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Abstract 

In the last few decades, spectroscopic techniques such as near-infrared (NIR) spectroscopy have gained 

wide applications in several industries, such as pharmaceutical, agricultural, oil and gas industries. As a 

result, various soft sensors have been developed to predict sample properties from its spectroscopic readings. 

Because the spectroscopic readings at different wavelengths, especially at the adjacent wavelengths, are 

highly correlated, it has been shown that variable selection could significantly improve a soft sensor’s 

prediction performance while reducing the model complexity. To improve the prediction performance, most 

variable selection methods focus on identifying the variables (i.e., wavelengths or wavelength segments) 

that are strongly correlated with the dependent variable. Although many successful applications have been 

reported, these variable selection methods do have their limitations. Specifically, the selected wavelengths 

sometimes show little connection to the chemical bounds or functional groups presenting in the sample. In 

addition, the selected variables can be quite sensitive to the choice of the training samples. In this work, we 

address these limitations from a different perspective: if a variable selection algorithm can identify the truly 

relevant input variables, it should consistently identify the same subset of variables regardless of the choice 

of the training samples. Therefore, we propose a variable selection method that aims to improve the 

consistency of variable selection resulted from different training samples. The new algorithm is termed 

consistency-enhanced evolution for variable selection (CEEVS). To demonstrate the performance and 
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robustness of CEEVS, we compare the proposed method with three representative variable selection 

methods using five published NIR datasets. These case studies clearly demonstrate that by improving the 

variable selection consistency, we can not only achieve improved prediction performance, but also identify 

key chemical information from spectroscopic data.  
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1 BACKGROUND 

With the advancements of spectroscopic technologies including near-infrared (NIR), Ramon Spectroscopy, 

and UV/Vis spectroscopies, various properties could be inferred from a sample’s spectrum profile. 

Correspondingly, multivariate modeling approaches (i.e., soft sensor models), which correlate the 

spectroscopic reading of a sample to its properties of interest, have drawn increased research interest. These 

soft sensor models offer a non-invasive, fast and cheap way to estimate the sample properties of interest 

and have been applied in many different fields. For example, spectra-based soft sensors have been 

developed to determine properties such as octane number of gasoline, moister content of corn, active 

pharmaceutical ingredient (API) in drug, and microorganism concentration in a mixed culture1–4. The most 

commonly used modeling approach for soft sensor is partial least squares (PLS) due to its simplicity, 

robustness and the inherent capability in addressing collinearity among independent variables. 

It has been well-recognized that the performance of a soft sensor can be significantly improved if only the 

relevant variables are included as predictor5–9. This is particularly the case for spectrum-based soft sensors, 

where the readings at different wavelengths are highly correlated. In addition, most multivariate statistical 

methods, including PLS, require much larger number of samples than the number of variables to perform 

well. However, most spectral datasets have relatively small sample size (less than 100) but large number of 

variables (several hundreds of wavelength). Therefore, eliminating irrelevant wavelengths could help 

circumvent this difficulty by reducing the number of variables. Driven by these considerations, many 

variable selection methods have been developed in the past few decades. Most existing variable selection 
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methods focus on selecting the variables (i.e., wavelengths or wavelength segments) that are strongly 

correlated with the dependent variable to improve the prediction performance. These variable selection 

approaches include direct methods that rank variable contributions such as variable selection based on 

variable importance in projection (VIP)10 or regression coefficient (BETA)7, and iterative methods such as 

uninformative variable elimination (UVE)11 and least absolute shrinkage and selection operator (Lasso)12. 

Among iterative approaches, a group of variable selection methods based on the principle of “survival of 

the fittest” have shown superior performance. The representative methods of this group are the genetic 

algorithm (GA)13–15, the competitive adaptive reweighted sampling method (CARS)3 and the method based 

on stability and variable permutation (SVP)16. By employing the principle of “survival of the fittest”, these 

methods rely on random sampling in the variable space and/or sample space to identify the most relevant 

input variables as predictor variables to improve prediction performance.  

Despite many successful applications, existing variable selection methods also have limitations. It has been 

recognized that a soft sensor model with good fitness performance may not guarantee good variable 

selection performance5,7. Specifically, for spectrum-based soft sensors, the selected wavelengths sometimes 

show little connection to the chemical bounds or functional groups presenting in the sample. In addition, 

the selected variables can be quite sensitive to the choice of the training and validation data. In particular, 

the variables selected from different Monte Carlo (MC) runs using randomly selected training and 

validation data often show low consistency with each other. The inconsistency among different MC runs 

suggests that the selected variables (wavelengths) may not contain the truly relevant predictors, i.e., the 

wavelengths corresponding to the underlying chemical bonds or functional groups that determine the 

property of the sample. To help address this limitation, in this work, we propose a new variable selection 

method from a different perspective: if a variable selection algorithm can identify the truly relevant input 

variables, it should consistently identify the same subset of variables regardless of the choice of the training 

dataset. The proposed method, namely consistency enhanced evolution for variable selection (CEEVS), 

aims to improve the consistency of variable selection across different training datasets. To examine whether 
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CEEVS is able to deliver improved prediction performance and to identify relevant chemical information, 

five case studies were presented. The performance of CEEVS is also compared with three representative 

methods based on the principle of “survival of the fittest”, i.e., GA, CARS and SVP, using the full PLS 

model as the basis. 

The rest of the paper is organized as follows. Section 2 briefly reviews the relevant existing methods; 

Section 3 describes the proposed CEEVS methods; Section 4 presents the results from 5 cases studies; and 

Section 5 is the conclusion and discussion. 

2 REVIEW OF RELEVANT VARIABLE SELECTION ALGORITHMS 

2.1 Genetic algorithm (GA) 

Inspired by Darwin’s evolution theory of “survival of the fittest”, GA is one of the most commonly applied 

variable selection methods14,15,17. According to the evolution theory, the individuals who are well adapted 

to the environment will be more likely to survive and produce the next generation13. Therefore, in GA, 

parent chromosomes (i.e., subsets of selected variables) are determined based on its “fitness to the 

environment”, such as prediction performance. Then crossover and mutation are applied to produce 

offspring, i.e., new sets of selected variables.  Through crossover, portions of two parent chromosomes are 

crossed and combined to make two offspring which have new combinations of genes (i.e., variables or 

wavelengths); through mutation, new genes not included in the chromosomes population could have a 

chance to be included, which may improve the offspring’s fitness to the environment. This reproduction 

step is repeated until a termination criterion is satisfied18.  

