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Abstract

In the last few decades, spectroscopic techniques such as near-infrared (NIR) spectroscopy have gained
wide applications in several industries, such as pharmaceutical, agricultural, oil and gas industries. As a
result, various soft sensors have been developed to predict sample properties from its spectroscopic readings.
Because the spectroscopic readings at different wavelengths, especially at the adjacent wavelengths, are
highly correlated, it has been shown that variable selection could significantly improve a soft sensor’s
prediction performance while reducing the model complexity. To improve the prediction performance, most
variable selection methods focus on identifying the variables (i.e., wavelengths or wavelength segments)
that are strongly correlated with the dependent variable. Although many successful applications have been
reported, these variable selection methods do have their limitations. Specifically, the selected wavelengths
sometimes show little connection to the chemical bounds or functional groups presenting in the sample. In
addition, the selected variables can be quite sensitive to the choice of the training samples. In this work, we
address these limitations from a different perspective: if a variable selection algorithm can identify the truly
relevant input variables, it should consistently identify the same subset of variables regardless of the choice
of the training samples. Therefore, we propose a variable selection method that aims to improve the
consistency of variable selection resulted from different training samples. The new algorithm is termed

consistency-enhanced evolution for variable selection (CEEVS). To demonstrate the performance and
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robustness of CEEVS, we compare the proposed method with three representative variable selection
methods using five published NIR datasets. These case studies clearly demonstrate that by improving the
variable selection consistency, we can not only achieve improved prediction performance, but also identify

key chemical information from spectroscopic data.
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1 BACKGROUND

With the advancements of spectroscopic technologies including near-infrared (NIR), Ramon Spectroscopy,
and UV/Vis spectroscopies, various properties could be inferred from a sample’s spectrum profile.
Correspondingly, multivariate modeling approaches (i.e., soft sensor models), which correlate the
spectroscopic reading of a sample to its properties of interest, have drawn increased research interest. These
soft sensor models offer a non-invasive, fast and cheap way to estimate the sample properties of interest
and have been applied in many different fields. For example, spectra-based soft sensors have been
developed to determine properties such as octane number of gasoline, moister content of corn, active
pharmaceutical ingredient (API) in drug, and microorganism concentration in a mixed culture! ™. The most
commonly used modeling approach for soft sensor is partial least squares (PLS) due to its simplicity,

robustness and the inherent capability in addressing collinearity among independent variables.

It has been well-recognized that the performance of a soft sensor can be significantly improved if only the
relevant variables are included as predictor’®. This is particularly the case for spectrum-based soft sensors,
where the readings at different wavelengths are highly correlated. In addition, most multivariate statistical
methods, including PLS, require much larger number of samples than the number of variables to perform
well. However, most spectral datasets have relatively small sample size (less than 100) but large number of
variables (several hundreds of wavelength). Therefore, eliminating irrelevant wavelengths could help
circumvent this difficulty by reducing the number of variables. Driven by these considerations, many

variable selection methods have been developed in the past few decades. Most existing variable selection



methods focus on selecting the variables (i.e., wavelengths or wavelength segments) that are strongly
correlated with the dependent variable to improve the prediction performance. These variable selection
approaches include direct methods that rank variable contributions such as variable selection based on
variable importance in projection (VIP)! or regression coefficient (BETA)’, and iterative methods such as
uninformative variable elimination (UVE)!!' and least absolute shrinkage and selection operator (Lasso)'.
Among iterative approaches, a group of variable selection methods based on the principle of “survival of
the fittest” have shown superior performance. The representative methods of this group are the genetic
algorithm (GA)'*""%, the competitive adaptive reweighted sampling method (CARS)? and the method based
on stability and variable permutation (SVP)!¢. By employing the principle of “survival of the fittest”, these
methods rely on random sampling in the variable space and/or sample space to identify the most relevant

input variables as predictor variables to improve prediction performance.

Despite many successful applications, existing variable selection methods also have limitations. It has been
recognized that a soft sensor model with good fitness performance may not guarantee good variable
selection performance™’. Specifically, for spectrum-based soft sensors, the selected wavelengths sometimes
show little connection to the chemical bounds or functional groups presenting in the sample. In addition,
the selected variables can be quite sensitive to the choice of the training and validation data. In particular,
the variables selected from different Monte Carlo (MC) runs using randomly selected training and
validation data often show low consistency with each other. The inconsistency among different MC runs
suggests that the selected variables (wavelengths) may not contain the truly relevant predictors, i.e., the
wavelengths corresponding to the underlying chemical bonds or functional groups that determine the
property of the sample. To help address this limitation, in this work, we propose a new variable selection
method from a different perspective: if a variable selection algorithm can identify the truly relevant input
variables, it should consistently identify the same subset of variables regardless of the choice of the training
dataset. The proposed method, namely consistency enhanced evolution for variable selection (CEEVS),

aims to improve the consistency of variable selection across different training datasets. To examine whether



CEEVS is able to deliver improved prediction performance and to identify relevant chemical information,
five case studies were presented. The performance of CEEVS is also compared with three representative
methods based on the principle of “survival of the fittest”, i.e., GA, CARS and SVP, using the full PLS

model as the basis.

