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Abstract—Deconvolution is a key component in contempo-
rary neural networks, especially generative adversarial networks
(GANs) and fully convolutional networks (FCNs). Due to extra
operations of deconvolution compared to convolution, consider-
able degradation of performance as well as energy efficiency
is incurred when implementing deconvolution on the existing
resistive random access memory (ReRAM)-based processing-in-
memory (PIM) accelerators. In this work, we propose a ReRAM-
based accelerator design, RED, for providing high-performance
and low-energy deconvolution. We analyze the deconvolution
execution on the existing ReRAM-based PIMs and utilize its
interior computation pattern for design optimization. RED in-
cludes two major contributions: pixel-wise mapping scheme and
zero-skipping data flow. Pixel-wise mapping scheme removes the
zero insertion and performs convolutions over several ReRAM
arrays and thus enables parallel computations with non-zero
inputs. Zero-skipping data flow, assisted with customized input
buffers design, enhances the computation parallelism and input
data reuse. In evaluation, we compare RED against the existing
ReRAM-based PIMs and CMOS-based counterpart with a vari-
ety of GAN and FCN models, each of which contains multiple
deconvolution layers. The experimental results show that RED
achieves a 4.0×− 56.16× speedup and a 1.05×− 18.17× energy
efficiency improvement over previous related accelerator designs.

Index Terms—Accelerator, deconvolution, energy efficiency,
neural networks, resistive memory.

I. INTRODUCTION

DEEP neural networks (DNNs) have achieved striking suc-

cess in many applications, especially on image classifi-

cation and object detection. Many of these designs were based

on convolutional neural networks (CNNs), which extract high-

dimensional information from input data for classification. In

recent years, new types of neural networks, like generative

adversarial networks (GANs) [1] and fully convolutional net-

works (FCNs) [2], have emerged and been used in a variety

of domains, such as robotics [3], [4], autonomous driving [5],

[6], and medicine [7].
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The deployment of DNNs in traditional computing archi-

tecture further aggravates the memory and power bottlenecks.

Therefore, novel paradigms like processing-in-memory (PIM)

have been intensively investigated for efficient DNN execu-

tion [8]–[10]. Among various technologies to implement PIM

designs, resistive random access memory (ReRAM) demon-

strates an outstanding computation capability and is regarded

as a competitive technology [11]–[16]. ReRAM has been

studied as a high-density, low-power, and low-leakage memory

device [17], [18]. Its crossbar structure naturally mimics the

analog matrix-vector multiplication (MVM) [19], [20]. Since

MVM is the dominant operation in DNNs, ReRAM-based

PIM substantially improves the execution speed and the energy

efficiency for DNN applications [11]–[16], [21].
GANs and FCNs have been applied to relatively com-

plicated tasks instead of ordinary CNNs. In these models,

deconvolution layers, aka transpose convolution layers [22],

are used to operate up-sampling on input feature maps. Com-

pared to the traditional convolution, deconvolution has two

different arithmetic implementations, both of which append

additional operations to convolution: (1) zero-padding decon-
volution expands the size of feature maps by performing zero-

padding on input feature maps before convolution, inducing

redundant operations on these zero values; (2) padding-free
deconvolution multiplies the pixels of input feature maps with

kernel matrices, without the need of zero-insertion, but extra

operations are required after multiplications, i.e., summation

and cropping. Despite the fact that there is a convolutional

operation within a deconvolution, zero-padding deconvolution

leads to massive redundant operations if the deconvolutional

layer is implemented on the existing ReRAM-based acceler-

ators, resulting in under-utilization of computing resources.

The padding-free deconvolution is friendly to CMOS-based

accelerators [23], but the extra operations lead to increased

circuits overhead in ReRAM-based PIMs.
This work aims to develop an efficient ReRAM-based

accelerator to support deconvolution by eliminating redun-

dant and extra operations. We propose a pixel-wise mapping
scheme to remove the zero-insertion stage and the redundant

operations required in zero-padding deconvolution, and zero-
skipping data flow to elevate execution efficiency. Meanwhile,

an innovative input buffer design is developed to maximize

input data reuse and to improve computation parallelism.

By integrating these designs, we propose RED, a ReRAM-

based accelerator tailored for deconvolutional computation.

The primary contributions of this work are as follows:

1) We analyze the deconvolution operation on existing

ReRAM-based PIMs. The zero-padding deconvolution
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results in under-utilization of computing resources due to

massive zero insertion. The padding-free deconvolution

introduces additional add-on operations and incurs extra

circuit cost.

2) We propose the pixel-wise mapping scheme that maps

kernel weights to ReRAM arrays at a fine-grained level

by exploiting the computation modes derived from convo-

lution between the used input pixels and kernel weights.

3) We propose the zero-skipping data flow facilitated with

a novel input buffer design to maximize the input data

reuse and further elevate computation parallelism.

4) We evaluate the efficiency of RED with the typical

GAN and FCN models on a variety of applications.

We compare it against the prior ReRAM-based PIM

implementations for the zero-padding and padding-free

designs [24], as well as several state-of-the-art deconvo-

lution accelerators [23], [25]–[27].

The rest of this paper is organized as follows. We first

introduce deconvolutional computation, ReRAM-based PIM,

and related works of accelerator design in Section II and

then present the challenges when using existing ReRAM-based

PIMs to accelerate deconvolution in Section III. Section IV

describes the proposed RED architecture. In Section V, we

evaluate our proposed RED design and compare it with prior

ReRAM-based PIM designs and the CMOS-based counterpart.

Finally, we conclude this work in Section VI.

