two main data-driven modeling routes: deep learning vs statistical learning, with different level or 10 
extent of feature engineering. 11 
Even without IoT sensors, databases of industrial manufacturing systems are already massive due 12 
to the pervasive use of computations and information systems in process operations. As a result, 13 
many data-driven machine learning algorithms have been developed to model different industrial 14 
process operations. One particular research area, process monitoring, has received significant 15 
interests because of its importance in maintaining long-term reliable operation of any system. 16 
Statistical process monitoring approaches, i.e., a group of statistical learning algorithms such as 17 
principal component analysis (PCA) and partial least squares or projection to latent structure 18 
(PLS), have enjoyed tremendous success in monitoring various industrial processes. In the era of 19 
smart manufacturing, the importance of process monitoring will only become greater; 20 
correspondingly, it is important to examine whether these statistical learning algorithms can be 21 
adapted to address the new challenges presented by IoT big data.  22 
At the same time, with the availability of big data and significantly advanced computing power, 23 
ANN started to draw renewed research interests in the process systems engineering (PSE) 24 
community. Back in the 1990s, ANN had been studied extensively to learn hidden-patterns from 25 
input-output data, enabled by the reinvention of the backpropagation learning algorithm 26 
(Venkatasubramanian, 2019). However, the impact of ANN had been limited in PSE, partially due 27 
to the lack of powerful computing and the lack of large amount of data. Now with the significant 28 
advancement in computing power, development of deep neural network (DNN), as well as 29 
availability of big data in smart manufacturing, artificial intelligence (AI), DNN in particular, is 30 
again poised to make real impact to process operations. 31 
In this work, with the IoT big data (~70GB) collected from flow system testbed, we explore the 32 
potential of deep learning approaches in handling the IoT big data, and compare deep learning 33 
approaches with a representative linear statistical learning approach, PLS. Specifically, we 34 
examine whether the big data collected from vibration IoT sensors can be utilized to model the 35 
testbed system and predict the pump motor speed (in revolution per minute or RPM) and water 36 
flow rate (in gallon per minute or GPM). In our previous research, we suggested that feature-based 37 
monitoring could offer an effective solution for next-generation process monitoring, which is also 38 
well positioned to address the 4V challenges associated with the IoT big data (He and Wang, 39 
2018a, 2018b). In this work, we examine how feature engineering that is rooted in system 40 
knowledge and human learning could enhance both complex deep learning and simple statistical 41 
learning. It is worth noting that, for statistical learning, certain sample distribution (e.g., 42 
multivariate Gaussian) is assumed, while for machine learning, including DNN, data distribution 43 
is not assumed to be known or to follow certain form. 44 
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The rest of the paper is organized as follows. Section 2 presents the setup of the IoT-enabled flow 1 
system testbed; Section 3 briefly reviews the statistical learning approach and deep learning 2 
approaches examined in this work; Section 4 discusses feature engineering for machine learning; 3 
Section 5 presents the results of different modeling approaches, with an emphasis on the effect of 4 
feature engineering; finally Section 6 draws the conclusions.  5 

2 DEVELOPMENT OF AN IoT-ENABLED MANUFACTURING 6 
TESTBED 7 

One of the most versatile equipment in manufacturing industry are centrifugal pumps and 8 
compressors and the associated piping systems that move gas or liquid from one location to 9 
another. Therefore, in this work we chose a laboratory-scale pipe flow system where water flow is 10 
driven by a centrifugal pump and controlled by valves as the testbed. We equipped the testbed with 11 
five IoT vibration sensors (a.k.a. accelerometers) at different locations. The detailed setup of the 12 
testbed is discussed in Sec. 2.1. It is worth noting that vibration sensors have long been used for 13 
the monitoring of rotary machines and fluid flows in industrial processes. However, most of them 14 
are the conventional piezoelectric vibration sensors (Evans et al., 2004; Hu et al., 2019; Lannes et 15 
al., 2018), which are bulky, energy hungry and expensive (Jung et al., 2017). The vibration sensors 16 
used in this study are the new generation IoT vibration sensors based on micro-electro-mechanical 17 
systems (MEMS) technology. These sensors are small, cheap and with low power consumption 18 
rate. The IoT vibration sensors also have some drawbacks, including the reduced accuracy and 19 
error-prone data, which have been shown to pose significant challenges to data processing and 20 
analytics (Jung et al., 2017). It is also worth noting that by no means the testbed is a challenging 21 
problem that only IoT vibration sensors can address. On the contrary, it is a system simple enough 22 
that we can perform designed experiments with actual measurements, so that we can validate 23 
different modeling approaches based on the IoT big data. 24 

2.1 Setup of the IoT-enabled manufacturing testbed 25 
The IoT testbed was set up by non-invasively mounting five tri-axis accelerometers ADXL345 at 26 
different locations of a laboratory-scale pipe flow system as shown in Figure 1. The sensors are 27 
marked by red ellipses and numbered in the figure. In this testbed, water flows in the pipes, which 28 
is driven by a centrifugal pump and controlled by valves. The pump assembly contains a variable 29 
drive motor, pump impeller, impeller casing, coupling, electrical connections, and a knob for 30 
changing motor speed (in revolution per minute or RPM). The motor shaft and impeller shaft are 31 
connected by a coupling. The pump sucks water from a reservoir and pumps it back to the 32 
reservoir. The piping system has a suction valve and a discharge valve, but no bypass. The specific 33 
sensor locations are: sensor 1 – top of the water pipe bend; sensor 2 – the last section of the water 34 
pipe near the exit; sensor 3 – motor; sensor 4 – coupling; sensor 5 – impeller casing. There is one 35 
flow meter measuring the water flow rate (in gallon per minute or GPM), which can be changed 36 
by the discharge valve opening and/or pump motor RPM. The pump motor speed (RPM) and water 37 
flow rate (GPM) are displayed on a computer screen refreshing/updating every second. The details 38 
on the hardware and software protocols responsible for data acquisition, communication and 39 
storage can be find in  (Shah, 2019). 40 
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Figure 1. The IoT testbed with five tri-axis ADXL345 vibration sensors mounting at different 
locations of a laboratory-scale water flow system driven by a centrifugal pump. The sensors are 
marked and numbered. 

