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While many viruses of wild mammals are capable of infecting humans, our
understanding of zoonotic potential is incomplete. Viruses vary in their
degree of generalism, characterized by the phylogenetic relationships of
their hosts. Among the dimensions of this phylogenetic landscape, phylo-
genetic aggregation, which is largely overlooked in studies of parasite host
range, emerges in this study as a key predictor of zoonotic status of viruses.
Plausibly, viruses that exhibit aggregation, typified by discrete clusters of
related host species, may (i) have been able to close the phylogenetic distance
to humans, (ii) have subsequently acquired an epidemiologically relevant
host and (iii) exhibit relatively high fitness in realized host communities,
which are frequently phylogenetically aggregated. These mechanisms associ-
ated with phylogenetic aggregation may help explain why correlated
fundamental traits, such as the ability of viruses to replicate in the cytoplasm,
are associated with zoonoses.

Given that the majority of emerging infectious diseases are caused by zoonotic
pathogens [1], much attention has been given to characterizing sources of risk,
uncovering disproportionate roles played by particular host and pathogen
species [2—4] as well as identifying environmental and anthropogenic influences
[5,6]. An outstanding challenge is determining if particular traits (e.g. trans-
mission mode) or conditions (e.g. geographical location) simply elevate the
probability of an otherwise rare event, or rather if some viruses have acquired
a set of host species that mechanistically increases their zoonotic potential [7].

Viruses originating in mammals are of particular concern, having caused
several recent human pandemics [4,5] and exhibiting traits, such as high
mutation rates, that are associated with multi-host generalism [8]. Among
primate species, viruses are more phylogenetically generalist than other patho-
gens [9], and at larger host taxonomic scales, many mammalian viruses show a
tendency to be phylogenetically aggregated [10], meaning they are dispersed in
multiple clusters of unrelated hosts. Unlike other phylogenetic metrics, this
pattern is characterized by a ratio of distances rather than distance itself, and
is consequently less assertive about putative donor host species. By contrast,
minimum and mean phylogenetic distances from a set of host species to
humans are only meaningful measures of zoonotic potential if the donor host
species is either the closest related host or representative of the central tendency
of relatedness to humans, when in fact the donor host could be any of the host
species of the pathogen. Similarly, the phylogenetic span of a pathogen in the
host phylogeny is a good predictor of zoonotic potential if the phylogenetic dis-
tance to humans is the primary barrier, but will be less informative if other
factors limit cross-species transmission to humans.

While phylogenetic aggregation is fairly common among mammalian
viruses, the underlying reason for the pattern is difficult to determine. A
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plausible explanation for aggregation is the ability of certain
viruses to jump and creep through a host phylogeny;
occasionally establishing in a phylogenetically novel host
species and subsequently acquiring related host species
[10]. This trait can increase zoonotic potential in three ways.
First, establishing in a new clade within a host phylogeny
may close the phylogenetic distance to humans [11].
Second, the ‘creep’ acquisition of related hosts following a
jump can increase the potential of human-wildlife contact,
which may be stronger with a subsequently acquired host
species than with the original clade host [12]. Lastly, viruses
with this trait may benefit from community assemblies,
which themselves are often phylogenetically aggregated
[13]. This benefit of associating with hosts dispersed in the
phylogeny could increase community prevalence [14,15],
buffer against local pathogen extinction [16] and increase
human-wildlife contact rates [17].

Here, I build a case for phylogenetic aggregation as a trait
that increases zoonotic potential of mammalian viruses using
published sources of mammal-virus associations and a host
phylogeny. The analysis uses distinct features of the phylo-
genetic landscape as predictors of zoonotic status: mean
pairwise phylogenetic distance between non-human hosts,
mean phylogenetic distance between host species and
humans, phylogenetic span of viruses among non-human
hosts and phylogenetic aggregation. Statistical modelling
consistently identifies aggregation as a predictor of zoonotic
status compared with all other features of the phylogenetic
landscape. This predictor is then characterized by underlying
viral trait data, with limited data hinting that RNA viruses
capable of replicating in the cytoplasm and non-vector-
borne DNA viruses are more likely to exhibit phylogenetic
aggregation, and therefore harbour zoonotic potential, than
their counterparts.