II. BACKGROUND

A. Deconvolutional Computation

Deconvolution or transpose convolution is extensively em-

ployed in generative adversarial networks (GANs) and fully

convolutional networks (FCNs). For instance, the generator

network in a GAN uses a stack of deconvolutional layers to

generate the sample images from the noise-like inputs. The

deconvolutional layers in FCNs substitute the fully connected

layers in conventional CNNs. FCNs can produce the output

with the same dimensions as the input image for pixel-wise

prediction or semantic segmentation when conducting the in-

ference tasks. This work primarily focuses on the acceleration

of the inference of GANs and FCNs.

Unlike the conventional convolutional layer that extracts

features and produces abstract information, a deconvolutional

layer up-samples its input and generates an output with a larger

size than the input. Fig. 1 presents a portion of a typical

FCN [2], where a deconvolutional layer DECONV1 follows

a series of convolutional layers. As shown in the figure, the

input feature map (FP) of CONV15 has a size of 22 × 22

34
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Fig. 1. The sizes of the feature maps changes along layers in an example
FCN [2].

TABLE I
NOTATIONS USED IN DECONVOLUTIONAL OPERATION.

Notation Description

Ih, Iw , C The height, width and number of channels of input feature map.
Oh, Ow , M The height, width and number of channels of output feature map.
Kh, Kw , M The height, width and number of kernels.

S, P The stride and padding sizes of deconvolution.

Ipadh , Ipadw The height, width of padded input.
S′ The number of inserted zeros in zero-padding deconvolution.
P ′ The size of padded border in zero-padding deconvolution.

Note: In neural networks discussed in this work, Ih = Iw , Oh = Ow ,
Kh = Kw , and Ipadh = Ipadw . In the following manuscript, we will omit
the subscripts and use I , O, K and Ipad in some places for simplicity.

and the output FP attains 16× 16, while the input FP size of

DECONV1 is 16× 16 and its output FP size is 34× 34.

There are two categories of algorithms to perform decon-

volution. In this work, the two algorithms are denoted as

zero-padding and padding-free, respectively. Here, an element

in an input or an output is referred as a pixel. Table II-A

lists the notations used for explaining the deconvolutional

algorithms. Fig. 2 illustrates the calculation phases of zero-

padding and padding-free algorithm for a 2D deconvolution,

which is equivalent to a 3D deconvolution when M = 1 and

C = 1. In this figure, I = 3, O = 5, K = 3, S = 2, and P = 1.

The number in a cell represents its element value.

As illustrated in Fig. 2(a), the zero-padding deconvolution

includes two steps:

a) Padding: an input FP is enlarged by inserting zeros

between any two adjacent input pixels along the row and

column directions and adding one P ′×P ′ border of zeros

surrounding the input FP. The dimension of padded input

is denoted as Ipad.

b) Convolution: the conventional convolution of the padded

input and a kernel is performed with the unit stride to

generate the output FP. The number of the kernels is

represented as M .

The example in Fig. 2(a) adds 1 × 1 zero-value borders to
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(a) Zero-padding Deconvolution; S'=1 and P'=1 in Step b). 
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Fig. 2. Illustrative examples of 2D deconvolution algorithms: (a) zero-padding
and (b) padding-free. Here, K = 3, I = 3, S = 2 and P = 1, S′ = 1 and
P′ = 1.
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the four sides of the input matrix and grows the 3 × 3 input

FP to the size of 7 × 7. Then a 3 × 3 kernel with a stride

of 1 is applied to the padded input for convolution operation,

generating an output in a size of 5 × 5. In this example, the

total number of multiplications is 225, while most of them are

calculated with zero values. The multiplications on the inserted

zeros are unnecessary and should be skipped. In general, the

relationship between the sizes of input and output FPs can be

described as follows:

I =
O + 2× P −K

S
+ 1 (a)

Ipad = O +K − 1 (b)

S′ = S − 1 (c)

P ′ = K − 1− P (d)

(1)

The convolution for the padded input is the same as traditional

convolution. Thus, the zero-padding is easy to implement for

software design by directly invoking the convolutional func-

tion. However, the increased size of padded input introduces

overhead on storage and the zeros induce redundant operations

and resource under-utilization.

Fig. 2(b) illustrates the padding-free deconvolutional algo-

rithm, which has the following three major steps:

a) Multiplication: the input pixels of an input FP are multi-

plied with the kernel matrix, and afterwards, the products

of different channels are accumulated to generate a group

of matrices with the same size as kernels;

b) Summation: the overlapped rows and columns of the

generated matrices in step a) are added, and those ele-

ments that share the same output coordinates are summed

together;

c) Cropping: the border of matrix generated in step b) is

cropped, and the final output matrix is produced.

As shown in Fig. 2(b), element-wise multiplications are con-

ducted between every element of the input matrix and kernel.

This step results in 9 matrices, the size of which is equal to

the size of the kernel. Then the overlapped elements according

to their coordinate in the final matrix are added together. For

example, the third column of the first matrix will be added

with the first column of the second matrix, and the last row

of the first matrix will be summed with the first row of the

fourth matrix. Step b) produces a 7× 7 matrix, the border of

which is then cropped. The final matrix has a size of 5×5. In

this example, the entire operation contains 81 multiplications

and extra 36 summations on the overlapped pixels.

Padding-free introduces two additional operations, summa-

tion and cropping. Moreover, the intermediate results in step

a) and step b) exacerbate the storage overhead. Previously,

Xu et al. [23] successfully utilized the padding-free algorithm

on CMOS-based hardware for efficient deconvolutional com-

putation. As we shall show in Section III, completing these

operations on the existing ReRAM-based accelerators incurs

a considerable overhead.

B. ReRAM-based PIM

As a nanoscale memory technology, the advantages of

ReRAM include simple structure, large capacity and low

(b) Kernels mapping. (c) ReRAM-based PIM.