The rest of the paper is organized as follows. Section 2 briefly reviews the relevant existing methods;
Section 3 describes the proposed CEEVS methods; Section 4 presents the results from 5 cases studies; and

Section 5 is the conclusion and discussion.

2 REVIEW OF RELEVANT VARIABLE SELECTION ALGORITHMS

2.1  Genetic algorithm (GA)

Inspired by Darwin’s evolution theory of “survival of the fittest”, GA is one of the most commonly applied
variable selection methods'*'>!7. According to the evolution theory, the individuals who are well adapted
to the environment will be more likely to survive and produce the next generation'®. Therefore, in GA,
parent chromosomes (i.e., subsets of selected variables) are determined based on its “fitness to the
environment”, such as prediction performance. Then crossover and mutation are applied to produce
offspring, i.e., new sets of selected variables. Through crossover, portions of two parent chromosomes are
crossed and combined to make two offspring which have new combinations of genes (i.e., variables or
wavelengths); through mutation, new genes not included in the chromosomes population could have a
chance to be included, which may improve the offspring’s fitness to the environment. This reproduction

step is repeated until a termination criterion is satisfied's.

2.2 Competitive adaptive reweighted sampling (CARS)

In CARS, the importance of a variable is determined based on its absolute regression coefficient (BETA)
obtained through partial least squares (PLS) regression. The variables with large absolute regression

coefficients are considered as the important variables. CARS employs the iterative sampling runs to



determine the optimal subset of variables. In each sampling run, two variable reduction procedures, namely
exponentially decreasing function (EDF) and adaptive reweighted sampling (ARS), are applied to reduce
the number of variables. The root mean square error of cross-validation (RMSEy ) is calculated using the
variables retained in the sampling run. After ng times sampling runs, CARS obtains ng models consisting
of the different subsets of variables and the model with the lowest RMSE,, is selected as the optimal model®.
CARS has been applied to develop soft sensors in many different applications, including spectroscopic data

collected from GC-MS, NIR, and UV/Vis'* %2,

2.3 Stability and variable permutation (SVP)

Recently, SVP was proposed based on the evolutionary principles of ‘intraspecific competition’ and
‘survival of the fittest’. In SVP, the importance of each variable is determined through variable stability
and variable permutation analysis. Variable stability is evaluated through random sampling of the sample
space, while variable permutation analysis is performed through random sampling of the variable space.
After computing the variable stability and performing variable permutation analysis, SVP divide all the
variables into the elite variable set and normal variable set by adaptive reweighted sampling (ARS). The
elite variable set consists of variables with high stability, while the normal set contains variables with
relatively low stability. To eliminate the uninformative variables, SVP employs exponentially decreasing
function (EDF), which remove variables with small difference from the normal variable set. In each
sampling run, the procedures described above are performed. After ng sampling runs, SVP obtains ng
models with different variable subsets; then the variable subset that results in minimum mean and relatively

low standard deviation of the RMSE,’s is selected as the optimal subset of the selected variables!®.

3 THE PROPOSED METHOD: CONSISTENCY ENHANCED EVOLUTION FOR

VARIABLE SELECTION (CEEVS)

As discussed earlier, the variables selected by GA, CARS and SVP are not necessarily the truly relevant

variables, i.e., the ones corresponding to the key chemical bonds or functional groups that determine the



sample properties at interest. This is further reflected in the low consistency among variable selection results
obtained from different MC runs using randomly selected training samples. To explore the root cause of
this deficiency, we compare the evolution theory based variable selection to biological evolution. In
biological evolution, it usually takes millions of years for natural selection to converge to an optimal
solution; however, in variable selection the limited sample space and the limited evolution process may
cause the variable selection to be stuck in a local optimum and miss the global one. Therefore, we believe
that the limited sample space and limited evolution may be one of the underlying reasons for the
inconsistency among different MC runs. However, without knowing what the global optimum is (i.e., the
ground truth of the truly relevant variables), it is difficult to devise approaches to directly address this

limitation.

In this work, we address this difficulty based on the following rationale: if a variable selection algorithm
can identify the truly relevant input variables, it should consistently identify the same subset of the variables
regardless of the choice of the training samples. In other words, the variable selection results among
different MC runs should be relatively consistent to identify the truly relevant predictors. Therefore, we
hypothesize that if a variable selection method delivers better consistency in terms of selected variables
among different MC runs, it is more likely that it selects the truly relevant variables and as a result would
deliver better prediction performance. Based on this hypothesis, we propose the CEEVS algorithm aiming
to improve the consistency in variable selection. Below we first introduce the necessary notations, then

present the details of the algorithm.

