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We provide a natural BMO-criterion for the L2-boundedness 
of Calderón-Zygmund operators with operator-valued kernels 
satisfying a symmetric property. Our arguments involve both 
classical and quantum probability theory. In the appendix, 
we give a proof of the L2-boundedness of the commutators 
[Rj , b] whenever b belongs to the Bourgain’s vector-valued 
BMO space, where Rj is the j-th Riesz transform. A common 
ingredient is the operator-valued Haar multiplier studied by 
Blasco and Pott.
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1. Introduction

There has been a lot of effort into the generalization of the classical Calderón-Zygmund 
singular integral theories to the operator-valued (or d by d matrix-valued) setting. The 
situation is quite subtle and many straightforward generalizations are turned out to be 
wrong. For example, Pisier and Harcharras showed (see [49,15]) that, for each 1 < p < ∞, 
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there exists a scalar-valued Fourier multiplier T that is bounded on Lp(R) but T ⊗ idSp

is not bounded on Lp(R, Sp). Here, Sp denotes the Schatten-p classes and Lp(R, Sp)
denotes the space of Sp-valued p-integrable functions. Another example is the dyadic 
paraproduct

π(b, f) =
∑
n>0

dnbEn−1f.

Here, En denotes the conditional expectation with respect to the usual dyadic filtration 
on the real line R and dn is the difference En − En−1. It is well known that π maps 
L2(R) × L2(R) to L1(R), and this extends to the vector valued setting that π maps 
L2(R, �2) × L2(R, �2) to L1(R, �1). However, π fails to map L2(R, S2) × L2(R, S2) to 
L1(R, S1), see [40] and [43], [44]. This pathological property of π prevents a desirable 
operator-valued T1-theory with a natural BMO testing-condition.

The authors notice that this kind of pathological property could be rectified for oper-
ators T with a “symmetric” kernel K(x, y) s.t. K(x, y) = K(y, x), including the Beuling 
transforms, the Haar multipliers, and the commutator [Rj, b] where Rj is the j-Riesz 
transform. The main purpose of this article is to formulate a T1 theory with a natural 
BMO test condition for operator valued Calderón-Zygmund operators T satisfying the 
symmetric property (T1)∗ = T ∗1.

In their remarkable work [26], Hytönen and Weis already established an operator-
valued T1 theory in a quite general setting, i.e. for operator valued singular integral 
operators on vector valued function space Lp(R, X). Their BMO space seems to be quite 
complicated and does not contain the space of uniformly bounded B(�2)-valued functions 
in the most interesting case X = �2. This is necessary because of the bad behavior of 
operator valued paraproducts mentioned above. The authors hope that this work may 
complement Hytönen and Weis’ work for the case of symmetric singular integrals. On 
the other hand, even though strictly speaking the commutator [Rj, b] is not a singular 
integral operator, we are still able to show its L2-boundedness whenever b satisfies a 
natural BMO test condition in the same spirit. This result might be essentially known 
to experts, and we will provide a proof in the Appendix.

A main motivation for the present paper is to investigate noncommutative T1 theorem 
in the semicommutative case, which would provide ideas or insights in searching for T1
type theorem in the more general noncommutative setting such as on quantum Euclidean 
spaces, where a T1-theory is in high demand but still missing (see [57], [58], [14], [55], 
[39]). Let us give an introduction along this research line. The commutative T1 theorem 
due to David and Journé [10] is a revolutionary result and finds many applications in 
classical harmonic analysis [7], [9]. Let K : Rn ×Rn \ {(x, x) : x ∈ Rn} → C be a kernel 
satisfying the standard assumptions:

|K(x, y)| � 1
|x− y|n , ∀x �= y; (1.1)
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|K(x, y) −K(x′, y)| + |K(y, x) −K(y, x′)| � |x− x′|α
|x− y|n+α

, (1.2)

∀|x −y| ≥ 2|x −x′|, with some α ∈ (0, 1]. Here (and below) A � B means that there exists 
an absolute constant C > 0 such that A ≤ CB. A linear operator T initially defined on 
“nice” functions is called a Calderón-Zygmund operator (CZO) associated with K, if T
satisfies the kernel representation, for a.e. x /∈ suppf ,

Tf(x) =
∫
Rn

K(x, y)f(y)dy.

The T1 theorem states that T extends to a bounded operator on Lp(Rn) for one (or 
equivalently all) 1 < p < ∞ if and only if

T1, T ∗1 ∈ BMO(Rn), and (1.3)

T has the Weak Boundedness Property sup
I cube

1
|I| |〈1I , T1I〉| < ∞. (1.4)

Along the current research line of noncommutative harmonic analysis, the present 
paper is devoted to the study of a matrix (operator)-valued T1 theorem. More precisely, 
we are interested in the matrix-valued kernels K : Rn ×Rn \ {(x, x) : x ∈ Rn} → B(�2)
verifying natural assumptions:

‖K(x, y)‖B(�2) � 1
|x− y|n , ∀x �= y; (1.5)

‖K(x, y) −K(x′, y)‖B(�2) + ‖K(y, x) −K(y, x′)‖B(�2) � |x− x′|α
|x− y|n+α

, (1.6)

∀|x −y| ≥ 2|x −x′|. We are interested in operators T such that, for all SB(�2)-valued step 
functions f and a.e. x /∈ suppf ,

Tf(x) =
∫
Rn

K(x, y)f(y)dy =
∫
Rn

∑
i,j

(∑
k

Kik(x, y)fkj(y)
)
⊗ ei,jdy. (1.7)

Here SB(�2) denotes the set of all the elements with finite trace support in B(�2). We aim 
to find a natural BMO condition such as (1.3), (1.4) such that T extends to a bounded 
operator on the noncommutative Lp spaces. Here, the noncommutative Lp spaces are 
associated to the von Neumann algebra

A = L∞(Rn)⊗B(�2)

which consists of all essentially bounded functions f : Rn → B(�2). We refer the reader 
to [51], [59] for more information on noncommutative Lp spaces.
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The modern development of quantum probability and noncommutative harmonic 
analysis begun with the seminal paper by Pisier and Xu [50], where noncommuta-
tive Burkholder-Gundy inequality and Fefferman-Stein duality were established. Later 
on, many inequalities in classical martingale theory have been transferred into the 
noncommutative setting [27], [35], [36], [52], [53], [21], [16], [17], [34] etc. Meanwhile, 
noncommutative harmonic analysis has gained rapid developments ranging from the 
noncommutative H∞-calculus [28,11], operator-valued harmonic analysis [41], [22], [18], 
[46] to Riesz transform/Fourier multipliers on group von Neumann algebras [30], [31], 
[29], hypercontractivity of quantum Markov semigroups [33], [32], [54] and harmonic 
analysis on quantum Euclidean spaces/torus [8], [58], [14].

It worths to point out that the operator-valued (or semi-commutative) harmonic anal-
ysis often provides deep insights in harmonic analysis in the general noncommutative 
setting, and sometimes plays essential role based on the transference principles. For in-
stance, the main ideas of the work [30,8,58,14] are to reduce the problems in their setting 
to the corresponding problems in the operator-valued setting.