2. Material and methods

As an overview, data on phylogenetic traits of viruses were used
to predict the zoonotic status of viruses using logistic regression.
Models were compared using the Bayesian information criterion
(BIC) to assess which models parsimoniously explained zoonotic
status. The best models included phylogenetic aggregation,
meaning the viruses whose hosts were overdispersed in the phy-
logeny were more likely to be zoonotic. This key phylogenetic
trait was then treated as a response variable predicted by funda-
mental viral traits in a simple linear model, as the standard effect
size for phylogenetic aggregation was approximately normally
distributed.

Host—virus association data were obtained by combining
three published data sources [4,18,19], and filtering to mamma-
lian hosts, and viruses that were represented in the publication
[4] containing metadata for zoonotic status, research effort,
captured by logjo(number of PubMed citations) (hereafter
log(cites)), along with viral trait data (mean genome length,
single- versus double-stranded, RNA versus DNA, ability to
replicate in cytoplasm, enveloped versus non-enveloped, seg-
mented versus non-segmented genome, vector-borne versus
other transmission). Phylogenetic measures of specificity were
obtained using a mammalian host phylogeny [20]. For each
virus, phylogenetic standard effect sizes for the mean pairwise
distance between hosts (z.mpd), the maximum distance between
hosts (z.max) and phylogenetic aggregation (z.agg) were calcu-
lated using methods previously described [10]. Mean pairwise
distance and maximum distance are reasonably intuitive metrics.
Phylogenetic aggregation, z.agg, was calculated as the mean

nearest neighbour distance across all hosts divided by the
maximum distance [10]. This metric takes small values if
hosts are frequently clumped together in the phylogeny, with
the denominator acting to scale by the ultimate span of a
virus in the phylogeny (captured separately by z.max). The
scaling is important as it allows a per-span metric of aggrega-
tion; without the scaling, the metric would essentially only
recapitulate z.max.

For each virus, the mean phylogenetic distance between
host species and humans was also calculated (avDist). In
order to calculate phylogenetic measures of viral specialism,
viruses known only to infect a single host species were
excluded from the analysis (1 =229). The resulting data com-
prised 227 virus species infecting 791 mammal species
(excluding humans) from 14 mammalian host orders (Rodentia,
Carnivora, Artiodactyla, Primates, Chiroptera, Eulipotyphla,
Pilosa, Cingulata, Didelphimorphia, Perissodactyla, Proboscidea,
Peramelemorphia, Lagomorpha, Diprotodontia).

The phylogenetic landscape variables (z.mpd, z.max, z.agg
and avDist) were used in conjunction with sampling effort, logio
(cites) to predict viral zoonotic status using logistic regression in
a set of related generalized linear models assessed by the BIC.
BIC is useful for model selection in cases where there is high
unobserved between-sample heterogeneity, as it balances likeli-
hood and parsimony with a heavier penalty for parameter-rich
models compared with Akaike information criterion (AIC) [21].
Phylogenetic aggregation, the most promising predictor from
this analysis, was then treated as a response variable predicted
by viral trait data using a linear model. Since viral traits that
may promote zoonoses are likely to be different in RNA versus
DNA viruses [22], the model was constructed to assess only the
interaction between nucleic acid type and other viral traits.
Genome size was excluded as sizes are extremely bimodal
between RNA and DNA viruses [23], hence genome size is effec-
tively approximated by nucleic acid type. The predictor
logo(cites) was included as a separate predictor to capture
research effort. Significant and near-significant viral trait predic-
tors of phylogenetic aggregation revealed in this analysis were
then visualized to clarify how they interact with nucleic acid type.

3. Results

From a set of phylogenetic landscape models, zoonotic status
of viruses was best predicted by accounting for both the aver-
age phylogenetic distance between host species and humans,
avDist, and the degree of phylogenetic aggregation of the
virus in the host phylogeny, z.agg (table 1 and figure 1a). In
particular, phylogenetic aggregation was the only predictor
variable, other than research effort, retained in the top two
statistical models ranked by BIC (table 1). Unlike other phylo-
genetic predictors, it was consistently estimated to have the
same (negative) sign, meaning that zoonotic viruses are
more phylogenetically aggregated than other viruses
(figure 1a). Lastly, it was scored as significant (p-value <
0.05) in seven of the eight models that included it. Average
phylogenetic distance to humans from hosts was included
in the first ranked model, although it was not a significant
predictor; viruses of zoonotic status have a tendency to use
hosts that are more related to humans (figure 1a). Notably,
when phylogenetic aggregation is omitted from models,
metrics associated with both viral specialism and generalism
emerge as alternative predictors of zoonotic status. For
example, the third highest ranked model suggests that zoono-
tic status is associated with viruses with large phylogenetic
span and short mean pairwise distances between hosts.
Similarly, large phylogenetic span is predictive of zoonotic
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Table 1. Summary of statistical models predicting zoonotic status of viruses by phylogenetic landscape variables (defined in methods) and sampling effort. Blank cells indicate that the predictor was omitted from the model and values
in bold type refer to parameter estimates significant at the 95% confidence level. The final two columns show the Bayesian information criterion relative to the most parsimonious model (ABIC = 0.00), and the proportion of deviance
explained. PD, Phylogenetic distance.