3.1 Notation

Spectral data and PLS model: In this work, X,,«,,, denotes the spectral data, which consists of n samples

and spectral absorbances of m wavelengths for each sample; Y ,,; denotes the [ properties of interest for
the n samples. Both X, «,, and Y, are autoscaled to zero mean and unit variance before model

development through PLS. In the PLS model, the regression equations are the following



Xpxm = TnxpP;rnxp + Enxm (H
Y = Unpr'lrxp + Fpx (D

where p is the number of principal components; T, and Uy, are the score matrices; Py, x;, and @y,

are the loading matrices; E, «;, and F,,y; are the error or residual matrices, respectively. The PLS model

maximizes the covariance between T and U.

Gene, chromosome and fitness: In CEEVS, many notations follow the GA method. A gene refers to an

individual variable (wavelength), and a chromosome (C,,,«1) refers to a set of selected variables: the i-th
element (c;) of the chromosome is either “1” or “0”, indicating whether the i-th variable is included in the
chromosome or not, respectively. The fitness of a chromosome is determined through prediction error, i.e.,
normalized root mean squared error from cross-validation (NRMSE¢y).

S, =90
NRMSE¢, = ~X———— x 100%

(Ymax—Ymin)

2

where, ny is the number of samples of the validation dataset. In this work, 10-fold cross validation is

employed for all methods. Therefore, the average of the ten NRMSE,’s is used.

Variable stability: In existing literature®!62*

, variable stability is determined through random sampling of
the training data and evaluating how consistently the variable contributes to the soft sensor model.
Specifically, to compute the stability, MC sampling is applied in which certain percentage (denoted as y)
of the n samples are randomly selected to build a PLS model, and this random selection is iterated for ng
times. A full PLS model that include all wavelengths as input variables is established for each subset of
data to compute regression coefficients. As regression coefficient (BETA) determines how much a variable
contribute to the prediction of the dependent variable, it has been used to evaluate the stability of each

variable, as shown in Eqn. (3).
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where, Spgpra-; is the stability of the j-th variable based on regression coefficients, I;j is the average value

of regression coefficients of j-th variable from ng full PLS models using samples randomly selected from

the training dataset based on the pre-determined sampling ratio y, and b;; is the regression coefficient of

j-th variable in i-th PLS model.

Besides regression coefficient BETA, variable importance in projection (VIP) also indicates how much a
variable contributes to the dependent variable. Unlike BETA, VIP scores estimate the importance of each
variable in the projection used in a PLS model. It has been reported that when each predictor contributes
differently to the dependent variable (which is the case for most, if not all, practical applications), BETA-
based variable selection may not work as well as VIP-based variable selection™’. In fact, Wold et al.'°
recommended a combination of VIP and BETA for variable selection. To improve the consistency of
variable selection, in this work we propose using the combination of VIP and BETA to compute variable

stability. To do so, we first define variable stability based on VIP, as shown in Eqn. (4).

[Vl
SVIP—j = 4)
\/nsl—1z?=sl(vij_ﬁj)2

where Sy;p_; is the stability of the j-th variable based on VIP scores, 7, is the average value of the VIP
scores of j-th variable among ng models, and v;; is the VIP score of j-th variable in the i-th model. To

combine Sgpr4 and Sy;p for determining the stability for each variable, Sgpry and Sy;p are first

standardized since they have different scales.

SBETA-j— SBETA
Z i E— 5
BETA ] Std(SBETA) ( )
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where Sgpr4 and Sy;p are the average stability of all variables based on BETA and VIP scores, respectively;
std(Sgera) and std(Sggra) are the corresponding standard deviations, respectively. Then the average of

Zggra-j and Zyp_j, denoted as Zj, is used to determine the stability of the j-th variable.

1
Z; = E(ZBETA—j + Zyip—j) (7

Note that in this work, Zggr4 and Zy;p were assigned the same weight, which can be adjusted for

different applications.

Probability of selection: in CARS and SVP, the variable stability is used to directly determine how often

a variable is included in the initial population. In this work, to remove any potential bias, we first convert
the variable stability into a probability; then each variable is randomly selected according to its probability
to generate the initial population of chromosomes. The probability of the j-th variable is defined as

followings:

pi= A+ (lp— ) () (8)

Zmax— Zmin

where, 1, is a small probability (10~> in this work) to ensure that even the variable of the minimum stability
has a chance to be selected and evaluated; A, is 1; Z,,4, and Z,,;;, are the maximum and minimum

stabilities among all variables, and Z; is the stability of the j-th variable. When Z; = Z,,;,,, p; = A4; when

Z] = Zmax, p] = AZ =1.
3.2 Outline of the CEEVS

As shown in Fig. 1, CEEVS consists of two main sections: Section I is to construct a library with optimal
chromosomes, and Section II is to select the optimal subset of variables from the library to build the soft

SE€nsor.
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Fig. 1. Flow diagram of the CEEVS algorithm