An interesting case is that the functions f are �2-valued. This case has been exten-
sively studied in the series of works [56], [44], [47], [13], [43] etc since 97’s. In these works, 
many results in classical harmonic analysis such as weighted norm inequalities, Carleson 
embedding theorem, Hankel operators, commutators, paraproducts have been extended 
to the matrix-valued setting. A common character of all these results is that the be-
havior depends on the dimension of the underlying matrix. For instance, in [43], among 
many other related results, the authors consider the dyadic paraproduct with symbol in 
noncommutative BMO acting on Cd-valued functions and show that the bound of the 
paraproduct operator is of order O(log d). Since we will not work with noncommutative 
BMO space BMOcr(A), we refer the reader to [41] for the definition and properties.

More precisely, let D be the collection of dyadic intervals in R. For any dyadic interval 
I ∈ D, let hI := |I|−1/2(1I+ − 1I−) be the associated Haar function, where I+, I− are 
left and right halves of the interval I. Let b be a d × d-matrix-valued function on R and 
f be a Cd-valued function on R, the paraproduct is defined as

πb(f) :=
∑
I∈D

DI(b)EI(f),

where DI(b) := 〈hI , b〉hI =
∫
R b(x)hI(x) dx hI is a d ×d-matrix-valued function on R and 

EI(f) := 〈 1I

|I| , f〉1I = −
∫
I
f(x) dx 1I is a Cd-valued function on R. In [43,40], the authors 

showed that it may happen

‖πb‖L2(R;Cd)→L2(R;Cd) � ‖b‖L∞(A) log d. (1.8)

This tells us that a naive generalization of classical T1 theorem in the semicommutative 
setting is not true, that is, T1, T ∗1 ∈ BMOcr(A) can not guarantee the boundedness of 
matrix-valued CZOs since the paraproduct is a typical example of perfect dyadic CZOs 
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and L∞(A) is contained in BMOcr(A). A CZO on R being perfect dyadic means its 
kernel satisfies the condition (instead of (1.6))

‖K(x, y) −K(x′, y)‖B(�2) + ‖K(y, x) −K(y, x′)‖B(�2) = 0, (1.9)

whenever x, x′ ∈ I and y ∈ J for some disjoint dyadic intervals I and J . Perfect dyadic 
kernels were introduced in [1] and include martingale transforms, as well as paraproducts 
and their adjoints.

In the remarkable works [23,26], Hytönen and Weis have proven an operator valued 
T1-theorem. However, the BMO-space in their work is a bit artificial and it may not 
contain L∞-functions, though this is necessary due to the abnormality of matrix-valued 
paraproducts.

The first result of the present paper is that under the symmetric assumption (T1)∗ =
T ∗1, the perfect dyadic CZOs T are bounded on L2(A) provided T1 ∈ BMO(A, ΣA), 
the usual dyadic vector-valued BMO spaces which contains L∞(A). Here “1” means the 
identity of the algebra A, and the BMO space BMO(A, ΣA) is the dyadic version of the 
one first studied by Bourgain [5], whose norm of an operator-valued function g on R is 
defined as

‖g‖BMO(A,ΣA) = sup
I∈D

(
−
∫
I

‖g(x) − gI‖2
B(�2) dx

) 1
2
.

On the other hand, providing suitable analogue of (1.4) for Lp(A)-boundedness of 
matrix-valued CZOs when p �= 2 is also subtle, since there are some noncommutative 
martingale transforms with noncommuting coefficients—another type of examples of 
perfect dyadic CZOs with T ∗1 = T1 = 0—failing Lp(A)-boundedness for p �= 2, see for 
instance [46]. That implies that a natural Weak Boundedness Property

sup
I∈D

1
|I| ‖〈1I , T1I〉‖B(�2) < ∞

can not guarantee the Lp(A)-boundedness of matrix-valued CZOs for p �= 2. In the 
present paper, we are content with the second best— showing the boundedness between 
Lp(A) and noncommutative Hardy spaces under the natural Weak Boundedness Prop-
erty.

Assuming the symmetric condition, we build a weakened form of T1 theorem first for 
the toy model—matrix-valued perfect dyadic CZOs.

Theorem 1.1. Let T be an operator-valued perfect dyadic CZO satisfying

Symmetric condition: (T1)∗ = T ∗1; (1.10)

BMO condition: T1 ∈ BMO(A,ΣA); (1.11)
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WBP condition: sup
I∈D

1
|I| ‖〈1I , T1I〉‖B(�2) < ∞. (1.12)

Then T is bounded on L2(A). Moreover,

• T is bounded from Lp(A) to Hc
p(A, ΣA) whenever 2 < p < ∞;

• T is bounded from Hc
p(A, ΣA) to Lp(A) whenever 1 < p < 2.

Here Hc
p(A, ΣA) is the noncommutative martingale Hardy spaces that we will recall 

in Section 2. A useful observation in the proof is Lemma 2.3, which states that dyadic 
martingale transforms, dyadic paraproducts or their adjoints are essentially the only 
perfect dyadic CZOs. Then we are reduced to show the boundedness of noncommutative 
Haar multiplier—the sum of paraproduct and its adjoint—in Lemma 2.2 where the 
symmetry is exploited, and the boundedness of noncommutative martingale transform 
in Lemma 2.1.

The proof of this toy model is relatively easy but essential for the understanding of 
our arguments for (higher-dimensional) general CZOs and commutators.

For continuous CZO, that is the general singular integrals satisfying (1.7) with kernels 
verifying the standard size and smooth conditions (1.5) (1.6), we establish a similar result.

Theorem 1.2. Let T be a continuous CZO on Rn satisfying

Symmetric condition: (T1)∗ = T ∗1; (1.13)

BMO condition:T1 ∈ BMO(Rn;B(�2)); (1.14)

WBP condition: sup
I cube

1
|I| ‖〈1I , T1I〉‖B(�2) < ∞. (1.15)

Then T is bounded on L2(A). Moreover,

• T is bounded from Lp(A) to Hc
p(Rn; B(�2)) whenever 2 < p < ∞;

• T is bounded from Hc
p(Rn; B(�2)) to Lp(A) whenever 1 < p < 2.

Here, the BMO and Hardy spaces are the continuous version of the dyadic spaces in 
the toy model case that we will recall in the body of the proof. Decompose T = Te + To

as the sum of even and odd parts associated with the kernels

Ke(x, y) = K(x, y) + K(y, x)
2 , Ko(x, y) = K(x, y) −K(y, x)

2 .

It is easy to see that Te satisfies our symmetric assumption (Te1)∗ = T ∗
e 1. We then 

reduce the L2-boundedness of T to Te1 ∈ BMO(Rn; B(�2)) and the L2-boundedness of 
To. In particular, together with Remark 1.37 in [26], we get the following corollary.
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Corollary 1.3. Let T be a continuous CZO on Rn satisfying
Symmetric condition:

Ko ∈ L2(R2n;B(�2)) or To1, T ∗
o 1 ∈ BMO(Rn;Sq(�2)) 1 < q < ∞; (1.16)

BMO condition: Te1 ∈ BMO(Rn;B(�2)); (1.17)

WBP condition: sup
I cube

1
|I| ‖〈1I , T1I〉‖B(�2) < ∞. (1.18)

Then T is bounded on L2(A).

Theorem 1.1, 1.2 and Corollary 1.3 hold for general operator-valued functions, e.g. 
replacing B(�2) by any semifinite von Neumann algebra M. Our proof will be written in 
this general framework.