(a) ReRAM crossbar.

Fig. 3. The fundamental ReRAM-based PIM architecture.

read/write latency [17], [18]. What’s more, ReRAM cross-

bar demonstrates high efficiency in performing matrix-vector

multiplication (MVM) operations [19], [20]. As illustrated in

Fig. 3(a), a matrix is stored in a ReRAM crossbar, in which the

cell conductance values correspond to the weight elements of

the matrix. During the MVM operation, an input vector in the

form of input voltages are supplied as the input of wordlines

along the row direction simultaneously. The currents flowing

out from the bitlines along columns denote the output vector,

which can remain in analog format or be converted into a

digital vector via the read-out periphery circuits.

The ReRAM-based processing-in-memory (PIM) designs

present high efficiency in matrix-based applications. A variety

of ReRAM-based PIM designs have been proposed for accel-

erating the CNN inference and training [11]–[13], [15], [16].

When performing the convolution operation, the kernels are

usually mapped onto one or several ReRAM crossbar arrays to

maximize the computing parallelism [13], [14]. An exemplary

mapping scheme used by ReRAM-based accelerator designs

in [13], [24] is shown in Fig. 3(b). Here, M kernels are stored

on M adjacent columns in a ReRAM crossbar. The weights

of C channels are spread into a one-dimension vector and

stored in one column. Fig. 3(c) depicts a full ReRAM-based

PIM architecture [12], [13]. The design is based on the main

memory structure with dedicated periphery circuits. ReRAM

crossbars can alternate between storage and computing mode

according to the system configuration [12].

C. Related Works

1) Deconvolutional Accelerators: Numerous efforts ex-

plored FPGA or ASIC based deconvolutional accelerator de-

signs. For example, the FPGA-based GAN accelerator [27]

exploits the dataflow optimization to remove zero operations

and increase data reuse. However, the scalability of the FPGA-

based accelerator is constrained by the limited on-chip stor-

age. GANAX [26] is an SIMD-MIMD accelerator for GAN.

The design reorganizes the computations along the rows of

output and kernel to enable the parallel distinct computation

flows, which inevitably increases hardware complexity. FCN-

Engine [23] is an accelerator for deconvolution by exploring

the padding-free algorithms to remove the redundancy of
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Fig. 4. The zero redundancy ratio in the zero-padding deconvolution for the
neural networks evaluated in this work.

the input FP. However, it requires additional storage to hold

the temporary output, as well as computing components to

perform the summation.

2) ReRAM-based Accelerators: ReRAM-based CNN accel-

erators have been extensively studied for both inference and

training. ISAAC [11] employs ReRAM crossbars to perform

MVM operations and designs a pipeline for CNN inference ac-

celeration. PRIME [12] enhances the nueral network inference

by assigning a portion of crossbars dedicated to intermediate

result storage. AtomLayer [14] attempts to compute one con-

volutional layer at a time to avoid the long latency and bubble

induced by deep pipeline. PipeLayer [13] firstly optimizes

the CNN training by collaborating intra-layer and inter-layer

parallelism into the design. TIME [15] is designed for CNN

training and further eliminates the amount of write operations

on ReRAM. None of these works are aware of or optimize for

the particular computation patterns in deconvolution.

ReGAN [24] is a ReRAM-based pipelined GAN accelerator.

It performs the zero-padding deconvolution and thus incurs

significantly redundant operations. LerGAN [25] handles the

zero-related scenarios in GAN training by storing all the partial

weight matrices involved in convolution operations. As many

weights will be reused repeatedly, the approach introduces a

large storage overhead. Our RED accelerator uses ReRAM

crossbars to conduct the low-overhead convolutional arith-

metic and specially optimizes for improving the deconvolution

execution efficiency.

III. INEFFICIENT DECONVOLUTIONAL COMPUTATION ON

RERAM-BASED ACCELERATORS

In this section, we discuss the inefficiency of the zero-

padding deconvolution and padding-free deconvolution on the

existing ReRAM-based accelerators.

A. Redundant Zero-Value Operations

The zero-padding deconvolution inserts extra zeros into the

input image, which leads to a large number of redundant

operations. The relationship of I and Ipad can be calculated

by using Equation 1(a,b).

There are two kinds of padded zeros: the zeros inserted

between adjacent input pixels and those added at the four

edges. The padded input FPs are sparse, and multiplications

on zero pixels are not necessary. We use the redundancy

ratio to denote the proportion of the zero-related operations.

The redundancy ratio in a deconvolutional layer is defined

as the proportion of padded zeros over the entire input FPs.

(a) ReRAM-based zero-padding deconvolution.

(b) ReRAM-based padding-free deconvolution.
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 Intermediate 
Results: 

Extra Storage

Fig. 5. Deconvolution on existing ReRAM-based accelerators.

In a single deconvolution layer with stride S, for example,

the redundancy ratio can be approximated to (1 − 1/S2),
when the first kind of padded zeros are dominant. Fig. 4

summarizes the average geometric redundancy ratio of the

deconvolutional layers in our benchmarks1. The redundancy

ratio of SNGAN STL10 is as high as 76.51% and that of

FCN reaches 83.67%.

Fig. 5(a) illustrates the implementation of the zero-padding

deconvolution on a ReRAM-based PIM [24], which is the

same as the standard convolutional computation described in

Section II-B. In each cycle, one input vector with padded

zeros is fed into ReRAM-basd PIM for computation and each

element in the produced output vector corresponds to one-pixel

information of M output FPs. As such, it will take Oh ×Ow

cycles to complete the computation of M output FPs in the

shape of Oh ×Ow.