10

For Section I, CEEVS takes a consistency enhanced evolution process in order to obtain an optimal
chromosome with limited iterations. In GA, the chromosomes of the initial population are generated
randomly where each variable has the same probability to be selected. In CEEVS, starting with the complete
variable set, the initial chromosome population is generated randomly based on each variable’s probability
of selection as defined in Eqn. (8). As shown in the previous section, the probability of selection is simply
a scaled variable stability; in other words, variables with higher stability will be selected with higher
probability. In this way, the evolution process will start with a better initial population, as more important
variables will more likely be selected for the initial population. Once the initial population of np

chromosomes are obtained, each chromosome is evaluated for its fitness value. In this work, we use the




selected variables (i.e., the variables that have “1” in the chromosome) to build a PLS model, and the
model’s NRMSE -, value is used as the fitness value for the chromosome. The optimal chromosome, i.e.,
the one with the minimal NRMSE ., within the initial population, is considered as a parent to generate
offspring for the evolution process. The objective of the evolution process is to further eliminate the
uninformative variables in the parent chromosome before it is stored into the library. Again, 10-fold cross
validation is employed in this work for all methods. Therefore, NRMSEy is actually referring to the

average of the ten NRMSEy’s.

The evolution process of CEEVS is completely different from GA. Instead of cross-over and mutate, in
CEEVS, we simply use the variables selected by the parent chromosome as the new complete variable set,
and repeat the whole process to generate the next best chromosome which is denoted as an offspring. For
each additional run of evolution, the offspring from the previous run is considered the parent chromosome,
and the variable selected by the parent chromosome is considered as the new “full” variable set; Next, the
variable stability and probability are re-computed for this new “full” set; then, a population of np offspring
are generated randomly based on the variable’s probability for selection, and evaluated for their fitness
value. In this way, all the offspring are guaranteed to contain fewer variables than the parent and may have
a better fitness value. This evolution process is repeated until the fitness of the offspring is worse than that
of the parent, meaning the parent can no longer produce better offspring. Then the parent of the final
evolution run, i.e., the best chromosome generated from the evolution process, is stored into the library.
This evolution process will repeat n;, times with different random seeds, which is the pre-determined library
size, i.e., the number of the optimal chromosomes to be stored in the library. Each time the process starts
with the complete set of variables. At the end of n;, repetitions, the library will contain n; optimally evolved
chromosomes, i.e., subsets of selected variables that deliver the lowest NRMSE, during each repeated

evolution process.

For Section II, starting with the library that contains n; best chromosomes generated in Section I, we first

rank all the variables based on their frequency of presence in the library. Next, we build a series of PLS
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models with increasing the number of variables based on their selection frequency. In other words, the first
PLS model is built with the most frequently selected variables in the library and the second model adds the
next frequently selected variable. This process is repeated until the number of variables included in the
model reaches a pre-defined upper limit. This upper limit can be adjusted to reduce the risk of overfitting.
In this work, we set the upper limit as 300 variables. Finally, all models are evaluated for their fitness
(NRMSE(y), and the variable subset that produce lowest NRMSE, value is considered the final result of

the selected variables.

It is worth noting that all Monte Carlo (MC) repetitions involved in the CEEVS and other variable selection
methods are carried out on the training samples only. Specifically, the procedures of CEEVS shown in Fig.
1 were all performed using the training samples only, with n; MC repetitions of different random seeds to

generate library of n; chromosomes.

3.3 The choice of tuning parameters

One of the advantages of CEEVS is simpler tuning compared to GA. First, there are only four parameters
in CEEVS, which include the library size (n;), the population size (np), the ratio of samples (y) and the
number of sampling runs (ng). n; determines the number of the chromosomes to be stored in the library,
which is also the number of repetition (or evolution) in Section I of the algorithm. np is the number of
chromosomes present in each population. y and ng are related to evaluating variable stability: y is the ratio
or percentage of samples to be randomly selected and ng is the number of the randomly selected sample
subsets, i.e., the number of PLS models to be built in order to evaluate the variable stability. Second, CEEVS
is not sensitive to these parameters. As detailed later in Sec. 5.3, sensitivity analysis show that when n;,
np, y and ng are large enough, their effect on the final soft sensor performance becomes negligible.
Therefore, in this work we decide to keep all 4 parameters fixed instead of changing them from dataset to
dataset. Table 1 lists the parameter setting used in this work, and the recommended range if one chooses to

fine tune the parameter.
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Table 1. Parameters used in this work and recommended range of tuning parameters

Parameter (this work) Recommended range
ng 200 100 — 500
np 400 200 - 500
Y 0.9 0.8-0.9
ng 400 300 — 800

4 CASE STUDIES

In this section, we use five near-infrared (NIR) datasets to demonstrate the performance of the proposed
CEEVS method, which is compared with three representative “survival of the fittest” based methods: CARS,
SVP, and GA. The full PLS model that utilizes all the variables in the NIR spectrum is used as the

comparison basis.

4.1 Datasets

Five published NIR datasets are used to evaluate the performance of different variable selection methods.
Table 2 summarizes the five datasets, including the number of samples and variables, the partition of the
dataset into training and testing, as well as relevant references. Figure 2 plots the sample spectra for each

dataset.

