

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

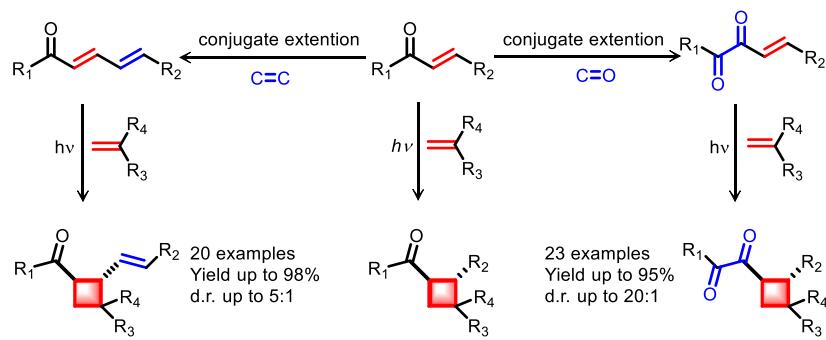
**Visible Light Triggered Selective Intermolecular [2+2]
Cycloaddition of Extended Enones: 2-Oxo-3-enoates and
2,4-Dien-1-ones with Olefins**

Journal:	<i>The Journal of Organic Chemistry</i>
Manuscript ID	jo-2019-01273y.R1
Manuscript Type:	Article
Date Submitted by the Author:	14-Jun-2019
Complete List of Authors:	Zhao, Lei-Min; Technical Institute of Physics and Chemistry, Lei, Tao; Technical Institute of Physics and Chemistry, Liao, Rong-Zhen; Huazhong University of Science and Technology, College of Chemistry and Chemical Engineering Xiao, HongYan; Technical Institute of Physics and Chemistry, Key Laboratory of Photochemical Conversion and Optoelectronic Materials Chen, Bin; Chinese Academy of Sciences, Technical Institute of Physics and Chemistry Ramamurthy, Vaidhyanathan; University of Miami, Chemistry; Tung, Chen-Ho; Technical Institute of Physics and Chemistry, Wu, Li-Zhu; Chinese Academy of Sciences, Technical Institute of Physics and Chemistry

SCHOLARONE™
Manuscripts

Visible Light Triggered Selective Intermolecular [2+2] Cycloaddition of Extended Enones: 2-Oxo-3-enoates and 2,4-Dien-1-ones with Olefins

Lei-Min Zhao,^{†,‡,△} Tao Lei,^{†,‡,△} Rong-Zhen Liao,[¶] Hongyan Xiao,^{†,‡} Bin Chen,^{†,‡} Vaidhyanathan Ramamurthy,[§] Chen-Ho Tung,^{†,‡} and Li-Zhu Wu^{†,‡, *}

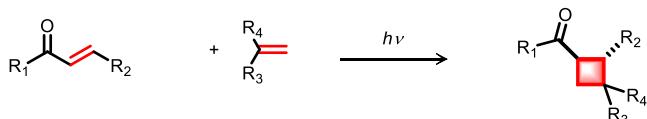
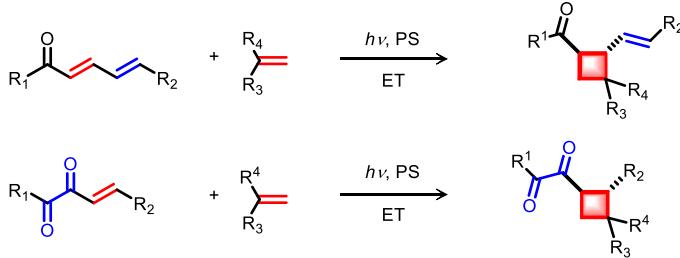

[†] Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, PR China

[‡] School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China

[¶] School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.

[§] Department of Chemistry, University of Miami, Coral Gables, Miami, Florida 33146, USA

E-mail: lzwu@mail ipc.ac.cn



Abstract:

Photosensitization has recently re-emerged owing to the current interest in visible light catalysis. One of the photoreactions investigated in this context namely photo[2+2]cycloaddition of olefins is established to show high selectivity and wide generality. Here we describe the results

1
2
3
4 of our studies on selective intermolecular cycloaddition between extended enones
5 (2,4-dien-1-ones and 2-oxo-3-enoates) and olefins under visible light sensitization. With
6
7 Ru(bpy)₃Cl₂ as the triplet energy sensitizer, [2+2] addition of 2,4-dien-1-ones to olefins resulted in
8
9 the addition to the 'ene' part of enones with high efficiency. Generality and functional group
10
11 tolerance was established by examining a number of enones. 2-Oxo-3-enoates also underwent
12
13 addition to olefins in presence of Ru(phen)₃(PF₆)₂. Both additions were more efficient in
14
15 presence of the triplet sensitizer than upon direct irradiation. No Paternò-Büchi product was
16
17 detected. DFT calculation revealed the origin of high selectivity in the two extended enone
18
19 systems. Together with spectroscopic studies and control experiments, the cycloaddition has been
20
21 demonstrated to occur from the excited triplet state of these extended enones which were generated
22
23 via energy transfer process.

33 Introduction

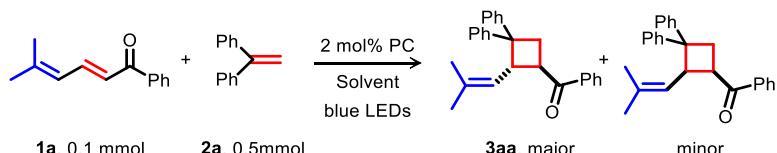
34
35
36 Cyclobutanes and their derivatives play a predominant role in the synthesis of pharmaceutical
37 products and commercial-valued materials.¹ One convenient and extensively employed method to
38 build cyclobutane skeleton is the [2+2] cycloaddition between an excited and a ground state
39 olefins.² Use of visible light in initiating photoreactions³, a topic of current interest is particularly
40 appealing in building cyclobutanes because of the following advantages: (a) the low cost and
41 decreased energy demand of the visible light source; (b) feasibility to conduct a photoreaction
42 without the need of specific photoreactors or quartz-wares and (c) ability to selectively excite a
43
44 photosensitizer without directly exciting the reactant molecules.

1
2
3
4 **Scheme 1. Intermolecular cycloadditions of extended enones**
5
67 **a) [2+2] reaction of enones**
814 **b) [2+2] reaction of extended enones**
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Amongst the various photocycloaddition reactions, addition of excited enones⁴ to olefins have been extensively investigated. It is well known that under visible light photocatalysis (VLPC), olefins and α , β -enones undergo intra⁵⁻⁶ and intermolecular⁷⁻⁸ [2+2] cycloaddition to form cyclobutanes via single electron transfer (SET)^{5, 7} and energy transfer (ET)^{6, 8} pathways. Given the usefulness of above cycloaddition reactions in synthesis, we thought it is important to examine the behaviour of α , β -enones with extended conjugation (extended C=C and C=O bond). It was anticipated that such an extended conjugation will shift the absorption to longer wavelengths and lower the excited singlet and triplet state energies. Thus these systems would be ideally suited for VLPC. However, one problem we foresaw with such systems behaving like a diene would offer an additional site for photoaddition. Thus far reported studies on cyclic dienones focussed on direct irradiation and the products were formed with poor selectivity.⁹ An example of interest is the addition of a diene incorporated acyl imidazole to an olefin reported by Meggers.^{8c}

This addition is facilitated by coordination with an asymmetric Lewis acid. Extended enones like enediones/ene-ketoesters are known to undergo Paternò-Büchi reaction to yield oxetanes.¹⁰ This prompted us to probe whether π -extended conjugated enone molecules would react at the C=O or

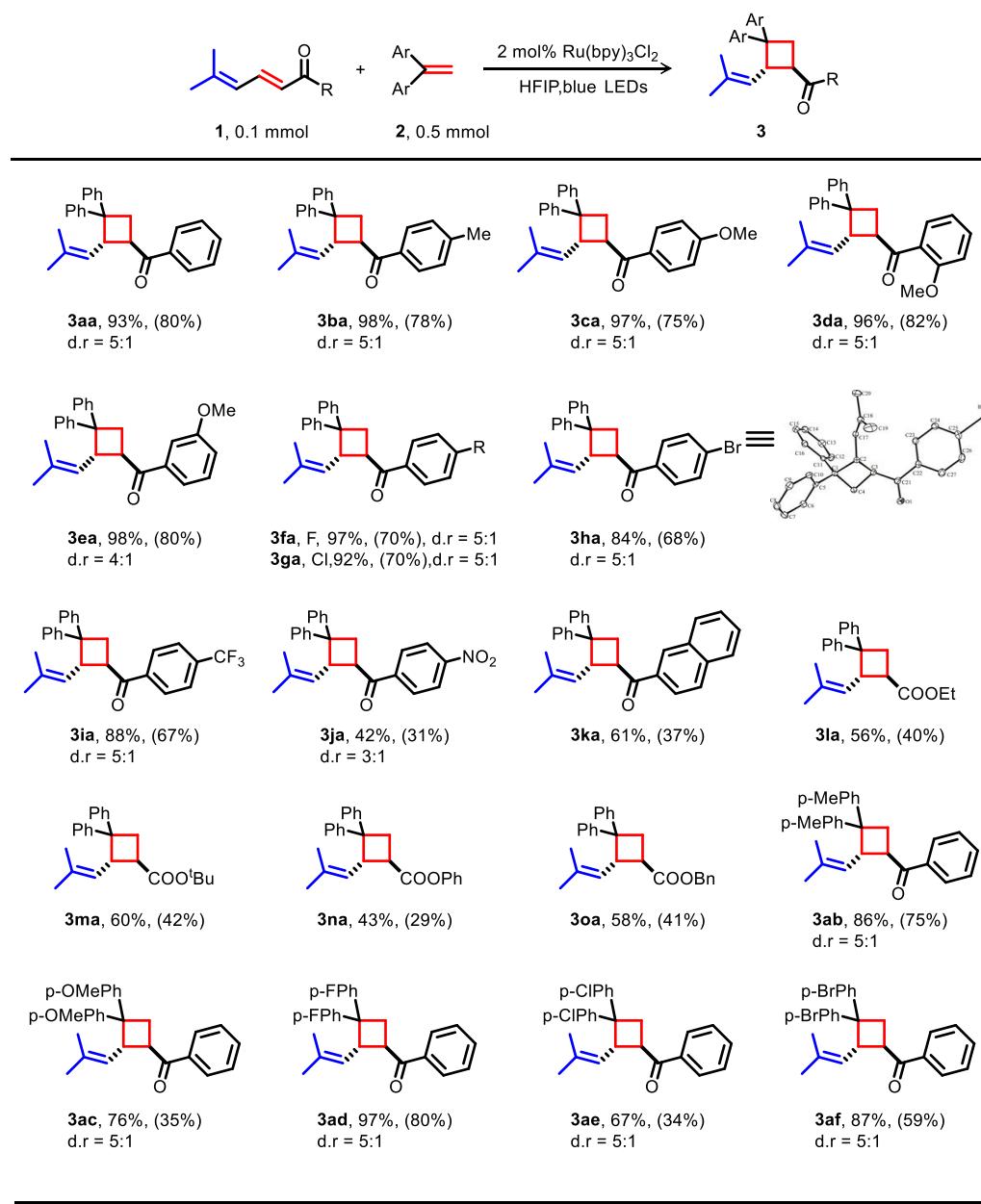
1
2
3
4 C=C end of the molecule. Here we disclose our recent results on the intermolecular [2+2] reaction
5
6 of excited 2,4-dien-1-ones (enones involving additional C=C bond; dienones) and excited
7
8 2-oxo-3-enones (enediones or eneketoesters involving additional C=O bond) with ground state
9 olefins such as 1,1-diphenylethylene (Scheme 1). When a mixture of 2,4-dien-1-ones, terminal
10 olefin and a visible light absorbing photocatalyst was irradiated, cyclobutanes were obtained via
11 intermolecular [2+2] addition to the α , β - C=C bond of the dienone. Similar addition also occurs
12 when 2-oxo-3-enoates and olefins were photocatalyzed by visible light absorbing catalysts.
13
14 Thus in this two cases extension of the enone with either C=C or C=O functionality did not alter
15
16 the reactivity of the parent system. Results presented here for the two classes of molecules derived
17 from α , β -enones under visible light photocatalysis (VLPC) conditions, we believe, are valuable in
18 building complex organic molecules.
19
20
21


33 Result and Discussion

34
35
36

37 **Intermolecular [2+2] reaction of 2,4-dien-1-one under VLPC condition.** To avoid
38 complications caused by geometric isomerization of the terminal double bond, we initiated the
39 study with 2,4-dien-1-one **1a** and olefin **2a** as substrates and Ir(ppy)₃ as the photocatalyst. When a
40 mixture of 0.1 mmol of **1a**, 0.5 mmol of **2a** and 2 mol % of Ir(ppy)₃ in acetonitrile (MeCN) was
41 irradiated with blue LEDs ($\lambda = 455$ nm) for 10 h, a cyclobutane product derived from the C=C
42 bond adjacent to carbonyl group was obtained in 52 % yield and 5:1 d.r. (Table 1, entry 1).
43
44 Screening of several photocatalysts revealed that Ru(bpy)₃Cl₂ was the best (Table 1, entries 1-3).
45
46 Optimization of the solvents suggested that hexafluoro-*iso*-propanol (HFIP) was most suitable (93%
47 yield; Table 1, entries 3-7). Further control experiments confirmed the necessity of visible light
48
49
50
51
52
53
54
55
56
57
58
59
60

and photocatalyst. Omitting any one of the two components (photocatalyst or visible light) yielded no addition product (Table 1, entries 8-9).


Table 1. Optimizations for the [2+2] conditions of 2,4-dien-1-one.^a

Entry	Catalyst	Solvent	Yield (%) ^b	d.r.
1	Ir(ppy) ₃	MeCN	52	5:1
2	Ru(bpz) ₃ Cl ₂	MeCN	26	3:1
3	Ru(bpy) ₃ Cl ₂	MeCN	59	5:1
4	Ru(bpy) ₃ Cl ₂	MeOH	69	5:1
5	Ru(bpy) ₃ Cl ₂	EtOH	63	5:1
6	Ru(bpy) ₃ Cl ₂	<i>i</i> -PrOH	56	5:1
7	Ru(bpy) ₃ Cl ₂	HFIP	93	5:1
8 ^c	Ru(bpy) ₃ Cl ₂	HFIP	N.D	/
9	No PC	HFIP	N.D	/

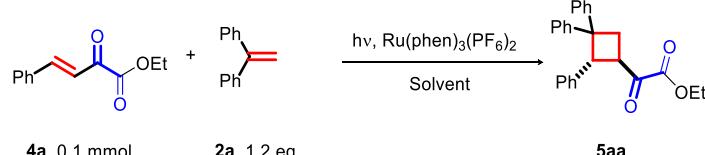
^a The reaction were carried out in 2.5 mL solvent with 0.1 mmol 1a, indicated 2a and 2 mol % PC (0.8 mM) under the irradiation of Blue-LEDs ($\lambda = 455$ nm) for 10 h. ^b Yields and d.r. (anti: syn) were determined by ¹H-NMR using biphenylacetonitrile as internal standard. ^c Dark conditions, N.D = not detected.

