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1. Introduction

There has been a lot of effort into the generalization of the classical Calderén-Zygmund
singular integral theories to the operator-valued (or d by d matrix-valued) setting. The
situation is quite subtle and many straightforward generalizations are turned out to be
wrong. For example, Pisier and Harcharras showed (see [49,15]) that, for each 1 < p < o0,
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there exists a scalar-valued Fourier multiplier T" that is bounded on L,(R) but 7' ® ids,
is not bounded on L,(R,S,). Here, S, denotes the Schatten-p classes and L,(R,.S),)
denotes the space of S,-valued p-integrable functions. Another example is the dyadic
paraproduct

n(b, f) =Y dnbE, 1 f.

n>0

Here, E,, denotes the conditional expectation with respect to the usual dyadic filtration
on the real line R and d,, is the difference F,, — E,,_1. It is well known that m maps
Ls(R) x La(R) to Li(R), and this extends to the vector valued setting that 7 maps
Lo(R,43) x La(R, €2) to Li(R, ¢1). However, 7 fails to map L2(R,S2) x La(R, S2) to
L1(R,S1), see [40] and [43], [44]. This pathological property of 7 prevents a desirable
operator-valued T1-theory with a natural BMO testing-condition.

The authors notice that this kind of pathological property could be rectified for oper-
ators T with a “symmetric” kernel K (z,y) s.t. K(z,y) = K(y, x), including the Beuling
transforms, the Haar multipliers, and the commutator [R;,b] where R; is the j-Riesz
transform. The main purpose of this article is to formulate a T'1 theory with a natural
BMO test condition for operator valued Calderén-Zygmund operators T satisfying the
symmetric property (T1)* = T*1.

In their remarkable work [26], Hyt6nen and Weis already established an operator-
valued T'1 theory in a quite general setting, i.e. for operator valued singular integral
operators on vector valued function space L,(R, X). Their BMO space seems to be quite
complicated and does not contain the space of uniformly bounded B(¢2)-valued functions
in the most interesting case X = ¢5. This is necessary because of the bad behavior of
operator valued paraproducts mentioned above. The authors hope that this work may
complement Hytonen and Weis’ work for the case of symmetric singular integrals. On
the other hand, even though strictly speaking the commutator [R;,b] is not a singular
integral operator, we are still able to show its Ls-boundedness whenever b satisfies a
natural BMO test condition in the same spirit. This result might be essentially known
to experts, and we will provide a proof in the Appendix.

A main motivation for the present paper is to investigate noncommutative T'1 theorem
in the semicommutative case, which would provide ideas or insights in searching for 7'1
type theorem in the more general noncommutative setting such as on quantum Euclidean
spaces, where a T1-theory is in high demand but still missing (see [57], [58], [14], [55],
[39]). Let us give an introduction along this research line. The commutative T'1 theorem
due to David and Journé [10] is a revolutionary result and finds many applications in
classical harmonic analysis [7], [9]. Let K : R™ x R™\ {(z,z) : « € R} — C be a kernel
satisfying the standard assumptions:

1
|K($7y)|5ma Vo # y; (1.1)
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K(.9) = K@)+ K () = Ko

Sk 1.2
x —y|nte’ (1.2)

V|z—y| > 2|z —2'|, with some a € (0, 1]. Here (and below) A < B means that there exists
an absolute constant C' > 0 such that A < CB. A linear operator T initially defined on
“nice” functions is called a Calderén-Zygmund operator (CZO) associated with K, if T
satisfies the kernel representation, for a.e. x ¢ suppf,

z) = / K(z,9)f (5)dy

The T'1 theorem states that T extends to a bounded operator on L,(R™) for one (or
equivalently all) 1 < p < oo if and only if

T1,7*1 € BMO(R"), and (1.3)

1
T has the Weak Boundedness Property sup m|(11, T1p)| < oo. (1.4)
I cube

Along the current research line of noncommutative harmonic analysis, the present
paper is devoted to the study of a matrix (operator)-valued T'1 theorem. More precisely,
we are interested in the matrix-valued kernels K : R x R™\ {(z,z) : © € R"} — B({3)
verifying natural assumptions:

1
K (2, 9) By S Ty vV # y; (1.5)

i

||K((E,y) - K(x/vy)HB(b) + HK(y7 ) K(y7 )HB l2) S W? (16)

V|z —y| > 2|z — 2'|. We are interested in operators T such that, for all Spg(,)-valued step
functions f and a.e. x ¢ suppf,

/ K f)dy = [ 3 (X Kale)fig) ® ey (17)
> (2

R~

Here Sp(¢,) denotes the set of all the elements with finite trace support in B(¢z). We aim
to find a natural BMO condition such as (1.3), (1.4) such that T extends to a bounded
operator on the noncommutative L, spaces. Here, the noncommutative L, spaces are
associated to the von Neumann algebra

A= L (R")®B(¢2)

which consists of all essentially bounded functions f : R™ — B(f2). We refer the reader
o [51], [59] for more information on noncommutative L, spaces.
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The modern development of quantum probability and noncommutative harmonic
analysis begun with the seminal paper by Pisier and Xu [50], where noncommuta-
tive Burkholder-Gundy inequality and Fefferman-Stein duality were established. Later
on, many inequalities in classical martingale theory have been transferred into the
noncommutative setting [27], [35], [36], [52], [53], [21], [16], [17], [34] etc. Meanwhile,
noncommutative harmonic analysis has gained rapid developments ranging from the
noncommutative H>°-calculus [28,11], operator-valued harmonic analysis [41], [22], [18],
[46] to Riesz transform/Fourier multipliers on group von Neumann algebras [30], [31],
[29], hypercontractivity of quantum Markov semigroups [33], [32], [54] and harmonic
analysis on quantum Euclidean spaces/torus [8], [58], [14].