As in classical harmonic analysis [1], from the result in the dyadic setting–Theorem 1.1, 
it is usually not difficult to guess similar result—Theorem 1.2—in the continuous setting. 
In scalar-valued harmonic analysis, we can realize this passage from the dyadic setting 
to the continuous one by dealing with issues such as rapidly decreasing tails or using 
the Vitali covering lemma. In the case of vector-valued harmonic analysis, this passage 
requires deep understanding on the connection between martingale theory and harmonic 
analysis as done in [5], [6], [12], [19], [20], [59], [38] etc. In noncommutative harmonic 
analysis, in addition to the idea or the techniques developed in vector-valued theory, 
new idea, techniques or tools developed in noncommutative analysis are usually needed 
to realize this passage such as in [41], [22]. In the present paper, the main idea or 
technique from vector-valued theory we need is the method of random dyadic cubes 
firstly introduced in [45], later modified in [25], [24].

We will show Theorem 1.1 and 1.2 in Section 2 and 3 respectively. The definitions 
of BMO spaces and Hardy spaces as well as the method of random dyadic cubes will 
be properly recalled in the body of the paper. In the Appendix, we will show that the 
commutator [Rj , b] is L2-bounded whenever b belongs to Bourgain’s vector-valued BMO 
space BMO(Rn; M). This result might be essentially known to experts, but we do not 
find it in any literature, and thus we put it in the Appendix.

2. Perfect dyadic CZOs: proof of Theorem 1.1

Let M be a semifinite von Neumann algebra equipped with a normal semifinite faithful 
trace τ . Consider the algebra of essentially bounded functions R → M equipped with 
the n.s.f. trace

ϕ(f) =
∫
R

τ(f(x)) dx.

Its weak-operator closure is a von Neumann algebra A. If 1 ≤ p ≤ ∞, we write Lp(M)
and Lp(A) for the noncommutative Lp spaces associated to the pairs (M, τ) and (A, ϕ). 
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The set of all the elements with finite trace support in M is written as SM. The 
set of dyadic intervals in R is denoted by D and we use Dk for the k-th generation, 
formed by intervals I with side length �(I) = 2−k. We consider the associated filtra-
tion (L∞(Dk)⊗M)k∈Z of A, which will be simplified as ΣA = (Ak)k∈Z. Let Ek and Dk

denote the corresponding conditional expectations and martingale difference operators.

2.1. Two auxiliary results

In the present section, we first show two auxiliary results with respect to the following 
two kinds of operators:

• Noncommuting martingale transforms

Mξf =
∑
k∈Z

ξk−1Dk(f),

• Haar multipliers with noncommuting symbol

Λb(f) =
∑
k∈Z

Dk(b)Ek(f).

Here ξk ∈ Ak is an adapted sequence. Of course, the symbols ξ and b do not necessarily 
commute with the function. Our arguments on the operator-valued Λb follow the ideas 
from [3,4] and [41].

Let us first recall more definitions.

Noncommutative martingale Hardy spaces Let 1 ≤ p < ∞. The column Hardy space 
Hc

p(A, ΣA) is defined to be the completion of all finite Lp-martingales under the norm

‖f‖Hc
p(A,ΣA) := ‖

(∑
k∈Z

Dkf
∗Dkf

)1/2‖p.
Taking adjoint—so that the ∗ switches from left to right— we find the row-Hardy space 
norm. The noncommutative Hardy space Hp(A, ΣA), whose norm is defined through 
column and row spaces differently for 1 ≤ p < 2 and 2 ≤ p < ∞

‖f‖Hp(A,ΣA) =
{

inff=g+h ‖g‖Hc
p(A,ΣA) + ‖h‖Hr

p(A,ΣA) if 1 ≤ p ≤ 2,
max(‖f‖Hc

p(A,ΣA), ‖f‖Hr
p(A,ΣA)) if 2 ≤ p < ∞.

In the seminal paper [50], the authors showed the noncommutative Burkholder-Gundy 
inequality

‖f‖Lp(A) � ‖f‖Hp(A,ΣA)
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for 1 < p < ∞, from which one has automatically

‖f‖Lp(A) � min(‖f‖Hc
p(A,ΣA), ‖f‖Hr

p(A,ΣA))

for 1 < p ≤ 2 and

max(‖f‖Hc
p(A,ΣA), ‖f‖Hr

p(A,ΣA)) � ‖f‖Lp(A)

for 2 ≤ p < ∞. It is this observation that motivates us to guess the (Hc
p, Lp)-boundedness 

for 1 < p ≤ 2 and the (Lp, Hc
p)-boundedness for 2 ≤ p < ∞ instead of (Lp, Lp)-bounded-

ness of Calderón-Zygmund operators.
In the same paper, the authors also introduced the noncommutative martingale BMO 

spaces and established the Fefferman-Stein duality. According to [42] it has the expected 
interpolation behavior in the scale of noncommutative Lp spaces. We refer the reader to 
[50,35,36] for more information on noncommutative Hardy spaces and related results or 
facts used in the present paper.

Vector-valued BMO spaces The M-valued martingale BMO space BMO(A, ΣA) is de-
fined to the set of M-valued locally integrable functions with norm

‖f‖BMO(A,ΣA) := sup
k∈Z

‖Ek‖f − Ek−1f‖2
M‖1/2

L∞(R).

This space is related to the vector-valued Hardy space Hm
1 (A, ΣA) whose norm is defined 

as

‖f‖Hm
1 (A,ΣA) := ‖ sup

k∈Z
‖Ekf‖L1(M)‖L1(R).

In fact, Bourgain [5] and Garcia-Cuerva proved independently that BMO(A, ΣA) embeds 
continuously into the dual of Hm

1 (A, ΣA). That is

|ϕ(f∗g)| � ‖f‖BMO(A,ΣA)‖g‖Hm
1 (A,ΣA). (2.1)

We also need the following Doob’s inequality for Lp(M)-valued function: For all 1 < p ≤
∞ and f ∈ Lp(A)

‖ sup
k∈Z

‖Ekf‖Lp(M)‖Lp(R) � ‖f‖Lp(A). (2.2)

Proposition 2.1. If supk ‖ξk‖A < ∞, then

• Mξ is bounded from Lp(A) to Hc
p(A, ΣA) whenever 2 ≤ p < ∞;

• Mξ is bounded from Hc
p(A, ΣA) to Lp(A) whenever 1 < p ≤ 2.
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Proof. We only give the proof of the case 2 ≤ p < ∞, another case can be shown 
similarly. Let f ∈ Lp(A). Using the fact a∗ca ≤ a∗a‖c‖∞ for any a ∈ A and c ∈ A+ and 
ξk ∈ Ak, it is easy to check

‖Mξ(f)‖Hc
p(A,ΣA) = ‖

(∑
k∈Z

Dkf
∗ξ∗k−1ξk−1Dkf

)1/2‖p
≤ sup

k
‖ξk‖L∞(A)‖

(∑
k∈Z

Dkf
∗Dkf

)1/2‖p � ‖f‖Lp(A).

We have used the Hölder inequality and Burkholder-Gundy inequality in the inequali-
ties. �
Proposition 2.2. If b ∈ BMO(A, ΣA), then we have

• Λb is bounded from Lp(A) to Hc
p(A, ΣA) whenever 2 ≤ p < ∞;

• Λb is bounded from Hc
p(A, ΣA) to Lp(A) whenever 1 < p ≤ 2.