Table 2. Summary of the five NIR datasets

# of samples in  # of samples  # of samples

calibration set in test set in total # of variables Property of interest Reference
Com? 64 (80%) 16 (20%) 80 700 Protein content 2,24
Diesel 180 (70%) 76 (30%) 256 401 Aromatic content 16,25
Pharma 459 (70%) 196 (30%) 655 650 Acit;ge%}i‘:;‘::‘(f;%cal 2426
Wheat 121 (80%) 30 (20%) 151 150 Protein concentration 1627
Beer 48 (80%) 12 (20%) 60 926 Extract concentration 28,29

®NIR spectra measured on mp5 spectrometer was used.
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Fig. 2. The spectra of five datasets. (a) corn dataset; (b) diesel fuel dataset; (c) pharmaceutical tablets dataset;

(d) wheat dataset; (e) beer dataset. For all subplots, x-axis is wavelength (nm) and y-axis is absorbance.
4.2 Simulation setup and performance metrics

To eliminate the potential bias caused by a specific partition of the whole dataset into calibration and testing
subsets, a Monte Carlo validation and testing (MCVT) procedure that we proposed previously is followed?.
Specifically, we conduct 100 MC runs and use the results from all MC runs to evaluate the performance of
each variable selection method. For each MC run, the calibration and testing subsets are randomly selected

according to the percentage listed in Table 2.

The performance of different variable selection methods is assessed through three metrics. The first two are
based on the soft sensor prediction performance, while the third directly evaluates the performance of

variable selection through a consistency index.

We choose normalized root mean square error in prediction (NRMSEp) to evaluate the prediction

performance of different soft sensor models. The definition of NRMSEp is given in Eqn. (9), where, ny is
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the number of samples of the test dataset in each MC runs. As shown in Eqn. (9), the normalization in
NRMSE, facilitates the comparison of different methods across different datasets.

s, =902
NRMSEp = XT——— x 100% 9)

(Ymax—Ymin)

In this work, the mean and the standard deviation of NRMSEp obtained from the 100 MC runs are used as
the two metrics to evaluate the performance of different methods. The mean (NRMSEp) evaluates the

accuracy of each method while the standard deviation (gygusEg,) assesses the robustness of the method?.

To evaluate the consistency of the variable selection among different MC runs, we define a consistency

index (I..) as the following:

_ Xiz,prob(x)
= -

I (10)

where m' is the number of the variables (among all m variables) being selected at least once among all MC
runs; prob(x;) is the probability of the i-th variable being selected, which is quantified by how frequently
a variable is selected among all the MC runs. Clearly, a higher /. indicates that the informative variables

are more consistently selected regardless of calibration datasets.

It is worth noting that if a final model is built using the summative/cumulative results of the 100 MC runs,
e.g., variables selected/included in the model and/or number of principal components used by the PLS
model, there will be an issue of “using the testing data as the training data” in an ad-hoc way, which could
lead to overfitting. However, this is not the case in this work. Each MC run is independently conducted and
evaluated, with clear separation of training and testing samples. The outputs of each MC run are NRMSEp,
variables selected, number of PC’s used in the PLS model. These results of one MC run have no influence
on the results of other MC runs. In the end, the average and standard deviation of all NRMSEp’s from 100
MC runs, as well as I, are used to evaluate the performance of different variable selection methods. These

summative results have no influence on the process of variable selection or PLS model building.
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It is also worth noting that different MC runs will result in different variables being selected due to different
training samples being used and the stochastic nature of all “survival of the fittest” based variable selection
methods. When these selected variables are used to build PLS models, the principal components (PC’s)
will be different for different MC runs. It is also possible that the number of PC’s will be different as it is
determined through 10-fold cross-validation. The goal of MCVT is to compare different variable selection
methods through the accuracy (i.e., the average of the 100 NRMSEp’s) and precision or robustness (i.c.,
the standard deviation of the 100 NRMSEp’s) of each method. A similar approach has been reported in the

literature 3°.

S RESULTS AND DISCUSSION

To ensure a fair comparison, all methods being compared were optimized through 10-fold cross-validation.
The tuning parameters for each method are listed in Table 3. For each method, the optimal tuning

parameters were determined through exhaustive search within a specified range for the parameter.

Table 3. Tuning parameters that were optimized for each method

Methods Tuning parameters

Full PLS # of PC’s

CARS # of PC’s, # of Monte Carlo sampling runs

SVP # of PC’s, # of iterations, sampling ratio of MCS-S* and MCS-P®,

# of sampling in MCS-S* and MCS-P®

GA # of PC’s, population size, # of iterations, crossover scheme, mutation rate,

initial population, termination criterion

CEEVS® #of PC’s

“Monte Carlo sampling in sample space; ®Monte Carlo sampling in variable space; ‘Other parameters are

fixed as shown in Table 1.