B. Inefficiency of Padding-Free Deconvolution

The padding-free algorithm, as an alternative deconvolution

implementation, avoids to insert redundant zeros and poten-

tially improves the hardware implementation efficiency. A pre-

vious study [23] showed that the padding-free deconvolution

achieved up to 44.9× performance improvement when it is

deployed on the CMOS-based platforms. However, performing

the padding-free algorithm on a ReRAM-based PIM requires

the extra storage overhead and non-trivial efforts in circuitry

modification. Fig. 5(b) gives an example of ReRAM-based

padding-free implementation. The padding-free algorithm in-

volves the element-wise multiplication of the input and the

kernel and the summation of the overlapped output. The

weight elements in one channel of the kernel are spread into

1The details of the parameters and configuration of these networks shall be
given in Section V.
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Fig. 6. The four computation modes in 2D deconvolution when K = 3 and
S = 2.

a vector and the same row of crossbars. Each input FP is

converted into a vector whose elements are supplied to the

crossbar in sequence. Each output generated from ReRAM-

based PIM has C matrix in the shape of Kh × Kw. In

the duration of computing, output buffers are necessary to

place the intermediate outputs, incurring extra overhead. When

intermediate outputs are ready, they will be injected into

an adder tree to calculate the summation of the overlapped

elements. Moreover, extra circuits are needed to conduct the

cropping operations to obtain the final results.

Compared to the zero-padding deconvolution, the padding-

free deconvolution requires extra storage and computing com-

ponents. Accordingly, the padding-free deconvolution is ex-

pected to have a much higher energy consumption than the

zero-padding deconvolution.

IV. RERAM-BASED DECONVOLUTIONAL ACCELERATOR

Our proposed ReRAM-based PIM accelerator for decon-

volution, namely RED, leverages the relation of different

computation modes in deconvolution operation and consists

of two orthogonal schemes: pixel-wise mapping and zero-
skipping data flow. In this section, we will elaborate the details

of the RED design and discuss the trade-off in its usage.

A. Computation Modes

We revisit the zero-padding algorithm and utilize the inher-

ent computation modes within the deconvolution to design our

accelerator. This subsection formally describes and concludes

the computation modes in deconvolution operation.

Fig. 6 illustrates the four computation modes when sliding

the kernel within an input FP, with an example of 2D deconvo-

lution, in which S = 2, I = 3 and K = 3. In each sub-figure,

the top large grid refers to the padded input FP, whose non-

zero and zero pixels are denoted in purple and white colors,

respectively. Each non-zero element in the original 3×3 input

is numbered by 1 ∼ 9. The small grid in a sub-figure indicates

the usage of the weight element in the kernel, in which only

the green bricks labeled with the coordinates are in use in the

current computation mode.

As shown by Fig. 6(a), Mode 0 is an MVM operation

with two 2 × 2 matrices. The weight matrix Wm0 is a sub-

block of the kernel, which consists of four weight elements:

w(0, 0), w(0, 2), w(2, 0) and w(2, 2). Mode 1 in Fig. 6(b)

TABLE II
NOTATIONS USED IN COMPUTATION MODE i. i ∈ {0, 1, . . . S2 − 1}.

Notations Explanation

Wmi Weight matrix in computation mode i.
Ni Size of weight matrix Wmi.

LRi, LCi Length of row and column of Wmi.

TABLE III
WEIGHT MATRIX Wmi IN COMPUTATION MODE i. i ∈ {0, 1, . . . S2 − 1}.

Notations Definitions & Values

Wmi
Wmi ⊆ W ,

⋃
i
Wmi = W ,

⋂
i
Wmi = ∅

Wmi={w|w = w[kh, kw, c,m]}
LRi

⌈
K−�i÷S�

S

⌉

LCi

⌈
K−i mod S

S

⌉

w[kh, kw, c,m]

kh = �i÷ S�+ n× S
kw = i mod S + u× S
n ∈ {0, 1, . . . , LRi − 1}, u ∈ {0, 1, . . . , LCi − 1}
c ∈ {1, 2, . . . , C}, m ∈ {1, 2, . . .M}

TABLE IV
WEIGHT MATRICES IN COMPUTATION MODES OF FIG. 6

Computation Mode Weight Matrix

Mode 0 N0 = 22 = 4;
Wm0 = {w(0, 0), w(0, 2), w(2, 0), w(2, 2)}

Mode 1 N1 = 1× 2 = 2;
Wm1 = {w(0, 1), w(2, 1)}

Mode 2 N2 = 2× 1 = 2;
Wm2 = {w(1, 0), w(1, 2)}

Mode 3 N3 = 12 = 12 = 1;
Wm3 = {w(1, 1)}

corresponds to the deconvolution by sliding the kernel hor-

izontally one step from the position in Mode 0. Mode 1
performs the deconvolution with two 2 × 1 matrices. The

weight matrix Wm1 is composed of two weight elements:

w(0, 1) and w(2, 1), which do not contain the shared values

with Wm0. Similarly, Fig. 6(c,d) demonstrates the operations

when moving the kernel window down one grid from the

positions in Fig. 6(a,b), respectively. The weight matrices in

these deconvolution modes are Wm2 and Wm3, respectively.

There are three important features regarding about the

weight matrices in these computation modes:

• The union of these weight matrices is equal to the kernel.

• The weight matrices in different computation modes do

not share any elements.

• During the entire process, only one of Wm0 ∼ Wm3

is in use at a time. When the kernel slides two steps

horizontally and vertically from the initial Mode 0, Wm0

is reused in the corresponding calculations.