It worths to point out that the operator-valued (or semi-commutative) harmonic anal-
ysis often provides deep insights in harmonic analysis in the general noncommutative
setting, and sometimes plays essential role based on the transference principles. For in-
stance, the main ideas of the work [30,8,58,14] are to reduce the problems in their setting
to the corresponding problems in the operator-valued setting.

An interesting case is that the functions f are fs-valued. This case has been exten-
sively studied in the series of works [56], [44], [47], [13], [43] etc since 97’s. In these works,
many results in classical harmonic analysis such as weighted norm inequalities, Carleson
embedding theorem, Hankel operators, commutators, paraproducts have been extended
to the matrix-valued setting. A common character of all these results is that the be-
havior depends on the dimension of the underlying matrix. For instance, in [43], among
many other related results, the authors consider the dyadic paraproduct with symbol in
noncommutative BMO acting on C%valued functions and show that the bound of the
paraproduct operator is of order O(logd). Since we will not work with noncommutative
BMO space BMO"(A), we refer the reader to [41] for the definition and properties.

More precisely, let D be the collection of dyadic intervals in R. For any dyadic interval
I €D,let hy := |I|71/2(11Jr — 1;_) be the associated Haar function, where I, I_ are
left and right halves of the interval I. Let b be a d X d-matrix-valued function on R and
f be a C%valued function on R, the paraproduct is defined as

m(f) =Y Di(®)Es(f),

1eD

where D;(b) := (hy,b)h; = [ b(x)h(x) dx by is a d x d-matrix-valued function on R and
E;(f):= (%,f}h = f; f(@)dz 11 is a C?-valued function on R. In [43,40], the authors
showed that it may happen

175l £y (RsCH) = Lo (R;C4) 2 101 Lo (4 lOg d (1.8)

This tells us that a naive generalization of classical T'1 theorem in the semicommutative
setting is not true, that is, T1,7*1 € BMO“ (A) can not guarantee the boundedness of
matrix-valued CZOs since the paraproduct is a typical example of perfect dyadic CZOs
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and Lo (A) is contained in BMO“ (A). A CZO on R being perfect dyadic means its
kernel satisfies the condition (instead of (1.6))

1K (2, y) — K(2',9) | Beo) + 1K (y,2) — K (y,2")|| 3y = O, (1.9)

whenever z,z’ € I and y € J for some disjoint dyadic intervals I and J. Perfect dyadic
kernels were introduced in [1] and include martingale transforms, as well as paraproducts
and their adjoints.

In the remarkable works [23,26], Hyténen and Weis have proven an operator valued
T'1-theorem. However, the BMO-space in their work is a bit artificial and it may not
contain L.-functions, though this is necessary due to the abnormality of matrix-valued
paraproducts.

The first result of the present paper is that under the symmetric assumption (7'1)* =
T*1, the perfect dyadic CZOs T are bounded on Ls(A) provided T1 € BMO(A, X 4),
the usual dyadic vector-valued BMO spaces which contains Lo, (A). Here “1” means the
identity of the algebra A, and the BMO space BMO(A, X 4) is the dyadic version of the
one first studied by Bourgain [5], whose norm of an operator-valued function g on R is
defined as

1

2
lollastocass. = sup ( f lote) = gl do)
I

On the other hand, providing suitable analogue of (1.4) for L,(.A)-boundedness of
matrix-valued CZOs when p # 2 is also subtle, since there are some noncommutative
martingale transforms with noncommuting coefficients—another type of examples of
perfect dyadic CZOs with T*1 = T'1 = 0—failing L, (.A)-boundedness for p # 2, see for
instance [46]. That implies that a natural Weak Boundedness Property
1
sup —|[(1r, T11)[|5(e,) < o0
1ep |1

can not guarantee the L,(A)-boundedness of matrix-valued CZOs for p # 2. In the
present paper, we are content with the second best— showing the boundedness between
L,(A) and noncommutative Hardy spaces under the natural Weak Boundedness Prop-
erty.

Assuming the symmetric condition, we build a weakened form of T'1 theorem first for
the toy model—matrix-valued perfect dyadic CZOs.

Theorem 1.1. Let T be an operator-valued perfect dyadic CZO satisfying

Symmetric condition: (T1)* =T*1; (1.10)
BMO condition: T1 € BMO(A, 3 4); (1.11)
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1
WBP condition: sup —||(1r,T1z)||p(e,) < co. (1.12)
1ep 1]

Then T is bounded on Lo(A). Moreover,

o T is bounded from Ly,(A) to Hj (A, X 1) whenever 2 < p < oo;
o T is bounded from Hf (A, % 4) to L,(A) whenever 1 < p < 2.

Here HZC,(A, Y 4) is the noncommutative martingale Hardy spaces that we will recall
in Section 2. A useful observation in the proof is Lemma 2.3, which states that dyadic
martingale transforms, dyadic paraproducts or their adjoints are essentially the only
perfect dyadic CZOs. Then we are reduced to show the boundedness of noncommutative
Haar multiplier—the sum of paraproduct and its adjoint—in Lemma 2.2 where the
symmetry is exploited, and the boundedness of noncommutative martingale transform
in Lemma 2.1.

The proof of this toy model is relatively easy but essential for the understanding of
our arguments for (higher-dimensional) general CZOs and commutators.

For continuous CZO, that is the general singular integrals satisfying (1.7) with kernels
verifying the standard size and smooth conditions (1.5) (1.6), we establish a similar result.