5.1 Performance comparison
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For each dataset, the variable selection and soft sensor prediction results from each method are tabulated in
Table 4 — 8. The best performance corresponding to each metric is shown in boldface. In these tables,
Improvement rate (%) refers to the improvement of NRMSEp over that of the full PLS model, np is the
“mean + std” of the number of principal components of the final soft sensor among 100 MC runs, ny 4z is
the “mean + std” of the number of selected variables among 100 MC runs, except full PLS where all

variables are used.

Table 4. The performance comparison using the corn dataset.

Improvement
Method NRMSEP O'NRMSEP IC Npc Nyar
rate (%)
Full PLS 9.197 2.390 - - 11.6+1.7 700
CARS 9.263 2.760 0.063 -0.72 123+£1.7 21.4+82
Svp 9.569 2.602 0.062 -4.05 14.0+£0.9 25.9+10.0
GA 8.730 2.337 0.119 5.07 9.0+24 73.6 +27.2
CEEVS 8.335 2.051 0.212 9.37 9.1£23 100.9+39.2
Table 5. The performance comparison using the diesel fuel dataset.
Improvement
Method NRMSEP O-NRMSEP IC Npc Nyar
rate (%)
Full PLS 2.38 0.30 - - 123+ 1.7 401
CARS 2.94 0.65 0.136 -23.54 13.1+£1.6 54.7+55.1
Svp 2.32 0.43 0.150 2.71 13.6+1.4 47.0+13.9
GA 2.24 0.30 0.240 6.12 11.8+1.7 92.0+41.5
123.4 +
CEEVS 2.20 0.30 0.432 7.56 11.2+1.8

37.5




Table 6. The performance comparison using the pharmaceutical tablets dataset.

Method NRMSEp ONRMSEp Ic {mprovement Npc Nyar
rate (%)

Full PLS 5.05 0.76 - - 143+2.5 650

CARS 4.72 0.84 0.064 6.50 15.1+3.1 30.2+15.0

Svp 4.85 0.83 0.104 3.85 185+1.5 50.1 £25.8

GA 4.46 0.90 0.138 11.69 10.8 £3.0 69.1 £44.1

CEEVS 4.45 0.89 0.231 11.86 13.3+24 91.9 £ 56.1

Table 7. The performance comparison using the wheat dataset.

Method NRMSEp ONRMSEp I¢c {mprovement Npc Nyar
rate (%)

Full PLS 3.614 0.587 - - 159+1.5 150

CARS 3.687 0.669 0.243 -2.02 152+2.1 36.3+13.0

Svp 4.011 0.685 0.151 -11.00 18.0+ 1.7 21.8+2.5

GA 3.502 0.595 0.286 3.08 10.7+1.7 40.4+13.6

CEEVS 3.497 0.624 0.289 3.22 11.2+24 355+11.4

Table 8. The performance comparison using the beer dataset.

Method NRMSE, ONRMSEp Ic Tmprovement Npc Nyar
rate (%)

Full PLS 6.57 6.46 - - 9.1+£2.6 926

CARS 3.24 2.76 0.192 50.64 9.1+£2.6 86.8 £ 38.2

Svp 4.18 5.20 0.166 36.28 134+2.1 113.0£12.6

GA 2.37 1.85 0.142 63.91 7.8+£2.6 94.1 £58.0

CEEVS 2.36 1.45 0.182 64.11 8.1+£2.6 130.2+85.9

As shown in the tables, across different datasets, CEEVS performs the best in almost all performance

metrics. Specifically, among all 15 comparison instances (5 dataset x 3 performance metrics). In terms of

18



NRMSEp, CEEVS performs the best for all 5 datasets; in terms of I, CEEVS performs the best for 4 of
the 5 datasets and the 2™ best for the rest one; in terms onrumsep» CEEVS performs the best for 3 of the 5
datasets, while slightly larger oygpysg, for the rest 2 datasets. These results indicate that by enhancing the

consistency of variable selection, we can achieve better prediction performance.

Besides the quantitative metrics given in the tables, Figure 3 (a) and (b) compare the predicted vs measured
quality variable for the diesel and beer datasets. From these two figures, it can be seen that the predictions

of CEEVS stay the closest to the diagonal line, further indicating the superior prediction accuracy and

robustness.
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Fig. 3. Plot of predicted vs. measured properties from five methods. (a) beer dataset; (b) diesel dataset.

5.2 CEEVS can extract the underlying chemical information

As discussed in Sec. 1, one of the limitations of the existing variable selection methods is that the selected
variables (wavelengths) for the soft sensor model may not have clear relationship with the chemical bounds
or functional groups presenting in the sample. By enhancing the consistency of variable selection, we expect
that CEEVS could identify the truly relevant variables that reveal the underlying chemical information.
Further examination of the variable selection results from different methods confirmed our hypothesis. Due
to limited space, here we use results from two dataset to illustrate this in detail and provide the results for

the other datasets in the Supporting Information.