Proof. We only provide the proof of the case 2 ≤ p < ∞, since another case can be 
shown similarly. Let q be the conjugate index of p. Let f ∈ Lp(A), and g ∈ Hc

q(A, ΣA). 
By duality, it suffices to show

|ϕ(Λb(f)g∗)| � ‖f‖Lp(A)‖g‖Hc
q(A,ΣA).

Using the assumption that Dk(b)Dk(f) ∈ Ak−1 for each k, we have

|ϕ(Λb(f)g∗)| = |
∑
k∈Z

ϕ(Dk(b)Ek(f)g∗)|

= |
∑
k∈Z

ϕ(Dk(b)Ek−1(f)g∗ + Dk(b)Dk(f)g∗)|

= |
∑
k∈Z

ϕ(Dk(b)Ek−1(f)Dk(g∗) + Dk(b)Dk(f)Ek−1(g∗))|

= |ϕ(b
∑
k∈Z

(Ek−1(f)Dk(g∗) + Dk(f)Ek−1(g∗)))|.

Hence by duality between vector-valued BMO space and Hardy space, we have

|ϕ(Λb(f)g∗)|

� ‖b‖BMO(A,ΣA)‖
∑
k∈Z

Ek−1(f)Dk(g∗) +
∑
k∈Z

Dk(f)Ek−1(g∗)‖Hm
1 (A,ΣA)

= ‖b‖BMO(A,ΣA)

∫
R

sup
�∈Z

‖
�∑

k=−∞
Ek−1(f)Dk(g∗) +

�∑
k=−∞

Dk(f)Ek−1(g∗)‖L1(M)dx.



G. Hong et al. / Journal of Functional Analysis 278 (2020) 108420 11
Using the identity for each � ∈ Z

�∑
k=−∞

Ek−1(f)Dk(g∗) +
�∑

k=−∞
Dk(f)Ek−1(g∗)

= E�(f)E�(g∗) −
�∑

k=−∞
Dk(f)Dk(g∗),

we are reduced to show∫
R

sup
�∈Z

‖E�(f)E�(g∗)‖L1(M)dx � ‖f‖Lp(A)‖g‖Hc
q(A,ΣA) (2.3)

and ∫
R

sup
�∈Z

‖
�∑

k=−∞
Dk(f)Dk(g∗)‖L1(M)dx � ‖f‖Lp(A)‖g‖Hc

q(A,ΣA). (2.4)

The first estimate is relatively easy to handle. Using twice the Hölder inequalities and 
vector-valued Doob’s inequality (2.2), the left hand side of (2.3) is controlled by

≤ (
∫
R

sup
�∈Z

‖E�(f)‖pLp(M)dx)1/p(
∫
R

sup
�∈Z

‖E�(g)‖qLq(M)dx)1/q

� ‖f‖Lp(A)‖g‖Lq(A) � ‖f‖Lp(A)‖g‖Hc
q(A,ΣA),

where we used noncommutative Burkholder-Gundy inequality for q ≤ 2 in the last 
inequality.

To show the second estimate (2.4), we only need to show for any �

‖
�∑

k=−∞
Dk(f)Dk(g∗)‖L1(M) ≤ ‖(

∑
k∈Z

|Dk(f)|2)1/2‖Lp(M)‖(
∑
k∈Z

|Dk(g)|2)1/2‖Lq(M),

since then we can follow similar arguments as in the (2.3). By duality and the Hölder 
inequality,

‖
�∑

k=−∞
Dk(f)Dk(g∗)‖L1(M)

= sup
u, ‖u‖M≤1

|τ(u
�∑

k=−∞
Dk(f)Dk(g∗))| = sup

u, ‖u‖M≤1
|τ(

�∑
k=−∞

Dk(g∗)(uDk(f)))|

= sup
u, ‖u‖M≤1

|τ ⊗ tr((
�∑

Dk(g∗) ⊗ e1k)(
�∑

uDk(f) ⊗ ek1))|

k=−∞ k=−∞
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≤ sup
u, ‖u‖M≤1

‖
�∑

k=−∞
Dk(g∗) ⊗ e1k‖Lq(M⊗B(�2))‖

�∑
k=−∞

uDk(f) ⊗ ek1‖Lp(M⊗B(�2))

≤ ‖(
∑
k∈Z

|Dk(f)|2)1/2‖Lp(M)‖(
∑
k∈Z

|Dk(g)|2)1/2‖Lq(M). �

2.2. Representation of perfect dyadic CZOs

To the best of our knowledge, the notion of perfect dyadic CZO was rigorously defined 
for the first time in [1]. Classical perfect dyadic CZOs include Haar multipliers/martin-
gale transforms and dyadic paraproducts or their adjoints. In the cited paper, they 
also show that these operators and their combinations are the only perfect dyadic CZOs. 
That is, any operator-valued perfect dyadic CZO is a sum of one noncommutative dyadic 
martingale transform, one noncommutative dyadic paraproduct and its adjoint.

Let us fix some notations in the present section. If f : R → M is integrable on I ∈ D, 
we set the average

fI = −
∫
I

f(x) dx.

If 1 ≤ p ≤ ∞ and f ∈ Lp(A)

Ek(f) :=
∑
I∈Dk

EI(f) :=
∑
I∈Dk

fI1I , Dk(f) :=
∑

I∈Dk−1

DI(f) :=
∑

I∈Dk−1

〈hI , f〉hI ,

where hI := |I|−1/2(1I+ −1I−) is the Haar function and 〈·, ·〉 denotes the operator-valued 
inner product anti-linear in first coordinate. We will use 〈〈·, ·〉〉 to denote the inner 
product in L2(A) anti-linear in first coordinate.

Lemma 2.3. Let T be an operator-valued perfect dyadic CZO. Then for f, g ∈ S(R) ⊗SM,

〈〈g, T (f)〉〉 = 〈〈g,
∑
I∈D

〈hI , T (hI)〉〈hI , f〉hI〉〉

+ 〈〈g,
∑
I∈D

DI((T ∗1)∗)DI(f)〉〉 + 〈〈g,
∑
I∈D

DI(T1)EI(f)〉〉. (2.5)

This representation (2.5) has been essentially verified in [1] using the language of wave 
package. Here, we prefer to give a proof using an alternate approach due to Figiel [12], 
which motivates us to deduce a similar representation formula for general matrix-valued 
Calderón-Zygmund operators in the next section.

Proof. Without loss of generality, we can assume that both f and g are of the form h ⊗m

with h being scalar-valued function and m being an operator. Then the convergence of 
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Ek(h) to h as k → ∞ and to 0 as k → −∞ (both a.e. and in Lp(R)) leads to Figiel’s 
representation of T as the telescopic series

〈〈g, Tf〉〉 =
∞∑

k=−∞
(〈〈Ekg, TEkf〉〉 − 〈〈Ek−1g, TEk−1f〉〉)

=
∞∑

k=−∞
(〈〈Dkg, TDkf, 〉〉 + 〈〈Ek−1g, TDkf〉〉 + 〈〈Dkg, TEk−1f〉〉)

:= A + B + C,

where, upon expanding in terms of the Haar functions,

A =
∑
m∈Z

∑
I∈D

〈〈g, 〈hI+̇m, ThI〉〈hI , f〉hI+̇m〉〉,

B =
∑
m∈Z

∑
I∈D

〈〈g, 〈1I+̇m, ThI〉〈hI , f〉
1I+̇m

|I+̇m| 〉〉,

and

C =
∑
m∈Z

∑
I∈D

〈〈g, 〈hI , T1I+̇m〉fI+̇mhI〉〉.