2.2 Competitive adaptive reweighted sampling (CARS) 

In CARS, the importance of a variable is determined based on its absolute regression coefficient (BETA) 

obtained through partial least squares (PLS) regression. The variables with large absolute regression 

coefficients are considered as the important variables. CARS employs the iterative sampling runs to 
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determine the optimal subset of variables. In each sampling run, two variable reduction procedures, namely 

exponentially decreasing function (EDF) and adaptive reweighted sampling (ARS), are applied to reduce 

the number of variables. The root mean square error of cross-validation (𝑅𝑀𝑆𝐸𝐶𝑉) is calculated using the 

variables retained in the sampling run. After 𝑛𝑆 times sampling runs, CARS obtains 𝑛𝑆 models consisting 

of the different subsets of variables and the model with the lowest 𝑅𝑀𝑆𝐸𝐶𝑉 is selected as the optimal model3. 

CARS has been applied to develop soft sensors in many different applications, including spectroscopic data 

collected from GC-MS, NIR, and UV/Vis19–22. 

2.3 Stability and variable permutation (SVP) 

Recently, SVP was proposed based on the evolutionary principles of ‘intraspecific competition’ and 

‘survival of the fittest’. In SVP, the importance of each variable is determined through variable stability 

and variable permutation analysis. Variable stability is evaluated through random sampling of the sample 

space, while variable permutation analysis is performed through random sampling of the variable space. 

After computing the variable stability and performing variable permutation analysis, SVP divide all the 

variables into the elite variable set and normal variable set by adaptive reweighted sampling (ARS). The 

elite variable set consists of variables with high stability, while the normal set contains variables with 

relatively low stability. To eliminate the uninformative variables, SVP employs exponentially decreasing 

function (EDF), which remove variables with small difference from the normal variable set. In each 

sampling run, the procedures described above are performed. After 𝑛𝑆  sampling runs, SVP obtains 𝑛𝑆 

models with different variable subsets; then the variable subset that results in minimum mean and relatively 

low standard deviation of the 𝑅𝑀𝑆𝐸𝐶𝑉’s is selected as the optimal subset of the selected variables16.  

3 THE PROPOSED METHOD: CONSISTENCY ENHANCED EVOLUTION FOR 

VARIABLE SELECTION (CEEVS) 

As discussed earlier, the variables selected by GA, CARS and SVP are not necessarily the truly relevant 

variables, i.e., the ones corresponding to the key chemical bonds or functional groups that determine the 
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sample properties at interest. This is further reflected in the low consistency among variable selection results 

obtained from different MC runs using randomly selected training samples. To explore the root cause of 

this deficiency, we compare the evolution theory based variable selection to biological evolution. In 

biological evolution, it usually takes millions of years for natural selection to converge to an optimal 

solution; however, in variable selection the limited sample space and the limited evolution process may 

cause the variable selection to be stuck in a local optimum and miss the global one. Therefore, we believe 

that the limited sample space and limited evolution may be one of the underlying reasons for the 

inconsistency among different MC runs. However, without knowing what the global optimum is (i.e., the 

ground truth of the truly relevant variables), it is difficult to devise approaches to directly address this 

limitation.   

In this work, we address this difficulty based on the following rationale: if a variable selection algorithm 

can identify the truly relevant input variables, it should consistently identify the same subset of the variables 

regardless of the choice of the training samples. In other words, the variable selection results among 

different MC runs should be relatively consistent to identify the truly relevant predictors. Therefore, we 

hypothesize that if a variable selection method delivers better consistency in terms of selected variables 

among different MC runs, it is more likely that it selects the truly relevant variables and as a result would 

deliver better prediction performance. Based on this hypothesis, we propose the CEEVS algorithm aiming 

to improve the consistency in variable selection. Below we first introduce the necessary notations, then 

present the details of the algorithm. 

3.1 Notation 

Spectral data and PLS model: In this work, 𝑿𝑛×𝑚 denotes the spectral data, which consists of 𝑛 samples 

and spectral absorbances of 𝑚 wavelengths for each sample; 𝒀𝑛x𝑙 denotes the 𝑙 properties of interest for 

the 𝑛  samples. Both 𝑿𝑛×𝑚  and 𝒀𝑛x𝑙  are autoscaled to zero mean and unit variance before model 

development through PLS. In the PLS model, the regression equations are the following 
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𝑿𝑛×𝑚 =  𝑻𝑛×𝑝𝑷𝑚×𝑝
T +  𝑬𝑛×𝑚                   (1)  

𝒀𝑛×𝑙 =  𝑼𝑛×𝑝𝑸𝑙×𝑝
T +  𝑭𝑛×𝑙                    (1)  

where 𝑝 is the number of principal components; 𝑻𝑛×𝑝 and 𝑼𝑛×𝑝 are the score matrices; 𝑷𝑚×𝑝 and 𝑸𝑙×𝑝 

are the loading matrices; 𝑬𝑛×𝑚 and 𝑭𝑛×𝑙 are the error or residual matrices, respectively. The PLS model 

maximizes the covariance between 𝑻 and 𝑼. 

Gene, chromosome and fitness: In CEEVS, many notations follow the GA method. A gene refers to an 

individual variable (wavelength), and a chromosome (𝐶𝑚×1) refers to a set of selected variables: the i-th 

element (𝑐𝑖) of the chromosome is either “1” or “0”, indicating whether the i-th variable is included in the 

chromosome or not, respectively. The fitness of a chromosome is determined through prediction error, i.e., 

normalized root mean squared error from cross-validation (𝑁𝑅𝑀𝑆𝐸𝐶𝑉). 