Having identified the optimum reaction condition, we proceeded to explore the scope of the [2+2] reaction between 2,4-dien-1-ones and various olefins (Scheme 2). Products and their yields are summarized in Scheme 2. From the data it is clear that: a) Electronic nature of the *para*-aryl group substitution on the dienone including methyl, methoxyl, halogen atom and CF₃ had little influence on the conversion efficiency (**3aa-3ia**). Even strongly withdrawing group NO₂ gave 31% isolated product (**3ja**). b) Position of the methoxyl substituent on the phenyl ring showed little

Scheme 2. Generality of the cycloaddition of 2,4-dien-1-ones with terminal olefin ^a

^a Reaction condition: the reaction were carried out in 2.5 mL HFIP with 0.1 mmol **1**, 5 equiv **2** and 2 mol % $\text{Ru}(\text{bpy})_3\text{Cl}_2$ (0.8 mM) under the irradiation of Blue-LEDs ($\lambda = 455$ nm) for 10 h. Yields and d.r. (anti: syn) were determined by ¹H-NMR using biphenylacetonitrile as internal standard, the ones in parenthesis were isolated yields.

difference on the conversion (*p*-OCH₃, 97% (**3ca**), *o*-OCH₃, 96% (**3da**) and 98% *m*-OCH₃, (**3ea**))


indicating the absence of steric effect caused by the substitution of aryl group. c) Introduction of

1
2
3
4 naphthalene ring led to a single isomer with moderate yield. d) More importantly, less conjugated
5
6 2,4-dienoates (non-aryl systems) were also smoothly converted to *anti*-products (**3la**, **3ma**, **3na**
7
8 and **3oa**). (e) The structure of the photoproduct **3ha** was confirmed to have *anti*-configuration by
9
10 X-ray diffraction. In all other cases, ¹H and ¹³C NMR spectra were employed to confirm the
11
12 structure of the products (see Supporting Information). (f) To probe the generality of the
13
14 participating olefin, the structure of the diphenyl ethylene was modified. Different substitutions
15
16 like methyl (**3ab**), F (**3ad**) and Br (**3af**) showed good tolerance. Methoxyl (**3ac**) and Cl (**3ae**) lead
17
18 to moderate results due to the lower solubility in HFIP.
19
20
21
22
23
24
25 From the discussion above, it is clear that the cycloaddition is specific and occurred only at
26
27 the α , β bond of the dienones. The reaction proceeded smoothly with the dienone containing
28
29 different electronic features. Similarly, the reaction was also general from the perspective of the
30
31 1,1-diaryl ethylene.
32
33
34

35
36 **Intermolecular [2+2] cycloaddition of 2-oxo-3-enoates with olefins under VLPC**
37
38 **condition.** Recently Luo's group¹¹ has reported the cycloaddition of the methyl ester of
39
40 2-oxo-3-enoates **4a** to yield the [2+2] adduct with styrenes via direct irradiation. Given the
41
42 compound has virtually no absorption at 455 nm, we believed that a better approach to conduct the
43
44 cycloaddition was to use a visible light absorbing catalyst, that is, a triplet sensitizer. With this in
45
46 mind, we performed the photocycloaddition of 2-oxo-3-enoates by using Ru(bpy)₃Cl₂ as the
47
48 VLPC. A mixture of 0.1 mmol of 2-oxo-3-enoates **4a**, 0.5 mmol of **2a** and 2 mol % of Ru(bpy)₃Cl₂
49
50 in 1,2-dichloroethane (DCE) was irradiated with blue LEDs ($\lambda = 455$ nm) for 10 h (see Supporting
51
52 Information, Table S1). Isolation of the product gave a cyclobutane in moderate yield (57%, Table
53
54 S1, entry 1) and high diastereoselectivity (d.r. > 20:1). In order to identify the optimum condition
55
56
57
58
59
60

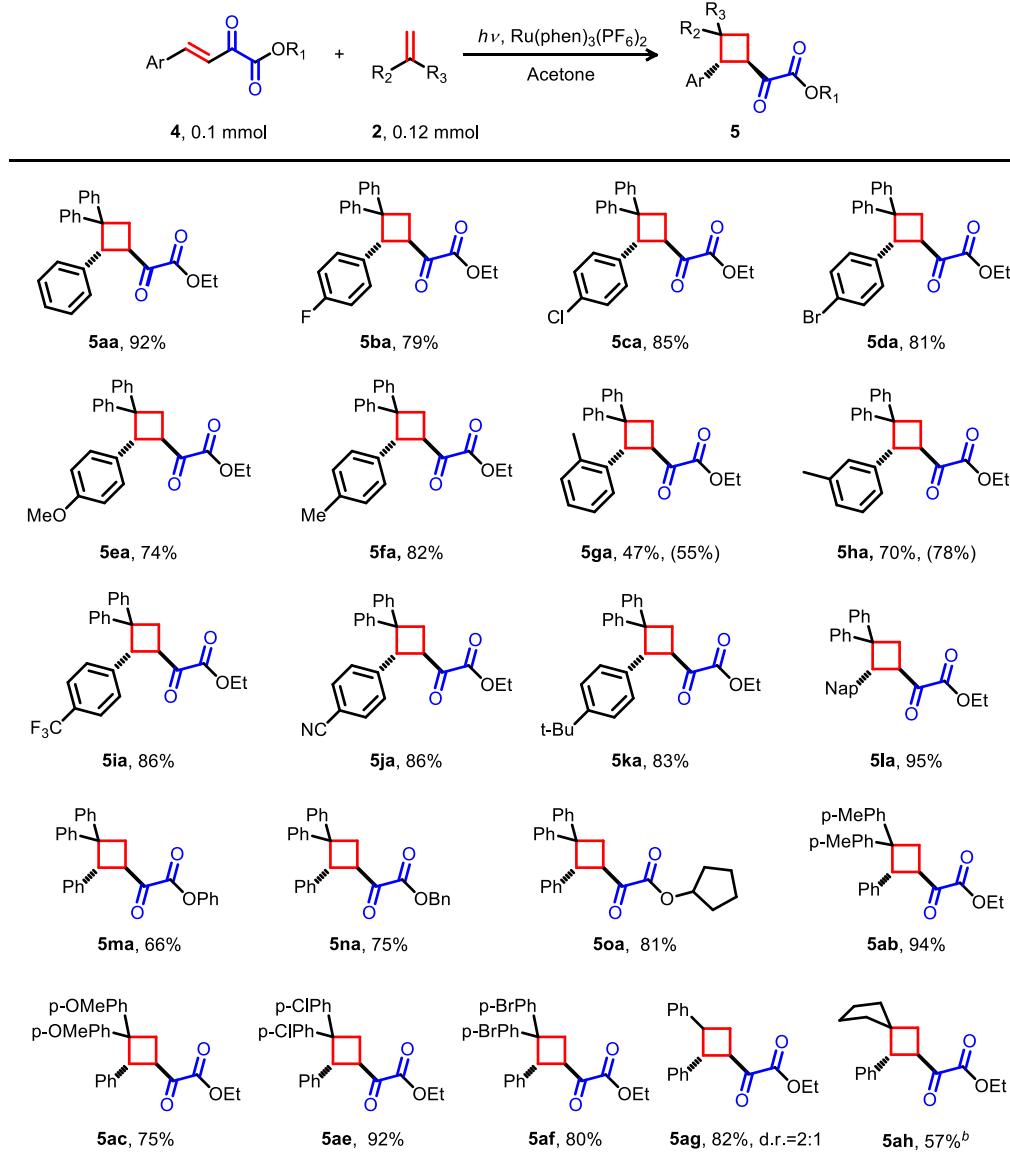
for this reaction, several catalysts and solvents were examined. $\text{Ru}(\text{phen})_3(\text{PF}_6)_2$ and acetone were found to be the best catalyst and the solvent (for details, see Supporting Information, Table S1). Experiments with varying concentrations of the olefin revealed that excess olefin was not required for this selective cross [2+2] cycloaddition under VLPC conditions. This is different from the direct irradiation conditions wherein 5-fold excess amount was required.¹¹

Table 2. Importance of PC in the [2+2] reactions of 2-oxo-3-enoates with olefins under VLPC condition ^a

Entry	Solvent	With PC		Without PC	
		Yield (%)	d.r.	Yield (%)	d.r.
1	Acetone	98	> 20:1	56	9:1
2	DCE	89	15:1	25	8:1
3	Dioxane	56	15:1	40	4:1
4	DMSO	44	10:1	20	3:1
5	MeCN	85	15:1	45	1.2:1

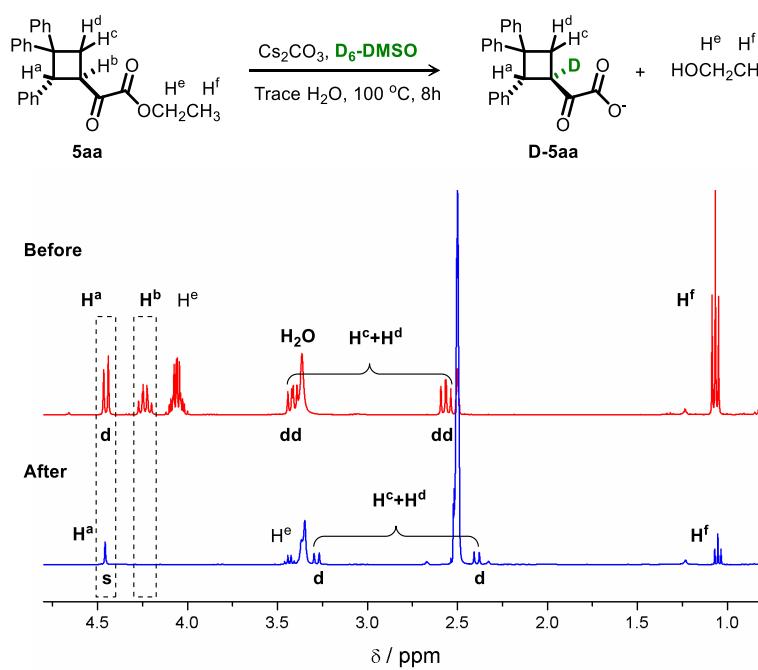
^a The reaction were carried out in 2.5 mL solvent with 0.1 mmol **4a**, 1.2 equiv **2a** and 2 mol % PC (0.8 mM) (or not) under the irradiation of Blue-LEDs ($\lambda = 455$ nm) for 10 h. Yields and d.r. (anti: syn) were determined by ¹H-NMR using biphenylacetonitrile as internal standard. The structure of product was same with or without PC.

In order to prove the role of VLPC, additional reactions were carried out in different solvents with and without $\text{Ru}(\text{phen})_3(\text{PF}_6)_2$. Under optimum condition of 1.2 equiv olefin **2a** in acetone, direct irradiation without the photocatalyst lead to 56% yield and 9:1 diastereoselectivity (Table 2,


1
2
3
4 entry 1). Results in other solvents like DCE, dioxane, dimethyl sulfoxide, and acetonitrile gave
5 similar low yields. On the contrary, the presence of $\text{Ru}(\text{phen})_3(\text{PF}_6)_2$ enhanced the yield of adduct
6 to 98% and >20:1 d.r. in acetone. Apparent enhancement was also obtained in other tested media.
7
8
9
10
11
12 These results confirmed the positive influence of VLPC on this reaction. Keeping the above
13 solution in dark did not result in a reaction (Table S1 in SI, entry 10), confirming the necessity of
14 visible light. More importantly, we established the synthetic value of the reaction by isolating the
15 cyclobutane product in 82% yield upon irradiating **4a** and **2a** in gram scales in presence of
16
17 $\text{Ru}(\text{phen})_3(\text{PF}_6)_2$ (2 mol %) (Table S1, entry 13).
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Generality of $\text{Ru}(\text{phen})_3(\text{PF}_6)_2$ photocatalyzed cycloaddition was established by examining the behaviour of over two-dozen substituted 2-oxo-3-enoates towards different terminal olefins which included substituted diphenyl alkenes, styrenes and dialkylated alkenes (Scheme 3). Perusal of the product yields listed in Scheme 3 leads to the following conclusions: a) Highly efficient cycloaddition occurred between 2-oxo-3-enoates and diphenyl alkene, with different electron-donating (**5ea**, **5fa** and **5ka**) and electron-withdrawing (**5ba**, **5ca**, **5da**, **5ia** and **5ja**) groups on the phenyl ring of 2-oxo-3-enoates. This suggested that the cycloaddition was independent of the electronic effect on the aryl group substituted on the enone moiety. b) Phenyl and other alkyl modified substrates (**5ma**, **5na**, **5oa**) at the ester moiety showed equal efficiency as **5a**. c) Bulkiness of *o*- and *m*- methyl group on the aryl ring had moderate effect on the conversion (**5ga** and **5ha**). d) 2-Oxo-3-enoates with larger aromatic group like naphthalene (**5la**) gave the cycloadduct in 95% yield. e) As for styrene reactants, 1,1-diphenylalkenes bearing electron-donating and electron-withdrawing groups reacted with **4a** in good yields (**5ab**, **5ac**, **5ae** and **5af**). Mono-substituted terminal styrenes gave adduct (**5ag**) in moderate yield with 2:1 d.r. f)

Dialkylated alkenes such as methylidene-cyclopentane gave moderate yields of the cycloadducts


5ah.

Scheme 3. Generality of the cycloaddition of 2-oxo-3-enoates with terminal olefin ^a

^a Reaction condition: the reaction were carried out in 2.5 mL acetone with 0.1 mmol **4**, 1.2 equiv **2** and 2 mol % Ru(phen)₃(PF₆)₂ (0.8 mM) under the irradiation of Blue-LEDs ($\lambda = 455$ nm) for 10 h. Unless noted, yields were isolated yields, the yields in parenthesis and d.r. were determined by ¹H-NMR using biphenylacetonitrile as the internal standard. The configuration of aryl group and carbonyl group is *anti* (*anti*: *syn* > 20:1). As for the product **5af**, the 2:1 d.r. was introduced by another chiral center from the asymmetric olefin ^b Aliphatic olefins were added in 5 equiv and irradiated for 20 h.