Theorem 1.2. Let T' be a continuous CZO on R™ satisfying

Symmetric condition: (T'1)* =T*1; (1.13)
BMO condition:T1 € BMO(R"™; B(¢2)); (1.14)
1

WBP condition: sup

{12, T11) || 3(ez) < 00 (1.15)
I cube |I‘

Then T is bounded on Lo(A). Moreover,

o T is bounded from L,(A) to Hj(R™; B(f2)) whenever 2 < p < oo;
o T is bounded from H5(R™; B({2)) to L,(A) whenever 1 < p < 2.

Here, the BMO and Hardy spaces are the continuous version of the dyadic spaces in
the toy model case that we will recall in the body of the proof. Decompose T'=T, + T,
as the sum of even and odd parts associated with the kernels

K(z,y) + K(y, )
2

K(x’y) — K(y,.]?)
5 .

Ke(z,y) = » Ko(r,y) =

It is easy to see that T, satisfies our symmetric assumption (7.1)* = T;1. We then
reduce the Lo-boundedness of T' to T,1 € BMO(R"; B(¢2)) and the Ls-boundedness of
T,. In particular, together with Remark 1.37 in [26], we get the following corollary.
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Corollary 1.3. Let T be a continuous CZO on R™ satisfying
Symmetric condition:

K, € Ly(R*™; B(£2)) or T,1,T1 € BMO(R™; S, (fs)) 1 < g < 00; (1.16)
BMO condition: T,1 € BMO(R"™; B({3)); (1.17)

1
WBP condition: sup —|[(17,T11)|5e,) < oo. (1.18)

I cube ‘I‘

Then T is bounded on La(A).

Theorem 1.1, 1.2 and Corollary 1.3 hold for general operator-valued functions, e.g.
replacing B(¢2) by any semifinite von Neumann algebra M. Our proof will be written in
this general framework.

As in classical harmonic analysis [1], from the result in the dyadic setting—Theorem 1.1,
it is usually not difficult to guess similar result—Theorem 1.2—in the continuous setting.
In scalar-valued harmonic analysis, we can realize this passage from the dyadic setting
to the continuous one by dealing with issues such as rapidly decreasing tails or using
the Vitali covering lemma. In the case of vector-valued harmonic analysis, this passage
requires deep understanding on the connection between martingale theory and harmonic
analysis as done in [5], [6], [12], [19], [20], [59], [38] etc. In noncommutative harmonic
analysis, in addition to the idea or the techniques developed in vector-valued theory,
new idea, techniques or tools developed in noncommutative analysis are usually needed
to realize this passage such as in [41], [22]. In the present paper, the main idea or
technique from vector-valued theory we need is the method of random dyadic cubes
firstly introduced in [45], later modified in [25], [24].

We will show Theorem 1.1 and 1.2 in Section 2 and 3 respectively. The definitions
of BMO spaces and Hardy spaces as well as the method of random dyadic cubes will
be properly recalled in the body of the paper. In the Appendix, we will show that the
commutator [R;, b] is Lo-bounded whenever b belongs to Bourgain’s vector-valued BMO
space BMO(R™; M). This result might be essentially known to experts, but we do not
find it in any literature, and thus we put it in the Appendix.

2. Perfect dyadic CZOs: proof of Theorem 1.1
Let M be a semifinite von Neumann algebra equipped with a normal semifinite faithful

trace 7. Consider the algebra of essentially bounded functions R — M equipped with
the n.s.f. trace

Its weak-operator closure is a von Neumann algebra A. If 1 < p < oo, we write L,(M)
and L,(A) for the noncommutative L, spaces associated to the pairs (M, 7) and (A, ¢).
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The set of all the elements with finite trace support in M is written as Sa(. The
set of dyadic intervals in R is denoted by D and we use D; for the k-th generation,
formed by intervals I with side length £(I) = 27%. We consider the associated filtra-
tion (Loo (D )@M)pez of A, which will be simplified as ¥ 4 = (Ax)rez- Let Ex and Dy
denote the corresponding conditional expectations and martingale difference operators.

2.1. Two auxiliary results

In the present section, we first show two auxiliary results with respect to the following
two kinds of operators:

e Noncommuting martingale transforms

Mef =" &aDi(f),

kEZ

e Haar multipliers with noncommuting symbol

Ap(f) = Z Dy (b)Ex(f)-

keZ

Here &, € Ay, is an adapted sequence. Of course, the symbols £ and b do not necessarily
commute with the function. Our arguments on the operator-valued A; follow the ideas
from [3,4] and [41].

Let us first recall more definitions.

Noncommutative martingale Hardy spaces Let 1 < p < oo. The column Hardy space
Hy (A, X 4) is defined to be the completion of all finite L,-martingales under the norm

1l casa = 1S Def D) |,

keZ

Taking adjoint—so that the * switches from left to right— we find the row-Hardy space
norm. The noncommutative Hardy space H,(A,¥ 4), whose norm is defined through
column and row spaces differently for 1 <p <2 and 2 <p < oo

infr—gin 9llueasa) + 1Rlla5a5. F1<p <2,
max (|| fllue (a,50), [ f g as4) if 2 < p < oo

£,z = {

In the seminal paper [50], the authors showed the noncommutative Burkholder-Gundy
inequality

£z, ca) = (11l a0
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for 1 < p < oo, from which one has automatically

1Nz, ca) S mind[| fllaecas.a, 1 lrpas.0)

for 1 < p <2 and

max (|| fllng a5, 1flngas.0) S 1z,

for 2 < p < co. It is this observation that motivates us to guess the (Hy, L,)-boundedness
for 1 < p <2 and the (L, H)-boundedness for 2 < p < oo instead of (L, L, )-bounded-
ness of Calderén-Zygmund operators.