There exist S2 computation modes for a deconvolutional layer

with a stride of S. When the weight element in Wmi is denoted

with w[kh, kw, c,m], kh and kw can be calculated by:

kh = �i/S�+ n× S, n ∈ [0, 1, . . . , LRi − 1]

kw = i mod S + u× S, u ∈ [0, 1, . . . , LCi − 1]
, (2)
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Fig. 8. The illustration of pixel-wise mapping (a) and zero-skipping data flow (b).

where LRi and LCi respectively denote the lengths of row

and column of Wmi in those computation modes. LRi and

LCi can be obtained by:

LRi =
⌈K − �i/S�

S

⌉

LCi =
⌈K − i mod S

S

⌉. (3)

Given a deconvolution with a stride of S and a padding step

of K, the notations used in the computation modes are given

in Table II and the definitions and values related to weight

matrix Wmi in Mode i are defined in Table III. The example

in Fig. 6 has four inherent computation modes, and the weight

matrices are shown in Table IV.

B. Overall Architecture

By utilizing the computation modes in deconvolution, we

propose RED to tailor for deconvolution. Fig. 7 illustrates the

high-level diagram of the RED architecture. There are two

types of primary components: local input buffer and ReRAM-
based processing engine (PE) arrays.

The local input buffer shared among PEs is designed to

assist the skipping of the inserted zeros. The input buffer

consists of two kinds of registers: multi-functional buffer

(MFB) and single-functional buffer (SFB). To maximize the

reuse of input data, the MFBs within the input buffer can

switch between two work modes—shift and buffer. In the shift

mode, MFBs and SFBs shift out the requested data to perform

computations. In the buffer mode, MFBs load data from global

memory and/or feed data to PE arrays.

The PEs in the PE array are communicated over the high-

throughput on-chip data bus. Each PE contains a few ReRAM

crossbars to conduct the MVM operations, and peripheral

circuits such as read circuits, decoders, column multiplexers,

and shift-and-add units. The weight matrices of each com-

putation mode may occupy multiple PEs to complete the

operations. These PEs that conduct the operations for the

same computation mode logically constitute a PE cluster. The

outputs from one cluster are selected via the multiplexers and

fed into an adder to produce the aggregated results.

In the following subsections, we elaborate the pixel-wise
mapping scheme, the zero-skipping data flow, as well as

the local input buffer design of the RED architecture. These

designs cooperate to improve the performance and energy

efficiency of deconvolution.

C. Pixel-wise Mapping

We propose the pixel-wise mapping to eliminate the zero-

related redundancy and enable the parallel execution of the
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computation modes. As indicated in Table I, the size of a

kernel is K2, the number of channel is C, the number of

kernels is M , and the computing stride is S. We use the four

dimensional coordinate w(kh, kw, c,m) to represent a weight

element. Our mapping scheme distributes the operations of this

deconvolutional layer into K2 PEs. Each PE holds the weight

elements whose coordinates have the same value of both kh
and kw. The columns of crossbars in PEs hold the elements

from the same channel while their rows are allocated to the

elements from the same kernel.

Fig. 8(a) show the pixel mapping for deconvolution with

K = 3. PEs 1∼4 store weight matrices in Mode 0, i.e.
Wm0. For example, PE 1 holds w(0, 0). Likewise, PE 2,

PE 3 and PE 4 correspond to w(0, 2), w(2, 0), and w(2, 2),
respectively. In the similar way, the weight matrices of other

computation modes, Wm1, Wm2 and Wm3 are stored in

PEs 5∼6, PEs 7∼8 and PE 9, respectively. The pixel-

mapping scheme matches the pixel locations with the corre-

sponding PEs and have multiple computation modes executed

in parallel. In this example, the outcomes from the four

computation modes are generated in one computing cycle.

D. Zero-skip Data Flow

Based on the pixel-wise mapping scheme, we further de-

velop the zero-skipping data flow to skip the zero-insertion

and maximize data reuse during the deconvolution compu-

tation. Only the original input values are distributed to the

corresponding PEs in different computation modes, which

maximizes data reuse and enables simultaneous execution.

Fig. 8(b) illustrates the operation for the given example in

Fig. 6 with stride = 2 and K = 3. According to the pixel-

wise mapping, the weight matrices in the four computation

modes are mapped to 9 PEs. Here, I(i) denotes the ith input

vector which has C pixels from C channels, respectively.

For brevity, the PEs along the same column in the figure

take the same inputs, and the outputs from the PEs on the

same row will be added together. In every cycle, all 9 PEs

are in operation by coordinating with the corresponding input

vectors. As illustrated in Fig. 8(b), in Cycle 1, I(1) is applied

to PE 5, PE 6, PE 8 and PE 9, I(2) is provided to PE 2
and PE 8, I(4) is taken by PE 3 and PE 6, and I(5)
goes to PE 4. Their outputs will be merged together for

the final deconvolution results, i.e., O(0,0,M), O(0,1,M),
O(1,0,M) and O(1,1,M). In the next cycle, RED continues

to compute with the next batch of non-zero inputs, e.g., I(2),
I(3), I(5) and I(6) will be applied in Cycle 2. The zero-

skipping data flow increases the computation parallelism of

this example 4× and eliminates the zero-redundancy. Ideally,

the zero-skipping data flow can achieve S2× increase of the

computation parallelism, without considering the limitation of

PE resources.

E. Input Buffer Design

To facilitate the zero-skipping data flow, we design an input

buffer. Fig. 9 depicts its overall structure, in which the MFBs

and SFBs are connected alternatively to form a chain. An MFB

can operate in shift and buffer modes. In the shift mode, it

receives data from its left side and passes to the right side. In

the buffer mode, it submits the stored data onto the data bus,

which will transfer the data to the PE array. An SFB performs

only the right-shift function and acts like a pipe between the

adjacent MFBs.