2.2 Experiments and data collection 1 
For the testbed, the pump operation range is from 1500 RPM to 2500 RPM. At 1500 rpm, the 2 
minimum flow rate that can be measured reliably by the flow meter is 5 gpm. At the other end, the 3 
maximum flowrate that can be achieved at 2500 rpm and maximum discharge valve opening is 4 
around 16 gpm. Process data collected include both the vibration signals from IoT sensors and 5 
pump motor speed (RPM) and water flow rate (GPM) from computer screen display. The 6 
accelerometers are triple axis accelerometers and thus measure vibration signals in x, y and z 7 
directions of Cartesian coordinate system. The RPM and GPM readings were captured by an IoT 8 
video camera and stored as video streams. To cover the full range of the potential operation 9 
conditions, we design a series of 85 experiments and Table 1 lists the conditions corresponding to 10 
these experiments. Each experimental condition corresponds to one combination of motor speed 11 
and flow rate by adjusting motor speed and discharge valve. For each experimental condition, data 12 
were collected for 10 min after the systems reached relative steady-state, which results in about 13 
3×106 readings (1600 Hz × 60 ×10 min × 3 directions) from IoT vibration sensors and 1800 (3 Hz 14 
× 60 ×10 min) readings from the IoT camera for RPM and GPM. Note that the motor speeds and 15 
flow rates listed in Table 1 were approximate as they drifted during the course of the experiments 16 
and the real-time readings from the computer screen were used as the actual values.  17 
 18 

Table 1 Experiments performed on the testbed 

# of Conditions Motor speed (rpm) Flow rate (gpm) 

3 1500 5, 7, 9 

3 1600 5, 7, 9 

4 1700 5, 7, 9, 11 
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4 1750 5, 7, 9, 11 

4 1800 5, 7, 9, 11 

4 1850 5, 7, 9, 11 

4 1900 6, 8, 10, 12 

4 1950 6, 8, 10, 12 

5 2000 5, 7, 9, 11, 13 

5 2050 5, 7, 9, 11, 13 

5 2100 6, 8, 10, 12, 14 

5 2150 6, 8, 10, 12, 14 

5 2200 6, 8, 10, 12, 14 

5 2250 6, 8, 10, 12, 14 

5 2300 7, 9, 11, 13, 15 

5 2350 7, 9, 11, 13, 15 

5 2400 7, 9, 11, 13, 15 

5 2450 7, 9, 11, 13, 15 

5 2500 8, 10, 12, 14, 16 

 1 

2.3 Characteristic of IoT vibration data 2 
Although the IoT vibration data collected from the testbed have all the 4V characteristics (i.e., 3 
volume, variety, velocity and veracity) of big data, in this section we focus only on veracity, i.e., 4 
the quality of the data. Since the quality of the data usually has the most impact on process 5 
modeling, data veracity is often the most challenging characteristic of big data that we have to 6 
address in order to ensure the quality of the obtained model. Specifically, the IoT big data we 7 
obtained from the testbed have unequal or variable sample intervals; they are corrupted by high 8 
level noises; and they contain significant missing values. In addition, the type and quality of the 9 
internet connection affect data quality as well. These characteristics are briefly discussed below 10 
and more details can be found in (Shah, 2019; Shah et al., 2019a). 11 
Although the IoT vibration sensor sampling rate is set to be 1600 Hz, the actual sampling rate, i.e., 12 
the rate based on when data is reported and stored in the database, is ultimately determined by the 13 
rate of data acquisition and communication. Therefore, the actually sampling rate varies from 14 
sample to sample due to CPU time variations. For most traditional data analytics or modeling 15 
techniques that deal with time series data, equal sampling interval or frequency is assumed. 16 
Obviously, this could be addressed by resampling (or down-sampling) of the raw data, but such 17 
treatment could distort the information contained in the raw data, and the effect of such resampling 18 
has not been examined. In addition, because of the high sensitivity of the accelerometer used in 19 
this work, the signals obtained are very noisy. Although denoising methods such as various 20 
filtering approach are available, the effect of denoising on signal distortion and information loss 21 
can vary depending on the method and associated parameters, as well as the signal itself. Another 22 
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challenge is the large chunk of missing data. This might be due to occasional connection failures 1 
or communication delays between the micro-controller and the sensor. Missing measurements is 2 
associated with most sensors, no matter IoT or traditional sensors. However, the frequency and 3 
duration of miss data segments seem to be higher and longer for IoT sensors than the traditional 4 
ones. Finally, as wireless internet technology is fundamental to the concept of IoT-enabled smart 5 
manufacturing, the effect of network connection on the quality of IoT data is of significant 6 
importance. To examine the effect of wireless connection on data characteristics, we compared 7 
static noises collected from an IoT vibration sensor that was fixed on a non-mechanical stationary 8 
surface over wireless connection vs wired connection. Our results indicate that noises over wireless 9 
network show much wider distribution, suggesting an additional layer of noise due to wireless 10 
connection. 11 