In the same paper, the authors also introduced the noncommutative martingale BMO
spaces and established the Fefferman-Stein duality. According to [42] it has the expected
interpolation behavior in the scale of noncommutative L,, spaces. We refer the reader to
[50,35,36] for more information on noncommutative Hardy spaces and related results or
facts used in the present paper.

Vector-valued BMO spaces The M-valued martingale BMO space BMO(A, X 4) is de-
fined to the set of M-valued locally integrable functions with norm

1 lBMoca s = sup |Exllf — Ex—1 fII3y -
kcZ o (R)

This space is related to the vector-valued Hardy space H7*(A, ¥ 4) whose norm is defined
as

Il as) = [1sup [[Exfllo, a0z, ®)-
kEZ

In fact, Bourgain [5] and Garcia-Cuerva proved independently that BMO(A, ¥ 4) embeds
continuously into the dual of H{*(A, X 4). That is

|<P(f*9)| S Hf||BMo(A,2A)||g||H1ﬂ(A,2A)~ (2~1)

We also need the following Doob’s inequality for L,(M)-valued function: For all 1 < p <
oo and f € Ly(A)

| sup [[Exfllz, )l ®) S Iz, ) (2.2)
keZ
Proposition 2.1. If sup,, ||&x]la < oo, then

o M is bounded from L,(A) to Hi(A, X 4) whenever 2 < p < oo;
o M is bounded from H (A, X 4) to L,(A) whenever 1 <p < 2.
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Proof. We only give the proof of the case 2 < p < oo, another case can be shown
similarly. Let f € L,(A). Using the fact a*ca < a*al|c||o for any a € A and ¢ € A" and
&k € Ay, it is easy to check

HMf<f)HHZC)(_A72A) = ||( Z Dkf*nglgkflmkf)l/QHP

keZ

1/2
< b 6kl ) | 3 DS D) Py S 1y
keZ

We have used the Holder inequality and Burkholder-Gundy inequality in the inequali-
ties. O

Proposition 2.2. If b € BMO(A, X 4), then we have

o Ay is bounded from Ly(A) to Hy (A, X 4) whenever 2 < p < oo;
e Ay is bounded from Hy (A, 4) to Ly(A) whenever 1 < p < 2.

Proof. We only provide the proof of the case 2 < p < oo, since another case can be
shown similarly. Let ¢ be the conjugate index of p. Let f € L,(A), and g € Hg(A, X 4).
By duality, it suffices to show

lo(As (g S I ll, allgllne (asa)-

Using the assumption that Dy (0)Dy(f) € Ag—_1 for each k, we have

p(As(£)g*) =1 (Dr(BEL(f)g")]

keZ
=1 oDr®)Er—1(f)g" + Di(b)Di(f)g")|
keZ
= | Z o(Dg(D)Ex—1(f)Dr(g") + D (0)Dr(f)Er-1(97))I
keZ
=l Y (Brms(HDk(g") + Di(HEr-1(9"))]-
keZ

Hence by duality between vector-valued BMO space and Hardy space, we have

o (8o(F)g")|
SHbHBMO(A,zA)HZEkq +Z]Dk Ek—1(9") g (a,5.4)
keZ keZ
Y/
= Ibllsroras.e) / sup | Z Bt (DDR(g) + 3 DelH)Er 1(g")1o, anydo

k=—o0 k=—00
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Using the identity for each ¢ € Z

we are reduced to show

/ sup [Bo(/)Ee(e") |, oo S 11, : (2.3)
R S
and
/ supl Z Dy (k0 2 vy S 1, ) I s (2.4)
k_

— 00

The first estimate is relatively easy to handle. Using twice the Holder inequalities and
vector-valued Doob’s inequality (2.2), the left hand side of (2.3) is controlled by

< ([ sup [|[Eq(f)||® dml/p/sup E¢(g)]|? dx)/9
( R/ S DI ) S0 B, 1000

Sl allglzga S Tl llglng s,

where we used noncommutative Burkholder-Gundy inequality for ¢ < 2 in the last
inequality.
To show the second estimate (2.4), we only need to show for any ¢

4

1Y Dr(ADR(g) ey < O DRz, o IO PR L,

k=—o00 keZ keZ

since then we can follow similar arguments as in the (2.3). By duality and the Holder
inequality,

H Z Dk ||L1 M)

k=—o00
¢ ¢
= e (u Y Di(f)Dr(g"))] = sup (D Drlg")(ubi(f)))]
u, [Jullm<t k=—c0 u, [ullam<1 k=—c

4

= sup |T@tr(( Z Di(g") ® er)( Z uby(f) ® ex1))|

u, Jlullm <1 k= o0 k=—o00
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V4
< sup E:H% ) @ exkllz, mmsEnll Y tDk(f) ® enllL, m@se))

u, lullam<t 27 k=—o00

<O DAL, IO (@) )2 lz,0y- O
keZ keZ

2.2. Representation of perfect dyadic CZOs

To the best of our knowledge, the notion of perfect dyadic CZO was rigorously defined
for the first time in [1]. Classical perfect dyadic CZOs include Haar multipliers/martin-
gale transforms and dyadic paraproducts or their adjoints. In the cited paper, they
also show that these operators and their combinations are the only perfect dyadic CZOs.
That is, any operator-valued perfect dyadic CZO is a sum of one noncommutative dyadic
martingale transform, one noncommutative dyadic paraproduct and its adjoint.

Let us fix some notations in the present section. If f : R — M is integrable on I € D,

fr= ][ f() da
I

we set the average

If1<p<ooand f € Ly(A)

= Z E;(f Z frlr, Dy(f Z D (f Z (h1, f)hr,

I€Dy, I€Dy, 1€Dyk 1 I1€Dy 1

where hy == |I|7Y/2(1;, —1;_) is the Haar function and (-, -) denotes the operator-valued
inner product anti-linear in first coordinate. We will use ({-,-)) to denote the inner
product in Ly(A) anti-linear in first coordinate.