In the absence of our ability to obtain crystals of the product **5**, we relied on ^1H NMR to characterize the structure of adducts which could be either head-to-head or head-to-tail. To ascertain the regiochemistry of the products isolated in this part, enolization and H-D exchange of **5aa** was performed in $\text{D}_6\text{-DMSO}$ with Cs_2CO_3 as base.¹² It was anticipated that replacement of H by D would help confirm the structure of the cycloadduct (Figure 1). According to the ^1H -NMR

Figure 1. Identification for the structure of **5aa** via H-D exchange experiment.

spectrum displayed in Figure 1, H-D exchange of α -H of carbonyl group led to doublet-doublet peak of H^c and H^d into doublet peak, doublet peak of H^a into singlet, the decreasing of spin splitting strongly supported the structure of **5aa** (Relevant 2D ^1H - ^1H COSY and HMBC spectra of **5aa** are provided in SI).

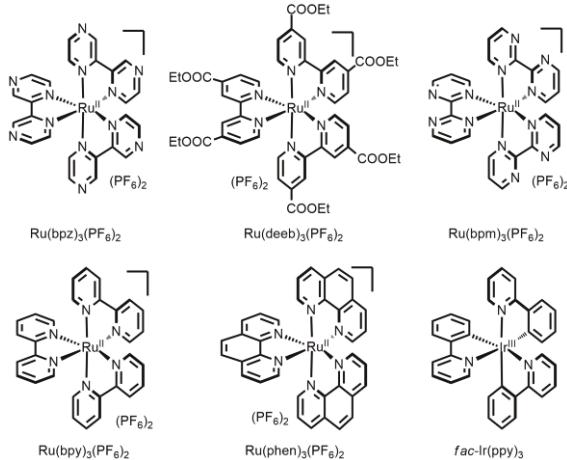
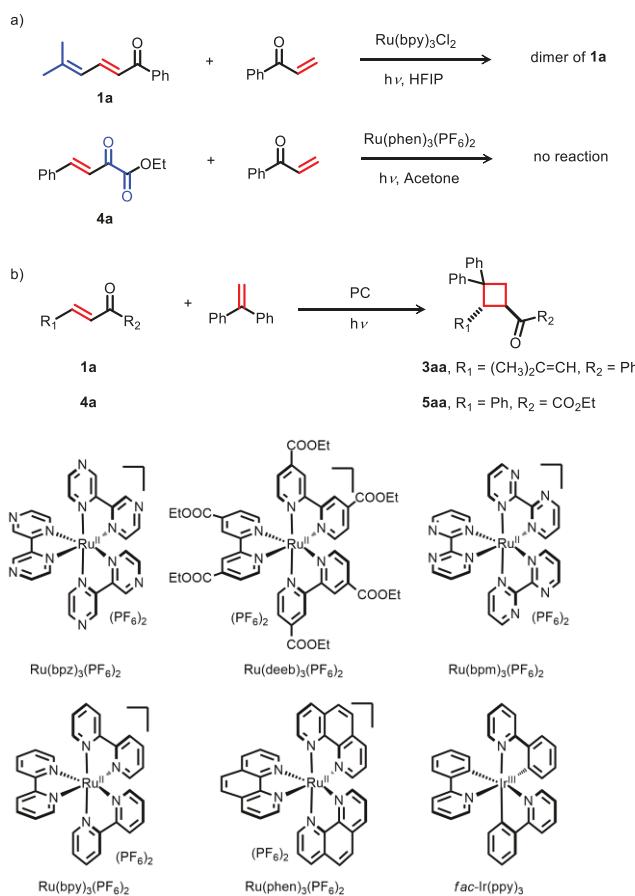
1
2
3
4 To conclude, we demonstrated that 2-oxo-3-enoates reacted at α , β C=C bond and the
5 reaction was general in terms of both the enoates and the partner olefins. Although the reaction
6 could be realized by direct excitation (455 nm), the yield was increased in presence of a VLPC.
7
8
9
10
11

12 **Mechanistic studies of the intermolecular [2+2] reaction of extended enones under**
13 **VLPC condition.** Having established the value of ruthenium complexes for highly effective
14 cycloadditions, we proceeded to probe the mechanism of the [2+2] addition of extended enones to
15 olefins. Two pathways involving single electron transfer and energy transfer have been established
16 in visible light induced intermolecular [2+2] cycloaddition of enones. Oftentimes, the same
17 catalyst could act both as an electron^{7a} and energy transfer^{8d,8f} catalyst. The former process was
18 established for 1-phenylalkyl-2-en-1-one derivatives^{7a,7d} and the latter for chalcone and cinnamic
19 acid esters^{8d-8i}. Since the extension of enones with an additional C=C or C=O bond would lead to
20 changes in both electronic and excited state properties, consequent changes in mechanism were
21 likely. To probe the mechanism involved in this study, we undertook a detailed mechanistic study.
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39 First, we studied the spectroscopic and electrochemical properties of this two extended
40 enones. As illustrated in Supporting Information, the 2,4-dien-1-one **1a** does not absorb the blue
41 light, only the photocatalyst absorbs the visible light. At room temperature, upon excitation,
42 Ru(bpy)₃Cl₂ showed an emission with a maximal wavelength (λ_{max}) of 573 nm (Figure S1).¹³ The
43 above emission was quenched by **1a** with a rate constant of $9.70 \times 10^8 \text{ M}^{-1} \cdot \text{s}^{-1}$ (Figure S2).¹⁴ Based
44 on electrochemical data [$E_{\text{Ru}(\text{III}/\text{II})^*} = -1.14 \text{ V}$ vs SCE, $E_{(\text{1a}/\text{1a}^-)} < -1.2 \text{ V}$ vs SCE, $\Delta G > 0.06 \text{ eV}$;
45 $E_{\text{Ru}(\text{II}^*/\text{I})} = 1.17 \text{ V}$ vs SCE, $E_{(\text{2a}^+/\text{2a})} = 1.44 \text{ V}$ vs SCE, $\Delta G = 0.27 \text{ eV}$] (Table 3, Figure S5), SET
46 process of the excited Ru(bpy)₃Cl₂ to **1a** and **2a** seemed unlikely. Similar analysis of the
47 photophysical and electrochemical data of 2-oxo-3-enoate **4a** and Ru(phen)₃(PF₆)₂ indicated that
48
49
50
51
52
53
54
55
56
57
58
59
60

in this pair the electron transfer pathway was likely. From absorption spectra, the enoate ester **4a** absorbed the blue light weakly, while the photocatalyst did strongly (Figure S3). And the emission of excited $\text{Ru}(\text{phen})_3(\text{PF}_6)_2$ at 600 nm was quenched by **4a** with the rate constant of $8.08 \times 10^8 \text{ M}^{-1} \cdot \text{s}^{-1}$ (Figure S4). According to the electrochemical data in acetone [$E_{\text{Ru}(\text{III}/\text{II}^*)} = -0.97 \text{ V vs SCE}$, $E_{(4\text{a}/4\text{a}^-)} = -0.86 \text{ V vs SCE}$, $\Delta G = -0.11 \text{ eV}$; $E_{\text{Ru}(\text{II}^*/\text{I})} = 1.52 \text{ V vs SCE}$, $E_{(2\text{a}^+/\text{2a})} > 1.6 \text{ V vs SCE}$, $\Delta G > 0.08 \text{ eV}$] (Table 3, Figure S6), the excited $\text{Ru}(\text{phen})_3(\text{PF}_6)_2$ could reduce **4a** to generate relative anion radical theoretically. These data suggested that the addition of **1a** to olefins could proceed by energy transfer pathways and that of **4a** could proceed via both energy and electron transfer pathways.

Table 3. Redox potentials of each component ^a

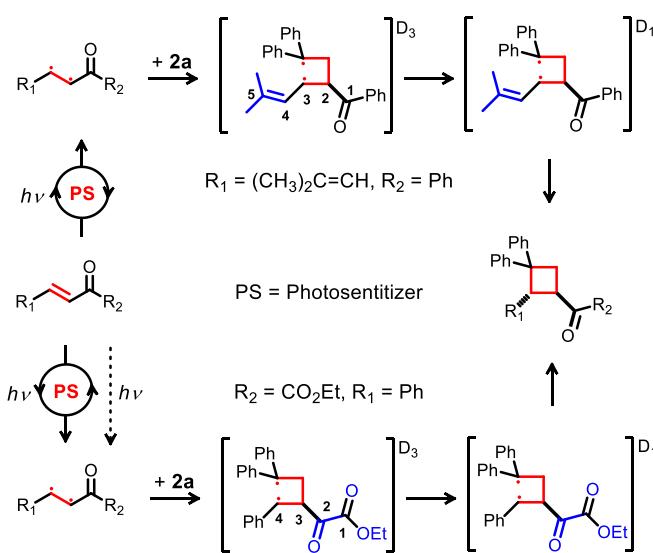


Entry	Compound	$E_{1/2}$ (M ⁺ /M)	$E_{1/2}$ (M/M ⁻)	$E_{1/2}$ (M ⁺ /M [*])	$E_{1/2}$ (M [*] /M ⁻)
1 ^b	1a	> 1.6	< -1.2	/	/
2 ^b	2a	1.44	< -1.2	/	/
3 ^b	$\text{Ru}(\text{bpy})_3^{2+}$	1.23	< -1.2	-1.14	< 1.17
4 ^c	4a	0.84	-0.86	/	/
5 ^c	2a	> 1.6	-0.87	/	/
6 ^c	$\text{Ru}(\text{phen})_3^{2+}$	1.35	< -0.8	-0.97	< 1.52

^a All potentials were detected in volts versus SCE. ^b Detected in hexafluoroisopropanol. ^c Detected in acetone.

In order to narrow down the energy/electron transfer pathways involved in cycloaddition reactions of extended enones, several ruthenium and iridium complexes^{3c} with varied photoredox potentials and triplet energies were examined (Scheme 4). Surprisingly, electron-deficient

Ru(deeb)₃(PF₆)₂ could catalyse the cross [2+2] cycloaddition of 2-oxo-3-enoate **4a** and olefin **2a** at nearly quantitative conversion to cyclobutane **5aa**, indicating that an unfavourable electron transfer pathway did not arrest the reaction. On the other hand, Ir(ppy)₃ that enabled electron-transfer to **4a** gave cycloadduct **5aa** in lower yields (25%). These observations suggested that the electron transfer pathway for **4a** was not involved during addition and most likely the photoctalysts act as energy transfer sensitizers. Yoon has reported that if a SET process is involved in the case of enones, the generated nucleophilic species would react readily with a terminal enone like acrylophenone.^{7a} The fact that the homo-dimerization of **1a** occurred when acrylophenone instead of **2a** was used as the partner olefin suggested that the reactions of 2,4-dien-1-ones do not proceed via SET process. Most likely, in this case also energy transfer plays the primary role.

Scheme 4. Control experiments


Entry	PC	E^{Ox^*} (V)	E^{Red^*} (V)	E_T (kJ/mol)	3aa (%)	5aa (%)
1	$\text{Ru}(\text{bpz})_3^{2+}$	1.45	-0.26	198.32	13	42
2	$\text{Ru}(\text{deeb})_3^{2+}$	1.07	-0.42	187.14	39	97
3	$\text{Ru}(\text{bpm})_3^{2+}$	0.99	-0.26	190.73	22	61
4	$\text{Ru}(\text{phen})_3^{2+}$	0.82	-0.87	201.66	73	98
5	$\text{Ru}(\text{bpy})_3^{2+}$	0.77	-0.81	195.08	81	96
6	$fac\text{-Ir}(\text{ppy})_3$	0.31	-1.73	213.03	58	25

^a The reaction were carried out in 2.5 mL solvent with 0.1 mmol **1a** and **4a**, 10 eq acrylophenone and 2 mol % PC under the irradiation of Blue-LEDs ($\lambda = 455$ nm) for 10 h. ^b The reaction were carried out in 2.5 mL solvent with 0.1 mmol **1a** and **4a**, indicated amount of **2a** and 2 mol % PC under the irradiation of Blue-LEDs ($\lambda = 455$ nm) for 10 h. All the yields were determined by ¹H-NMR using biphenylacetonitrile as internal standard. The E^{Ox^*} and E^{Red^*} comes from literatures ¹⁰, E_T came from luminescence spectra (Figure S7).

To understand why the [2+2] reaction of 2,4-dien-1-ones **1a** selectively occur in the C=C bond adjacent to carbonyl group and why cyclobutane rather than oxetane was preferred during the addition of triplet 2-oxo-3-enoates **4a** to olefins upon sensitization, density functional theory (DFT)¹⁵ calculations were performed (see SI). For the former system, the relevant transition state barriers for olefin additions to different positions of **1a** (C1, C2, C3, C4, C5 position in top half of Scheme 5, Figure S10) showed that the attack on C2 position had the lowest barrier with only 7.5 kcal/mol, to result in the relevant diradical intermediate. The second lowest energy barrier pathway was for the addition to C5 position (10.7 kcal/mol). Additions to other positions had much higher barriers and the resulting diradical intermediates were much less stable (Scheme S1). Besides, distortion/interaction analysis for the first C-C bond formation between **1a** and **2a** indicated a favourable interaction energy for the attack on C2 by 3.4 kcal/mol compared with C5 (Figure S11). In this case, the regioselectivity of [2+2] reaction of 2,4-dien-1-ones may stem from the interaction energy and transition state barriers to generate the first C-C bond. In terms of 2-oxo-3-enoates **4a**, the relevant transition state barriers for olefin additions to result in the diradical intermediate (C1, C2, C3, C4, C5 position in lower half of scheme 5, Figure S14) found that the addition to C3 position has the lowest 6.9 kcal/mol barrier and the addition to oxygen atom next to C2 gave the second lowest energy barrier with 8.4 kcal/mol. Other situations (add to C1 with 27.7 kcal/mol, C2 with 21.1 kcal/mol, C4 with 10.9 kcal/mol and oxygen atom in ester group with 19.6 kcal/mol) owned much higher barriers. The final cyclobutane product via lowest barrier was found to be more thermodynamic stable than the oxetane generated through second lowest barrier way with 17.7 kcal/mol. Distortion/interaction analysis for the first bond formation between **4a** and **2a** indicated a favourable interaction energy for the formation of C-C bond with

C3, which was 4.0 kcal/mol lower than the formation of C-O bond with oxygen atom in C2 (Figure S14). Therefore, the selectivity for 2-oxo-3-enoate system not only depends on the energy advantages on the first bond formation but also comes from the stability of cyclobutane skeleton.

Scheme 5. Proposed mechanism of the [2+2] crossed cycloadditions via energy transfer.