Here I+̇m := I + �(I)m is the translation of a dyadic interval I by m ∈ Z times its 
side-length �(I). Now by the perfect property of the kernel (1.9)—T1J is supported in J
for any dyadic interval J , we see that only the term m = 0 in the summation contributes. 
Then observing that |hI |2 = 1I/|I|, we see clearly

B = 〈〈g,
∑
I∈D

DI((T ∗1)∗)DI(f)〉〉

and

C = 〈〈g,
∑
I∈D

DI(T1)EI(f)〉〉

finishing the proof. �
2.3. Proof of Theorem 1.1

From the representation (2.5), using the symmetric condition (1.10), we clearly have 
T (f) = Mξ(f) + Λb(f) with

ξk =
∑
I∈Dk

〈hI , T (hI)〉 1I , b = T1.
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Then observing that ‖ · ‖Hc
2(A,ΣA) = ‖ · ‖L2(A), we finish the proof using Proposition (2.1)

and (2.2) since WBP condition (1.12) ensures supk ‖ξk‖A < ∞, while BMO condition 
(1.11) ensures b ∈ BMO(A, ΣA).

3. General CZOs: proof of Theorem 1.2

As in the proof of classical T1 theorem, the most difficult part of Theorem 1.2 is the 
case p = 2, and other cases will follow by standard arguments. We will summarize the 
proof at the end of this section. For the case p = 2, as mentioned in the Introduction, 
we will use the method of random dyadic cubes first introduced in [45], later modified in 
[24]. For the sake of completeness, let us recall necessary details of this approach in the 
present paper. We refer the reader to the previously cited papers for more information.

3.1. Radom dyadic system

Let D0 :=
⋃

j∈ZD0
j , D0

j := {2−j([0, 1)n + m) : m ∈ Zn} be the standard system of 
dyadic cubes—the one in the previous section when n = 1. For every β = (βj)j∈Z ∈
({0, 1}n)Z, consider the dyadic system Dβ = {I + β : I ∈ D0} where I + β := I +∑

i:2−i<�(I) 2−iβi.
The product probability Pβ on ({0, 1}n)Z induces a probability on the family of all 

dyadic systems Dβ . Consider for a moment a fixed dyadic system D = Dβ for some β. 
A cube I ∈ D is called ‘bad’ (with parameters r ∈ Z+ and γ ∈ (0, 1)) if there holds

dist(I, Jc) ≤ �(I)γ�(J)1−γ for some J = I(k), k ≥ r,

where I(k) denotes the k-th dyadic ancestor of I. Otherwise, I is said to be ‘good’.
Fixing a I ∈ D0, consider the random event that its shift I + β is bad in Dβ . Because 

of the symmetry it is obvious that the probability Pβ(I +β is bad) is independent of the 
cube I, and we denote it by πbad; similarly one defines πgood = 1 − πbad. The only thing 
that is needed about this number in the present paper as in [45], [25] is that πbad < 1, 
and hence πgood > 0, as soon as r is chosen sufficiently large. We henceforth consider 
the parameters γ and r being fixed in such a way.

Note that

πgood = Pβ(I + β is good) = Eβ1good(I + β)

which is independent of the particular cube I. Then as in [24], using the fact that the 
event that I + β is good is independent of the position of the cube I + β, hence of the 
function φ(I + β), for φ(I) defined on all the cubes, we have

πgoodEβ

∑
φ(I) =

∑
0

Eβ1good(I + β)Eβφ(I + β) (3.1)

I∈Dβ I∈D
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=
∑
I∈D0

Eβ(1good(I + β)φ(I + β)) = Eβ

∑
I∈Dβ

good

φ(I).

This identity is the only thing from the probabilistic approach that we will use in the 
present paper.

3.2. Representation of general CZOs

Fix a β ∈ ({0, 1}n)Z. For D = Dβ , let Ek be the associated conditional expectation 
with respect to Dk, and Dk := Ek − Ek−1. These operators can be represented by the 
Haar functions hθ

I , θ ∈ {0, 1}n, which is defined as follows: When n = 1,

h0
I := |I|− 1

2 1I , h1
I := |I|− 1

2 (1I+ − 1I−);

When n ≥ 2,

hθ
I(x) := h

(θ1,··· ,θn)
I1×···×In

(x1, · · · , xn) =
n∏

i=1
hθi
Ii

(xi).

Then

Ek(f) =
∑
I∈Dk

h0
I〈h0

I , f〉, Dk(f) =
∑

I∈Dk−1

∑
θ∈{0,1}n\{0}

hθ
I〈hθ

I , f〉.

The translation of a dyadic cube I by m ∈ Zn times its sidelength �(I), is defined 
similarly as I+̇m := I + m�(I).

As in Lemma 2.3, we also have Figiel’s representation of an operator-valued Calderón-
Zygmund operator. Let f, g ∈ S(Rn) ⊗ SM.

〈〈g, Tf〉〉 =
∞∑

k=−∞
(〈〈Dkg, TDkf〉〉 + 〈〈Ek−1g, TDkf〉〉 + 〈〈Dkg, TEk−1f〉〉) (3.2)

=: A + B + C,

where

A =
∑

η,θ∈{0,1}n\{0}

∑
m∈Zn

∑
I∈D

〈〈g, 〈hη

I+̇m
, Thθ

I〉〈hθ
I , f〉hη

I+̇m
〉〉;

B =
∑

θ∈{0,1}n\{0}

∑
m∈Zn

∑
I∈D

〈〈g, 〈h0
I+̇m, Thθ

I〉〈hθ
I , f〉h0

I+̇m〉〉

=
∑

θ∈{0,1}n\{0}

∑
m∈Zn

∑
I∈D

〈〈g, 〈h0
I+̇m, Thθ

I〉〈hθ
I , f〉(h0

I+̇m − h0
I)〉〉

+
∑

θ∈{0,1}n\{0}

∑
I∈D

〈〈g, 〈hθ
I , (T ∗1)∗〉〈hθ

I , f〉1I/|I|〉〉 =: B0 + P ;
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and

C =
∑

θ∈{0,1}n\{0}

∑
m∈Zn

∑
I∈D

〈〈g, 〈hθ
I , Th

0
I+̇m〉〈h0

I+̇m, f〉hθ
I〉〉

=
∑

θ∈{0,1}n\{0}

∑
m∈Zn

∑
I∈D

〈〈g, 〈hθ
I , Th

0
I+̇m〉〈h0

I+̇m − h0
I , f〉hθ

I〉〉

+
∑

θ∈{0,1}n\{0}

∑
I∈D

〈〈g, 〈hθ
I , T1〉〈1I/|I|, f〉hθ

I〉〉 =: C0 + Q.