𝑁𝑅𝑀𝑆𝐸𝐶𝑉 =  
√

1

𝑛𝑉
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛𝑉

𝑖=1

(𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛)
 ×  100%                (2)  

where, 𝑛𝑉  is the number of samples of the validation dataset. In this work, 10-fold cross validation is 

employed for all methods. Therefore, the average of the ten 𝑁𝑅𝑀𝑆𝐸𝐶𝑉’s is used. 

Variable stability: In existing literature3,16,23, variable stability is determined through random sampling of 

the training data and evaluating how consistently the variable contributes to the soft sensor model. 

Specifically, to compute the stability, MC sampling is applied in which certain percentage (denoted as 𝛾) 

of the 𝑛 samples are randomly selected to build a PLS model, and this random selection is iterated for 𝑛𝑆 

times. A full PLS model that include all wavelengths as input variables is established for each subset of 

data to compute regression coefficients. As regression coefficient (BETA) determines how much a variable 

contribute to the prediction of the dependent variable, it has been used to evaluate the stability of each 

variable, as shown in Eqn. (3).  
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𝑆𝐵𝐸𝑇𝐴−𝑗 =
|𝑏̅𝑗|

√
1

𝑛𝑆−1
∑ (𝑏𝑖𝑗−𝑏̅𝑗)2𝑛𝑆

𝑖=1

                     (3) 

where,  𝑆𝐵𝐸𝑇𝐴−𝑗 is the stability of the 𝑗-th variable based on regression coefficients, 𝑏̅𝑗 is the average value 

of regression coefficients of 𝑗-th variable from 𝑛𝑆 full PLS models using samples randomly selected from 

the training dataset based on the pre-determined sampling ratio 𝛾, and  𝑏𝑖𝑗 is the regression coefficient of 

𝑗-th variable in 𝑖-th PLS model.  

Besides regression coefficient BETA, variable importance in projection (VIP) also indicates how much a 

variable contributes to the dependent variable. Unlike BETA, VIP scores estimate the importance of each 

variable in the projection used in a PLS model. It has been reported that when each predictor contributes 

differently to the dependent variable (which is the case for most, if not all, practical applications), BETA-

based variable selection may not work as well as VIP-based variable selection5,7. In fact, Wold et al.10 

recommended a combination of VIP and BETA for variable selection. To improve the consistency of 

variable selection, in this work we propose using the combination of VIP and BETA to compute variable 

stability. To do so, we first define variable stability based on VIP, as shown in Eqn. (4).   

𝑆𝑉𝐼𝑃−𝑗 =
|𝑣̅𝑗|

√
1

𝑛𝑆−1
∑ (𝑣𝑖𝑗−𝑣̅𝑗)2𝑛𝑆

𝑖=1

                (4) 

where 𝑆𝑉𝐼𝑃−𝑗 is the stability of the 𝑗-th variable based on VIP scores, 𝑣𝑗̅ is the average value of the VIP 

scores of 𝑗-th variable among 𝑛𝑆 models, and  𝑣𝑖𝑗 is the VIP score of 𝑗-th variable in the i-th model. To 

combine 𝑆𝐵𝐸𝑇𝐴  and 𝑆𝑉𝐼𝑃  for determining the stability for each variable, 𝑆𝐵𝐸𝑇𝐴  and 𝑆𝑉𝐼𝑃  are first 

standardized since they have different scales.  

𝑍𝐵𝐸𝑇𝐴−𝑗 = 
𝑆𝐵𝐸𝑇𝐴−𝑗− 𝑆𝐵𝐸𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑠𝑡𝑑(𝑆𝐵𝐸𝑇𝐴)
                                               (5)     

𝑍𝑉𝐼𝑃−𝑗 = 
𝑆𝑉𝐼𝑃−𝑗− 𝑆𝑉𝐼𝑃̅̅ ̅̅ ̅̅ ̅

𝑠𝑡𝑑(𝑆𝑉𝐼𝑃)
                    (6) 



9 
 

where 𝑆𝐵𝐸𝑇𝐴
̅̅ ̅̅ ̅̅ ̅ and 𝑆𝑉𝐼𝑃

̅̅ ̅̅ ̅̅  are the average stability of all variables based on BETA and VIP scores, respectively; 

𝑠𝑡𝑑(𝑆𝐵𝐸𝑇𝐴) and 𝑠𝑡𝑑(𝑆𝐵𝐸𝑇𝐴) are the corresponding standard deviations, respectively. Then the average of 

𝑍𝐵𝐸𝑇𝐴−𝑗 and 𝑍𝑉𝐼𝑃−𝑗, denoted as 𝑍𝑗, is used to determine the stability of the j-th variable. 

𝑍𝑗 =  
1

2
(𝑍𝐵𝐸𝑇𝐴−𝑗 + 𝑍𝑉𝐼𝑃−𝑗)                  (7)  

Note that in this work, 𝑍𝐵𝐸𝑇𝐴 and 𝑍𝑉𝐼𝑃 were assigned the same weight, which can be adjusted for 

different applications. 

Probability of selection: in CARS and SVP, the variable stability is used to directly determine how often 

a variable is included in the initial population. In this work, to remove any potential bias, we first convert 

the variable stability into a probability; then each variable is randomly selected according to its probability 

to generate the initial population of chromosomes. The probability of the 𝑗 -th variable is defined as 

followings: 

𝑝𝑗 =  𝜆1 + (𝜆2 −  𝜆1) (
𝑍𝑗− 𝑍𝑚𝑖𝑛

Z𝑚𝑎𝑥− Z𝑚𝑖𝑛
)                                                            (8) 

where, 𝜆1 is a small probability (10−5 in this work) to ensure that even the variable of the minimum stability 

has a chance to be selected and evaluated; 𝜆2  is 1; 𝑍𝑚𝑎𝑥  and 𝑍𝑚𝑖𝑛 are the maximum and minimum 

stabilities among all variables, and 𝑍𝑗 is the stability of the 𝑗-th variable. When 𝑍𝑗 = 𝑍𝑚𝑖𝑛, 𝑝𝑗 =  𝜆1; when 

𝑍𝑗 = 𝑍𝑚𝑎𝑥, 𝑝𝑗 =  𝜆2 = 1. 