Based on the above data from theoretical computation we propose the mechanism shown in Scheme 5. Upon visible light excitation, the excited ruthenium complexes intersystem crossed to the triplet state and transferred energy to the extended enones, which led to the generation of excited enones. The excited enones further reacted with ground state terminal olefins to result in 1,4-diradical intermediate in a high-selective way and subsequently cyclized to generate cyclobutanes. It should be noted that upon direct excitation, 2-oxo-3-enoates could be directly excited to undergo [2+2] reaction to get 56% yield and 9:1 d.r. The participation of sensitizer Ru(phen)₃(PF₆)₂ led to higher efficiency in both yield and selectivity.

Conclusion

In conclusion, several 2,4-dien-1-ones and 2-oxo-3-enoates were designed to investigate the excited state behaviour of extended enones towards terminal olefins. Under carefully optimized conditions, these two substrates undergo intermolecular cross [2+2] cycloaddition with olefins to produce cyclobutanes with high regio- and diastereoselectivities. Mechanistic studies involving spectral, electrochemical data and control experiments confirmed the energy transfer from photocatalyst to extended enones, playing an important role in the cycloaddition process. DFT calculation demonstrated the origin of high selectivity of this [2+2] process. We believe this detailed study of the cross [2+2] reaction of extended enones (extension with C=C and C=O bond) would provide much possibility for the elaborate construction of highly functional cyclobutanes. Further exploration on visible light induced [2+2] reaction is underway in our laboratory.

Experimental Section

General Information: ^1H NMR spectra were recorded using a Bruker Avance DPX 400 MHz instrument with tetramethylsilane (TMS) as an internal standard. ^{13}C NMR spectra were obtained at 100 MHz and referenced to the internal solvent signals. Blue LEDs (3 W, $\lambda = 450 \pm 10$ nm, 145 lm @700mA) were used as the irradiation light source. Mass spectra were recorded using a Trio-2000 GC-MS spectrometer and an ApexIII (7.0 tesla) FTICR mass spectrometer (Bruker). Excitation was provided by using an Nd:YAG laser (third harmonic, 10 ns) at 405 nm. The detector was a Xenon lamp on the Edinburgh LP920 apparatus from Analytical Instruments. The values of lifetime were calculated by exponential function fitting with luminescence spectrometer software L900. UV-Vis absorption spectra were recorded with a Shimadzu 1601PC

1
2
3
4 spectrophotometer. Photoluminescence (PL) measurements were performed at room temperature
5
6 using a Hitachi 4500 fluorescence spectrophotometer and a Perkin-Elmer LS50B
7
8 spectrofluorimeter. Commercially available reagents and solvents were used without further
9
10 purification. Reaction substrates 2,4-dien-1-ones¹⁶, 2-oxo-3-enoates¹⁷ and photocatalyst
11
12 **Ru(deeb)₃(PF₆)₂**¹⁸ were prepared according to the procedures in the literatures. For the irradiation,
13
14 the material of the reaction vessel is common glass; the distance from the light source to the
15
16 irradiation is about 0.5 cm. No use of filters was used in the general procedures.
17
18
19
20
21
22

23 **General procedure for the cross intermolecular [2 + 2] cycloaddition of 2,4-dien-1-ones**
24
25 **and olefins:** A 10 mL Pyrex tube equipped with a magnetic stirring bar was charged with
26
27 2,4-dien-1-one (**1**, 0.1 mmol), 1,1-disubstituted olefins (**2**, 0.12 mmol), Ru(bpy)₃Cl₂ (2 mol%) in
28
29 2.5 mL HFIP. The mixture was degassed with Nitrogen and irradiated by blue LEDs ($\lambda = 450$ nm)
30
31 for 10 hours at room temperature, then the solution was concentrated *in vacuo*. The diastereomer
32
33 ratios were determined by ¹H-NMR analysis of the crude reaction mixture, and the yield was
34
35 determined using diphenylacetonitrile as an internal standard. The residue was purified by column
36
37 chromatography on silica gel to get the isolated [2+2] products.
38
39
40
41
42
43

44 *DL-((1R,2S)-2-(2-methylprop-1-en-1-yl)-3,3-diphenylcyclobutyl)(phenyl)methanone (3aa):*
45
46 Isolated yield : 29.4 mg, 80%. ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.90 (m, 2H), 7.60 – 7.53 (m,
47
48 1H), 7.44 (t, $J = 7.7$ Hz, 2H), 7.40 – 7.36 (m, 4H), 7.36 – 7.24 (m, 3H), 7.22 – 7.15 (m, 3H), 4.77
49
50 (d, $J = 10.5$ Hz, 1H), 4.13 (dd, $J = 19.8, 9.9$ Hz, 1H), 3.97 – 3.88 (m, 1H), 3.25 (dd, $J = 11.8, 7.7$
51
52 Hz, 1H), 2.92 (dd, $J = 11.7, 10.5$ Hz, 1H), 1.63 (d, $J = 0.9$ Hz, 3H), 1.58 (d, $J = 1.1$ Hz, 3H).
53
54
55 ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 200.2, 151.3, 143.1, 136.5, 134.6, 133.0, 128.7, 128.42,
56
57
58

1
2
3
4 128.36, 128.2, 126.2, 125.8, 124.6, 51.8, 47.4, 45.2, 33.7, 26.0, 18.4. HRMS (ESI) calculated for
5
6 C₂₇H₂₆NaO⁺ [M+Na]⁺: 389.1876, found: 389.1862.
7
8
9
10

11 *DL-((1S,2S,3S,4S)-3,4-bis(2-methylprop-1-en-1-yl)cyclobutane-1,2-diyl)bis(phenylmethanone*
12
13 *e) (dimer of 1a):* Isolated yield : 16.4 mg, 44%. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.9
14 Hz, 4H), 7.51 (t, *J* = 7.3 Hz, 2H), 7.40 (t, *J* = 7.6 Hz, 4H), 5.35 (d, *J* = 7.3 Hz, 2H), 4.25 – 4.12 (m,
15 2H), 3.10 – 2.99 (m, 2H), 1.68 (s, 6H), 1.31 (s, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 199.5,
16 136.1, 135.3, 133.1, 128.9, 128.3, 126.6, 46.7, 42.9, 25.7, 18.3. HRMS (ESI) calculated for
17 C₂₆H₂₈NaO₂⁺ [M+Na]⁺: 395.1982, found: 395.1967.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

DL-((1R,2S)-2-(2-methylprop-1-en-1-yl)-3,3-diphenylcyclobutyl)(p-tolyl)methanone (3ba):
Isolated yield : 29.7 mg, 78%. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 7.9 Hz, 2H), 7.27 – 7.21
(m, 4H), 7.20 – 7.08 (m, 5H), 7.07 – 7.01 (m, 3H), 4.63 (d, *J* = 10.5 Hz, 1H), 3.98 (t, *J* = 10.0 Hz,
1H), 3.76 (dd, *J* = 18.0, 9.7 Hz, 1H), 3.09 (dd, *J* = 11.7, 7.8 Hz, 1H), 2.76 (t, *J* = 11.1 Hz, 1H),
2.29 (s, 3H), 1.50 (s, 3H), 1.46 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.6, 150.2, 142.6,
142.0, 133.3, 132.9, 127.9, 127.7, 127.3, 127.2, 127.0, 125.1, 125.0, 124.6, 123.6, 50.7, 46.2, 43.9,
32.6, 24.9, 20.6, 17.3. HRMS (ESI) calculated for C₂₈H₂₈NaO⁺ [M+Na]⁺: 403.2032, found:
403.2017.

DL-(4-methoxyphenyl)((1R,2S)-2-(2-methylprop-1-en-1-yl)-3,3-diphenylcyclobutyl)methanone
e (3ca): Isolated yield : 32.5 mg, 75%. ¹H NMR (400 MHz, CDCl₃) 1H NMR (400 MHz, CDCl₃)
δ 7.86 (d, *J* = 8.6 Hz, 2H), 7.36 – 7.30 (m, 4H), 7.28 – 7.19 (m, 3H), 7.17 – 7.09 (m, 3H), 6.86 (d,
J = 8.6 Hz, 2H), 4.71 (d, *J* = 10.5 Hz, 1H), 4.05 (t, *J* = 10.1 Hz, 1H), 3.86 – 3.75 (m, 4H), 3.16 (dd,
J = 11.8, 7.8 Hz, 1H), 2.86 (t, *J* = 11.1 Hz, 1H), 1.58 (s, 3H), 1.55 (s, 3H). ¹³C{¹H} NMR (101

1
2
3
4 MHz, CDCl₃) δ 198.5, 163.4, 151.3, 143.1, 134.4, 130.9, 129.5, 128.4, 128.3, 128.1, 126.2, 126.1,
5
6 125.7, 124.7, 113.5, 55.4, 51.7, 47.3, 44.8, 33.5, 25.9, 18.4. HRMS (ESI) calculated for
7
8 C₂₈H₂₈NaO₂⁺ [M+Na]⁺: 419.1982, found: 419.1965.
9
10

11
12 *DL-(2-methoxyphenyl)((1R,2S)-2-(2-methylprop-1-en-1-yl)-3,3-diphenylcyclobutyl)methanone*
13
14 *e (3da)*: Isolated yield : 32.5 mg, 82%. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.6 Hz, 1H),
15 7.38 (t, *J* = 7.8 Hz, 1H), 7.31 – 7.15 (m, 7H), 7.15 – 7.09 (m, 3H), 6.92 (t, *J* = 7.5 Hz, 1H), 6.86 (d,
16
17 *J* = 8.4 Hz, 1H), 4.56 (d, *J* = 10.2 Hz, 1H), 4.11 – 3.89 (m, 2H), 3.82 (s, 3H), 3.23 (dd, *J* = 11.5,
18
19 7.7 Hz, 1H), 2.61 (t, *J* = 10.9 Hz, 1H), 1.56 (s, 3H), 1.51 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃)
20
21 δ 203.0, 158.5, 151.4, 143.3, 133.2, 132.9, 130.4, 128.3, 128.2, 127.9, 126.2, 125.9, 125.7, 125.1,
22
23 120.5, 111.2, 55.4, 51.6, 48.5, 46.6, 34.7, 26.0, 18.1. HRMS (ESI) calculated for C₂₈H₂₈NaO₂⁺
24
25 [M+Na]⁺: 419.1982, found: 419.1966.
26
27
28

29
30 *DL-(3-methoxyphenyl)((1R,2S)-2-(2-methylprop-1-en-1-yl)-3,3-diphenylcyclobutyl)methanone*
31
32 *e (3ea)*: Isolated yield : 31.7 mg, 80%. ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.43 (m, 2H), 7.40 –
33
34 7.34 (m, 4H), 7.34 – 7.28 (m, 3H), 7.28 – 7.22 (m, 1H), 7.20 – 7.15 (m, 3H), 7.13 – 7.05 (m, 1H),
35
36 4.77 (d, *J* = 10.5 Hz, 1H), 4.13 (t, *J* = 10.0 Hz, 1H), 3.94 – 3.85 (m, 1H), 3.83 (s, 3H), 3.24 (dd, *J*
37
38 = 11.8, 7.8 Hz, 1H), 2.95 – 2.88 (m, 1H), 1.64 (s, 3H), 1.62 (s, 3H). ¹³C {¹H} NMR (101 MHz,
39
40 CDCl₃) δ 199.9, 159.9, 151.3, 143.2, 138.1, 134.6, 129.4, 128.5, 128.4, 128.2, 126.2, 125.8, 124.9,
41
42 121.4, 119.5, 113.1, 55.5, 51.9, 47.4, 45.4, 33.9, 26.0, 18.5. HRMS (ESI) calculated for
43
44 C₂₈H₂₈NaO₂⁺ [M+Na]⁺: 419.1982, found: 419.1967.
45
46
47

48
49 *DL-(4-fluorophenyl)((1R,2S)-2-(2-methylprop-1-en-1-yl)-3,3-diphenylcyclobutyl)methanone*
50
51 *(3fa)*: Isolated yield : 27.0 mg, 70%. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (dd, *J* = 8.8, 5.5 Hz, 2H),
52
53
54
55
56
57
58
59
60

1
2
3
4 7.38 (d, $J = 4.3$ Hz, 4H), 7.35 – 7.24 (m, 3H), 7.22 – 7.16 (m, 3H), 7.09 (t, $J = 8.6$ Hz, 2H), 4.80
5 (d, $J = 10.6$ Hz, 1H), 4.10 (t, $J = 10.1$ Hz, 1H), 3.89 (td, $J = 10.0, 7.9$ Hz, 1H), 3.24 (dd, $J = 11.8,$
6 7.7 Hz, 1H), 2.95 (t, 1H), 1.65 (s, 3H), 1.59 (s, 3H). $^{13}\text{C}\{1\text{H}\}$ NMR (101 MHz, CDCl_3) δ 198.5,
7 165.9 (d, $J_{\text{C}-\text{F}} = 254.5$ Hz), 151.3, 143.2, 134.8, 133.1 (d, $J_{\text{C}-\text{F}} = 0.13$ Hz), 131.4 (d, $J_{\text{C}-\text{F}} = 9.2$ Hz),
8 128.6, 128.5, 128.3, 126.4, 126.3, 126.0, 124.8, 115.5 (d, $J_{\text{C}-\text{F}} = 21.8$ Hz), 52.0, 47.8, 45.2, 33.6,
9 26.1, 18.6. ^{19}F NMR (377 MHz, CDCl_3) δ -105.48 (s). HRMS (ESI) calculated for $\text{C}_{27}\text{H}_{25}\text{NaFO}^+$
10 [M+Na]⁺: 407.1782, found: 407.1766.

11
12
13
14
15
16
17 DL-(4-chlorophenyl)((1R,2S)-2-(2-methylprop-1-en-1-yl)-3,3-diphenylcyclobutyl)methanone
18
19 e (**3ga**): Isolated yield : 28.1 mg, 70%. ^1H NMR (400 MHz, CDCl_3) δ 7.87 (d, $J = 8.6$ Hz, 2H),
20 7.44 – 7.36 (m, 6H), 7.36 – 7.24 (m, 3H), 7.24 – 7.16 (m, 3H), 4.81 (d, $J = 10.6$ Hz, 1H), 4.11 (t, J
21 = 10.1 Hz, 1H), 3.94 – 3.82 (m, 1H), 3.24 (dd, $J = 11.8, 7.7$ Hz, 1H), 3.00 – 2.90 (m, 1H), 1.66 (s,
22 3H), 1.60 (s, 3H). $^{13}\text{C}\{1\text{H}\}$ NMR (101 MHz, CDCl_3) δ 198.9, 151.3, 143.1, 139.6, 135.1, 134.9,
23 130.2, 128.8, 128.6, 128.5, 128.3, 126.4, 126.3, 126.0, 124.8, 52.0, 47.8, 45.3, 33.6, 26.1, 18.6.
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 HRMS (ESI) calculated for $\text{C}_{27}\text{H}_{25}\text{NaClO}^+$ [M+Na]⁺: 423.1486, found: 423.1471.