The size of MFBs is supposed to be the largest row size

of the weight matrices in the computation modes. SFBs are

required to contain a row of data from the input FP. Based on

these criteria, the number of MFBs and SFBs and the number

of their entry can be determined.

When feeding the data into the PE array, the input buffer

can have the following three work patterns:

• Initialization: The first group of inputs for the computa-

tion modes are fetched and stored into MFBs and SFBs.

• Load: MFBs work in the buffer mode and load the stored

data onto the data bus. Then the data bus distributes the

data to the PE array for the parallel operations. SFBs are

idle in this work pattern.

• Shift: MFBs and SFBs execute right-shifts simultane-

ously. The data in the last MFB are shifted out.

After the initialization and the first load, the input buffer

alternates its work pattern between load and shift until the

completion of a layer’s computation. The data at the last entry

in the last MFB will be used once and then shifted out. Other

data in the input buffer will be reused with the assist of

the SFBs. As such, the input buffer design enables the data

reuse and lowers the cost of remote memory access. Once the

computation of the PE array starts, the load and shift in the

input buffer is processed simultaneously with the computation

in PE arrays. As a shift work pattern is always followed by

a load during operations, we use shift-load to indicate this

situation. When kernels shift over the input FPs vertically, two

shifts are required to load a new row that are followed by one

load. We use Shift2-Load to explicitly denote this action. In

the following, we will use two examples to explain the work

patterns and execution procedure of the proposed input buffer

design.

1) Example I: This is an example for the deconvolution in

Fig. 6 with I = 3. The corresponding mapping and data flow

results are shown in Table V. The execution procedure of the

input buffer is demonstrated in Fig. 10(a). Its input buffer is

composed of two MFBs and one SFBs, each of which has two

entries to hold the inputs. Different colors of inputs indicates

that they are from different rows of the input FP. The buffers

carry out initialization and load in sequence to prepare inputs

for the computation of Cycle 1. When the PE array executes

the computation of Cycle 1, the input buffer is occupied with

MFB 1 SFB 1 MFB 2 MFB N

MFB

Multi-functional 
Buffer

SFB

Single-functional 
Buffer

PE 
Arrays

••• SFB N-1

Global 
Memory

Fig. 9. The input buffer design.
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TABLE V
LOADED INPUTS PER COMPUTING CYCLE FOR THE DECONVOLUTION IN FIG. 6 AND THE FIRST LAYER OF DCGAN [28] IN RED.

Example in Fig. 6
Cycles 1 2 3 4 5 · · ·
Inputs 1, 2, 4, 5 2, 3, 5, 6 3, 6 4, 5, 7, 8 5, 6, 8, 9 · · ·

DCGAN Deconv1
Cycles 1 2 · · · 5 6 · · ·
Inputs 1, 2, 5, 6 1, 2, 3, 5, 6, 7 · · · 1, 2, 5, 6, 9, 10 1, 2, 3, 5, 6, 7, 8, 9, 10 · · ·

5 4 2 13 6 5 3 24 6 35 4

8 7 5 4 9 3 26 8 7

6 5 2 14 3 7 6 5 3 2 14

MFB 1 MFB 2SFB 1

MFB 1 MFB 2SFB 1 MFB 1 MFB 2SFB 1

10 9 6 58 7 •••
MFB 1 MFB 2SFB 1

2 14 3

MFB 3SFB 2

1110 9 8 •••
MFB 1 MFB 2SFB 1

4 3

MFB 3SFB 2

3 2 17 6 5

•••
MFB 3SFB 2

•••
MFB 3SFB 2

•••

Initialization Shift 1

Shift 2Load

Legend

Cycle 1 Cycle 2 Cycle 3

Cycle 4 Cycle 5

Cycle 1 Cycle 2

Cycle 5 Cycle 6

•••

(a) The parameter values in this example are the same as those shown in Fig. 7.  

(b) In this example, the values of stride (S), kernel size (K), and input width/height (I) are from the first deconvolution layer of 
DCGAN. S = 2, K = 5, I = 4. 

•••

MFB 1 MFB 2SFB 1 MFB 1 MFB 2SFB 1

MFB 1 MFB 2SFB 1 MFB 1 MFB 2SFB 1

Fig. 10. The example of input buffer design and execution procedures. Cycle here denotes the computing cycle. The number i in box denotes the ith element
in the input FP.

the inputs for Cycle 2. As shown in Fig. 10(a), MFBs switch

into the shift mode and the input buffer performs the shift-
load procedure. In the shift procedure, all buffers move the

stored data one step toward the right; then inputs for Cycle 2
are ready in MFBs. The load procedure sends the inputs saved

in MFBs to PE arrays. Likewise, another pair of shift-load of

input buffers have the inputs for Cycle 3 ready. Then a Shift2-
Load is executed by the input buffers to provide input for

Cycle 4. For the sake of brevity, we only show the execution

flow of the first five cycles.

2) Example II: Fig. 10(b) illustrates the first deconvolu-

tional layer in DCGAN with where S = 2, K = 5, and I = 4.

Three three-entry MFBs and two two-entry SFBs cooperate

with each other in the deconvolution execution. First, the

initialization operation fetches the first group of input pixels,

and the load operation feeds the input data for Cycle 1 from

MFBs onto the data bus. Subsequently, one shift-load action

is carried out to provide the input data for Cycle 2. After

Cycle 4, the input buffers perform a pair of Shift2-Load action,

the input vectors 1, 2, 5, 6, 9, and 10 are loaded onto the data

bus and transferred to the PE array. The shift-load actions in

the input buffers overlap with the computation in the PE array.