3.2 Outline of the CEEVS 

As shown in Fig. 1, CEEVS consists of two main sections: Section I is to construct a library with optimal 

chromosomes, and Section II is to select the optimal subset of variables from the library to build the soft 

sensor.  
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Fig. 1. Flow diagram of the CEEVS algorithm 

For Section I, CEEVS takes a consistency enhanced evolution process in order to obtain an optimal 

chromosome with limited iterations. In GA, the chromosomes of the initial population are generated 

randomly where each variable has the same probability to be selected. In CEEVS, starting with the complete 

variable set, the initial chromosome population is generated randomly based on each variable’s probability 

of selection as defined in Eqn. (8). As shown in the previous section, the probability of selection is simply 

a scaled variable stability; in other words, variables with higher stability will be selected with higher 

probability. In this way, the evolution process will start with a better initial population, as more important 

variables will more likely be selected for the initial population. Once the initial population of 𝑛𝑃 

chromosomes are obtained, each chromosome is evaluated for its fitness value. In this work, we use the 
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selected variables (i.e., the variables that have “1” in the chromosome) to build a PLS model, and the 

model’s 𝑁𝑅𝑀𝑆𝐸𝐶𝑉 value is used as the fitness value for the chromosome. The optimal chromosome, i.e., 

the one with the minimal 𝑁𝑅𝑀𝑆𝐸𝐶𝑉 within the initial population, is considered as a parent to generate 

offspring for the evolution process. The objective of the evolution process is to further eliminate the 

uninformative variables in the parent chromosome before it is stored into the library. Again, 10-fold cross 

validation is employed in this work for all methods. Therefore, 𝑁𝑅𝑀𝑆𝐸𝐶𝑉  is actually referring to the 

average of the ten 𝑁𝑅𝑀𝑆𝐸𝐶𝑉’s. 

The evolution process of CEEVS is completely different from GA. Instead of cross-over and mutate, in 

CEEVS, we simply use the variables selected by the parent chromosome as the new complete variable set, 

and repeat the whole process to generate the next best chromosome which is denoted as an offspring. For 

each additional run of evolution, the offspring from the previous run is considered the parent chromosome, 

and the variable selected by the parent chromosome is considered as the new “full” variable set; Next, the 

variable stability and probability are re-computed for this new “full” set; then, a population of 𝑛𝑃 offspring 

are generated randomly based on the variable’s probability for selection, and evaluated for their fitness 

value. In this way, all the offspring are guaranteed to contain fewer variables than the parent and may have 

a better fitness value. This evolution process is repeated until the fitness of the offspring is worse than that 

of the parent, meaning the parent can no longer produce better offspring. Then the parent of the final 

evolution run, i.e., the best chromosome generated from the evolution process, is stored into the library. 

This evolution process will repeat 𝑛𝐿 times with different random seeds, which is the pre-determined library 

size, i.e., the number of the optimal chromosomes to be stored in the library. Each time the process starts 

with the complete set of variables. At the end of 𝑛𝐿 repetitions, the library will contain 𝑛𝐿 optimally evolved 

chromosomes, i.e., subsets of selected variables that deliver the lowest 𝑁𝑅𝑀𝑆𝐸𝐶𝑉 during each repeated 

evolution process. 

For Section II, starting with the library that contains 𝑛𝐿 best chromosomes generated in Section I, we first 

rank all the variables based on their frequency of presence in the library. Next, we build a series of PLS 
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models with increasing the number of variables based on their selection frequency. In other words, the first 

PLS model is built with the most frequently selected variables in the library and the second model adds the 

next frequently selected variable. This process is repeated until the number of variables included in the 

model reaches a pre-defined upper limit. This upper limit can be adjusted to reduce the risk of overfitting. 

In this work, we set the upper limit as 300 variables. Finally, all models are evaluated for their fitness 

(𝑁𝑅𝑀𝑆𝐸𝐶𝑉), and the variable subset that produce lowest 𝑁𝑅𝑀𝑆𝐸𝐶𝑉 value is considered the final result of 

the selected variables. 

It is worth noting that all Monte Carlo (MC) repetitions involved in the CEEVS and other variable selection 

methods are carried out on the training samples only. Specifically, the procedures of CEEVS shown in Fig. 

1 were all performed using the training samples only, with 𝑛𝐿 MC repetitions of different random seeds to 

generate library of 𝑛𝐿 chromosomes. 

3.3 The choice of tuning parameters  

One of the advantages of CEEVS is simpler tuning compared to GA. First, there are only four parameters 

in CEEVS, which include the library size (𝑛𝐿), the population size (𝑛𝑃), the ratio of samples (𝛾) and the 

number of sampling runs (𝑛𝑆). 𝑛𝐿 determines the number of the chromosomes to be stored in the library, 

which is also the number of repetition (or evolution) in Section I of the algorithm. 𝑛𝑃 is the number of 

chromosomes present in each population. 𝛾 and 𝑛𝑆 are related to evaluating variable stability: 𝛾 is the ratio 

or percentage of samples to be randomly selected and 𝑛𝑆 is the number of the randomly selected sample 

subsets, i.e., the number of PLS models to be built in order to evaluate the variable stability. Second, CEEVS 

is not sensitive to these parameters. As detailed later in Sec. 5.3, sensitivity analysis show that when 𝑛𝐿, 

𝑛𝑃 , 𝛾  and 𝑛𝑆  are large enough, their effect on the final soft sensor performance becomes negligible. 

Therefore, in this work we decide to keep all 4 parameters fixed instead of changing them from dataset to 

dataset. Table 1 lists the parameter setting used in this work, and the recommended range if one chooses to 

fine tune the parameter.  
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Table 1. Parameters used in this work and recommended range of tuning parameters   

 Parameter (this work) Recommended range 
𝒏𝑳 200 100 – 500 
𝒏𝑷 400 200 – 500 
𝜸 0.9 0.8 – 0.9 

𝒏𝑺 400 300 – 800 
 

4 CASE STUDIES 

In this section, we use five near-infrared (NIR) datasets to demonstrate the performance of the proposed 

CEEVS method, which is compared with three representative “survival of the fittest” based methods: CARS, 

SVP, and GA. The full PLS model that utilizes all the variables in the NIR spectrum is used as the 

comparison basis. 