40
41
42 DL-(4-bromophenyl)((1R,2S)-2-(2-methylprop-1-en-1-yl)-3,3-diphenylcyclobutyl)methanone
43
44 (**3ha**): Isolated yield : 30.3 mg, 68%. ^1H NMR (400 MHz, CDCl_3) δ 7.77 (d, $J = 8.5$ Hz, 2H), 7.56
45 (d, $J = 8.5$ Hz, 2H), 7.44 – 7.34 (m, 4H), 7.34 – 7.23 (m, 3H), 7.22 – 7.12 (m, 3H), 4.77 (d, $J =$
46 10.5 Hz, 1H), 4.07 (t, $J = 10.1$ Hz, 1H), 3.91 – 3.79 (m, 1H), 3.21 (dd, $J = 11.8, 7.7$ Hz, 1H), 2.98
47 – 2.88 (m, 1H), 1.64 (s, 3H), 1.57 (s, 3H). $^{13}\text{C}\{1\text{H}\}$ NMR (101 MHz, CDCl_3) δ 199.0, 151.1,
48 143.0, 135.4, 134.8, 131.7, 131.0, 130.2, 128.43, 128.42, 128.2, 126.3, 126.2, 125.9, 124.7, 51.9,
49 47.7, 45.2, 33.5, 26.0, 18.5. HRMS (ESI) calculated for $\text{C}_{27}\text{H}_{25}\text{NaBrO}^+$ [M+Na]⁺: 467.0981, found:
50 467.0965.

1
2
3
4 *DL-((1R,2S)-2-(2-methylprop-1-en-1-yl)-3,3-diphenylcyclobutyl)(4-(trifluoromethyl)phenyl)m*
5 *ethanone (3ia)*: Isolated yield : 29.1 mg, 67%. ^1H NMR (400 MHz, CDCl_3) δ 8.01 (d, J = 8.2 Hz, 2H), 7.70 (d, J = 8.2 Hz, 2H), 7.40 – 7.24 (m, 7H), 7.22 – 7.16 (m, 3H), 4.80 (d, J = 10.6 Hz, 1H), 4.11 (t, J = 10.1 Hz, 1H), 3.91 (td, J = 9.9, 7.9 Hz, 1H), 3.26 (dd, J = 11.8, 7.7 Hz, 1H), 2.95 (dd, J = 11.7, 10.5 Hz, 1H), 1.64 (s, 3H), 1.57 (s, 3H). $^{13}\text{C}\{\text{H}\}$ NMR (101 MHz, CDCl_3) ^{13}C NMR (101 MHz, CDCl_3) δ 199.2, 151.1, 142.9, 139.4, 135.0, 134.4 (q, $J_{\text{C-F}}$ = 32.6 Hz), 129.0, 128.44, 128.41, 128.2, 126.3, 126.1, 126.0, 125.4 (q, $J_{\text{C-F}}$ = 3.7 Hz), 124.6, 123.8 (q, $J_{\text{C-F}}$ = 272.7 Hz), 52.0, 47.7, 45.6, 33.4, 25.9, 18.4. ^{19}F NMR (377 MHz, CDCl_3) δ -63.08 (s). HRMS (ESI) calculated for $\text{C}_{28}\text{H}_{25}\text{NaF}_3\text{O}^+$ [M+Na] $^+$: 457.1750, found: 457.1737.

27
28 *DL-((1R,2S)-2-(2-methylprop-1-en-1-yl)-3,3-diphenylcyclobutyl)(4-nitrophenyl)methanone*
29
30 *(3ja)*: Isolated yield: 12.7 mg, 31%. ^1H NMR (400 MHz, CDCl_3) δ 8.16 (d, J = 8.4 Hz, 2H), 7.94 (d, J = 8.4 Hz, 2H), 7.31 – 7.15 (m, 7H), 7.12 – 7.01 (m, 3H), 4.67 (d, J = 10.5 Hz, 1H), 3.95 (t, J = 10.1 Hz, 1H), 3.79 (dd, J = 17.7, 9.7 Hz, 1H), 3.13 (dd, J = 11.9, 7.6 Hz, 1H), 2.84 (t, J = 11.1 Hz, 1H), 1.53 (s, 3H), 1.43 (s, 3H). $^{13}\text{C}\{\text{H}\}$ NMR (101 MHz, CDCl_3) δ 197.6, 149.7, 149.2, 141.4, 139.8, 134.2, 128.6, 127.3, 127.18, 127.15, 125.3, 124.91, 124.88, 123.2, 122.4, 50.8, 46.8, 44.6, 31.8, 24.9, 17.4. HRMS (ESI) calculated for $\text{C}_{27}\text{H}_{25}\text{NO}_3\text{Na}^+$ [M+Na] $^+$: 434.1727, found: 434.1714.

49
50 *DL-((1R,2S)-2-(2-methylprop-1-en-1-yl)-3,3-diphenylcyclobutyl)(naphthalen-2-yl)methanone*
51
52 *(3ka)*: Isolated yield : 15.4 mg, 37%. ^1H NMR (400 MHz, CDCl_3) δ 8.22 (s, 1H), 7.90 (d, J = 8.6 Hz, 1H), 7.78 – 7.70 (m, 3H), 7.45 (t, J = 7.4 Hz, 1H), 7.40 (t, J = 7.4 Hz, 1H), 7.26 (d, J = 4.2 Hz, 4H), 7.20 – 7.12 (m, 3H), 7.08 – 7.01 (m, 3H), 4.74 (d, J = 10.3 Hz, 1H), 4.04 – 3.83 (m, 2H), 3.13 (dd, J = 11.9, 7.5 Hz, 1H), 2.89 (t, J = 11.0 Hz, 1H), 1.48 (s, 3H), 1.32 (s, 3H). $^{13}\text{C}\{\text{H}\}$

1
2
3
4 NMR (101 MHz, CDCl₃) δ 200.0, 151.3, 143.1, 135.6, 134.8, 133.8, 132.5, 130.7, 129.5, 128.45,
5
6 128.40, 128.3, 128.2, 127.82, 127.79, 126.7, 126.2, 126.1, 125.8, 124.8, 124.3, 51.8, 47.9, 45.3,
7
8
9 33.1, 26.0, 18.4. HRMS (ESI) calculated for C₃₁H₂₈NaO⁺ [M+Na]⁺: 439.2032, found: 439.2019.
10
11
12

13 *DL-(1R,2S)-ethyl 2-(2-methylprop-1-en-1-yl)-3,3-diphenylcyclobutanecarboxylate (3la):*
14
15 Isolated yield : 13.4 mg, 40%. ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.11 (m, 6H), 7.07 – 6.97 (m,
16
17 4H), 4.51 (d, *J* = 10.3 Hz, 1H), 4.05 – 3.94 (m, 3H), 3.09 (dd, *J* = 11.4, 8.1 Hz, 1H), 2.87 (dd, *J* =
18
19 18.4, 9.9 Hz, 1H), 2.52 (t, *J* = 11.1 Hz, 1H), 1.72 (s, 3H), 1.52 (s, 3H), 1.11 (t, *J* = 7.1 Hz, 3H).
20
21
22 ¹³C{1H} NMR (101 MHz, CDCl₃) δ 173.1, 150.0, 141.4, 132.6, 127.2, 127.1, 126.9, 125.0, 124.7,
23
24 123.4, 59.3, 51.1, 45.8, 40.6, 33.2, 24.9, 17.4, 13.2. HRMS (ESI) calculated for C₂₃H₂₆O₂Na⁺
25
26 [M+Na]⁺: 357.1825, found: 357.1813.
27
28
29
30

31 *DL-(1R,2S)-tert-butyl 2-(2-methylprop-1-en-1-yl)-3,3-diphenylcyclobutanecarboxylate (3ma):*
32
33 Isolated yield : 15.2 mg, 42%. ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.12 (m, 6H), 7.10 – 7.02 (m,
34
35 4H), 4.51 (d, *J* = 10.4 Hz, 1H), 3.93 (t, *J* = 10.1 Hz, 1H), 3.11 – 2.97 (m, 1H), 2.79 (dd, *J* = 18.3,
36
37 9.9 Hz, 1H), 2.49 (t, *J* = 11.1 Hz, 1H), 1.74 (s, 3H), 1.54 (s, 3H), 1.32 (s, 9H). ¹³C{1H} NMR (101
38
39 MHz, CDCl₃) δ 173.6, 151.3, 142.7, 133.2, 128.3, 128.2, 127.9, 126.1, 126.0, 125.7, 124.8, 80.1,
40
41 52.0, 47.1, 42.6, 34.1, 28.1, 26.0, 18.6. HRMS (ESI) calculated for C₂₅H₃₀O₂Na⁺ [M+Na]⁺:
42
43 385.2138, found: 385.2124.
44
45
46
47
48
49

50 *DL-(1R,2S)-phenyl 2-(2-methylprop-1-en-1-yl)-3,3-diphenylcyclobutanecarboxylate (3na):*
51
52 Isolated yield : 11.1 mg, 29%. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.32 (m, 8H), 7.26 – 7.20 (m,
53
54 5H), 7.11 – 7.06 (m, 2H), 4.75 (d, *J* = 10.4 Hz, 1H), 4.30 (t, *J* = 10.0 Hz, 1H), 3.37 (dd, *J* = 11.3,
55
56 8.0 Hz, 1H), 3.32 – 3.24 (m, 1H), 2.83 (t, *J* = 10.8 Hz, 1H), 1.94 (s, 3H), 1.71 (s, 3H). ¹³C{1H}

1
2
3
4 NMR (101 MHz, CDCl₃) δ 172.7, 151.1, 151.0, 142.5, 134.3, 129.5, 128.5, 128.3, 128.2, 126.3,
5
6 126.2, 126.0, 125.8, 124.4, 121.6, 52.6, 47.3, 42.0, 34.5, 26.1, 18.7. HRMS (ESI) calculated for
7
8 C₂₇H₂₆O₂Na⁺ [M+Na]⁺: 405.1825, found: 405.1811.
9
10

11
12 *DL-(1R,2S)-benzyl 2-(2-methylprop-1-en-1-yl)-3,3-diphenylcyclobutanecarboxylate (3oa):*
13
14 Isolated yield : 16.2 mg, 41%. ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.38 (m, 5H), 7.38 – 7.31 (m,
15 6H), 7.29 – 7.21 (m, 4H), 5.21 (q, *J* = 12.4 Hz, 2H), 4.73 (d, *J* = 10.4 Hz, 1H), 4.21 (t, *J* = 10.1 Hz,
16 1H), 3.30 (dd, *J* = 11.4, 7.9 Hz, 1H), 3.20 – 3.10 (m, 1H), 2.77 (t, *J* = 11.0 Hz, 1H), 1.84 (s, 3H),
17 1.71 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.1, 151.2, 142.6, 136.4, 134.0, 128.7, 128.5,
18 128.4, 128.3, 128.23, 128.16, 126.3, 126.2, 126.0, 124.7, 66.3, 52.6, 47.3, 41.8, 34.4, 26.1, 18.6.
19
20
21
22
23
24
25
26
27
28 HRMS (ESI) calculated for C₂₈H₂₈O₂Na⁺ [M+Na]⁺: 419.1982, found: 419.1964.
29
30

31 *DL-((1R,2S)-2-(2-methylprop-1-en-1-yl)-3,3-di-p-tolylcyclobutyl)(phenyl)methanone (3ab):*
32
33 Isolated yield : 29.7 mg, 75%. ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.98 (m, 2H), 7.65 (t, *J* = 7.4
34 Hz, 1H), 7.53 (t, *J* = 7.7 Hz, 2H), 7.38 – 7.33 (m, 2H), 7.28 (d, *J* = 8.2 Hz, 2H), 7.22 (d, *J* = 8.0 Hz,
35 2H), 7.16 (d, *J* = 8.1 Hz, 2H), 4.91 (d, *J* = 10.5 Hz, 1H), 4.17 (t, *J* = 10.1 Hz, 1H), 4.04 – 3.95 (m,
36 1H), 3.29 (dd, *J* = 11.7, 7.7 Hz, 1H), 2.96 (dd, *J* = 11.5, 10.6 Hz, 1H), 2.48 (s, 3H), 2.44 (s, 3H),
37 1.74 (s, 3H), 1.66 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 201.0, 149.4, 141.2, 137.6, 136.4,
38 135.9, 135.1, 133.7, 129.8, 129.7, 129.5, 129.2, 129.1, 126.8, 125.8, 52.1, 48.2, 46.1, 34.8, 26.7,
39 21.9, 21.8, 19.2. HRMS (ESI) calculated for C₂₉H₃₀ONa⁺ [M+Na]⁺: 417.2189, found: 417.2173.
40
41
42
43
44
45
46
47
48
49
50
51
52