interaction between interaction between interaction between
average PD to humans average PD to humans average PD to humans

(avDist) and (avDist) and (avDist) and average PD standardized standardized standardized PD
standardized mean PD standardized max PD standardized PD to humans mean PD among max. PD among aggregation deviance
among all hosts (z.mpd) among all hosts (z.max) aggregation (z.agg) (avDist) all hosts (z.mpd) all hosts (z.max) (z.agg) logy(cites) ABIC explained

0.01 —0.01 —-2.03 0.22 0.00 0.10
—0.46 033 0.15 0.06
0.27 037 2.64 0.06
0.15 —035 033 4.00 0.07
0.40 439 0.03
—0.05 —0.46 031 5.26 0.06
. Lo s L s o o
—0.05 0.38 9.39 0.03
—0.0001 —0.01 —0.01 0.35 14.95 0.05
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Figure 1. (a) Relationship between phylogenetic aggregation (z.agg) and average phylogenetic distance between host species and humans (avDist) for both zoo-
notic viruses (red) and other viruses (blue). Linear regression lines are also shown fitted separately to each virus group (note, these are illustrative and not derived
from the main statistical models reported in table 1). (b) Degree of phylogenetic aggregation (z.agg, y-axis) of viruses as a function of nucleic acid type (RNA versus
DNA) and further structured into vector-borne versus other transmission (i) and ability versus inability to replicate in the cytoplasm (ii).

status in the fourth highest ranked model, consistent with
previously published work [4].

Phylogenetic aggregation was associated with certain
viral traits (figure 1b) and with research effort. A significant
interaction was found between nucleic acid type and
vector-borne transmission (p-value=0.001) and a near-
significant interaction was found between nucleic acid type
and ability to replicate in the cytoplasm (p-value =0.084).
Detecting such interactions is complicated by small group
sizes (figure 1b), but tentatively these data suggest that
DNA viruses that are not vector-borne are more likely to be
phylogenetically aggregated than their vector-borne counter-
parts, and that RNA viruses that can replicate in the
cytoplasm are more predisposed to become phylogenetically
aggregated.

Phylogenetic aggregation is a trait of pathogens that may
increase zoonotic potential by closing the phylogenetic dis-
tance to humans, by acquiring a related set of host species
of which one may be likely to exhibit epidemiological contact
with humans, and by thriving in realized host communities
which are frequently phylogenetically aggregated. Unlike
phylogenetic traits expressing distance between host species
and humans, it is less assertive about the known donor
host and rather describes a pattern that can be linked to
cross-species transmission potential. Further, it may help to
explain why certain fundamental traits, such as cytoplasmic
replication [4,24], are associated with zoonotic events.

As with any macroecological study of host—pathogen
associations, it is important to consider sources of bias.
While the underlying association data were compiled from
well-documented sources [4,18,19], there will certainly be
missing associations which are likely to be non-random in
terms of the geographical region [25,26], host species [4],
viral traits [7] and infection traits, such as virulence [27].
Further, a documented association does not indicate how
commonly or rarely a given parasite infects a host species.
These limitations in underlying data underscore the impor-
tance of continued virus surveillance at the human-wildlife
interface [7]. Additionally, the mutability of viruses means
that a trait such as phylogenetic aggregation is itself dynamic,
and likely interacting with extrinsic features such as changes
in host density [28]. However, linking fundamental traits to
zoonotic potential via secondary traits such as phylogenetic
aggregation can open lines of mechanistic inquiry, such as
contact structure between humans and other clade hosts,
which may improve our understanding of the risk posed by
cross-species transmission.

All data used in this study are available from pub-
lished sources detailed in the manuscript text. Code to reproduce
the analyses and figures is provided on Figshare at https://doi.
org/10.6084/m9.figshare.c.4658018.v1 [29].
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