4.1 Datasets 

Five published NIR datasets are used to evaluate the performance of different variable selection methods. 

Table 2 summarizes the five datasets, including the number of samples and variables, the partition of the 

dataset into training and testing, as well as relevant references. Figure 2 plots the sample spectra for each 

dataset. 

Table 2. Summary of the five NIR datasets  

 # of samples in 
calibration set 

# of samples 
in test set 

# of samples 
in total # of variables Property of interest Reference 

Corna 64 (80%) 16 (20%) 80 700 Protein content 2,24 
Diesel  180 (70%) 76 (30%) 256 401 Aromatic content 16,25 

Pharma  459 (70%) 196 (30%) 655 650 Active pharmaceutical 
ingredients (API)  

2,4,26 

Wheat  121 (80%) 30 (20%) 151 150 Protein concentration 16,27 
Beer  48 (80%) 12 (20%) 60 926 Extract concentration 28,29 

aNIR spectra measured on mp5 spectrometer was used.   
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Fig. 2. The spectra of five datasets. (a) corn dataset; (b) diesel fuel dataset; (c) pharmaceutical tablets dataset; 

(d) wheat dataset; (e) beer dataset. For all subplots, x-axis is wavelength (nm) and y-axis is absorbance. 

4.2 Simulation setup and performance metrics 

To eliminate the potential bias caused by a specific partition of the whole dataset into calibration and testing 

subsets, a Monte Carlo validation and testing (MCVT) procedure that we proposed previously is followed2. 

Specifically, we conduct 100 MC runs and use the results from all MC runs to evaluate the performance of 

each variable selection method. For each MC run, the calibration and testing subsets are randomly selected 

according to the percentage listed in Table 2.  

The performance of different variable selection methods is assessed through three metrics. The first two are 

based on the soft sensor prediction performance, while the third directly evaluates the performance of 

variable selection through a consistency index. 

We choose normalized root mean square error in prediction ( 𝑁𝑅𝑀𝑆𝐸𝑃 ) to evaluate the prediction 

performance of different soft sensor models. The definition of 𝑁𝑅𝑀𝑆𝐸𝑃 is given in Eqn. (9), where, 𝑛𝑇 is 

(a) (b) 

(c) (d) 

(e) 
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the number of samples of the test dataset in each MC runs. As shown in Eqn. (9), the normalization in 

𝑁𝑅𝑀𝑆𝐸𝑃 facilitates the comparison of different methods across different datasets.   

𝑁𝑅𝑀𝑆𝐸𝑃 =  
√

1

𝑛𝑇
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛𝑇

𝑖=1

(𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛)
 ×  100%                                                                                                      (9) 

In this work, the mean and the standard deviation of 𝑁𝑅𝑀𝑆𝐸𝑃 obtained from the 100 MC runs are used as 

the two metrics to evaluate the performance of different methods. The mean (𝑁𝑅𝑀𝑆𝐸𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) evaluates the 

accuracy of each method while the standard deviation (𝜎𝑁𝑅𝑀𝑆𝐸𝑃
) assesses the robustness of the method2. 

To evaluate the consistency of the variable selection among different MC runs, we define a consistency 

index (𝐼𝑐) as the following: 

𝐼𝑐 =  
∑ 𝑝𝑟𝑜𝑏(𝑥𝑖)𝑚

𝑖=1

𝑚′                    (10) 

where 𝑚′ is the number of the variables (among all 𝑚 variables) being selected at least once among all MC 

runs; 𝑝𝑟𝑜𝑏(𝑥𝑖) is the probability of the 𝑖-th variable being selected, which is quantified by how frequently 

a variable is selected among all the MC runs. Clearly, a higher 𝐼𝑐 indicates that the informative variables 

are more consistently selected regardless of calibration datasets.  

It is worth noting that if a final model is built using the summative/cumulative results of the 100 MC runs, 

e.g., variables selected/included in the model and/or number of principal components used by the PLS 

model, there will be an issue of “using the testing data as the training data” in an ad-hoc way, which could 

lead to overfitting. However, this is not the case in this work. Each MC run is independently conducted and 

evaluated, with clear separation of training and testing samples. The outputs of each MC run are 𝑁𝑅𝑀𝑆𝐸𝑃, 

variables selected, number of PC’s used in the PLS model. These results of one MC run have no influence 

on the results of other MC runs. In the end, the average and standard deviation of all 𝑁𝑅𝑀𝑆𝐸𝑃’s from 100 

MC runs, as well as 𝐼𝑐 are used to evaluate the performance of different variable selection methods. These 

summative results have no influence on the process of variable selection or PLS model building. 
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It is also worth noting that different MC runs will result in different variables being selected due to different 

training samples being used and the stochastic nature of all “survival of the fittest” based variable selection 

methods. When these selected variables are used to build PLS models, the principal components (PC’s) 

will be different for different MC runs. It is also possible that the number of PC’s will be different as it is 

determined through 10-fold cross-validation. The goal of MCVT is to compare different variable selection 

methods through the accuracy (i.e., the average of the 100 𝑁𝑅𝑀𝑆𝐸𝑃’s) and precision or robustness (i.e., 

the standard deviation of the 100 𝑁𝑅𝑀𝑆𝐸𝑃’s) of each method. A similar approach has been reported in the 

literature 30. 

5 RESULTS AND DISCUSSION 

To ensure a fair comparison, all methods being compared were optimized through 10-fold cross-validation. 

The tuning parameters for each method are listed in Table 3. For each method, the optimal tuning 

parameters were determined through exhaustive search within a specified range for the parameter.  

Table 3. Tuning parameters that were optimized for each method 

Methods Tuning parameters 

Full PLS  # of PC’s 

CARS # of PC’s, # of Monte Carlo sampling runs 

SVP # of PC’s, # of iterations, sampling ratio of MCS-Sa and MCS-Pb,  

# of sampling in MCS-Sa and MCS-Pb 

GA # of PC’s, population size, # of iterations, crossover scheme, mutation rate, 

initial population, termination criterion 

CEEVSc # of PC’s 

aMonte Carlo sampling in sample space; bMonte Carlo sampling in variable space; cOther parameters are 

fixed as shown in Table 1. 