The proposed input buffer design benefits from three per-

spectives. First, it maximizes the data reuse between comput-

ing cycles, and therefore, reduces the global memory access.

Second, it employs less storage resources compared with pre-

vious designs [14]. Third, the input buffer design supports the

simultaneous operations of the PE array by directly receiving

data from MFBs, leading to higher computation parallelism

and efficiency.

F. Programming Interface

In our proposed RED, the entire network model is executed

by layers. The execution of a single deconvolutional layer is

completed in several computing cycles. In each computation

cycle, multiple computation modes are executed in parallel.

One group of inputs for the computation modes are fetched

from the global memory to the input buffer, which feeds

the data into the PE array to perform computation. The

output buffer holds the intermediate data outputs and transfers

them back to the global memory once all the computations

complete.

We provide a set of functions as the specific programming

interface for the deconvolutional layer. These functions con-
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trol the dataflow within RED as well as the data transfer

between the global memory and RED. The controller driven by

these functions works as a finite state machine and controls

the data transfer between PE array and the global memory,

as well as the data movement within the PE array. The

function Load Weight is used to load the pretrained weight

to the PE array. Three specific functions are applied to

operate the dataflow, including Initialize Data, Load Data
and Shift Data: Initialize Data transfers data from the global

memory to the input buffer of RED, Load Data is activated

to enable the input buffer to feed the data into the PE array

and start computation simultaneously, and Shift Data enables

the input data to shift the data. After all the computation

cycles are finished, the intermediate data in the output buffer

are transferred back to the global memory by executing the

function Trans to GM. In this way, the inference of a single

deconvolutional layer is completed, and the output of this layer

is stored in the global memory, ready for the computation of

next convolutional or deconvolutional layer.

G. Discussion

The proposed pixel-wise mapping and zero-skipping data

flow schemes facilitate the parallelism of deconvolutional

computation. As aforementioned, RED can achieve stride2×
computation parallelism by skipping all the redundant zeros.

Previously, we interpreted the RED architecture with the

examples of the deconvolutional layer with stride = 2, which

is a typical configuration of deconvolutional layers in GANs

and FCNs. When the stride of the deconvolutional layer is

larger than 2, the number of computation modes increases and

the computation parallelism could be even higher.

The augmentation of stride is also followed by the expansion

of kernel size. For example, in a typical deconvolutional layer

with stride = 8 in FCN [2], the size of kernel is 16× 16. To

achieve the maximum computation parallelism of 64×, 256

PEs are needed. Integrating such a large number of PEs might

not be practical due to area and power constraints. We can

modify the data flow to address such a situation. For instance,

when K2 PEs are needed while only K2

2 is available, the data

flow can be modified as follows:

Cycle 1 : In[c]c=1,...,C = I2n,ori[c]c=1,...,C ;

In[c]c=C+1,...,2C = 0;

Cycle 2 : In[c]c=1,...,C = 0;

In[c]c=C+1,...,2C = I2n+1,ori[c]c=1,...,C ;

(4)

Where In presents the input data flow of the nth PE, and

I2n,ori and I2n+1,ori denote the input data flow of the PEs in

the original pixel-wise mapping scheme (0 ≤ n < K2

2 ).

V. EXPERIMENTS

A. Experimental Setup

We modify the NeuroSim+ [29] to evaluate the performance

and energy consumption of RED. The system employs one-

transistor-one-ReRAM (1T1R) cell at 65nm technology node

and runs at 2 GHz clock frequency. We adopt the device model

TABLE VI
BENCHMARKS USED IN THIS WORK.

Network Name Dataset
Number of
Deconv Layers

Number of
Conv Layers

DCGAN LSUN 4 1
ImprovedGAN CIFAR-10 3 1
SNGAN STL10 STL-10 3 2
SNGAN cifar10 CIFAR-10 3 2
voc FCN8s PASCAL VOC 3 18

with Ron/Roff = 200kΩ/1MΩ and 2V write voltage. The

input buffer is simulated with CACTI [30].

The evaluating benchmark covers a set of representative

neural network models including GANs and FCNs. The struc-

ture of models are identical to those original settings. The

same datasets are used for training and inference tasks. The

structure details of networks are summarized in Table VI.

DCGAN [28] is a classical GAN and its generator is

used to generate the 64 × 64 color images from LSUN-

bedroom dataset [31]. ImprovedGAN is a semi-supervised

GAN [32]. The model structure is based on DCGAN, while the

number of the deconvolutional layers decreases from four to

three. Furthermore, we employ two variants of SNGAN [33]:

SNGAN STL-10 [34] and SNGAN cifar-10 [35]. SNGAN

is a latest GAN network that is capable of generating high-

quality images. SNGAN STL-10 and SNGAN STL-10 use

different datasets, which are different in the size of input

FP. Voc FCN8s [2] is a representative fully connected net-

work, which is used for semantic segmentation. We use the

stride = 8 version of FCN that is validated on PASCAL VOC

dataset [36]. The deconvolutional layers in FCNs have fewer

input channels, larger stride and larger kernel size compared

to GANs, which contribute to the diversity of the selected

benchmark.

We compare RED with the padding-free design and the

zero-padding design. The three implementations are evaluated

in terms of execution time and energy consumption. All results

are normalized to those of the zero-padding design. The com-

parison of deconvolutional layers is the main focus. We also

present the breakdown results that separate the contributions

of array, periphery circuitry and input buffer. At the end, we

compare the computation and power efficiency of RED with

the latest deconvolution accelerator designs [23], [25]–[27].