Lemma 2.3. Let T be an operator-valued perfect dyadic CZO. Then for f,g € S(R)®Sp,

(g, T(F)) = (g, Y (hr, T(hr)){hr, [Yhr))

(g, > Dr((T*))D1(H)) + (g, Y Dr(THEL(f)).  (2.5)

This representation (2.5) has been essentially verified in [1] using the language of wave
package. Here, we prefer to give a proof using an alternate approach due to Figiel [12],
which motivates us to deduce a similar representation formula for general matrix-valued

Calderon-Zygmund operators in the next section.

Proof. Without loss of generality, we can assume that both f and g are of the form h®@m
with h being scalar-valued function and m being an operator. Then the convergence of
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Ex(h) to h as k — oo and to 0 as k — —oo (both a.e. and in L,(R)) leads to Figiel’s
representation of T as the telescopic series

oo

(0. T = > ((Erg, TELS)) — ((Ex—19, TEx_1£)))
k=—o00
= > (({(Drg, TDf,)) + ((Ex—19, TDxf)) + ((Drg, TEx_1f)))
k=—o0
=A+B+C,

where, upon expanding in terms of the Haar functions,

A= Z Z((g, (Prims Thr)(hr, FYhrim))s

meZ I€D

B= Y " (g (L Tha) (b, £) )

meZ I€D ‘I+m|

and

C = Z Z<<g7<h1ﬂT1I+m>fI-i—mhI>>'

meZ IeD

Here I+m := I + {(I)m is the translation of a dyadic interval I by m € Z times its
side-length £(I). Now by the perfect property of the kernel (1.9)—T1; is supported in J
for any dyadic interval .J, we see that only the term m = 0 in the summation contributes.
Then observing that |h;|? = 1;/|I|, we see clearly

B =g, 3 Dy(T"1)")Dr(/)

IeD

and

C = ({g,>_ Dr(THEL(f)))

IeD

finishing the proof. O
2.8. Proof of Theorem 1.1

From the representation (2.5), using the symmetric condition (1.10), we clearly have
T(f) = M(f) + Ao(f) with

& =Y (h,T(h1)) 15, b=TL

I€Dy,
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Then observing that || - lag(a,s.) = || -/2.(4), We finish the proof using Proposition (2.1)
and (2.2) since WBP condition (1.12) ensures supy, ||€x]|.4 < oo, while BMO condition
(1.11) ensures b € BMO(A, X 4).

3. General CZOs: proof of Theorem 1.2

As in the proof of classical T'1 theorem, the most difficult part of Theorem 1.2 is the
case p = 2, and other cases will follow by standard arguments. We will summarize the
proof at the end of this section. For the case p = 2, as mentioned in the Introduction,
we will use the method of random dyadic cubes first introduced in [45], later modified in
[24]. For the sake of completeness, let us recall necessary details of this approach in the
present paper. We refer the reader to the previously cited papers for more information.

3.1. Radom dyadic system

Let DY := Ujez DY, DY := {279([0,1)" +m) : m € Z"} be the standard system of
dyadic cubes—the one in the previous section when n = 1. For every 8 = (3;)jez €
({0,1}™)%, consider the dyadic system D? = {I + 8 : I € D°} where [ + 3 := I +
Dio-icon 2 Bi

The product probability Pg on ({0, 1}”)Z induces a probability on the family of all
dyadic systems D?. Consider for a moment a fixed dyadic system D = D? for some £3.

A cube I € D is called ‘bad’ (with parameters r € Z and 7 € (0,1)) if there holds
dist(I, J¢) < L(I)(J)™7  for some J = I k>,

where %) denotes the k-th dyadic ancestor of I. Otherwise, I is said to be ‘good’.

Fixing a I € DY, consider the random event that its shift I + /3 is bad in D”. Because
of the symmetry it is obvious that the probability Ps(I + (3 is bad) is independent of the
cube I, and we denote it by mpaq; similarly one defines mgo0a = 1 — Tpaa. The only thing
that is needed about this number in the present paper as in [45], [25] is that 7paq < 1,
and hence Tgo0q4 > 0, as soon as 7 is chosen sufficiently large. We henceforth consider
the parameters v and r being fixed in such a way.

Note that

Tgood = ]P’ﬁ([ + ﬂ is gOOd) = Eﬁlgood(1+ ﬂ)
which is independent of the particular cube I. Then as in [24], using the fact that the

event that I + 8 is good is independent of the position of the cube I + 3, hence of the
function ¢(I + B), for ¢(I) defined on all the cubes, we have

7Tgood]EB Z ¢(I) = Z ]Eﬁlgood(l'i' /G)Eﬂ¢([ + ﬁ) (31)

IeD?A IeDo
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= Es(lgooa I +B)p(I+8) =Es Y o).

IeDo 1eD?

good

This identity is the only thing from the probabilistic approach that we will use in the
present paper.

3.2. Representation of general CZ0Os

Fix a # € ({0,1}™)Z. For D = DP, let E}, be the associated conditional expectation
with respect to Dy, and Dy := E; — E,_1. These operators can be represented by the
Haar functions kY, 8 € {0,1}", which is defined as follows: When n = 1,

hQ = 1|73, b} = |13 (1, —17.);

When n > 2,

n

01, ,0n 5
hY(x) =m0 @) = [ A% (20).
i=1

Then

Ec(f) = > BYhe, £), Di(f) = > > ).

I€Dy I1€Dy—10€{0,1}"\{0}

The translation of a dyadic cube I by m € Z™ times its sidelength ¢(I), is defined
similarly as I+m := I +mé(I).