5.1 Performance comparison 
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For each dataset, the variable selection and soft sensor prediction results from each method are tabulated in 

Table 4 – 8. The best performance corresponding to each metric is shown in boldface. In these tables, 

Improvement rate (%) refers to the improvement of 𝑁𝑅𝑀𝑆𝐸𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  over that of the full PLS model, 𝑛𝑃𝐶 is the 

“mean ± std” of the number of principal components of the final soft sensor among 100 MC runs, 𝑛𝑉𝐴𝑅 is 

the “mean ± std” of the number of selected variables among 100 MC runs, except full PLS where all 

variables are used. 

Table 4. The performance comparison using the corn dataset. 

Method 𝑵𝑹𝑴𝑺𝑬𝑷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈𝑵𝑹𝑴𝑺𝑬𝑷

 𝑰𝑪 
Improvement 

rate (%) 
𝒏𝑷𝑪 𝒏𝑽𝑨𝑹 

Full PLS 9.197  2.390 - - 11.6 ± 1.7 700 

CARS 9.263  2.760 0.063 -0.72 12.3 ± 1.7 21.4 ± 8.2 

SVP 9.569 2.602 0.062 -4.05 14.0 ± 0.9 25.9 ± 10.0 

GA 8.730  2.337 0.119 5.07 9.0 ± 2.4 73.6 ± 27.2 

CEEVS 8.335  2.051 0.212 9.37 9.1 ± 2.3 100.9 ± 39.2 

 

Table 5. The performance comparison using the diesel fuel dataset. 

Method 𝑵𝑹𝑴𝑺𝑬𝑷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈𝑵𝑹𝑴𝑺𝑬𝑷

 𝑰𝑪 
Improvement 

rate (%) 
𝒏𝑷𝑪 𝒏𝑽𝑨𝑹 

Full PLS 2.38  0.30 - - 12.3 ± 1.7 401 

CARS 2.94  0.65 0.136 -23.54 13.1 ± 1.6 54.7 ± 55.1 

SVP 2.32  0.43 0.150 2.71 13.6 ± 1.4 47.0 ± 13.9 

GA 2.24  0.30 0.240 6.12 11.8 ± 1.7 92.0 ± 41.5 

CEEVS 2.20  0.30 0.432 7.56 11.2 ± 1.8 
123.4 ± 

37.5 
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Table 6. The performance comparison using the pharmaceutical tablets dataset. 

Method 𝑵𝑹𝑴𝑺𝑬𝑷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈𝑵𝑹𝑴𝑺𝑬𝑷

 𝑰𝑪 
Improvement 

rate (%) 
𝒏𝑷𝑪 𝒏𝑽𝑨𝑹 

Full PLS 5.05 0.76 - - 14.3 ± 2.5 650 

CARS 4.72 0.84 0.064 6.50 15.1 ± 3.1 30.2 ± 15.0 

SVP 4.85 0.83 0.104 3.85 18.5 ± 1.5 50.1 ± 25.8 

GA 4.46 0.90 0.138 11.69 10.8 ± 3.0 69.1 ± 44.1 

CEEVS 4.45 0.89 0.231 11.86 13.3 ± 2.4 91.9 ± 56.1 

 

Table 7. The performance comparison using the wheat dataset. 

Method 𝑵𝑹𝑴𝑺𝑬𝑷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈𝑵𝑹𝑴𝑺𝑬𝑷

 𝑰𝑪 
Improvement 

rate (%) 
𝒏𝑷𝑪 𝒏𝑽𝑨𝑹 

Full PLS 3.614 0.587 - - 15.9 ± 1.5 150 

CARS 3.687 0.669 0.243 -2.02 15.2 ± 2.1 36.3 ± 13.0 

SVP 4.011 0.685 0.151 -11.00 18.0 ± 1.7 21.8 ± 2.5 

GA 3.502 0.595 0.286 3.08 10.7 ± 1.7 40.4 ± 13.6 

CEEVS 3.497 0.624 0.289 3.22 11.2 ± 2.4 35.5 ± 11.4 

 

Table 8. The performance comparison using the beer dataset. 

Method 𝑵𝑹𝑴𝑺𝑬𝑷
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝝈𝑵𝑹𝑴𝑺𝑬𝑷

 𝑰𝑪 
Improvement 

rate (%) 
𝒏𝑷𝑪 𝒏𝑽𝑨𝑹 

Full PLS 6.57 6.46 - - 9.1 ± 2.6 926 

CARS 3.24 2.76 0.192 50.64 9.1 ± 2.6 86.8 ± 38.2 

SVP 4.18 5.20 0.166 36.28 13.4 ± 2.1 113.0 ± 12.6 

GA 2.37 1.85 0.142 63.91 7.8 ± 2.6 94.1 ± 58.0 

CEEVS 2.36 1.45 0.182 64.11 8.1 ± 2.6 130.2 ± 85.9 

As shown in the tables, across different datasets, CEEVS performs the best in almost all performance 

metrics. Specifically, among all 15 comparison instances (5 dataset × 3 performance metrics). In terms of  
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𝑁𝑅𝑀𝑆𝐸𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , CEEVS performs the best for all 5 datasets; in terms of 𝐼𝐶, CEEVS performs the best for 4 of 

the 5 datasets and the 2nd best for the rest one; in terms 𝜎𝑁𝑅𝑀𝑆𝐸𝑃
, CEEVS performs the best for 3 of the 5 

datasets, while slightly larger 𝜎𝑁𝑅𝑀𝑆𝐸𝑃
 for the rest 2 datasets. These results indicate that by enhancing the 

consistency of variable selection, we can achieve better prediction performance. 

Besides the quantitative metrics given in the tables, Figure 3 (a) and (b) compare the predicted vs measured 

quality variable for the diesel and beer datasets. From these two figures, it can be seen that the predictions 

of CEEVS stay the closest to the diagonal line, further indicating the superior prediction accuracy and 

robustness. 