Taking integral Eβ on both sides of identity (3.2), and then using the identity (3.1), 
we get

〈〈g, Tf〉〉 = 1
πgood

Eβ(Agood + B0
good + C0

good) + Eβ(P + Q),

where for instance

Agood = Aβ
good =

∑
η,θ∈{0,1}n\{0}

∑
m∈Zn

∑
I∈Dβ

good

〈〈g, 〈hη

I+̇m
, Thθ

I〉〈hθ
I , f〉hη

I+̇m
〉〉.

The desired estimate

|〈〈g, Tf〉〉| � ‖f‖L2(A)‖g‖L2(A)

is reduced to the corresponding uniform estimate (in β) for Agood, B0
good, C0

good and 
P + Q.

Estimate of Agood This term can be estimated directly since {hη

I+̇m
}I∈D form a mar-

tingale difference sequence for fixed η, m.

|Agood| ≤
∑

η,θ∈{0,1}n\{0}

∑
m∈Zn

|〈〈g,
∑

I∈Dgood

〈hη

I+̇m
, Thθ

I〉〈hθ
I , f〉hη

I+̇m
〉〉|

≤ ‖g‖L2(A)
∑

η,θ∈{0,1}n\{0}

∑
m∈Zn

‖
∑

I∈Dgood

〈hη

I+̇m
, Thθ

I〉〈hθ
I , f〉hη

I+̇m
‖L2(A)

≤ ‖g‖L2(A)
∑

η,θ∈{0,1}n\{0}

∑
m∈Zn

sup
I cubes

‖〈hη

I+̇m
, Thθ

I〉‖M
(
τ(

∑
I∈Dgood

|〈hθ
I , f〉|2)

) 1
2

� ‖g‖L2(A)
∑

η,θ∈{0,1}n\{0}

∑
m∈Zn

(1 + |m|)−n−α‖f‖L2(A) � ‖g‖L2(A)‖f‖L2(A).

Here we used the fact

sup
η,θ∈{0,1}n

sup
I cubes

‖〈hη

I+̇m
, Thθ

I‖M � (1 + |m|)−n−α (3.3)
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which was essentially observed by Figiel following from the size condition (1.5), the 
smooth condition (1.6) and the Weak Boundedness Condition (1.15).

Estimates of B0
good This term can not be estimated directly since h0

I+̇m
− h0

I do not 
form a martingale difference sequence when I runs over all elements in Dgood, but can 
be achieved when I runs over elements in some subcollections which partition Dgood as 
in [24].

For each m, let M = M(m) := max{r, �(1 −γ)−1 log+
2 |m|�}. Let then a(I) := log2 �(I)

mod M+1, and define b(I) to be alternatingly 0 and 1 along each orbit of the permutation 
I → I+̇m of D. It has been proved in [24] if (a(I), b(I)) = (a(J), b(J)) for two different 
cubes I, J ∈ Dgood, then the cubes satisfy the following m-compatibility condition: either 
the sets I∪(I+̇m) and J∪(J+̇m) are disjoint, or one of them, say I∪(I+̇m), is contained 
in a dyadic subcube of J or J+̇m.

We can hence decompose Dgood into collections of pairwise m-compatible cubes by 
setting

Dm
k,v := {I ∈ Dgood : a(I) = k, b(I) = v}, k = 0, · · · ,M(m), v = 0, 1.

The total number of these collections is 2(1 + M(m)) � (1 + log+ |m|).
Note that for fixed k, v, {h0

I+̇m
− h0

I}I∈Dm
k,v

form a martingale difference sequence. 
Thus

|B0| ≤
∑

θ∈{0,1}n\{0}

∑
m∈Zn

∑
k,v

|〈〈g,
∑

I∈Dm
k,v

〈h0
I+̇m, Thθ

I〉〈hθ
I , f〉(h0

I+̇m − h0
I)〉〉|

� ‖g‖L2(A)‖f‖L2(A)
∑

m∈Zn

(1 + |m|)−n−α(1 + log+ |m|) � ‖g‖L2(A)‖f‖L2(A),

where we used again the fact (3.3)

Estimate of C0
good This term can be dealt with similarly as B0

good since we can rewrite

C0 =
∑

θ∈{0,1}n\{0}

∑
m∈Zn

∑
I∈D

〈〈f∗, 〈hθ
I , Th

0
I+̇m〉〈hθ

I , g
∗〉(h0

I+̇m − h0
I)〉〉,

in the same form with B0
good.

Estimate of P + Q The estimate of P + Q is completed through a similar argument 
used for Haar multiplier in Proposition 2.2.

Lemma 3.1. We have

|P + Q| � ‖f‖L2(A)‖g‖L2(A)‖T1‖BMO(A,ΣA) � ‖f‖2‖g‖2‖T1‖BMO(Rn;M) (3.4)
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with some constant independent of β. Here ΣA is the filtration associated to the dyadic 
system Dβ.

Proof. We first rewrite P, Q as follows:

P =
∑

θ∈{0,1}n\{0}

∑
I∈D

〈〈T ∗1, 〈hθ
I , f〉〈1I/|I|, g∗〉hθ

I〉〉

= 〈T ∗1,
∑
k∈Z

Dk(f)Ek−1(g∗)〉

and

Q =
∑

θ∈{0,1}n\{0}

∑
I∈D

〈〈(T1)∗, 〈1I/|I|, f〉〈hθ
I , g

∗〉hθ
I〉〉

= 〈(T1)∗,
∑
k∈Z

Ek−1(f)Dk(g∗)〉.

Then by the symmetry condition (1.13), we get

|P + Q| � ‖T ∗1‖BMO(A,ΣA)‖
∑
k∈Z

Dk(f)Ek−1(g∗) +
∑
k∈Z

Ek−1(f)Dk(g∗)‖Hm
1 (A,ΣA),

which is controlled by

‖f‖L2(A)‖g‖L2(A)‖T ∗1‖BMO(A,ΣA)

by the same arguments in the proof of Proposition 2.2. Noting that for b = T ∗1

‖b‖BMO(Rn;M) := sup
J

( 1
|J |

∫
J

‖b− bJ‖2
M dx

) 1
2 ,

where the supremum is taken over all the cubes J , while in the definition of 
BMO(A, ΣA)-norm, J runs over all the elements in Dβ. We get

‖T ∗1‖BMO(A,ΣA) ≤ ‖T ∗1‖BMO(Rn;M) < ∞

by the assumption (1.14), and thus finish the proof. �
Remark 3.2. (i). Let 1 < p < ∞ and q be the conjugate index of p. Then using the 
arguments in the proof of Proposition 2.2, actually we are able to show

|P + Q| �

⎧⎨⎩ ‖f‖Lp(A)‖g‖Hc
q(A,ΣA)‖T1‖BMO(Rn;M), whenever 2 ≤ p < ∞;

‖f‖Hc(A,Σ )‖g‖L (A)‖T1‖BMO(Rn;M), whenever 1 < p ≤ 2.

p A q
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(ii). Here it is worthy to point out that in the argument above we did not use directly 
the boundedness of higher-dimensional Haar multiplier but the proof for one-dimensional 
Haar multiplier. We will see in the appendix that higher-dimensional Haar multiplier is 
more difficult to handle.