3 BRIEF REVIEW OF MODELING APPRAOCHES COMPARED IN THIS 12 
WORK 13 

In this work, one research goal is to examine the performance of deep learning approaches on 14 
analyzing IoT big data, and compare it with a commonly used simple statistical learning approach. 15 
The other research goal is to examine the effectiveness of feature engineering on different machine 16 
learning approaches. Specifically, we examine the performance of different machine learning 17 
approaches in predicting the motor rotation speed (RPM) and water flow rate (GPM) using big 18 
data generated by IoT vibration sensors. For deep learning, we examine a recurrent neural network 19 
(RNN) approach, specifically long short-term memory (LSTM), for modeling the raw data 20 
collected by the IoT vibration sensors; and a conventional feed-forward deep neural network 21 
(DNN) for modeling the frequency spectra (i.e., features) extracted from the sensor measurements. 22 
For statistical learning, we choose the most commonly used PLS, which is a simple linear machine 23 
learning approach. Here we provide a brief review of different machine learning methods and 24 
feature engineering. 25 

3.1 Statistical learning – partial least squares or projection to latent structure (PLS) 26 
PLS is a well-known and well established statistical learning method for finding fundamental 27 
linear relations between observed variables and responses. Due to its simplicity, PLS is arguably 28 
the most commonly applied statistical modeling approach in industrial applications. Let 𝑋 ∈ 𝑅𝑛×𝑝 29 
be the input matrix and 𝑌 ∈ 𝑅𝑛×𝑞 be the output matrix, where n, p and q are the number of samples, 30 
input variables (usually process variables) and output variables or responses (usually quality 31 
variables), respectively. In PLS modeling, l latent variable pairs in 𝑋 and 𝑌 (denoted as 𝑇 and 𝑈) 32 
are first extracted such that each pair of them capture the maximum variance in 𝑋 and 𝑌 matrices 33 
while maximizing the correlation between them.  34 

𝑋 = 𝑇𝑃𝑇 + 𝐸 35 

𝑌 = 𝑈𝑄𝑇 + 𝐹 36 

The final linear regression model between 𝑋 and 𝑌 can be written as 37 

𝑌 = 𝑋𝛽 + 𝐹 where 𝛽 = 𝑃𝐵𝑄𝑇 38 
PLS only has one tuning parameters: the number of latent variable pairs l. In this work, l is 39 
determined through cross-validation. 40 
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3.2 Deep learning approaches 1 
3.2.1 Deep neural network (DNN) 2 
Unlike the ANN of the 1990s, which typically had only one hidden layer of neurons, a deep neural 3 
network (DNN) has multiple hidden layers (Figure 2). Because the search space and hence the 4 
computation increase exponentially with the number of layers, DNN was only made possible by 5 
recent algorithmic advancement in training strategies coupled with technological advancement in 6 
computing power. ANN, including DNN, usually have 4 main components:  neurons, connections 7 
& weights, activation functions and learning rule. In standard DNN, flow of information is always 8 
forward to the next layers (as shown in Figure 2) and thus is also called feed-forward DNN. 9 
 10 

Figure 2. Schematic diagram of a feed-forward DNN with two hidden layers 
 11 
3.2.2 Long short-term memory (LSTM) Network 12 
A feed-forward DNN only captures the static relationship between input and output, as it has no 13 
notion of temporal order. However, most industrial processes are dynamic systems, whose current 14 
output is affected by both the current input and the system history. Therefore, the data generated 15 
by dynamic systems are time-series, and the temporal order of the samples plays an important role 16 
in capturing the system dynamics. Recurrent neural net (RNN) is capable of capturing such 17 
dynamics by taking both the current input and what it has seen previously. Because the output now 18 
depends on what has occurred before, the network behaves as if it has “memory” (Rumelhart et 19 
al., 1986). Long short-term memory (LSTM) network is an improved version of RNN by 20 
introducing a cell which can store the value over arbitrary time intervals, and three gates (i.e., input 21 
gate, output gate and forget gate) regulate the flow of information into and out of the cell 22 
(Hochreiter and Schmidhuber, 1997). As a result of the flexible memory unit, LSTM networks are 23 
well suited for predicting output based on time-series data. 24 
3.2.3 Tuning parameters of neural networks 25 
For neural networks, there are several hyperparameters that have to be determined before network 26 
training could be conducted. The major ones are: network structure (i.e., the number of hidden 27 
layers and the number of neurons for each layer), number of epochs, batch size and network weight 28 
initialization. Commonly used method to tune these hyperparameters are manual search, grid 29 
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search, random search, and Bayesian optimization (Bergstra et al., 2011; Nielsen, 2015). However, 1 
each method has its pros and cons. In this work, extensive manual search was conducted to 2 
optimize the neural network performance. 3 