Figure 4 and 5 plot the frequency of each variable being selected (denoted by the vertical thin bars) among
all 100 MC runs for the corn dataset and the pharmaceutical tablets dataset for all four variable selection

methods. The sample spectra (denoted by the red curves) are plotted on the same figures to visualize the
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portions of the spectra that are selected at high frequencies by different variable selection methods. These
figures clearly show that CEEVS delivers the best consistency in terms of variable selection, as the variables
that were selected from different runs are clustered together around spectrum peaks/valleys at high
frequency, indicating high consistency. More importantly, further analysis show that the selected variables
(corresponding to peaks or valleys) are associated with different chemical bonds/groups, which are labelled
on the plot for the CEEVS method. The underlying chemical information revealed by the selected variables

further support our claim that the selected variables with high consistency are likely the truly relevant ones.

In terms of variable selection frequency, GA performs similar to CEEVS, while the clustering of the
selected variables may not be as clear and distinct as that from CEEVS. For CARS and SVP, although the
number of variables being selected by these two methods are usually much smaller than those from GA and
CEEVS, the consistency of variable selection is much worse and as a result, the selected variables could

reveal little underlying chemical information.
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Fig. 4. Plot of spectra (red curves) and histogram of selected wavelengths (blue vertical bars) over 100 MC

runs for the corn dataset. (a) CARS; (b) SVP; (c) GA; (d) CEEVS
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runs for the pharmaceutical tablets dataset. (a) CARS; (b) SVP; (c) GA; (d) CEEVS
5.3 Robustness of CEEVS

CEEVS has four tuning parameters, the library size (n;), the population size (np), the sampling
ratio (y) and the number of sampling runs (ng). To examine the robustness of the method with

respect to its tuning parameters, in this section, we test 10 different levels for each tuning parameter.

For the number of chromosomes in the library (n;), the ten levels we tested were [5, 10, 20, 50,
100, 200, 300, 400, 500, 700]. The cross-validation results corresponding to the tested levels for
the corn dataset is plotted in Figure 6 (a). The results for other datasets are very similar to the corn
dataset, therefore they are omitted here. Figure 6 (a) shows that as n; increase, NRMSE, initially
decreases sharply; and then it stabilizes when n; is sufficiently large. Because n; determines the
number of best performing chromosomes to be stored in the library, the initial increase in n;, allows
more relevant variables to be stored in the library; however, as n; increasing, the enhanced
variable selection consistency delivered by CEEVS allows all truly relevant variables being

selected, therefore, further increasing the number of repetitions does not result in further
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improvement in the model performance. Based on the testing of all datasets, in this work, we fix

n; at 200 for all the case studies.

For the size of population (1), the ten levels we tested were [5, 10, 20, 50, 100, 150, 200, 300,
400, 500]. The cross-validation results for the corn dataset is plotted in Figure 6 (b) and other
dataset show very similar behavior. Similar to the case of n;, as np increases, the cross-validation
performance saw significant improvement initially, then levels off as np keep increasing. This is
because the initial increase in np allows more chromosomes to be evaluated, thereby increasing
the probability of producing superior offspring. However, after sufficient number of chromosomes
have been evaluated, this effect diminishes. Based on the effect of np for all the datasets, we set

np to 400 for all the case studies in this work.

6.1 (a) 1 s1f(b)
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Fig. 6. (a) The effect of n; on performance for the corn dataset. (b) The effect of np on performance for
the corn dataset. (c) The effect of y on the initial selection probability of five representative variables
(denoted by different lines) that have different levels of probability of selection. (d) The effect of ng the

initial selection probability of five representative variables (denoted by different lines) that have different

levels of probability of selection.

The sampling ratio (y) and the number of sampling runs (ng) are involved in evaluating variable stability
and probability for selection, so here we examine their effect on variable’s probability for selection. We
selected 5 representative variables that have different levels of probability for selectin. For y, the 10 levels
examined are [0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95], and for ng, the 10 levels examined
are [10, 25, 50, 100, 150, 200, 300, 400, 600, 800]. As shown in Figure 6 (c) and (d), similar to n; and np,
when y and ng are large enough, the probability for selection become quite insensitive to the tuning

parameters. In this work, we choose y = 0.9 and ng = 400 for all case studies.

5.4 Discussion

It has been well documented that variable selection can help address several challenges associated with soft
sensor development for spectroscopic datasets, namely: (1) variable multicollinearity, i.e., variables are

highly correlated; (2) highly noisy data; (3) curse of dimensionality, i.e., the number of variables is larger
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than the number of samples. In addition, variable selection could improve model predictive accuracy by
eliminating irrelevant input variables and provide a better understanding of the chemically important
wavelength regions by reducing model complexity. However, variable selection methods can be sensitive
to calibration data and their performance may be unstable. As shown in Tables 4 — 8, PLS soft sensors using
variables selected by CARS and SVP delivered worse prediction performance compared to the full PLS
soft sensor without variable selection for 3 out of the 5 datasets. More importantly, the low consistency of
selected variables among different MC runs suggests that their performances are sensitive to the choice of
the training samples. There are two possible reasons to explain such sensitivity. First, both CARS and SVP
use the regression coefficients to define the stability of variables, which introduces significant variability
in variable selection as regression coefficients are sensitive to the choice of the training samples. Second,
both methods adopt EDF to remove the less important variables. Once the variables are eliminated based
on their stability (which depends heavily on the training samples), they will not be re-evaluated. However,
some previously eliminated variables could contribute significantly to prediction when variable

combination changes.