53 *DL-((1R,2S)-3,3-bis(4-methoxyphenyl)-2-(2-methylprop-1-en-1-yl)cyclobutyl)(phenyl)methanone (3ac):* Isolated yield : 15.5 mg, 35%. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 7.3 Hz, 2H),
54 7.52 (t, *J* = 7.4 Hz, 1H), 7.40 (t, *J* = 7.7 Hz, 2H), 7.24 (d, *J* = 8.8 Hz, 2H), 7.06 (d, *J* = 8.6 Hz, 2H),
55 7.04 (d, *J* = 8.6 Hz, 2H), 6.96 (d, *J* = 8.6 Hz, 2H), 6.88 (d, *J* = 8.6 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H),
56 6.84 (d, *J* = 8.6 Hz, 2H), 6.78 (d, *J* = 8.6 Hz, 2H), 6.76 (d, *J* = 8.6 Hz, 2H), 6.74 (d, *J* = 8.6 Hz, 2H),
57 6.72 (d, *J* = 8.6 Hz, 2H), 6.68 (d, *J* = 8.6 Hz, 2H), 6.66 (d, *J* = 8.6 Hz, 2H), 6.64 (d, *J* = 8.6 Hz, 2H),
58 6.62 (d, *J* = 8.6 Hz, 2H), 6.58 (d, *J* = 8.6 Hz, 2H), 6.56 (d, *J* = 8.6 Hz, 2H), 6.54 (d, *J* = 8.6 Hz, 2H),
59 6.52 (d, *J* = 8.6 Hz, 2H), 6.48 (d, *J* = 8.6 Hz, 2H), 6.46 (d, *J* = 8.6 Hz, 2H), 6.44 (d, *J* = 8.6 Hz, 2H),
60 6.42 (d, *J* = 8.6 Hz, 2H), 6.38 (d, *J* = 8.6 Hz, 2H), 6.36 (d, *J* = 8.6 Hz, 2H), 6.34 (d, *J* = 8.6 Hz, 2H),
6.32 (d, *J* = 8.6 Hz, 2H), 6.28 (d, *J* = 8.6 Hz, 2H), 6.26 (d, *J* = 8.6 Hz, 2H), 6.24 (d, *J* = 8.6 Hz, 2H),
6.22 (d, *J* = 8.6 Hz, 2H), 6.18 (d, *J* = 8.6 Hz, 2H), 6.16 (d, *J* = 8.6 Hz, 2H), 6.14 (d, *J* = 8.6 Hz, 2H),
6.12 (d, *J* = 8.6 Hz, 2H), 6.08 (d, *J* = 8.6 Hz, 2H), 6.06 (d, *J* = 8.6 Hz, 2H), 6.04 (d, *J* = 8.6 Hz, 2H),
6.02 (d, *J* = 8.6 Hz, 2H), 6.00 (d, *J* = 8.6 Hz, 2H), 5.98 (d, *J* = 8.6 Hz, 2H), 5.96 (d, *J* = 8.6 Hz, 2H),
5.94 (d, *J* = 8.6 Hz, 2H), 5.92 (d, *J* = 8.6 Hz, 2H), 5.90 (d, *J* = 8.6 Hz, 2H), 5.88 (d, *J* = 8.6 Hz, 2H),
5.86 (d, *J* = 8.6 Hz, 2H), 5.84 (d, *J* = 8.6 Hz, 2H), 5.82 (d, *J* = 8.6 Hz, 2H), 5.80 (d, *J* = 8.6 Hz, 2H),
5.78 (d, *J* = 8.6 Hz, 2H), 5.76 (d, *J* = 8.6 Hz, 2H), 5.74 (d, *J* = 8.6 Hz, 2H), 5.72 (d, *J* = 8.6 Hz, 2H),
5.70 (d, *J* = 8.6 Hz, 2H), 5.68 (d, *J* = 8.6 Hz, 2H), 5.66 (d, *J* = 8.6 Hz, 2H), 5.64 (d, *J* = 8.6 Hz, 2H),
5.62 (d, *J* = 8.6 Hz, 2H), 5.60 (d, *J* = 8.6 Hz, 2H), 5.58 (d, *J* = 8.6 Hz, 2H), 5.56 (d, *J* = 8.6 Hz, 2H),
5.54 (d, *J* = 8.6 Hz, 2H), 5.52 (d, *J* = 8.6 Hz, 2H), 5.50 (d, *J* = 8.6 Hz, 2H), 5.48 (d, *J* = 8.6 Hz, 2H),
5.46 (d, *J* = 8.6 Hz, 2H), 5.44 (d, *J* = 8.6 Hz, 2H), 5.42 (d, *J* = 8.6 Hz, 2H), 5.40 (d, *J* = 8.6 Hz, 2H),
5.38 (d, *J* = 8.6 Hz, 2H), 5.36 (d, *J* = 8.6 Hz, 2H), 5.34 (d, *J* = 8.6 Hz, 2H), 5.32 (d, *J* = 8.6 Hz, 2H),
5.30 (d, *J* = 8.6 Hz, 2H), 5.28 (d, *J* = 8.6 Hz, 2H), 5.26 (d, *J* = 8.6 Hz, 2H), 5.24 (d, *J* = 8.6 Hz, 2H),
5.22 (d, *J* = 8.6 Hz, 2H), 5.20 (d, *J* = 8.6 Hz, 2H), 5.18 (d, *J* = 8.6 Hz, 2H), 5.16 (d, *J* = 8.6 Hz, 2H),
5.14 (d, *J* = 8.6 Hz, 2H), 5.12 (d, *J* = 8.6 Hz, 2H), 5.10 (d, *J* = 8.6 Hz, 2H), 5.08 (d, *J* = 8.6 Hz, 2H),
5.06 (d, *J* = 8.6 Hz, 2H), 5.04 (d, *J* = 8.6 Hz, 2H), 5.02 (d, *J* = 8.6 Hz, 2H), 5.00 (d, *J* = 8.6 Hz, 2H),
4.98 (d, *J* = 8.6 Hz, 2H), 4.96 (d, *J* = 8.6 Hz, 2H), 4.94 (d, *J* = 8.6 Hz, 2H), 4.92 (d, *J* = 8.6 Hz, 2H),
4.90 (d, *J* = 8.6 Hz, 2H), 4.88 (d, *J* = 8.6 Hz, 2H), 4.86 (d, *J* = 8.6 Hz, 2H), 4.84 (d, *J* = 8.6 Hz, 2H),
4.82 (d, *J* = 8.6 Hz, 2H), 4.80 (d, *J* = 8.6 Hz, 2H), 4.78 (d, *J* = 8.6 Hz, 2H), 4.76 (d, *J* = 8.6 Hz, 2H),
4.74 (d, *J* = 8.6 Hz, 2H), 4.72 (d, *J* = 8.6 Hz, 2H), 4.70 (d, *J* = 8.6 Hz, 2H), 4.68 (d, *J* = 8.6 Hz, 2H),
4.66 (d, *J* = 8.6 Hz, 2H), 4.64 (d, *J* = 8.6 Hz, 2H), 4.62 (d, *J* = 8.6 Hz, 2H), 4.60 (d, *J* = 8.6 Hz, 2H),
4.58 (d, *J* = 8.6 Hz, 2H), 4.56 (d, *J* = 8.6 Hz, 2H), 4.54 (d, *J* = 8.6 Hz, 2H), 4.52 (d, *J* = 8.6 Hz, 2H),
4.50 (d, *J* = 8.6 Hz, 2H), 4.48 (d, *J* = 8.6 Hz, 2H), 4.46 (d, *J* = 8.6 Hz, 2H), 4.44 (d, *J* = 8.6 Hz, 2H),
4.42 (d, *J* = 8.6 Hz, 2H), 4.40 (d, *J* = 8.6 Hz, 2H), 4.38 (d, *J* = 8.6 Hz, 2H), 4.36 (d, *J* = 8.6 Hz, 2H),
4.34 (d, *J* = 8.6 Hz, 2H), 4.32 (d, *J* = 8.6 Hz, 2H), 4.30 (d, *J* = 8.6 Hz, 2H), 4.28 (d, *J* = 8.6 Hz, 2H),
4.26 (d, *J* = 8.6 Hz, 2H), 4.24 (d, *J* = 8.6 Hz, 2H), 4.22 (d, *J* = 8.6 Hz, 2H), 4.20 (d, *J* = 8.6 Hz, 2H),
4.18 (d, *J* = 8.6 Hz, 2H), 4.16 (d, *J* = 8.6 Hz, 2H), 4.14 (d, *J* = 8.6 Hz, 2H), 4.12 (d, *J* = 8.6 Hz, 2H),
4.10 (d, *J* = 8.6 Hz, 2H), 4.08 (d, *J* = 8.6 Hz, 2H), 4.06 (d, *J* = 8.6 Hz, 2H), 4.04 (d, *J* = 8.6 Hz, 2H),
4.02 (d, *J* = 8.6 Hz, 2H), 4.00 (d, *J* = 8.6 Hz, 2H), 3.98 (d, *J* = 8.6 Hz, 2H), 3.96 (d, *J* = 8.6 Hz, 2H),
3.94 (d, *J* = 8.6 Hz, 2H), 3.92 (d, *J* = 8.6 Hz, 2H), 3.90 (d, *J* = 8.6 Hz, 2H), 3.88 (d, *J* = 8.6 Hz, 2H),
3.86 (d, *J* = 8.6 Hz, 2H), 3.84 (d, *J* = 8.6 Hz, 2H), 3.82 (d, *J* = 8.6 Hz, 2H), 3.80 (d, *J* = 8.6 Hz, 2H),
3.78 (d, *J* = 8.6 Hz, 2H), 3.76 (d, *J* = 8.6 Hz, 2H), 3.74 (d, *J* = 8.6 Hz, 2H), 3.72 (d, *J* = 8.6 Hz, 2H),
3.70 (d, *J* = 8.6 Hz, 2H), 3.68 (d, *J* = 8.6 Hz, 2H), 3.66 (d, *J* = 8.6 Hz, 2H), 3.64 (d, *J* = 8.6 Hz, 2H),
3.62 (d, *J* = 8.6 Hz, 2H), 3.60 (d, *J* = 8.6 Hz, 2H), 3.58 (d, *J* = 8.6 Hz, 2H), 3.56 (d, *J* = 8.6 Hz, 2H),
3.54 (d, *J* = 8.6 Hz, 2H), 3.52 (d, *J* = 8.6 Hz, 2H), 3.50 (d, *J* = 8.6 Hz, 2H), 3.48 (d, *J* = 8.6 Hz, 2H),
3.46 (d, *J* = 8.6 Hz, 2H), 3.44 (d, *J* = 8.6 Hz, 2H), 3.42 (d, *J* = 8.6 Hz, 2H), 3.40 (d, *J* = 8.6 Hz, 2H),
3.38 (d, *J* = 8.6 Hz, 2H), 3.36 (d, *J* = 8.6 Hz, 2H), 3.34 (d, *J* = 8.6 Hz, 2H), 3.32 (d, *J* = 8.6 Hz, 2H),
3.30 (d, *J* = 8.6 Hz, 2H), 3.28 (d, *J* = 8.6 Hz, 2H), 3.26 (d, *J* = 8.6 Hz, 2H), 3.24 (d, *J* = 8.6 Hz, 2H),
3.22 (d, *J* = 8.6 Hz, 2H), 3.20 (d, *J* = 8.6 Hz, 2H), 3.18 (d, *J* = 8.6 Hz, 2H), 3.16 (d, *J* = 8.6 Hz, 2H),
3.14 (d, *J* = 8.6 Hz, 2H), 3.12 (d, *J* = 8.6 Hz, 2H), 3.10 (d, *J* = 8.6 Hz, 2H), 3.08 (d, *J* = 8.6 Hz, 2H),
3.06 (d, *J* = 8.6 Hz, 2H), 3.04 (d, *J* = 8.6 Hz, 2H), 3.02 (d, *J* = 8.6 Hz, 2H), 3.00 (d, *J* = 8.6 Hz, 2H),
2.98 (d, *J* = 8.6 Hz, 2H), 2.96 (d, *J* = 8.6 Hz, 2H), 2.94 (d, *J* = 8.6 Hz, 2H), 2.92 (d, *J* = 8.6 Hz, 2H),
2.90 (d, *J* = 8.6 Hz, 2H), 2.88 (d, *J* = 8.6 Hz, 2H), 2.86 (d, *J* = 8.6 Hz, 2H), 2.84 (d, *J* = 8.6 Hz, 2H),
2.82 (d, *J* = 8.6 Hz, 2H), 2.80 (d, *J* = 8.6 Hz, 2H), 2.78 (d, *J* = 8.6 Hz, 2H), 2.76 (d, *J* = 8.6 Hz, 2H),
2.74 (d, *J* = 8.6 Hz, 2H), 2.72 (d, *J* = 8.6 Hz, 2H), 2.70 (d, *J* = 8.6 Hz, 2H), 2.68 (d, *J* = 8.6 Hz, 2H),
2.66 (d, *J* = 8.6 Hz, 2H), 2.64 (d, *J* = 8.6 Hz, 2H), 2.62 (d, *J* = 8.6 Hz, 2H), 2.60 (d, *J* = 8.6 Hz, 2H),
2.58 (d, *J* = 8.6 Hz, 2H), 2.56 (d, *J* = 8.6 Hz, 2H), 2.54 (d, *J* = 8.6 Hz, 2H), 2.52 (d, *J* = 8.6 Hz, 2H),
2.50 (d, *J* = 8.6 Hz, 2H), 2.48 (d, *J* = 8.6 Hz, 2H), 2.46 (d, *J* = 8.6 Hz, 2H), 2.44 (d, *J* = 8.6 Hz, 2H),
2.42 (d, *J* = 8.6 Hz, 2H), 2.40 (d, *J* = 8.6 Hz, 2H), 2.38 (d, *J* = 8.6 Hz, 2H), 2.36 (d, *J* = 8.6 Hz, 2H),
2.34 (d, *J* = 8.6 Hz, 2H), 2.32 (d, *J* = 8.6 Hz, 2H), 2.30 (d, *J* = 8.6 Hz, 2H), 2.28 (d, *J* = 8.6 Hz, 2H),
2.26 (d, *J* = 8.6 Hz, 2H), 2.24 (d, *J* = 8.6 Hz, 2H), 2.22 (d, *J* = 8.6 Hz, 2H), 2.20 (d, *J* = 8.6 Hz, 2H),
2.18 (d, *J* = 8.6 Hz, 2H), 2.16 (d, *J* = 8.6 Hz, 2H), 2.14 (d, *J* = 8.6 Hz, 2H), 2.12 (d, *J* = 8.6 Hz, 2H),
2.10 (d, *J* = 8.6 Hz, 2H), 2.08 (d, *J* = 8.6 Hz, 2H), 2.06 (d, *J* = 8.6 Hz, 2H), 2.04 (d, *J* = 8.6 Hz, 2H),
2.02 (d, *J* = 8.6 Hz, 2H), 2.00 (d, *J* = 8.6 Hz, 2H), 1.98 (d, *J* = 8.6 Hz, 2H), 1.96 (d, *J* = 8.6 Hz, 2H),
1.94 (d, *J* = 8.6 Hz, 2H), 1.92 (d, *J* = 8.6 Hz, 2H), 1.90 (d, *J* = 8.6 Hz, 2H), 1.88 (d, *J* = 8.6 Hz, 2H),
1.86 (d, *J* = 8.6 Hz, 2H), 1.84 (d, *J* = 8.6 Hz, 2H), 1.82 (d, *J* = 8.6 Hz, 2H), 1.80 (d, *J* = 8.6 Hz, 2H),
1.78 (d, *J* = 8.6 Hz, 2H), 1.76 (d, *J* = 8.6 Hz, 2H), 1.74 (d, *J* = 8.6 Hz, 2H), 1.72 (d, *J* = 8.6 Hz, 2H),
1.70 (d, *J* = 8.6 Hz, 2H), 1.68 (d, *J* = 8.6 Hz, 2H), 1.66 (d, *J* = 8.6 Hz, 2H), 1.64 (d, *J* = 8.6 Hz, 2H),
1.62 (d, *J* = 8.6 Hz, 2H), 1.60 (d, *J* = 8.6 Hz, 2H), 1.58 (d, *J* = 8.6 Hz, 2H), 1.56 (d, *J* = 8.6 Hz, 2H),
1.54 (d, *J* = 8.6 Hz, 2H), 1.52 (d, *J* = 8.6 Hz, 2H), 1.50 (d, *J* = 8.6 Hz, 2H), 1.48 (d, *J* = 8.6 Hz, 2H),
1.46 (d, *J* = 8.6 Hz, 2H), 1.44 (d, *J* = 8.6 Hz, 2H), 1.42 (d, *J* = 8.6 Hz, 2H), 1.40 (d, *J* = 8.6 Hz, 2H),
1.38 (d, *J* = 8.6 Hz, 2H), 1.36 (d, *J* = 8.6 Hz, 2H), 1.34 (d, *J* = 8.6 Hz, 2H), 1.32 (d, *J* = 8.6 Hz, 2H),
1.30 (d, *J* = 8.6 Hz, 2H), 1.28 (d, *J* = 8.6 Hz, 2H), 1.26 (d, *J* = 8.6 Hz, 2H), 1.24 (d, *J* = 8.6 Hz, 2H),
1.22 (d, *J* = 8.6 Hz, 2H), 1.20 (d, *J* = 8.6 Hz, 2H), 1.18 (d, *J* = 8.6 Hz, 2H), 1.16 (d, *J* = 8.6 Hz, 2H),
1.14 (d, *J* = 8.6 Hz, 2H), 1.12 (d, *J* = 8.6 Hz, 2H), 1.10 (d, *J* = 8.6 Hz, 2H), 1.08 (d, *J* = 8.6 Hz, 2H),
1.06 (d, *J* = 8.6 Hz, 2H), 1.04 (d, *J* = 8.6 Hz, 2H), 1.02 (d, *J* = 8.6 Hz, 2H), 1.00 (d, *J* = 8.6 Hz, 2H),
98 (d, *J* = 8.6 Hz, 2H), 96 (d, *J* = 8.6 Hz, 2H), 94 (d, *J* = 8.6 Hz, 2H), 92 (d, *J* = 8.6 Hz, 2H),
90 (d, *J* = 8.6 Hz, 2H), 88 (d, *J* = 8.6 Hz, 2H), 86 (d, *J* = 8.6 Hz, 2H), 84 (d, *J* = 8.6 Hz, 2H),
82 (d, *J* = 8.6 Hz, 2H), 80 (d, *J* = 8.6 Hz, 2H), 78 (d, *J* = 8.6 Hz, 2H), 76 (d, *J* = 8.6 Hz, 2H),
74 (d, *J* = 8.6 Hz, 2H), 72 (d, *J* = 8.6 Hz, 2H), 70 (d, *J* = 8.6 Hz, 2H), 68 (d, *J* = 8.6 Hz, 2H),
66 (d, *J* = 8.6 Hz, 2H), 64 (d, *J* = 8.6 Hz, 2H), 62 (d, *J* = 8.6 Hz, 2H), 60 (d, *J* = 8.6 Hz, 2H),
58 (d, *J* = 8.6 Hz, 2H), 56 (d, *J* = 8.6 Hz, 2H), 54 (d, *J* = 8.6 Hz, 2H), 52 (d, *J* = 8.6 Hz, 2H),
50 (d, *J* = 8.6 Hz, 2H), 48 (d, *J* = 8.6 Hz, 2H), 46 (d, *J* = 8.6 Hz, 2H), 44 (d, *J* = 8.6 Hz, 2H),
42 (d, *J* = 8.6 Hz, 2H), 40 (d, *J* = 8.6 Hz, 2H), 38 (d, *J* = 8.6 Hz, 2H), 36 (d, *J* = 8.6 Hz, 2H),
34 (d, *J* = 8.6 Hz, 2H), 32 (d, *J* = 8.6 Hz, 2H), 30 (d, *J* = 8.6 Hz, 2H), 28 (d, *J* = 8.6 Hz, 2H),
26 (d, *J* = 8.6 Hz, 2H), 24 (d, *J* = 8.6 Hz, 2H), 22 (d, *J* = 8.6 Hz, 2H), 20 (d, *J* = 8.6 Hz, 2H),
18 (d, *J* = 8.6 Hz, 2H), 16 (d, *J* = 8.6 Hz, 2H), 14 (d, *J* = 8.6 Hz, 2H), 12 (d, *J* = 8.6 Hz, 2H),
10 (d, *J* = 8.6 Hz, 2H), 8 (d, *J* = 8.6 Hz, 2H), 6 (d, *J* = 8.6 Hz, 2H), 4 (d, *J* = 8.6 Hz, 2H),
2 (d, *J* = 8.6 Hz, 2H), 0 (d, *J* = 8.6 Hz, 2H), 1 (d, *J* = 8.6 Hz, 2H), 3 (d, *J* = 8.6 Hz, 2H),
5 (d, *J* = 8.6 Hz, 2H), 7 (d, *J* = 8.6 Hz, 2H), 9 (d, *J* = 8.6 Hz, 2H), 11 (d, *J* = 8.6 Hz, 2H),
13 (d, *J* = 8.6 Hz, 2H), 15 (d, *J* = 8.6 Hz, 2H), 17 (d, *J* = 8.6 Hz, 2H), 19 (d, *J* = 8.6 Hz, 2H),
21 (d, *J* = 8.6 Hz, 2H), 23 (d, *J* = 8.6 Hz, 2H), 25 (d, *J* = 8.6 Hz, 2H), 27 (d, *J* = 8.6 Hz, 2H),
29 (d, *J* = 8.6 Hz, 2H), 31 (d, *J* = 8.6 Hz, 2H), 33 (d, *J* = 8.6 Hz, 2H), 35 (d, *J* = 8.6 Hz, 2H),
37 (d, *J* = 8.6 Hz, 2H), 39 (d, *J* = 8.6 Hz, 2H), 41 (d, *J* = 8.6 Hz, 2H), 43 (d, *J* = 8.6 Hz, 2H),
45 (d, *J* = 8.6 Hz, 2H),