3.3 Brief review of feature engineering 4 
Feature engineering involves the transformation of given feature/variable space, typically using 5 
mathematical functions, with the objectives of reducing modeling error (Khurana et al., 2018). The 6 
importance of feature engineering has long been recognized (Bengio et al., 2013) (Khurana et al., 7 
2018; Wind, 2014). There even has been a famous claim that “Applied machine learning is 8 
basically feature engineering” (Ng, 2013). On the other hand, the challenge of feature engineering 9 
has also long been recognized (Anderson et al., 2013) (Khurana et al., 2018). Currently there is no 10 
well-defined basis for performing effective feature engineering. Here we summarize different 11 
feature engineering approaches into three categories: explicit feature engineering, implicit feature 12 
engineering and knowledge-guided feature engineering. 13 
3.3.1 Explicit or direct feature engineering 14 
Explicit or direct feature engineering uses some mathematical transformation functions, a.k.a. 15 
constructor functions, to transform the given features into a new set of features. For example, 16 
Khurana et al., (2018) propose a transformation graph that enumerates the space of feature options 17 
based on the following twenty-two transformation functions: Log, Square, Square Root, Product, 18 
Z-Score, Min-Max-Normalization, Time-Binning, Aggregation (using Min, Max, Mean, Count, 19 
Std), Temporal window aggregate, Spatial Aggregation, Spatio Temporal Aggregation, k-term 20 
frequency, Sum, Difference, Division, Sigmoid, BinningU, BinningD, NominalExpansion, Sin, 21 
Cos, Tanh. Other methods construct new features by applying similar functions, such as FICUS 22 
(Markovitch and Rosenstein, 2002), FEADIS (Dor and Reich, 2012), and Cognito (Khurana et al., 23 
2016). Most of the explicit or direct feature engineering methods discussed here can be automated 24 
to become automated or automatic feature engineering (AFE), which is an area of active research 25 
in the machine learning field. 26 
3.3.2 Implicit or indirect feature engineering 27 
Some machine learning methods perform feature engineering implicitly or indirectly. Examples in 28 
this category are kernel methods, which are among the most popular feature engineering methods. 29 
Kernel methods have been incorporated in different algorithms such as kernel SVM for 30 
classification, kernel PCA for dimensionality reduction, and kernel K-means for clustering. Kernel 31 
methods use implicit feature engineering by working with the similarity of the data points in the 32 
input space, but not the explicit representation in the transformed feature space (Wang et al., 2017). 33 
This is because the kernel trick is used to make problems solvable without ever having to explicitly 34 
map the original data into a very high dimensional kernel space. There are some key weaknesses 35 
of kernel transformations, including the space- and time-inefficiency, susceptible to poor results 36 
with increasing irrelevant input features, and lack of interpretability of the kernel features even 37 
when extracted explicitly (Wang et al., 2017). Another class of machine learning method that 38 
performs feature engineering indirectly are dimensionality reduction or feature combination 39 
methods, such as PCA, which aim at mapping or combining the raw features into a lower-40 
dimensional space with fewer features. 41 
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3.3.3 Knowledge and human learning guided feature engineering 1 
Although the explicit features generated using the mathematical transformation functions are 2 
mostly interpretable, they may not carry any physical meaning. This may not be important for 3 
some applications, such as image classification or computer vision, speech recognition, music 4 
classification, and machine translation. However, for most engineering applications, especially 5 
process engineering applications, the physical meanings of the features are important for making 6 
diagnostic inferences about specific predictions. In this aspect, domain knowledge and human 7 
learning through data visualization and exploration can play a significant role. In addition, our 8 
previous work with feature-based process modeling suggest that quite often the key of developing 9 
an effective data-driven process model is to identify features that can effectively characterize the 10 
behavior of a process or system (He and Wang, 2018). For example, auto- and cross-correlations 11 
of selected process variables can capture key system dynamics and lead to enhanced process 12 
monitoring performance (He and Wang, 2011; Wang and He, 2010). Other knowledge-guide 13 
feature engineering, such as landmark features (Wold et al., 2010); profile-driven features (Rendall 14 
et al., 2017); geometry based features (Wang et al., 2017), have also been proposed in the PSE 15 
community.  16 