To address these limitations, in CEEVS both regression coefficients and VIP scores are used to define the
variable stability; and by using the frequency of a variable being stored in the library to rank the variables
instead of using variable stability, CEEVS allows less important variables to be evaluated in different
combinations. In addition, unlike GA where the initial population is generated completely randomly,
CEEVS uses variable stability to guide the generation of the initial population which favors the more
important variables. Moreover, the evolution process in CEEVS is also guided by variable stability, which
enables CEEVS to deliver much enhanced consistency in variable selection. We believe such enhanced
consistency in variable selection suggests truly relevant variables are selected, as the underlying
relationship between sample spectrum and sample property does not change across different training
samples. As expected, the enhanced consistency in variable selection not only resulted in the improved soft

sensor prediction performance, but also revealed key chemical information in the spectra. Finally, compared
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to GA, CEEVS significantly reduces the number of tuning parameters and deliver highly robust
performance over a wide range of turning parameters. This is highly desirable as it makes the
implementation of CEEVS significantly easier for practitioners and could be adopted easily for different

applications.

It is worth noting that because CEEVS evaluates fitness (NRMSEcv) for each round of evolution, CEEVS
takes longer to execute. As computation time increase linearly with n;, we chose smaller n; (200) in this
work, which was sufficient to ensure CEEVS’s superior performance in all case studies. Since variable

selection is run off-line, we do not think computation would limit the application of CEEVS.

6 CONCLUSION

In the last few decades, many spectral-based soft sensors have been developed to predict sample properties
from its spectroscopic reading. As spectroscopic readings from different wavelengths, especially from
adjacent wavelengths, are often highly correlated, variable selection could significantly improve soft sensor
prediction performance while reducing model complexity. This work presents a new variable selection
method, namely consistency-enhanced evolution for variable selection (CEEVS). Similar to GA, CARS
and SVP, CEEVS employs Darwin’s evolution theory of “survival of the fittest” to select the relevant
variables as predictors for the model. However, CEEVS is different from the other methods in the sense
that CEEVS aims to improve the consistency of variable selection from different, randomly-selected
training datasets. We hypothesize that if a variable selection method delivers better consistency in selected
variable across different training samples, it would deliver better prediction performance. This is because
the truly relevant variables will not change as a result of different training datasets. Therefore, if a variable
selection algorithm can identify the truly relevant variables, it should consistently identify the same subset

of variables regardless of the choice of the training dataset.

To enhance the consistency of variable selection, CEEVS uses both PLS regression coefficients (BETA)

and variable importance in projection (VIP) to determine variable stability, which reduces the sensitivity to
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the training data while the probability of selection based on the variable stability ensures that even the
variable of the minimum stability has a chance to be selected. The probability of selection based on the
variable stability also ensures that the evolution process will start with a better initial population than GA
where the initial population is completely randomly selected. This helps the evolution to converge to the
optimal faster. In addition, the chromosome evolution process is also different from GA. By using the parent
chromosome from previous evolution run as the new starting point to re-evaluate the variable stability, and
using the updated stability to determine the probability for offspring generation, we ensure that the
evolution process is guided by enhancing the consistency of variable selection while eliminating non-
informative variables. Finally, the choice of the final informative variable subset is based on the frequency
of each variable being selected into the library of optimal chromosome. In this way, a variable of lower

stability by itself yet still informative when combined with other variables would be included and evaluated.

Five case studies using different NIR datasets confirmed our hypothesis. These case studies show that
CEEVS delivered the best variable selection consistency. They also show that CEEVS-based PLS soft
sensor achieved the best prediction performance, when compared to GA, CARS or SVP based PLS soft
sensor or the full PLS soft sensor without variable selection. More importantly, we show that CEEVS is
able to identify the underlying chemical information, i.e., the wavelengths corresponding to the chemical
bounds or functional groups that determine the sample properties of interest. In addition, CEEVS is not
sensitive to its four tuning parameters when they are large enough, which is demonstrated by the fact that
the same fixed parameters were used for all five case studies. The robustness of CEEVS to the tuning
parameters corroborates with the findings that CEEVS has the highest variable selection consistency and
the selected wavelengths correspond to important chemical bounds or functional groups. This robust
performance is highly desirable, because it significantly simplifies tuning of the algorithm, and makes the

implementation of CEEVS much easier than GA.
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S1: Additional figures showing the effectiveness of CEEVS in extracting chemical information from NIR
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