B. Execution time

During the evaluation, input and output buffer access and

computation are scheduled in a pipeline manner referring to

prior studies [11], [13], [37]. The execution time of the zero-

padding and RED include both the array latency and the

periphery latency. As the input buffer access and deconvo-

lution execution can be processed in pipelined manner, the

latency caused by the buffer access is omitted. However, the

padding-free implementation uses output buffer to save the

intermediate output. Although these store operations can work

concurrently with the deconvolution execution, the drain time

of the pipeline process induced by the output buffer is not

trivial. Thus, we include the output buffer access latency in
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(a) The speedup performance.
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Fig. 11. The execution time comparison.

the last computation cycle into the total execution time of the

padding-free implementation.

Fig. 11(a) compares the execution time of the three imple-

mentations. Because of the same number of ReRAM crossbars

utilized in a computation cycle, the three implementations

have the same execution time for a single computation. Due

to the zero redundancy in the input data, the zero-padding

design requires more cycles to accomplish the computation

of a deconvolutional layer. As interpreted in Section III, the

zero-padding design takes Oh × Ow cycles to complete the

computation of M output FPs in the shape of Oh × Ow,

while the padding-free design and RED will take Ih × Iw
cycles. As shown in Fig. 11(a), RED reaches a 4× ∼ 56.16×
speedup compared to the zero-padding design. RED achieves

a substantial improvement of execution time especially in

FCN implementations, when the stride of deconvolutional

computation is relatively large. Note that the deconvolutional

layers in voc-FCN8s have different strides (S = 2 or S = 8).

The padding-free design and RED have the same number

of computation cycles, leading to the same array latency

and periphery latency. RED saves 29% ∼ 104% execution

time compared to the padding-free design. The slight speedup

mainly comes from the removal of the extra operations of

output data and the output buffer latency.

Fig. 11(b) shows the breakdowns of the execution time. The

relationship between the execution time of the three implemen-

tations is as expected. The array latency and periphery latency

of the zero-padding design is ∼ S2× compared to the other

two designs, as interpreted above. The output buffer of the

padding-free design costs 29% ∼ 104% extra execution time.

When the data size of the intermediate output in the last decon-

volutional layer is relatively larger, as in ImprovedGAN [32]

and SNGAN cifar-10 [35], the total access time of the output

buffer is considerable.

(b) The energy breakdown.
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Fig. 12. The energy comparison.

C. Energy consumption

Fig. 12(a) compares the energy consumption of the three

designs. The energy evaluation considers all the components

in accelerators, including arrays, peripheral circuitry, input

buffers, etc. Here the overhead induced by the output buffer

is included for the padding-free design.

The zero-padding design introduces zero-redundancy to the

input dataflow, and consequently requires a much larger input

buffer to hold the input dataflow. So the energy consump-

tion for a single buffer access is relatively large. Moreover,

the zero-padding design needs more cycles to complete the

deconvolutional computation and the input data size in each

cycle is larger. So the number of input buffer access is

relatively large. Thus, the input buffer energy is larger than

that of the other designs. RED doesn’t show great advantage

over the zero-padding design in GAN execution because the

input data size of GANs is relatively small. FCN involves

more input zero-redundancy of deconvolutional layers so the

energy consumption of input buffer of RED reduces more

significantly.

In the padding-free design, the storage of intermediate

outputs involves writing to the output buffer, which introduces

considerable energy consumption. So RED can achieve an

18% ∼ 49% energy efficiency promotion compared to the

padding-free design. This promotion is more significant when

the data size of the intermediate output is relatively large, as

in ImprovedGAN [32] and SNGAN cifar-10 [35].

The breakdowns of the major components are shown in

Fig. 12(b). Due to the same number of ReRAM crossbars

utilized in a computation cycle, the padding-free design and

RED have the same array energy consumption and periphery

energy consumption. The zero-padding design involves more

computation cycles. It has the same total array energy as RED

because the zero-redundancy in the input dataflow doesn’t in-
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TABLE VII
COMPARISON WITH EXISTING DECONVOLUTION ACCELERATORS.

Computation Efficiency Energy Efficiency
(GOPs/(s×mm2)) (GOPs/W)

RED (Avg.) 8340.72 41457.71
FCN-Engine [23] 235.4 1412.5

LerGAN [25] N/A 3588.92
GANAX [26] N/A 2740.90

FPGA [27] N/A 73.11
CPU N/A 0.74

Tesla P100 (GPU) N/A 14.06

troduce extra array energy consumption. The periphery energy

of the zero-padding design is larger because of the larger

number of computation cycles. The zero-padding design shows

more energy of the input buffer, and the padding-free design

involves a considerable output buffer energy consumption, as

interpreted above.

D. Comparison with existing deconvolution accelerators

The estimated area of RED is 16.63mm2. Based on the

experiment results of energy consumption and execution time,

we calculate RED’s computation efficiency and energy effi-

ciency (Table VII). We compare RED with CPU and GPU

platforms, as well as several state-of-the-art deconvolution

accelerators [23], [25]–[27]. The computation efficiency of

some baselines is not available due to the lack of the runtime

or area data. The comparison in Table VII shows that RED

achieves approximately 35.45× and 6.67× improvements in

computation efficiency and energy efficiency, respectively.

VI. CONCLUSION

This work introduces RED, a ReRAM-based deconvolu-

tion accelerator with high energy efficiency and throughput.

RED utilizes a performance-friendly mapping scheme and

a redundancy-free data flow to reduce considerable latency

and energy consumption caused by zero-insertion or extra

operations in the conventional deconvolution implementations.

A specialized input buffer design is also proposed to sup-

port the data flow. Experimental evaluation shows that RED

outperforms the existing ReRAM-based accelerators for the

common deconvolutional computation algorithms, with up to

a 4-56.16× speedup and a 1.05-18.17× energy consumption

reduction.
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