4 COMPARISION BETWEEN DEEP LEARNING AND STATISTICAL 17 
LEARNING FOR IoT BIG DATA ANALYSIS 18 

For the IoT-enabled pipe flow testbed, we collected IoT vibration sensor data (i.e., the input 19 
variables or predictors), as well as the pump motor speed (RPM) and water flow rate (GPM) data 20 
(i.e., the outputs or responses) under 85 different operation conditions. However, the input and 21 
output variables were collected at drastically different frequencies. The IoT vibration sensor data 22 
were collected at roughly 1600Hz, while the sampling frequency of RPM and GPM was only 3 Hz 23 
after image processing. To handle the different sampling frequencies between input and output 24 
data, instead of down sampling the IoT data, we paired 800 IoT samples with one pair of RPM and 25 
GPM readings extracted from the images. As the vibration sensor measures vibration in x, y and z 26 
directions, the input vector corresponding to one output pair (RPM and GPM) consists of 2400 27 
variables (800 × 3) per sensor.  28 
Data collected under all the conditions were used for model training and testing. Both training and 29 
testing sets contain samples from all conditions. For each condition, the first 8 minutes of collected 30 
data were used for training, and the last 2 minutes of data were used for testing. Samples in the 31 
training set are randomized and further divided into calibration (70%) & validation (30 %) sets. In 32 
addition, the segments with large missing chunks of data were removed from training and testing. 33 
In the end, the total number of samples used for calibration, validation and testing are 48,073, 34 
20,604 and 16,488, respectively. 35 
Although vibration signals from all five IoT sensors were collected, our analyses show that data 36 
from sensor 4 (i.e., the one attached to the coupling) is the most relevant to both RPM and GPM 37 
due to its central location between motor and water pipe. When data from all five sensors were 38 
used to predict RPM and GPM, the results from PLS were slightly worse than those using data 39 
from sensor 4 alone. This is probably due to the fact that the benefit of extra information added by 40 
extra sensors is outweighed by the cost of added noise and increased curse of dimensionality. We 41 
did not test DNN using data from all five sensors as it would take a long time and significant 42 
computing resources to train the models and find optimal hyperparameters. Therefore, in this work 43 
we only included the data collected from sensor 4 for analysis to simplify the comparison. 44 
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However, data collected from other sensors do contain valuable information. For example, we 1 
have demonstrated that sensor 4 can be reconstructed using the other sensors should the 2 
malfunction occur to sensor 4 (Shah, 2019). These results are not included in this work as they are 3 
outside of the scope of this work. In addition, we suspect that sensors 1 and 2 are probably better 4 
candidates for predicting GPM since they are directly attached to the pipe and are far away from 5 
the motor. On the other hand, sensor 3 might be better in predicting RPM since it is directly 6 
attached to the motor. Similarly, sensor 5 might be the best for detecting pump problems. These 7 
hypotheses are from the viewpoint of signal decoupling, which require further validation. 8 
In this section, we compare deep learning and statistical learning approaches on their capabilities 9 
in handling the challenges presented in IoT big data. In addition, we examine the effect of feature 10 
engineering on the performance of both modeling approaches. Specifically, we first apply LSTM 11 
and PLS modeling approaches on the raw IoT sensor data to see if they could extract relevant 12 
information from the vibration signals. Next, based on system information, we perform feature 13 
engineering, i.e., extracting frequency content from the raw, time-domain vibration signals. DNN 14 
and PLS are then applied to predict RPM and GPM using samples’ frequency spectra. Finally, 15 
guided by system information and human learning through data visualization and exploration, we 16 
perform additional feature engineering by identifying informative features for building the 17 
prediction models. To evaluate different machine learning methods, the performance of different 18 
methods are evaluated using root mean squared error (RMSE) of the test set, as defined below. 19 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦̂−𝑦)2𝑛
𝑖=1

𝑛
 (1) 20 

where 𝑦 and  𝑦̂ are the predicted and measured RPM or GPM, respectively. 𝑛 is the number of 21 
samples in the test set. 22 

4.1 Modeling using the raw data collected by the IoT sensors  23 
First, we examine if LSTM and PLS could capture the hidden relationship between the inputs 24 
(vibration signal) and output (RPM and GPM). As discussed before, the raw data collected by IoT 25 
sensors are not equally spaced, but LSTM requires equally spaced time series data. To address 26 
this, the sample segments with large missing chunks of data were removed. Without the segments 27 
of missing data chunks, the variation in sampling frequency was relatively small and we simply 28 
used the raw data directly for model training and testing. In this way, we could use the models’ 29 
prediction performance to indirectly examine whether the modeling approach could effectively 30 
handle such small abnormality.  31 
The tuning of LSTM network (i.e., determining the hyperparameters) was through extensive 32 
manual search, and the final selected LSTM network has 3 hidden layers: the first two layers 33 
consist of fully connected LSTM units, and the third layer consists of fully connect neurons. The 34 
initial weights of the LSTM network was assigned randomly following a uniform distribution. 35 
Table 2 lists the value of the hyperparameters for LSTM. For PLS, the only tuning parameter is 36 
the number of latent variables, which is selected through cross-validation. The numbers of latent 37 
variables for the RPM and GPM models were 8 and 1, respectively. 38 
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Table 2. Hyperparameters for LSTM 

Hyperparameter Value 

# of LSTM units in HL1 200 

# of LSTM units in HL 2 100 

# of neurons in HL 3 100 

# of epoch 200 

Batch size 801 
 1 
Figure 3 and 4 compare the predictive performance of the LSTM network and PLS on the testing 2 
data set, with RPM in (a) and GPM in (b). The RMSE’s of different modeling approaches are 3 
reported in Table 3, where the first block row corresponds to the results using the raw IoT big data. 4 
The other results are discussed later. 5 
Table 3. RMSE of different modeling approaches with different level of feature engineering 

  RMSE(RPM) RMSE(GPM) 

Models using raw 
IoT big data 

LSTM 335.99 3.99 

PLS 195.97 2.96 

Models using whole 
frequency spectra 

DNN 12.21 0.34 

PLS 13.16 0.78 

Model using 
selected features PLS 0.21 0.09 

 6 

 (a)  (b) 

Figure 3. Deep learning from raw IoT data: (a) Measured and LSTM-predicted motor speed 
(RPM); (b) Measured and LSTM-predicted flow rate (GPM) 
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(a) (b) 
Figure 4. Statistical learning from raw IoT data: (a) Measured and PLS-predicted motor speed 
(RPM); (b) Measured and PLS-predicted flow rate (GPM) 