1
2
3
4 6.90 (d, $J = 8.8$ Hz, 2H), 6.83 (d, $J = 8.6$ Hz, 2H), 4.77 (d, $J = 10.4$ Hz, 1H), 4.01 (t, $J = 10.0$ Hz,
5 1H), 3.91 – 3.84 (m, 1H), 3.82 (s, 3H), 3.78 (s, 3H), 3.13 (dd, $J = 11.7, 7.7$ Hz, 1H), 2.90 – 2.78
6 (m, 1H), 1.61 (s, 3H), 1.53 (s, 3H). $^{13}\text{C}\{\text{H}\}$ NMR (101 MHz, CDCl_3) δ 200.2, 158.0, 157.7, 143.9,
7 136.7, 135.8, 134.4, 132.9, 129.4, 128.7, 128.3, 127.1, 124.9, 113.8, 113.5, 55.3, 50.7, 47.5, 45.2,
8 34.1, 29.8, 25.9, 18.4. HRMS (ESI) calculated for $\text{C}_{29}\text{H}_{30}\text{O}_3\text{Na}^+$ $[\text{M}+\text{Na}]^+$: 449.2087, found:
9 449.2072.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

*DL-((1*R*,2*S*)-3,3-bis(4-fluorophenyl)-2-(2-methylprop-1-en-1-yl)cyclobutyl)(phenyl)methanone
(3ad)*: Isolated yield : 32.2 mg, 80%. ^1H NMR (400 MHz, CDCl_3) δ 7.99 – 7.93 (m, 2H), 7.63 (t,
J = 7.4 Hz, 1H), 7.50 (t, $J = 7.7$ Hz, 2H), 7.38 – 7.31 (m, 2H), 7.20 – 7.10 (m, 4H), 7.09 – 7.02 (m,
2H), 4.77 (d, $J = 10.4$ Hz, 1H), 4.10 (t, $J = 10.0$ Hz, 1H), 4.01 – 3.83 (m, 1H), 3.21 (dd, $J = 11.9,$
7.7 Hz, 1H), 2.94 (dd, $J = 11.8, 10.5$ Hz, 1H), 1.69 (d, $J = 0.6$ Hz, 3H), 1.61 (d, $J = 0.7$ Hz, 3H).
 $^{13}\text{C}\{\text{H}\}$ NMR (101 MHz, CDCl_3) δ 200.6, 162.3 (d, $J_{\text{C-F}} = 245.7$ Hz), 162.0 (d, $J_{\text{C-F}} = 244.7$ Hz),
147.6 (d, $J_{\text{C-F}} = 3.3$ Hz), 139.6 (d, $J_{\text{C-F}} = 3.1$ Hz), 137.3, 136.0, 133.9, 130.7 (d, $J_{\text{C-F}} = 7.8$ Hz),
129.5, 129.2, 128.4 (d, $J_{\text{C-F}} = 7.8$ Hz), 125.0, 116.0 (d, $J_{\text{C-F}} = 21.3$ Hz), 115.8 (d, $J_{\text{C-F}} = 21.1$ Hz),
51.8, 48.2, 45.7, 34.8, 26.7, 19.2. ^{19}F NMR (377 MHz, CDCl_3) δ -116.93 (s), -117.00 (s). HRMS
(ESI) calculated for $\text{C}_{27}\text{H}_{24}\text{F}_2\text{O}\text{Na}^+$ $[\text{M}+\text{Na}]^+$: 425.1687, found: 425.1673.

*DL-((1*R*,2*S*)-3,3-bis(4-chlorophenyl)-2-(2-methylprop-1-en-1-yl)cyclobutyl)(phenyl)methane
(3ae)*: Isolated yield : 14.8 mg, 34%. ^1H NMR (400 MHz, CDCl_3) δ 7.90 – 7.84 (m, 2H), 7.57 –
7.50 (m, 1H), 7.41 (t, $J = 7.7$ Hz, 2H), 7.35 – 7.30 (m, 2H), 7.29 – 7.19 (m, 4H), 7.08 – 7.01 (m,
2H), 4.71 (d, $J = 10.5$ Hz, 1H), 4.02 (t, $J = 10.0$ Hz, 1H), 3.89 – 3.78 (m, 1H), 3.12 (dd, $J = 11.9,$
7.7 Hz, 1H), 2.84 (dd, $J = 11.9, 10.4$ Hz, 1H), 1.61 (d, $J = 0.9$ Hz, 3H), 1.53 (d, $J = 1.1$ Hz, 3H).
 $^{13}\text{C}\{\text{H}\}$ NMR (101 MHz, CDCl_3) δ 200.5, 150.0, 142.1, 137.3, 136.3, 133.9, 133.3, 132.7, 130.6,

1
2
3
4 129.5, 129.3, 129.2, 128.4, 124.9, 52.0, 48.1, 45.7, 34.5, 26.4, 19.3. HRMS (ESI) calculated for
5
6 $C_{27}H_{24}OC_{12}Na^+ [M+Na]^+$: 457.1096, found: 457.1082.
7
8

9 *DL-((1R,2S)-3,3-bis(4-bromophenyl)-2-(2-methylprop-1-en-1-yl)cyclobutyl)(phenyl)methanone*
10
11 **(3af)**: Isolated yield : 31.0 mg, 59%. 1H NMR (400 MHz, $CDCl_3$) 1H NMR (400 MHz, $CDCl_3$) δ
12 7.85 (d, J = 7.9 Hz, 2H), 7.52 (t, J = 7.3 Hz, 1H), 7.45 (d, J = 8.1 Hz, 2H), 7.43 – 7.36 (m, 4H),
13
14 7.15 (d, J = 8.1 Hz, 2H), 6.97 (d, J = 8.0 Hz, 2H), 4.69 (d, J = 10.5 Hz, 1H), 3.99 (t, J = 10.0 Hz,
15 1H), 3.82 (dd, J = 18.0, 9.5 Hz, 1H), 3.09 (dd, J = 11.9, 7.7 Hz, 1H), 2.81 (t, J = 11.1 Hz, 1H),
16
17 1.59 (s, 3H), 1.50 (s, 3H). $^{13}C\{1H\}$ NMR (101 MHz, $CDCl_3$) δ 199.6, 149.1, 141.6, 136.1, 135.0,
18
19 133.2, 131.3, 131.0, 130.1, 128.4, 128.0, 127.2, 123.0, 120.5, 119.9, 51.4, 47.1, 44.8, 33.4, 25.3,
20
21 18.4. HRMS (ESI) calculated for $C_{27}H_{24}OBr_2Na^+ [M+Na]^+$: 545.0086, found: 545.0071.
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

General procedure for the cross intermolecular [2 + 2] cycloaddition of 2-oxo-3-enoates

and olefins: A 10 mL Pyrex tube equipped with a magnetic stirring bar was charged with 2-oxo-3-enoates (**4**, 0.1 mmol), 1,1-disubstituted olefins (**2**, 0.12 mmol), $Ru(phen)_3(PF_6)_2$ (2 mol%) in 2.5 mL Acetone. The mixture was degassed with Nitrogen and irradiated by blue LEDs (λ = 450 nm) for 10 hours at room temperature, then the solution was concentrated *in vacuo*. The diastereomer ratios were determined by 1H -NMR analysis of the crude reaction mixture, and the yield was determined using diphenylacetonitrile as an internal standard. The residue was purified by column chromatography on silica gel to get the isolated [2+2] products.

Gram-scale reaction of the cross intermolecular [2 + 2] cycloaddition of 2-oxo-3-enoates

and olefins: A 50 mL Pyrex tube equipped with a magnetic stirring bar was charged with 2-oxo-3-enoates (**4a**, 5 mmol), 1,1-disubstituted olefins (**2a**, 6 mmol), $Ru(phen)_3(PF_6)_2$ (2 mol%) in 25 mL Acetone. The mixture was degassed with Nitrogen and irradiated by blue LEDs (λ = 450

1
2
3
4 nm) for 24 hours at room temperature, then the solution was concentrated *in vacuo*. The residue
5
6 was purified by column chromatography on silica gel to get the isolated [2+2] product in yield of
7
8 82% (1.6 g).
9
10

11
12 **H-D Exchange experiment of product 5aa:** In an argon-filled glove box, **5aa** (38.4 mg, 0.1
13 mmol, 1.0 equiv), Cs₂CO₃ (98 mg, 0.3 mmol, 3.0 equiv) and DMSO-d₆ (1 mL) were added into a
14 dry 10-mL Schlenk tube. The reaction mixture was capped tightly and vigorously stirred in an oil
15 bath maintained at 100 °C for 8 h. After cooled down to RT, the reaction mixture was filtered
16 through a celite pad. The filtrate was analyzed by ¹H NMR and ¹³CNMR spectroscopy. The
17 hydrolysis of ester group was caused by trace water in system which was detected by ¹H NMR
18 before reaction. ¹H NMR (400 MHz, DMSO-d₆) δ 7.35 – 7.28 (m, 2H), 7.29 – 7.23 (m, 2H), 7.19
19 – 7.13 (m, 1H), 7.10 – 7.00 (m, 5H), 6.94 – 6.83 (m, 4H), 4.44 (s, 1H), 3.27 (d, *J* = 11.5 Hz, 1H),
20 2.38 (d, *J* = 11.6 Hz, 1H). ¹³C{¹H} NMR (101 MHz, DMSO-d₆) δ 205.7, 168.6, 151.1, 142.3,
21 139.5, 128.5, 128.3, 127.44, 127.42, 126.1, 126.0, 125.61, 125.59, 79.1, 56.0, 53.0, 50.7, 42.3 (t,
22
23 *J_{C-D}* = 21.1 Hz), 34.8, 18.4.
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

*DL-ethyl 2-oxo-2-((1*R*,2*R*)-2,3,3-triphenylcyclobutyl)acetate (5aa):* Isolated yield : 35.4 mg,
92%. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.32 (m, 4H), 7.27 – 7.12 (m, 7H), 7.12 – 7.06 (m, 2H),
7.02 – 6.94 (m, 2H), 4.67 (d, *J* = 10.5 Hz, 1H), 4.36 (dt, *J* = 10.4, 8.6 Hz, 1H), 4.23 – 4.07 (m, 2H),
3.48 (dd, *J* = 11.6, 8.3 Hz, 1H), 2.80 (t, *J* = 11.1 Hz, 1H), 1.18 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR
(101 MHz, CDCl₃) δ 194.4, 161.6, 150.7, 141.6, 138.4, 129.2, 128.9, 128.7, 128.1, 128.0, 127.2,
126.5, 126.4, 126.3, 62.4, 54.1, 52.7, 44.1, 34.0, 14.0. HRMS (ESI) calculated for C₂₆H₂₄O₃Na⁺
[M + Na]⁺: 407.1618, Found: 407.1622.