 

(a) 
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Fig. 3. Plot of predicted vs. measured properties from five methods. (a) beer dataset; (b) diesel dataset. 

 

5.2 CEEVS can extract the underlying chemical information 

As discussed in Sec. 1, one of the limitations of the existing variable selection methods is that the selected 

variables (wavelengths) for the soft sensor model may not have clear relationship with the chemical bounds 

or functional groups presenting in the sample. By enhancing the consistency of variable selection, we expect 

that CEEVS could identify the truly relevant variables that reveal the underlying chemical information. 

Further examination of the variable selection results from different methods confirmed our hypothesis. Due 

to limited space, here we use results from two dataset to illustrate this in detail and provide the results for 

the other datasets in the Supporting Information. 

Figure 4 and 5 plot the frequency of each variable being selected (denoted by the vertical thin bars) among 

all 100 MC runs for the corn dataset and the pharmaceutical tablets dataset for all four variable selection 

methods. The sample spectra (denoted by the red curves) are plotted on the same figures to visualize the 

(b) 
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portions of the spectra that are selected at high frequencies by different variable selection methods. These 

figures clearly show that CEEVS delivers the best consistency in terms of variable selection, as the variables 

that were selected from different runs are clustered together around spectrum peaks/valleys at high 

frequency, indicating high consistency. More importantly, further analysis show that the selected variables 

(corresponding to peaks or valleys) are associated with different chemical bonds/groups, which are labelled 

on the plot for the CEEVS method. The underlying chemical information revealed by the selected variables 

further support our claim that the selected variables with high consistency are likely the truly relevant ones.  

In terms of variable selection frequency, GA performs similar to CEEVS, while the clustering of the 

selected variables may not be as clear and distinct as that from CEEVS. For CARS and SVP, although the 

number of variables being selected by these two methods are usually much smaller than those from GA and 

CEEVS, the consistency of variable selection is much worse and as a result, the selected variables could 

reveal little underlying chemical information. 

   

(a) (b) 
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Fig. 4. Plot of spectra (red curves) and histogram of selected wavelengths (blue vertical bars) over 100 MC 

runs for the corn dataset. (a) CARS; (b) SVP; (c) GA; (d) CEEVS 

   

(c) (d) 

C-H 2nd Overtone 
Stretching 

O-H 1st Overtone  

C-H 1st Overtone 
Stretching 

N-H & O-H Combination 

C-H 2nd Overtone 
Deformation 

(a) (b) 
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Fig. 5. Plot of spectra (red curves) and histogram of selected wavelengths (blue vertical bars) over 100 MC 

runs for the pharmaceutical tablets dataset. (a) CARS; (b) SVP; (c) GA; (d) CEEVS 

5.3 Robustness of CEEVS 

CEEVS has four tuning parameters, the library size (𝑛𝐿), the population size (𝑛𝑃), the sampling 

ratio (γ) and the number of sampling runs (𝑛𝑆). To examine the robustness of the method with 

respect to its tuning parameters, in this section, we test 10 different levels for each tuning parameter. 

For the number of chromosomes in the library (𝑛𝐿), the ten levels we tested were [5, 10, 20, 50, 

100, 200, 300, 400, 500, 700]. The cross-validation results corresponding to the tested levels for 

the corn dataset is plotted in Figure 6 (a). The results for other datasets are very similar to the corn 

dataset, therefore they are omitted here. Figure 6 (a) shows that as 𝑛𝐿 increase, 𝑁𝑅𝑀𝑆𝐸𝐶𝑉 initially 

decreases sharply; and then it stabilizes when 𝑛𝐿 is sufficiently large. Because 𝑛𝐿 determines the 

number of best performing chromosomes to be stored in the library, the initial increase in 𝑛𝐿 allows 

more relevant variables to be stored in the library; however, as 𝑛𝐿  increasing, the enhanced 

variable selection consistency delivered by CEEVS allows all truly relevant variables being 

selected, therefore, further increasing the number of repetitions does not result in further 

(c) (d) C-H 2nd Overtone 
Stretching 

O-H 1st Overtone  

C-H 1st Overtone 
Stretching 
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improvement in the model performance. Based on the testing of all datasets, in this work, we fix 

𝑛𝐿 at 200 for all the case studies. 

For the size of population (𝑛𝑃), the ten levels we tested were [5, 10, 20, 50, 100, 150, 200, 300, 

400, 500]. The cross-validation results for the corn dataset is plotted in Figure 6 (b) and other 

dataset show very similar behavior. Similar to the case of 𝑛𝐿, as 𝑛𝑃 increases, the cross-validation 

performance saw significant improvement initially, then levels off as 𝑛𝑃 keep increasing. This is 

because the initial increase in 𝑛𝑃 allows more chromosomes to be evaluated, thereby increasing 

the probability of producing superior offspring. However, after sufficient number of chromosomes 

have been evaluated, this effect diminishes. Based on the effect of 𝑛𝑃 for all the datasets, we set 

𝑛𝑃 to 400 for all the case studies in this work.    
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Fig. 6. (a) The effect of 𝑛𝐿 on performance for the corn dataset. (b) The effect of 𝑛𝑃 on performance for 

the corn dataset. (c) The effect of 𝛾 on the initial selection probability of five representative variables 

(denoted by different lines) that have different levels of probability of selection. (d) The effect of 𝑛𝑆 the 

initial selection probability of five representative variables (denoted by different lines) that have different 

levels of probability of selection.  

The sampling ratio (𝛾) and the number of sampling runs (𝑛𝑆) are involved in evaluating variable stability 

and probability for selection, so here we examine their effect on variable’s probability for selection. We 

selected 5 representative variables that have different levels of probability for selectin. For 𝛾, the 10 levels 

examined are [0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95], and for 𝑛𝑆, the 10 levels examined 

are [10, 25, 50, 100, 150, 200, 300, 400, 600, 800]. As shown in Figure 6 (c) and (d), similar to 𝑛𝐿 and 𝑛𝑃, 

when 𝛾  and 𝑛𝑆  are large enough, the probability for selection become quite insensitive to the tuning 

parameters. In this work, we choose 𝛾 = 0.9 and 𝑛𝑆 = 400 for all case studies. 