 1 
Figure 3 and 4 clearly indicate that neither modeling approach was able to effectively capture the 2 
correlation between the vibration signal and the system output (RPM and GPM). For the LSTM 3 
network, since it is capable of capturing any nonlinear relationship, its poor performance could be 4 
attributed to the high noises in the data, and perhaps unequally spaced data. It is possible that a 5 
different network structure could yield better prediction performance. However, it is extremely 6 
time-consuming to train and tune the LSTM network because of the long time series of the input 7 
data. For PLS, the poor performance could be explained by the fact that PLS is a linear modeling 8 
approach and cannot capture the likely nonlinear relationship between the input and output data. 9 
For example, the number of latent variables selected for the GPM model is only one, and the PLS 10 
prediction is basically the average of GPM’s across all conditions. In addition, the high noise level 11 
in the input data could be another reason for poor prediction performance of PLS, reflected by the 12 
highly noisy prediction of RPM.  13 
However, it is interesting to notice that although both modeling approaches fail to capture the 14 
underlying correlation between input and output data, PLS appears to perform better than LSTM. 15 
Specifically, the PLS prediction of RPM roughly followed the trend of experimental measurement, 16 
although very noisy, while the LSTM predictions of both RPM and GPM showed little correlation 17 
with the measurement. These results suggest that simply applying deep learning tools on available 18 
big data may not guarantee better performance than that of simpler, or even linear, but more robust 19 
statistical learning methods.   20 

4.2 Feature engineering via projecting time series data into frequency domain 21 
The modeling results from the previous section clearly indicate that the available deep learning 22 
and statistical learning approaches cannot predict RPM and GPM from raw vibration signal. Our 23 
previous work suggests that feature-based modeling, especially features that can capture the 24 
process characteristics, could offer an effective solution to address the challenges associated with 25 
IoT big data (He and Wang, 2011; Q.P. He and Wang, 2018; Shah et al., 2019b; Suthar et al., 2018; 26 
Wang and He, 2010). In feature-based modeling, features generated from process data, instead of 27 
process data themselves, are paired with output data to build the model. In this section, we explore 28 
feature engineering to improve the prediction performance from different models. 29 
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Because the pump operation is inherently periodic, and higher rotation speed would result in higher 1 
vibration frequency, it makes sense to extract frequency spectra as process features from the raw 2 
vibration signal. In addition, most of the noises contained in the vibration signal would be in higher 3 
frequency and hence could be easily separated from the frequency resulted from pump rotation. 4 
Therefore, we expect that using the frequency spectra as the features to predict RPM and GPM 5 
would result in improved prediction performance.  6 
Fast Fourier transform (FFT) is the most commonly applied approach to extract frequency 7 
spectrum from time-series data. However, FFT requires equally spaced samples. When this 8 
condition is not satisfied, there is no guarantee that FFT would yield reliable frequency spectrum. 9 
To address this challenge, one could implement some preprocessing steps such as interpolation 10 
and signal binning to make the data equally spaced. However, these approaches all have their 11 
limitations and could distort the information contained in the raw data. For this consideration, we 12 
choose a robust least-squares spectral analysis approach, Lomb’s algorithm, to extract the 13 
frequency spectrum from the raw data. Lomb’s algorithm is commonly used in astronomy 14 
community, which estimates a signal’s frequency spectrum based on a least squares fit of sinusoids 15 
to data samples (Lomb, 1976). The most significant advantage of Lomb’s algorithm in this study 16 
is that it can handle unequally spaced samples without introducing information distortion or down-17 
sampling. 18 
Figure 5 shows the spectra of 500 randomly selected samples corresponding to different 19 
conditions, which covers frequency range from 1 to 800 Hz with a resolution of 0.2. Figure 5 20 
confirms that most information clustered around low frequency range (30 to 300 Hz) with distinct 21 
peaks, while the rest of the spectrum, especially the high frequency range, are mainly noises. 22 

Figure 5. Spectra of 500 samples after Lomb transform. 
 23 
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4.3 Modeling using frequency spectra 1 
With the whole frequency spectrum as process features to predict RPM and GPM, we again 2 
compare the modeling performance of a deep learning approach with a statistical learning 3 
approach. Since the frequency spectrum is no longer a time series sequence, a standard DNN would 4 
be sufficient for the modeling purpose. In this exercise, we chose a DNN with 4 hidden layers, and 5 
each layer has 4,000, 2,000, 1,000 & 300 neurons respectively. The input layer has 12,000 neurons, 6 
which correspond to the spectra input from all three directions, and the output layer has 2 neurons. 7 
The activation function for hidden neurons was rectified linear unit (ReLU). The number of epochs 8 
was set as 100, and the batch size was 600. The other hyperparameters were kept at recommended 9 
values. For the statistical learning approach, we still use PLS. The number of latent variables 10 
selected for the RPM and GPM modes are 29 and 13, respectively.  11 
Figure 6 and 7 compare the prediction performance of DNN and PLS on the testing data set, with 12 
RPM in (a) and GPM in (b). The RMSE’s of different modeling approaches are reported in Table 13 
2. These results clearly show that by using the process features (i.e., the whole frequency spectrum) 14 
as the inputs to build the model, both modeling approaches achieved significantly improved 15 
performance. For example, for RPM prediction, the RMSE’s from models based on the frequency 16 
features are only 3.6% and 6.7 % of those from the raw data-based models for deep learning 17 
approach and statistical learning approach respectively. The performance of DNN is slightly better 18 
than PLS in predicting RPM and noticeably better in predicting GPM. This is likely due to the 19 
DNN’s capability in capturing nonlinear relationships. It is also interesting to notice that the 20 
number of the latent variables for PLS models both increased, especially for the GPM model. This 21 
suggests that frequency spectrum generated from the raw vibration data can help separate noises 22 
from signals.  23 