3.3. Proof of Theorem 1.2

Combine the estimates of the four parts Agood, B0
good, C0

good and P + Q, we proved

‖Tf‖L2(A) � ‖f‖L2(A). (3.5)

To prove other cases 1 < p �= 2 < ∞. We will use the atomic characterization of 
Hc

1(Rn; M), which was first introduced by one of us [41]. Let us first recall the definition. 
Let 1 ≤ p < ∞. The Hardy space Hc

p(Rn; M) is defined to be the space of functions 
f ∈ L1(A) for which we have

‖f‖Hc
p(Rn;M) =

∥∥∥(∫
Γ

[∂f̂∗

∂t

∂f̂

∂t
+

∑
j

∂f̂∗

∂xj

∂f̂

∂xj

]
(x + ·, t) dxdt

tn−1

) 1
2
∥∥∥
Lp(A)

< ∞,

with Γ = {(x, t) ∈ Rn+1
+ | |x| < t} and f̂(x, t) = Ptf(x) for the Poisson semigroup 

(Pt)t≥0.
According to [41], these Hardy spaces have nice duality and interpolation behavior. 

Observing that the adjoint operator T ∗ and its kernel have same properties as T and K, 
thus to finish the proof, it suffices to show

T : Hc
1(Rn;M) → L1(A).

On the other hand, Hc
1(Rn; M) has an atomic characterization. We say that a ∈

L1(M; Lc
2(Rn)) is an atom if there exists a cube I so that

• supp a ⊆ I,
•

∫
I

a(y) dy = 0,

• ‖a‖L1(M;Lc
2(Rn)) = τ

[( ∫
I

|a(y)|2 dy
) 1

2
]
≤ 1√

|I|
.

By [41, Theorem 2.8], we have

‖f‖Hc
1(Rn;M) ∼ inf

{∑
k
|λk|

∣∣ f =
∑

k
λkak with ak atoms

}
.

Therefore, we only need to find a uniform upper estimate for the L1 norm of T (a)
valid for an arbitrary atom
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‖T (a)‖L1(A) ≤
∥∥T (a)12I

∥∥
L1(A) +

∥∥T (a)1Rn\2I
∥∥
L1(A).

The second term is dominated by

∥∥T (a)1Rn\2I
∥∥
L1(A) = τ

∫
Rn\2I

∣∣∣ ∫
I

K(x, y)a(y) dy
∣∣∣ dx

≤
∫
I

( ∫
Rn\2I

∥∥K(x, y) −K(x, cI)
∥∥
M dx

)
τ |a(y)| dy

� τ
(∫

I

|a(y)| dy
)

≤
√

|I|τ
[( ∫

I

|a(y)|2 dy
) 1

2
]

≤ 1,

where we have used in the third inequality the Kadison-Schwarz inequality, which follows 
from the operator convexity of the function x → |x|2 (see for instance [2]). As for the 
first term, it suffices to show that T : L1(M; Lc

2(Rn)) → L1(M; Lc
2(Rn)), since then we 

find again

∥∥T (a)12I
∥∥
L1(A) = τ

(∫
2I

|T (a)(x)| dx
)

≤
√

|2I| τ
[( ∫

2I

|T (a)(x)|2 dx
) 1

2
]

�
√

|2I| τ
[( ∫

I

|a(x)|2 dx
) 1

2
]

� 1.

The L1(M; Lc
2(Rn))-boundedness of T follows from the duality

∥∥T (f)
∥∥
L1(M;Lc

2(Rn)) ≤
(

sup
‖g‖L∞(Lc

2)≤1

∥∥T ∗(g)
∥∥
L∞(M;Lc

2(Rn))

)
‖f‖L1(M;Lc

2(Rn)).

Recall that the adjoint T ∗ has the same properties as T , and thus is bounded on L2(A). 
This gives rise to

∥∥T ∗(g)
∥∥
L∞(M;Lc

2(Rn)) =
∥∥∥( ∫

Rn

|T ∗(g)(x)|2 dx
) 1

2
∥∥∥
M

= sup
‖u‖L2(M)≤1

( ∫
Rn

〈
|T ∗(g)(x)|2u, u

〉
L2(M) dx

) 1
2

= sup
‖u‖L2(M)≤1

( ∫ ∥∥T ∗(gu)(x)
∥∥2
L2(M) dx

) 1
2

Rn



G. Hong et al. / Journal of Functional Analysis 278 (2020) 108420 21
� sup
‖u‖L2(M)≤1

( ∫
Rn

∥∥g(x)u
∥∥2
L2(M) dx

) 1
2

=
∥∥∥( ∫

Rn

|g(x)|2 dx
) 1

2
∥∥∥
M
.

The third identity above uses the right M-module nature of T which means T (f)u =
T (fu) whenever u is a constant operator, see for instance [46].

Remark 3.3. It is a quite interesting question to give a direct proof of Theorem 1.2 in 
the case 1 < p �= 2 < ∞ without using atomic decomposition, interpolation and duality 
like the one for perfect dyadic CZOs.
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Appendix A

In this appendix, we show the following commutator estimate.

Theorem A.1. If b ∈ BMO(Rn; M), then the commutator [Rj , b] is bounded on L2(A). 
Moreover we have the estimate

‖[Rj , b]f‖L2(A) � ‖b‖BMO(Rn;M)‖f‖L2(A). (A.1)

When n = 1, the Riesz transforms reduce to the Hilbert transform. By noting the 
boundedness of the Haar multiplier—Proposition 2.2, the result has been essentially 
proven by Petermichl, see Section 2.3 of [47]. When n > 1, the situation becomes a little 
bit more complicated. Firstly, reviewing the proof of the boundedness of one-dimensional 
Haar multiplier, the higher-dimensional case is not trivial since DkbDkf is not k − 1-th 
measurable; Secondly, the higher-dimensional Haar systems are also more complicated.

Petermichl-Treil-Volberg in [48] showed that the Riesz transforms also lie in the closed 
convex hull of some dyadic shifts. Let us write down explicitly the form of this class of 
dyadic shifts: Fix a dyadic system D, let θ0 ∈ {0, 1}n be the element with first coordinate 
1 and others 0,

Sf =
∑
I∈D

∑
θ∈{0,1}n\{0}

εθI〈hθ0
I , f〉hθ

Î
, (A.2)

where Î is the dyadic father of I and εθI = ±1.
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Associated to this fixed dyadic system D, the Haar multiplier with noncommuting
symbol b is defined as

Λb(f) =
∑
k∈Z

Dk(b)Ek(f).

As in the one-dimensional case—Proposition 2.2, one also gets

Proposition A.2. If b ∈ BMO(Rn; M), then we have

• Λb is bounded from Lp(A) to Hc
p(A, ΣA) whenever 2 ≤ p < ∞;

• Λb is bounded from Hc
p(A, ΣA) to Lp(A) whenever 1 < p ≤ 2.

Proof. It suffices to show the case 2 ≤ p < ∞, since another case can be shown similarly. 
Let q be the conjugate index of p. Let f ∈ Lp(A), and g ∈ Hc

q(A, ΣA). By approximation, 
we can assume b, f and g are “nice”, so that we do not to justify the infinite sum in the 
following calculations. By duality, it suffices to show

|ϕ(Λb(f)g∗)| � ‖f‖Lp(A)‖g‖Hc
q(A,ΣA).