5.4 Discussion 

It has been well documented that variable selection can help address several challenges associated with soft 

sensor development for spectroscopic datasets, namely: (1) variable multicollinearity, i.e., variables are 

highly correlated; (2) highly noisy data; (3) curse of dimensionality, i.e., the number of variables is larger 
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than the number of samples. In addition, variable selection could improve model predictive accuracy by 

eliminating irrelevant input variables and provide a better understanding of the chemically important 

wavelength regions by reducing model complexity. However, variable selection methods can be sensitive 

to calibration data and their performance may be unstable. As shown in Tables 4 – 8, PLS soft sensors using 

variables selected by CARS and SVP delivered worse prediction performance compared to the full PLS 

soft sensor without variable selection for 3 out of the 5 datasets. More importantly, the low consistency of 

selected variables among different MC runs suggests that their performances are sensitive to the choice of 

the training samples. There are two possible reasons to explain such sensitivity. First, both CARS and SVP 

use the regression coefficients to define the stability of variables, which introduces significant variability 

in variable selection as regression coefficients are sensitive to the choice of the training samples. Second, 

both methods adopt EDF to remove the less important variables. Once the variables are eliminated based 

on their stability (which depends heavily on the training samples), they will not be re-evaluated. However, 

some previously eliminated variables could contribute significantly to prediction when variable 

combination changes.  

To address these limitations, in CEEVS both regression coefficients and VIP scores are used to define the 

variable stability; and by using the frequency of a variable being stored in the library to rank the variables 

instead of using variable stability, CEEVS allows less important variables to be evaluated in different 

combinations. In addition, unlike GA where the initial population is generated completely randomly, 

CEEVS uses variable stability to guide the generation of the initial population which favors the more 

important variables. Moreover, the evolution process in CEEVS is also guided by variable stability, which 

enables CEEVS to deliver much enhanced consistency in variable selection. We believe such enhanced 

consistency in variable selection suggests truly relevant variables are selected, as the underlying 

relationship between sample spectrum and sample property does not change across different training 

samples. As expected, the enhanced consistency in variable selection not only resulted in the improved soft 

sensor prediction performance, but also revealed key chemical information in the spectra. Finally, compared 
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to GA, CEEVS significantly reduces the number of tuning parameters and deliver highly robust 

performance over a wide range of turning parameters. This is highly desirable as it makes the 

implementation of CEEVS significantly easier for practitioners and could be adopted easily for different 

applications. 

It is worth noting that because CEEVS evaluates fitness (NRMSECV) for each round of evolution, CEEVS 

takes longer to execute. As computation time increase linearly with 𝑛𝐿, we chose smaller 𝑛𝐿 (200) in this 

work, which was sufficient to ensure CEEVS’s superior performance in all case studies. Since variable 

selection is run off-line, we do not think computation would limit the application of CEEVS.  

6 CONCLUSION 

In the last few decades, many spectral-based soft sensors have been developed to predict sample properties 

from its spectroscopic reading. As spectroscopic readings from different wavelengths, especially from 

adjacent wavelengths, are often highly correlated, variable selection could significantly improve soft sensor 

prediction performance while reducing model complexity. This work presents a new variable selection 

method, namely consistency-enhanced evolution for variable selection (CEEVS). Similar to GA, CARS 

and SVP, CEEVS employs Darwin’s evolution theory of “survival of the fittest” to select the relevant 

variables as predictors for the model. However, CEEVS is different from the other methods in the sense 

that CEEVS aims to improve the consistency of variable selection from different, randomly-selected 

training datasets. We hypothesize that if a variable selection method delivers better consistency in selected 

variable across different training samples, it would deliver better prediction performance. This is because 

the truly relevant variables will not change as a result of different training datasets. Therefore, if a variable 

selection algorithm can identify the truly relevant variables, it should consistently identify the same subset 

of variables regardless of the choice of the training dataset. 

To enhance the consistency of variable selection, CEEVS uses both PLS regression coefficients (BETA) 

and variable importance in projection (VIP) to determine variable stability, which reduces the sensitivity to 
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the training data while the probability of selection based on the variable stability ensures that even the 

variable of the minimum stability has a chance to be selected. The probability of selection based on the 

variable stability also ensures that the evolution process will start with a better initial population than GA 

where the initial population is completely randomly selected.  This helps the evolution to converge to the 

optimal faster. In addition, the chromosome evolution process is also different from GA. By using the parent 

chromosome from previous evolution run as the new starting point to re-evaluate the variable stability, and 

using the updated stability to determine the probability for offspring generation, we ensure that the 

evolution process is guided by enhancing the consistency of variable selection while eliminating non-

informative variables. Finally, the choice of the final informative variable subset is based on the frequency 

of each variable being selected into the library of optimal chromosome. In this way, a variable of lower 

stability by itself yet still informative when combined with other variables would be included and evaluated. 

Five case studies using different NIR datasets confirmed our hypothesis. These case studies show that 

CEEVS delivered the best variable selection consistency. They also show that CEEVS-based PLS soft 

sensor achieved the best prediction performance, when compared to GA, CARS or SVP based PLS soft 

sensor or the full PLS soft sensor without variable selection. More importantly, we show that CEEVS is 

able to identify the underlying chemical information, i.e., the wavelengths corresponding to the chemical 

bounds or functional groups that determine the sample properties of interest. In addition, CEEVS is not 

sensitive to its four tuning parameters when they are large enough, which is demonstrated by the fact that 

the same fixed parameters were used for all five case studies. The robustness of CEEVS to the tuning 

parameters corroborates with the findings that CEEVS has the highest variable selection consistency and 

the selected wavelengths correspond to important chemical bounds or functional groups. This robust 

performance is highly desirable, because it significantly simplifies tuning of the algorithm, and makes the 

implementation of CEEVS much easier than GA. 

ASSOCIATED CONTENT  

Supporting Information  



29 
 

S1: Additional figures showing the effectiveness of CEEVS in extracting chemical information from NIR 

spectra. 
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