(a) (b) 

Figure 6. Deep learning from frequency features: (a) Measured and DNN-predicted motor speed 
(RPM); (b) Measured and DNN-predicted flow rate (GPM) 
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(a) (b) 
Figure 7. Statistical learning from frequency features: (a) Measured and PLS-predicted motor 
speed (RPM); (b) Measured and PLS-predicted flow rate (GPM) 

Finally, it is important to note that although DNN achieved better prediction performance than 1 
PLS, there are several limitations associated with deep learning approaches, which are particularly 2 
relevant to industrial applications. In this case, the DNN model has four hidden layers, with each 3 
consisting of hundreds to thousands of neurons. Such complex network structure makes model 4 
interpretability extremely difficult. Second, DNN has a large number of hyperparameters, which 5 
makes model tuning challenging and time consuming. Finally, although the DNN model predicts 6 
RPM and GPM well, it does not reveal any fundamental understanding on how the frequency 7 
content determines the system output. For industrial applications, model interpretability is 8 
crucially importance, as it enables diagnostic inferences and offers key insights for troubleshooting 9 
under faulty conditions. On the other hand, although the PLS model performs slightly worse than 10 
DNN in terms of prediction performance, there are several advantages of PLS models for industrial 11 
applications. These advantages include the robustness of the PLS model under adversarial 12 
disturbances or attacks, and straightforward and fast model training with only one tuning 13 
parameter. In addition, the significantly simpler model structure and fast computation enables 14 
recursive model update. Last but not least, the simple and linear structure enables the model to be 15 
easily interpretable. For example, by examining the model coefficients, we can identify the 16 
frequencies that contribute the most to the prediction of RPM and GPM. 17 

4.4 Further feature engineering through data visualization and exploration 18 
Because of the simplicity, robustness and interpretability of the PLS models, it is highly desirable 19 
to develop a PLS model that could accurately predict the RPM and GPM. In the previous section, 20 
when using the whole frequency spectrum as the input to predict RPM and GPM, the prediction 21 
performance was improved significantly compared to using the raw vibration data. However, the 22 
predictions were still not ideal, especially the flow rate predictions. Figure 5 showed that most of 23 
the frequency spectrum are still quite noisy, except the peaks at the low frequency range. The noisy 24 
part of the frequency spectrum might be the reason for the noisy prediction generated by the PLS 25 
models. If only the informative peaks were included for model building while the irrelevant noisy 26 
parts were removed, we would expect to further improve model performance. 27 
But can we identify the relevant information from the whole spectrum? One obvious answer is to 28 
use a variable selection algorithm to identify the relevant frequencies, and many methods are 29 
available for variable selection for soft sensor development (Lee et al., 2019; Mehmood et al., 30 
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2012; Peres and Fogliatto, 2018; Wang et al., 2015). In this work, we are interested in exploring if 1 
knowledge gained by human learning, e.g., through data visualization and exploration, can be used 2 
to guide further feature engineering. For this purpose, we examine RPM and GPM modeling 3 
separately. 4 
For RPM modeling, it is a common knowledge that for pumps, the motor rotation speed (i.e., RPM) 5 
determines the peak locations of the vibration frequency spectrum. This is confirmed by Figure 8, 6 
where the spectra with the same RPM but different GPM are grouped together using the same 7 
color. Figure 8 shows that the frequency spectra of the same RPM share the same set of peak 8 
frequencies, while different GPM’s only affect the heights of the peaks. This observation suggests 9 
that we might only need the frequency of the dominant peaks to predict RPM. Indeed, when only 10 
the frequencies of the dominant peaks were included in the PLS model to predict RPM, the model 11 
prediction was further improved, by a large degree, as shown in Figure 9. The RMSE was reduced 12 
drastically from 13.16 to 0.21 as shown in Table 2 earlier. The PLS modeling was implemented 13 
through a binary matrix that marks the location of the highest peak from each sample spectrum. 14 
Details can be found in (Shah, 2019). 15 

Figure 8. Data visualization and exploration: spectra of the same RPM but different flow rate 
share the same frequency of the highest peak. 

 
Figure 9. Measured and PLS-predicted RPM when the frequencies of the highest peaks were 
used as features 
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To improve GMP prediction, we further explore system knowledge and human learning for feature 1 
selection. For the variable speed pump used in this study, depending on the output flow 2 
requirement (i.e., the load), the pump usually runs in different stages of RPMs, which are called 3 
operation stages. For such operations, we could use an ensemble of models to capture the behavior 4 
of different operation stages separately. In other words, we could bin the data that share the same 5 
RPM together for GPM modeling. The logic behind the data binning is that by reducing the range 6 
of system response covered by the data, a linear PLS model could better approximate the nonlinear 7 
relationship between the frequency spectrum and GPM, due to the reduced input space.  Since we 8 
can predict RPM very accurately, we can identify the operation stage (i.e., RPM) first, then use 9 
the corresponding stage model for GPM prediction. 10 
The feasibility of such a data binning approach is confirmed by Figure 10, which provides a 11 
zoomed-in view of sample spectra that share the same RPM but different GPM. Figure 10 shows 12 
that all sample spectra with the same RPM share the same peak frequency, and different GPM’s 13 
are reflected in different peak heights. In addition, each sample spectrum only contains small 14 
amount of useful information (i.e., the peaks) while most of the spectral segment are noises. 15 
Clearly, if the noisy parts can be removed from the input data, the model performance would be 16 
further improved.  17 
To isolate the informative peaks that are not drowned by the noises, we propose to use the inverse 18 
of the coefficient of variation (ICV) computed from the spectra of all the training samples. For 19 
each frequency f, the inverse coefficient of variation is defined as (𝑓) = 𝑚𝑒𝑎𝑛(𝐴𝑓)