Noting that Λbf = bf −
∑

k Ek−1(b)Dk(f), we have

|ϕ(Λb(f)g∗)| = |ϕ((bf −
∑
k

Ek−1(b)Dk(f))g∗)|

= |ϕ(bfg∗) − ϕ(b
∑
k

Ek−1(Dk(f)Dk(g∗)))|

= |ϕ(b(fg∗ −
∑
k

Ek−1(Dk(f)Dk(g∗))))|.

Now decompose fg∗, one gets

fg∗ −
∑
k

Ek−1(Dk(f)Dk(g∗)) =
∑
k

Dk(Dk(f)Dk(g∗))

+ (
∑
k∈Z

Ek−1(f)Dk(g∗) +
∑
k∈Z

Dk(f)Ek−1(g∗)).

The second term can be estimated as in the one-dimensional case. For the first term, 
note that Dk(Dk(f)Dk(g∗)) is a martingale difference, by duality and the fact that the 
dyadic BMO-norm is controlled by usual BMO-norm, we have

|ϕ(b
∑
k

Dk(Dk(f)Dk(g∗)))| � ‖b‖BMO(Rn;M)‖
∑
k

Dk(Dk(f)Dk(g∗))‖Hm
1 (A,ΣA)

= ‖b‖BMO(Rn;M)

∫
Rn

sup
�∈Z

‖
�∑

k=−∞
Dk(Dk(f)Dk(g∗))‖L1(M)dx.
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Splitting

�∑
k=−∞

Dk(Dk(f)Dk(g∗)) =
�∑

k=−∞
Dk(f)Dk(g∗) −

�∑
k=−∞

Ek−1(Dk(f)Dk(g∗)),

noting that the first term can be dealt with as in Proposition 2.2, and we are reduced to 
show

∫
Rn

sup
�∈Z

‖
�∑

k=−∞
Ek−1(Dk(f)Dk(g∗))‖L1(M)dx � ‖f‖Lp(A)‖g‖Hc

q(A,ΣA). (A.3)

Using twice the Hölder inequalities and vector-valued Doob’s inequality (2.2), it suffices 
to show for any �

‖
�∑

k=−∞
Ek−1(Dk(f)Dk(g∗))‖L1(M)

≤ ‖(
∑
k∈Z

|Dk(f)|2)1/2‖Lp(M)‖(
∑
k∈Z

|Dk(g)|2)1/2‖Lq(M).

By duality and the Hölder inequality, using the trace-preserving property of conditional 
expectation,

‖
�∑

k=−∞
Ek−1(Dk(f)Dk(g∗))‖L1(M)

= sup
u, ‖u‖M≤1

|τ(u
�∑

k=−∞
Ek−1(Dk(f)Dk(g∗)))|

= sup
u, ‖u‖M≤1

|τ(
�∑

k=−∞
Ek−1(u)(Dk(f)Dk(g∗)))|

= sup
u, ‖u‖M≤1

|τ(
�∑

k=−∞
Dk(g∗)(Ek−1(u)Dk(f)))|

= sup
u, ‖u‖M≤1

|τ ⊗ tr((
�∑

k=−∞
Dk(g∗) ⊗ e1k)(

�∑
k=−∞

Ek−1(u)Dk(f) ⊗ ek1))|

≤ sup
u, ‖u‖M≤1

‖
�∑

k=−∞
Dk(g∗) ⊗ e1k‖Lq(M⊗B(�2))‖

�∑
k=−∞

Ek−1(u)Dk(f) ⊗ ek1‖Lp(M⊗B(�2))

≤ ‖(
∑
k∈Z

|Dk(f)|2)1/2‖Lp(M)‖(
∑
k∈Z

|Dk(g)|2)1/2‖Lq(M).
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This finishes the proof by noncommutative Burkholder-Gundy inequality. �
Now let us prove Theorem A.1.

Proof. Since the Riesz transforms [48] are shown to be in the convex hull of the dyadic 
shift operators such as (A.2), it suffices to estimate [S, b] for one fixed dyadic shift 
operator S. Without loss of generality, we can assume b = b∗. Let f ∈ L2(A). By 
approximation, we can assume b and f are “nice” so that we can decompose bf =
Λbf + Rbf , where

Rbf =
∑
k

Ek−1(b)Dk(f) =
∑

θ∈{0,1}n\{0}

∑
I∈D

〈b〉I〈hθ
I , f〉hθ

I ,

with 〈b〉I = 1
|I|

∫
I
b. Thus

[S, b]f = [S,Λb]f + [S,Rb]f.

Observe that from the L2(A)-boundedness of S and Λb we have

‖[S,Λb]f‖L2(A) ≤ 2‖S‖‖Λb‖‖f‖L2(A) � ‖b‖BMO(Rn,M)‖f‖L2(A).

For another term, we claim that

[S,Rb]f =
∑

θ,η∈{0,1}n\{0}

∑
I,J∈D

〈hη
J , Sh

θ
I〉(〈b〉I − 〈b〉J )〈hθ

I , f〉hη
J , (A.4)

from which, we can conclude the proof. Indeed, by the orthogonality of the Haar basis 
hθ
I ’s,

[S,Rb]f =
∑

θ′,θ,η∈{0,1}n\{0}

∑
I∈D

aθ
′,θ,η

I (〈b〉I − 〈b〉Î)〈hθ
I , f〉hη

Î
,

where

aθ
′,θ,η

I = εθ
′

I 〈hθ0
I , hθ

I〉〈hη

Î
, hθ′

Î
〉,

which equals ±1 or 0. Then the fact for any e ∈ L2(M) with norm 1,

‖(〈b〉I − 〈b〉Î)e‖2
L2(M) � ‖b‖2

BMO(Rn;M)

yields

‖[S,Rb]f‖L2(A) � ‖b‖BMO(Rn;M)‖f‖L2(A).
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Now let us show the formula (A.4). Note that [S, Rb]f = SRbf −RbSf . It is straight-
forward to compute

Rb(Sf) =
∑

η∈{0,1}n\{0}

∑
J∈D

〈b〉J〈hη
J , Sf〉h

η
J

=
∑

θ,η∈{0,1}n\{0}

∑
I,J∈D

〈hη
J , Sh

θ
I〉〈b〉J 〈hθ

I , f〉hη
J .

For another term, we test it on g =
∑

η∈{0,1}n\{0}
∑

J∈D〈h
η
J , g〉h

η
J ∈ L2(A), and obtain

〈〈g, SRbf〉〉 =
∑

θ,η∈{0,1}n\{0}

∑
I,J∈D

〈〈〈hη
J , g〉h

η
J , 〈b〉I〈hθ

I , f〉Shθ
I〉〉

=
∑

θ,η∈{0,1}n\{0}

∑
I,J∈D

〈〈g, 〈hη
J , Sh

θ
I〉〈b〉I〈hθ

I , f〉hη
J〉〉,

which yields

SRbf =
∑

θ,η∈{0,1}n\{0}

∑
I,J∈D

〈hη
J , Sh

θ
I〉〈b〉I〈hθ

I , f〉hη
J .

From the above two identities, we get (A.4). �
Remark A.3. (i). The above argument works also for general dyadic shifts such as those 
introduced in [37]. But at the time of writing, the authors have no idea how to show 
similar results for general Calderón-Zygmund singular integral operators.

(ii). In the framework of noncommutative harmonic analysis, it would be also inter-
esting to show the result for p �= 2. But now the proof is not trivial at all. This is related 
to the last remark of the previous section.
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