As in Lemma 2.3, we also have Figiel’s representation of an operator-valued Calderén-
Zygmund operator. Let f,g € S(R") ® Sp.

oo

{g.TF) = Y ((Drg, TDrf)) + ((Ex-19, TDxf)) + ((Drg, TEx_1f))) (3.2)

k=—o0

= A+ B+C,

where

A= S YT S g W TR, PR )

n,0€{0,1}7\{0} meZn I€D

B= Y > > g (h)y TR (RS, )AL,

9€{0,1}7\{0} meZn I€D

= D D> D (g Ay TRINRG, £ (A, —h)

0€{0,1}"\{0} meZn I€D

3 Y e B T B P/ =2 B+ Py

0e{0,1}\{0} I€D
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and

C= Y S e (. ThY Y PR)

0€{0,1}»\{0} meZ™ I€D

= >N S g TR RS — B RS

0€{0,1}»\{0} meZn I€D

+D D U W T/ HRD) = C0+ Q.

0e{0,1}~\{0} I€D

Taking integral Ez on both sides of identity (3.2), and then using the identity (3.1),
we get

({9, Tf)) =

EB(Agood + Bgood + Cgood> + EB(P + Q)7

Tgood
where for instance

Agood = Agood = Z Z Z h?+mv Th?><h?) f>h;]+m>>

7,06{0,1}"\{0} mEZ" repP |

The desired estimate

[ TIN S Ml Lacay 9]l o)

is reduced to the corresponding uniform estimate (in ) for Agood, Bgood, C’good and
P+ Q.

Estimate of Agooa This term can be estimated directly since {h’l’ . m} rep form a mar-
tingale difference sequence for fixed n,m

[Agoodl < > D Wg, D (W, ThO T, R )]

7,0€{0,1}7\ {0} meZn T€Dgo0a

< ||g||L2(.A) Z Z || Z h?[]+maTh§><h?7f> [+mHL2(A)

1,0€{0,1}"\{0} meZ" I€Dgo0a

gl S0 S0 sup [0 ThDa(r( S [k DP)*

n,0€{0,1}7\{0} mezn I cubes I€Dg00q

Sl Y Yo @+ Im) T ) S lgllzoeallFzaca-

n,0€{0,1}7\{0} meZ"

Here we used the fact

sup  sup [[(h}, ThYlpm S (1+|m])™" (3:3)
n,0€{0,1}" I cubes
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which was essentially observed by Figiel following from the size condition (1.5), the
smooth condition (1.6) and the Weak Boundedness Condition (1.15).

Estimates of Bg,,q This term can not be estimated directly since h9, =~ hy do not
form a martingale difference sequence when I runs over all elements in Dgood, but can
be achieved when I runs over elements in some subcollections which partition Dgooq as
in [24].

For each m, let M = M (m) := max{r, [(1—v)~*logd |m|]}. Let then a(I) := log, £(I)
mod M+1, and define b(I) to be alternatingly 0 and 1 along each orbit of the permutation
I — I+m of D. It has been proved in [24] if (a(I),b(I)) = (a(J),b(J)) for two different
cubes I, J € Dgood, then the cubes satisfy the following m-compatibility condition: either
the sets IU(I+m) and JU(J+m) are disjoint, or one of them, say IU(I+m), is contained
in a dyadic subcube of J or J+m.

We can hence decompose Dgooq into collections of pairwise m-compatible cubes by
setting

Dy, :=1{I € Dgooa : a(l) =k, b(I) =v}, k=0,---,M(m), v=0,1

The total number of these collections is 2(1 + M (m)) < (14 log™ |m)).

Note that for fixed k,v, {h(lJ m h9} repp, form a martingale difference sequence.
Thus

B < > D D e Yo (B, TRYRG, ) (A4, — )]

9€{0,1}7\{0} meZ™ kv 1eDy,

Sl ol fllLacay D, A+1m)™" (1 +1og™ m]) S llgllLocal £l acay,
mezZ™

where we used again the fact (3.3)

Estimate of C°

wood  Lhis term can be dealt with similarly as Bgood since we can rewrite

o= N ST U R TR (B g Y (RS, — B,

0€{0,1}"\{0} meZ" I€D

. . O
in the same form with Bgood.

Estimate of P+ @) The estimate of P + @) is completed through a similar argument
used for Haar multiplier in Proposition 2.2.

Lemma 3.1. We have

1P+ QS I lallgllll T evmoass S 1209l T eMo@nry — (3:4)
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with some constant independent of 5. Here X 4 is the filtration associated to the dyadic
system DP.

Proof. We first rewrite P, Q as follows:

P Y L L/ g )

0e{0,1}»\{0} I€D

= (T"1,)  Di(f)Er-1(g"))

kEZ

and

Q=D D W@y, /|1l £)he.ghG))

0c{0,1}»\{0} I€D

T1)*, ) Er1(f)Dr(g"))-

keZ

Then by the symmetry condition (1.13), we get

1P+ Q| ST Usmoasoll Y Pe(HEr-1(g") + D Exa( (9 ) Iy (a,z.)s
keZ kEZ

which is controlled by
1Al Loy llgll o) 1T BMOA, 5 4)

by the same arguments in the proof of Proposition 2.2. Noting that for b = T*1
1
[ollBMO®R? ;M) Sup 7l / 16— bsl%4 dz)?,

where the supremum is taken over all the cubes J, while in the definition of
BMO(A, ¥ 4)-norm, J runs over all the elements in D?. We get

1T 1BMmoa,z.) < [T BMO®RR M) < 00
by the assumption (1.14), and thus finish the proof. O

Remark 3.2. (i). Let 1 < p < oo and ¢ be the conjugate index of p. Then using the
arguments in the proof of Proposition 2.2, actually we are able to show

Piol < 1Az, ollgllaeas.ol T BMo® M),  whenever 2 < p < oo;

[ fllngcas.ollglle, T BMo®n;a1),  whenever 1 <p < 2.
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(ii). Here it is worthy to point out that in the argument above we did not use directly
the boundedness of higher-dimensional Haar multiplier but the proof for one-dimensional
Haar multiplier. We will see in the appendix that higher-dimensional Haar multiplier is
more difficult to handle.