𝑣𝑎𝑟(𝐴𝑓)
 , where 𝐴𝑓 is the 20 

amplitude of the spectrum at frequency f. If 𝐼𝐶𝑉(𝑓) ≥ 𝐼𝐶𝑉𝑡ℎ, then frequency f would be included 21 
in the input for model development. In this work, we set the threshold of ICV as 2.4, which 22 
corresponds to 98% confidence level that 𝐴𝑓  represents a meaningful peak, instead of random 23 
noise. Figure 12 shows the zoomed in view of the ICV at different frequencies for samples from a 24 
given condition (2,400 RPM and 7 GPM), for all three directions (x, y and z). The results 25 
highlighted the consistency among three directions, and confirmed that majority of the spectrum 26 
indeed only contains noise and should not be included as features.  27 
 28 

Figure 10. Data visualization and exploration: spectra of the same RPM but different GPM share 
the same peak locations (i.e., frequencies) but with different peak heights. Besides peaks, the 
spectra contain significant noises close to the baseline. 
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 Figure 11. ICV identifies informative features (i.e., the significant and consistent peaks across 
all training samples of the same conditions) 

Next a PLS model was developed to predict GPM using only the selected informative features 1 
(i.e., significant and consistent peaks) as input variables for each RPM. The model prediction 2 
results are shown Figure 12. It clearly showed that with feature engineering and selection, the 3 
prediction performance of the PLS model was significantly improved. Similar to the RPM model, 4 
the model predictions agree very well with the experimental measurements. Again, the RMSE was 5 
drastically reduced from 0.78 to 0.09 as shown in Table 2 earlier. It is worth noting that the features 6 
extracted have clear linear relationships with RPM and GPM, as indicated by the excellent 7 
performance of the linear PLS models. Therefore, we did not test any nonlinear statistical modeling 8 
approach such as nonlinear PLS. In addition, there are limitations associated with nonlinear PLS. 9 
For the methods that use nonlinear transformation to convert an original nonlinear problem into a 10 
linear one, such as polynomial PLS, it can be difficult to identify the proper transformations. For 11 
kernel PLS, the model becomes a ‘black-box’ model with limited possibility to interpret the results 12 
with respect to the original data. 13 

 
Figure 12. Measured and PLS-predicted flow rate (in GPM) when only consistent peaks across 
all training samples of the same conditions were included 
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5 CONCLUSIONS 1 
In this work, we use data collected from an IoT-enabled manufacturing testbed to demonstrate the 2 
challenges associated with analyzing IoT big data. In addition, we compared the performances of 3 
both complex deep learning and simple statistical learning models with different level/extent of 4 
feature engineering in modeling the IoT testbed system. The comparison results highlight the 5 
importance of feature engineering and feature selection in developing successful data-driven 6 
machine learning models, especially for IoT big data applications. Specifically, we showed that 7 
rote application of machine learning, especially deep learning, to raw IoT data yielded erroneous 8 
models due to the 4V challenges, especially veracity or the data quality, presented by the IoT big 9 
data. In addition, we showed that feature engineering guided by system information and human 10 
learning can be a highly effective way to address the 4V challenges of the IoT big data. The robust 11 
and informative features generated through feature engineering and selection resulted in accurate 12 
models that can be used for process monitoring and control. Finally, our results suggest that for 13 
industrial IoT-enabled manufacturing, there are still unsolved challenges for deep learning 14 
modeling approaches, including tuning, training and interpretability of DNN with multiple hidden 15 
layers and many hyperparameters. In comparison, simple statistical learning approaches, 16 
combined with feature engineering, especially that involved somewhat extensive human learning 17 
through data visualization and exploration, achieved superior performance. The performance is 18 
truly remarkable considering the significant messiness of the IoT big data and the fact that no data 19 
cleaning or preprocessing was performed. There are many advantages of simple statistical learning 20 
models for industrial applications, including simple tuning, training and easy interpretability. 21 
Nevertheless, with DNN’s strong capability in modeling nonlinear process behavior, and future 22 
advancements in making DNN more interpretable, there is undeniable potential of deep learning 23 
for process systems engineering applications. We have witnessed significant advancements in 24 
DNN applications for process design and optimization, and we will probably see DNN applications 25 
for process operations in the not too distant future. 26 
IoT sensors are based on solid-state technologies such as complementary metal-oxide-27 
semiconductor (CMOS), micro-electro-mechanical systems (MEMS), and nano-optics. In 28 
addition, they are produced through cost-efficient semiconductor manufacturing. Therefore, they 29 
have many advantages compared to the traditional sensors, such as small size, cheap price, low 30 
power consumption, sampling at very high frequency, durable to harsh environment, and can 31 
usually be installed non-invasively. As a result, they offer a unique opportunity to instrument 32 
manufacturing systems in massive numbers. Although the data quality may present some 33 
challenges to the existing data analytics tools, this study demonstrates that these challenges can be 34 
addressed with proper feature engineering and selection. Therefore, we envision that IoT sensors 35 
will have great potential in many manufacturing applications, such as to achieve improved process 36 
monitoring and control. 37 
 38 
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