3.8. Proof of Theorem 1.2

Combine the estimates of the four parts Agood, Bgood, C’good and P + @, we proved

1Tl Loca) S N Fllacay- (3.5)

To prove other cases 1 < p # 2 < oo. We will use the atomic characterization of
H$(R"™; M), which was first introduced by one of us [41]. Let us first recall the definition.
Let 1 < p < oo. The Hardy space Hj(R"; M) is defined to be the space of functions
f € Li(A) for which we have

Wt =/ 1575+ 5, 3w 25
r

with T' = {(z,t) € RT""| |z| < ¢} and f(m,t) = P,f(z) for the Poisson semigroup
(Pt)t>o0-
According to [41], these Hardy spaces have nice duality and interpolation behavior.

< 00,
Lp(A)

Observing that the adjoint operator T and its kernel have same properties as T and K,
thus to finish the proof, it suffices to show

T : H{(R™; M) — Ly (A).

On the other hand, H{(R"; M) has an atomic characterization. We say that a €
Li(M; L§(R™)) is an atom if there exists a cube I so that

e suppa C [,

. /a<y)dyo,

1
||(1||L1(M;L§(R")) :7‘{(/| ( )|2dy)2} ﬁ
I

By [41, Theorem 2.8], we have

Ifllzs Rnia0) ~ inf { Zk [ Ak ’ f= Zk Apax with ag atoms}.

Therefore, we only need to find a uniform upper estimate for the L; norm of T'(a)
valid for an arbitrary atom
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HT(G’)HLl(»A) S ||T((1)].2[HL1(A) + HT<a)1R"\21||L1(A)'
The second term is dominated by

HT(a)an\QIHLl(A) =T / ‘/K(x y)a dy’dx
Rm\2T I

g/( / HK(:U,y)—Kx cr Hde)T\a(y)\dy

I Rn\2I

o([laian) < VIIF[( [l @] <1,

where we have used in the third inequality the Kadison-Schwarz inequality, which follows
from the operator convexity of the function 2 — |z|? (see for instance [2]). As for the
first term, it suffices to show that T : L (M; L§(R™)) — Ly (M; L§(R™)), since then we
find again

1T (@) ot a0y =7 /|T |dx
1
< V]I~ /|T )2 da) ]
1
s VRI[( [la@P )] 5 1.
The Li(M; L§(R™))-boundedness of T' follows from the duality

HT(f)HLl(M;Lg(R")) S ( sup ||T*(g)HLOO(M;L§(R”’)))“f”Ll(M;Lg(R"))'
llgllz oo (pg) <1

Recall that the adjoint 7 has the same properties as 7', and thus is bounded on Ly(.A).
This gives rise to

17*@r sy = H(/ |T*(9)(33)|2dx)%HM

R~

—  sup (/<|T*(9)($)|2“’“>L (M) dm)

lull Ly i) <1
[ull Ly (r) o

sup /||T* 90 @)|[7 )

HUHLQ(M)<1

1
2
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1
2 2
< sup)g (R[HQ(”C)UHLZ(M)OZ””)

~Y
lll Ly

(o),

The third identity above uses the right M-module nature of 7" which means T'(f)u =
T(fu) whenever u is a constant operator, see for instance [46].

Remark 3.3. It is a quite interesting question to give a direct proof of Theorem 1.2 in
the case 1 < p # 2 < oo without using atomic decomposition, interpolation and duality
like the one for perfect dyadic CZOs.

Acknowledgment

We would like to thank the anonymous referee for suggestions to enhance the pre-
sentation. Hong is partially supported by the NSF of China-11601396, 11431011. Liu is
partially supported by the NSF of China-11501169. Mei is partially supported by NSF
DMS-1700171.

Appendix A

In this appendix, we show the following commutator estimate.

Theorem A.1. If b € BMO(R™; M), then the commutator [R;,b] is bounded on La(A).
Moreover we have the estimate

IR, b1 fll L4y S llollBmo@= a1 fl L2 ca)- (A1)

When n = 1, the Riesz transforms reduce to the Hilbert transform. By noting the
boundedness of the Haar multiplier—Proposition 2.2, the result has been essentially
proven by Petermichl, see Section 2.3 of [47]. When n > 1, the situation becomes a little
bit more complicated. Firstly, reviewing the proof of the boundedness of one-dimensional
Haar multiplier, the higher-dimensional case is not trivial since DibDy f is not k — 1-th
measurable; Secondly, the higher-dimensional Haar systems are also more complicated.

Petermichl-Treil-Volberg in [48] showed that the Riesz transforms also lie in the closed
convex hull of some dyadic shifts. Let us write down explicitly the form of this class of
dyadic shifts: Fix a dyadic system D, let y € {0,1}" be the element with first coordinate
1 and others 0,

Sf= Z Z E?<h§0,f>h?, (A2)

IeD oe{0,1}\{0}

where I is the dyadic father of I and ¢ = +1.
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Associated to this fixed dyadic system D, the Haar multiplier with noncommuting
symbol b is defined as

Ap(f) = Di(b)Ex(f)

keZ

As in the one-dimensional case—Proposition 2.2, one also gets

Proposition A.2. If b € BMO(R"™; M), then we have

o Ay is bounded from L,(A) to Hy (A, X 4) whenever 2 < p < oo;
o Ay is bounded from Hy (A, ¥ 4) to Ly(A) whenever 1 <p < 2.

Proof. It suffices to show the case 2 < p < oo, since another case can be shown similarly.
Let ¢ be the conjugate index of p. Let f € L,(A), and g € Hj(A, ¥ 4). By approximation,

we can assume b, f and g are “nice”, so that we do not to justify the infinite sum in the
following calculations. By duality, it suffices to show

|<P(Ab(f)9*)| S HfHLp(A)HgHH;(A,EA)-

Noting that Ay f =bf — >, Ex—1(b)Dy(f), we have

lo(As(f)g™)| = lo((bf — ZEk—l(b)Dk(f))g*”
= |p(bfg*) bZEk 1(De(f)Dr(g")))]
= 1o — 3 Exoa(Dk(F)Di(g"))
k

Now decompose fg*, one gets

f9" _ZEk 1(Dx(f ZDk (Dk(f)Dr(g"))
+(2Ek71( +Z]Dk JEx—1(97))-
keZ keZ

The second term can be estimated as in the one-dimensional case. For the first term,
note that Dy (D (f)Dr(g*)) is a martingale difference, by duality and the fact that the
dyadic BMO-norm is controlled by usual BMO-norm, we have

p(0> De(Dr(FDi(g*))] S Ibllsmo®eag D Dr(Dr(H)Dk(g*) 1 (450
k

— Ibllsro@n a0 / sup | Z D (Di (/)Di(g") |, (-
R» k=—o0
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Splitting

14

4
> De(Di(f)Dr(g™) = D Di(f Z Ep—1(Dx(f)Dk(g")),

k=—o0 k=—o00 k=—o00

noting that the first term can be dealt with as in Proposition 2.2, and we are reduced to
show

[ sl S B D (NPelo Do S Il lolhsas.  (A3)
te k=—c0

Rn

Using twice the Holder inequalities and vector-valued Doob’s inequality (2.2), it suffices
to show for any /¢

L
I EeoaDr(HDr(g)) Ly (M)

k=—o00
< NQ DL 21, (ol DRI 2z, (-
keZ keZ

By duality and the Holder inequality, using the trace-preserving property of conditional
expectation,

14
I Exoa@i(FHDr(g™) Ly a0

k=—o0

¢
= HSL‘1|p |7 (u Z Er—1(Dx(f)Dr(g™)))l
u, [Jullm<1 k=—00
¢
= sup |7( Z Ej—1(uw)(Dx(f)Dr(g")))]

u lullm<t S

L

= sup |7( Z Dy (g")(Ex—1(u)D(f)))]

u, [Jlullam <t k=—o00

= sup |tatr(( Z Dy (g") ® er)( Z Ep_1( (f) ®ex1))]
u, [Julm<1 k=—o0 k=—o00

L
< sup Z Di(9%) @ exrllr,mmseyll Y, Er-1(wDe(f) @ extllr,mss))

u, lullm<t 2T k=—00

<O ID(AP 21, o O IDk()P) ¢

keZ kEZ
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This finishes the proof by noncommutative Burkholder-Gundy inequality. O
Now let us prove Theorem A.1.

Proof. Since the Riesz transforms [48] are shown to be in the convex hull of the dyadic
shift operators such as (A.2), it suffices to estimate [S,d] for one fixed dyadic shift
operator S. Without loss of generality, we can assume b = b*. Let f € Lo(A). By
approximation, we can assume b and f are “nice” so that we can decompose bf =
Apf + Rpf, where

Rof =) Epa(®Di(f)= D> > (b)r(h] )R],
K

0c{0,1}»\{0} I€D

[S7b]f = [57 Ab]f+ [57 Rb}f

Observe that from the Lo(A)-boundedness of S and A, we have

1S, Aol fllLacay < 2SN L2ca) S NbllBMO@™ A0 1 F 122 () -

For another term, we claim that

[S,Rlf= > > (R ShY) (b — (b)) (hT, )RS, (A.4)

0,ne{0,1}"\{0} I,J€D

from which, we can conclude the proof. Indeed, by the orthogonality of the Haar basis
h9’s,

SRf= > Sl () — (o) p)Rg. )R

0’,0,ne{0,1}"\{0} I€D
where
af " =& (hfe hY) (W1, hY ),
which equals 1 or 0. Then the fact for any e € Ly(M) with norm 1,

1(®) 1 = (B pellL, ) < IBlIBro@n:any

yields

(1S, Rol fllLocay S NbllBMO®n A | fI Lo ca)-
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Now let us show the formula (A.4). Note that [S, Rp|f = SRyf — RpSf. It is straight-

forward to compute

S D b)nh SR

ne{0,1}7\{0} JED

Do > (S b)s(h], )]

0,ne{0,1}»\{0} I,J€D

Ry(Sf)

For another term, we test it on g =3, 1 130\ (0} 2osep (R}, g)h"y € Ly(A), and obtain

(9. SRof)) = > > (RS, ) (b)1 (RS, £)SAG))

6,n€{0,1}7\{0} I,J€D

= > ST g S ) (RS, HHRT)),

0,ne{0,1}"\{0} I,J€D

which yields

SRyf= Y > (7, ShY) ) r(h], £HRT.

0,ne{0,1}"\{0} I,J€D
From the above two identities, we get (A.4). O

Remark A.3. (i). The above argument works also for general dyadic shifts such as those
introduced in [37]. But at the time of writing, the authors have no idea how to show
similar results for general Calder6n-Zygmund singular integral operators.

(ii). In the framework of noncommutative harmonic analysis, it would be also inter-
esting to show the result for p # 2. But now the proof is not trivial at all. This is related

to the last remark of the previous section.
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