1
2
3
4 *DL-ethyl 2-((1*R*,2*R*)-2-(4-fluorophenyl)-3,3-diphenylcyclobutyl)-2-oxoacetate (5ba):* Isolated
5
6 yield : 31.8 mg, 79%. ^1H NMR (400 MHz, CDCl_3) δ 7.37 – 7.27 (m, 4H), 7.25 – 7.12 (m, 4H),
7
8 7.07 – 7.01 (m, 2H), 6.91 – 6.78 (m, 4H), 4.58 (d, J = 10.5 Hz, 1H), 4.31 – 4.08 (m, 3H), 3.44 (dd,
9
10 J = 11.7, 8.3 Hz, 1H), 2.74 (t, J = 11.0 Hz, 1H), 1.22 (t, J = 7.1 Hz, 3H). $^{13}\text{C}\{1\text{H}\}$ NMR (101 MHz,
11
12 CDCl_3) δ ^{13}C NMR (101 MHz, CDCl_3) δ 194.6, 162.6 (d, $J_{\text{C-F}}$ = 246.0 Hz), 161.9, 161.4, 150.8,
13
14 141.8, 134.7 (d, $J_{\text{C-F}}$ = 3.0 Hz), 131.1 (d, $J_{\text{C-F}}$ = 8.0 Hz), 129.4, 129.1, 128.6, 127.1, 126.8, 115.3
15
16 (d, $J_{\text{C-F}}$ = 21.2 Hz), 63.0, 54.5, 52.3, 44.8, 34.4, 14.5. ^{19}F NMR (377 MHz, CDCl_3) δ -115.32 (s).
17
18
19 HRMS (ESI) calculated for $\text{C}_{26}\text{H}_{23}\text{FO}_3\text{Na}^+$ $[\text{M}+\text{Na}]^+$: 425.1523, found: 425.1517.
20
21
22
23
24
25 *DL-ethyl 2-((1*R*,2*R*)-2-(4-chlorophenyl)-3,3-diphenylcyclobutyl)-2-oxoacetate (5ca):* Isolated
26
27
28 yield : 35.6 mg, 85%. ^1H NMR (400 MHz, CDCl_3) δ 7.36 – 7.23 (m, 4H), 7.23 – 7.12 (m, 4H),
29
30 7.09 (d, J = 8.4 Hz, 2H), 7.05 – 6.99 (m, 2H), 6.82 (d, J = 8.4 Hz, 2H), 4.54 (d, J = 10.5 Hz, 1H),
31
32 4.26 – 4.07 (m, 3H), 3.42 (dd, J = 11.7, 8.3 Hz, 1H), 2.72 (t, J = 11.1 Hz, 1H), 1.22 (t, J = 7.1 Hz,
33
34 3H). $^{13}\text{C}\{1\text{H}\}$ NMR (101 MHz, CDCl_3) δ 194.4, 161.8, 150.7, 141.6, 137.4, 133.6, 130.9, 129.2,
35
36 129.1, 128.7, 128.6, 127.1, 126.8, 126.7, 63.1, 54.5, 52.3, 44.6, 34.5, 14.5. MALDI-TOF
37
38 calculated for $\text{C}_{26}\text{H}_{23}\text{ClO}_3\text{Na}^+$ $[\text{M}+\text{Na}]^+$: 441.1228, found: 441.1232.
39
40
41
42
43
44 *DL-ethyl 2-((1*R*,2*R*)-2-(4-bromophenyl)-3,3-diphenylcyclobutyl)-2-oxoacetate (5da):* Isolated
45
46
47 yield : 37.5 mg, 81%. ^1H NMR (400 MHz, CDCl_3) δ 7.30 – 7.25 (m, 2H), 7.25 – 7.18 (m, 4H),
48
49 7.18 – 7.07 (m, 4H), 6.99 (d, J = 7.1 Hz, 2H), 6.72 (d, J = 8.2 Hz, 2H), 4.49 (d, J = 10.5 Hz, 1H),
50
51 4.25 – 4.05 (m, 3H), 3.39 (dd, J = 11.6, 8.4 Hz, 1H), 2.68 (t, J = 11.1 Hz, 1H), 1.17 (t, J = 7.1 Hz,
52
53 3H). $^{13}\text{C}\{1\text{H}\}$ NMR (101 MHz, CDCl_3) δ 193.8, 161.1, 150.1, 140.9, 137.3, 130.9, 130.7, 128.57,
54
55 128.55, 128.1, 126.6, 126.2, 126.1, 121.1, 62.5, 53.7, 51.7, 43.9, 33.8, 13.9. MALDI-TOF
56
57 calculated for $\text{C}_{26}\text{H}_{23}\text{BrO}_3\text{Na}^+$ $[\text{M}+\text{Na}]^+$: 485.0723, found: 485.0726.
58
59
60

1
2
3
4 *DL-ethyl 2-((1*R*,2*R*)-2-(4-methoxyphenyl)-3,3-diphenylcyclobutyl)-2-oxoacetate (5ea):*5
6 Isolated yield : 30.6 mg, 74%. ^1H NMR (400 MHz, CDCl_3) δ 7.37 – 7.24 (m, 4H), 7.22 – 7.11 (m, 4H), 7.09 – 6.99 (m, 2H), 6.85 – 6.76 (m, 2H), 6.70 – 6.61 (m, 2H), 4.50 (d, J = 10.6 Hz, 1H), 4.27 – 4.08 (m, 3H), 3.73 (s, 3H), 3.39 (dd, J = 11.6, 8.1 Hz, 1H), 2.71 (t, J = 11.2 Hz, 1H), 1.20 (t, J = 7.1 Hz, 3H). $^{13}\text{C}\{\text{H}\}$ NMR (101 MHz, CDCl_3) δ 194.9, 162.1, 159.4, 151.2, 142.0, 131.0, 130.7, 129.3, 129.0, 128.5, 126.9, 126.8, 126.6, 113.9, 62.9, 55.8, 54.5, 52.8, 45.0, 34.1, 14.4. 19
20 MALDI-TOF calculated for $\text{C}_{27}\text{H}_{26}\text{O}_4\text{Na}^+$ [M+Na] $^+$: 437.1723, found: 437.1729.
21
2223 *DL-ethyl 2-((1*R*,2*R*)-3,3-diphenyl-2-(*p*-tolyl)cyclobutyl)-2-oxoacetate (5fa):* Isolated yield :
24
25 32.6 mg, 82%. ^1H NMR (400 MHz, CDCl_3) δ 7.38 – 7.31 (m, 4H), 7.25 – 7.12 (m, 4H), 7.11 –
26 7.06 (m, 2H), 7.00 – 6.93 (m, 2H), 6.85 – 6.79 (m, 2H), 4.57 (d, J = 10.5 Hz, 1H), 4.35 – 4.24 (m,
27 1H), 4.24 – 4.10 (m, 2H), 3.44 (dd, J = 11.6, 8.2 Hz, 1H), 2.76 (t, J = 11.2 Hz, 1H), 2.28 (s, 3H),
28 1.21 (t, J = 7.1 Hz, 3H). $^{13}\text{C}\{\text{H}\}$ NMR (101 MHz, CDCl_3) δ 194.9, 162.1, 151.3, 142.1, 137.2,
29 135.8, 129.5, 129.3, 129.2, 129.1, 128.5, 126.9, 126.7, 62.9, 54.5, 53.1, 44.8, 34.4, 30.4, 21.6, 14.4.
30
31 MALDI-TOF calculated for $\text{C}_{27}\text{H}_{26}\text{NaO}_3^+$ [M+Na] $^+$: 421.1774, found: 421.1776.
32
3334 *DL-ethyl 2-((1*R*,2*R*)-3,3-diphenyl-2-(*o*-tolyl)cyclobutyl)-2-oxoacetate (5ga):* Isolated yield :
35
36 18.7 mg, 47%. ^1H NMR (400 MHz, Acetone- d_6) δ 7.34 – 7.27 (m, 4H), 7.22 – 7.11 (m, 5H), 7.11
37 – 7.06 (m, 2H), 7.03 – 6.96 (m, 1H), 6.75 (t, J = 7.5 Hz, 1H), 6.35 (d, J = 7.7 Hz, 1H), 4.85 (d, J =
38 10.2 Hz, 1H), 4.21 – 4.03 (m, 3H), 3.56 (dd, J = 11.9, 8.6 Hz, 1H), 2.74 (dd, J = 11.9, 10.1 Hz,
39 1H), 2.45 (s, 3H), 1.14 (t, J = 7.1 Hz, 3H). $^{13}\text{C}\{\text{H}\}$ NMR (101 MHz, Acetone- d_6) δ 194.3, 161.3,
40 150.3, 141.2, 137.2, 136.2, 130.0, 129.2, 129.1, 128.2, 127.7, 126.5, 126.2, 126.0, 125.0, 61.7,
41 54.4, 48.6, 44.8, 34.4, 20.0, 13.2. MALDI-TOF calculated for $\text{C}_{27}\text{H}_{26}\text{NaO}_3^+$ [M+Na] $^+$: 421.1774,
42 found: 421.1779.
43
44

1
2
3
4 *DL-ethyl 2-((1*R*,2*R*)-3,3-diphenyl-2-(*m*-tolyl)cyclobutyl)-2-oxoacetate (5ha)*: Isolated yield :
5
6 27.9 mg, 70%. ^1H NMR (400 MHz, CDCl_3) δ 7.24 – 7.16 (m, 4H), 7.10 – 6.99 (m, 4H), 6.96 –
7
8 6.86 (m, 3H), 6.83 (d, J = 7.5 Hz, 1H), 6.59 (d, J = 7.5 Hz, 1H), 6.52 (s, 1H), 4.42 (d, J = 10.5 Hz,
9
10 1H), 4.17 – 4.09 (m, 1H), 4.09 – 3.97 (m, 2H), 3.31 (dd, J = 11.6, 8.2 Hz, 1H), 2.60 (t, J = 11.1 Hz,
11 1H), 2.06 (s, 3H), 1.07 (t, J = 7.1 Hz, 3H). $^{13}\text{C}\{\text{H}\}$ NMR (101 MHz, CDCl_3) δ 194.3, 161.4,
12
13 150.5, 141.4, 138.0, 137.3, 129.9, 128.7, 128.5, 127.9, 127.8, 127.7, 126.3, 126.3, 126.2, 126.1,
14
15 62.4, 53.8, 52.4, 44.1, 33.8, 21.4, 13.8. MALDI-TOF calculated for $\text{C}_{27}\text{H}_{26}\text{NaO}_3^+$ [M+Na] $^+$:
16
17 421.1774, found: 421.1780.

18
19
20
21
22
23
24
25 *DL-ethyl 2-((1*R*,2*R*)-3,3-diphenyl-2-(4-(trifluoromethyl)phenyl)cyclobutyl)-2-oxoacetate*
26
27 *(5ia)*: Isolated yield : 38.9 mg, 86%. ^1H NMR (400 MHz, CDCl_3) δ 7.42 – 7.25 (m, 6H), 7.25 –
28
29 7.14 (m, 4H), 7.06 – 6.99 (m, 4H), 4.66 (d, J = 10.4 Hz, 1H), 4.36 – 4.23 (m, 1H), 4.23 – 4.11 (m,
30
31 2H), 3.48 (dd, J = 11.7, 8.4 Hz, 1H), 2.76 (t, J = 11.2 Hz, 1H), 1.21 (t, J = 7.1 Hz, 3H). $^{13}\text{C}\{\text{H}\}$
32
33 NMR (101 MHz, CDCl_3) δ 194.2, 161.7, 150.5, 143.0, 141.5, 129.9 (q, $J_{\text{C-F}}$ = 32.4 Hz), 129.9,
34
35 129.2, 129.1, 128.7, 127.3, 126.9, 126.7, 125.4 (q, $J_{\text{C-F}}$ = 3.7 Hz), 125.2 (q, $J_{\text{C-F}}$ = 273.0 Hz), 63.1,
36
37 54.6, 52.3, 44.4, 34.8, 14.4. ^{19}F NMR (377 MHz, CDCl_3) δ -62.43 (s). MALDI-TOF calculated for
38
39 $\text{C}_{27}\text{H}_{23}\text{F}_3\text{NaO}_3^+$ [M+Na] $^+$: 475.1492, found: 475.1491.

40
41
42
43
44
45
46
47 *DL-ethyl 2-((1*R*,2*R*)-2-(4-cyanophenyl)-3,3-diphenylcyclobutyl)-2-oxoacetate (5ja)*: Isolated
48
49 yield : 35.2 mg, 86%. ^1H NMR (400 MHz, CDCl_3) δ 7.37 (d, J = 7.9 Hz, 2H), 7.34 – 7.28 (m, 2H),
50
51 7.26 – 7.16 (m, 3H), 7.16 – 7.09 (m, 3H), 7.00 – 6.93 (m, 4H), 4.62 (d, J = 10.4 Hz, 1H), 4.30 –
52
53 4.12 (m, 3H), 3.44 (dd, J = 11.6, 8.6 Hz, 1H), 2.70 (t, J = 11.2 Hz, 1H), 1.22 (t, J = 7.1 Hz, 3H).
54
55
56
57 $^{13}\text{C}\{\text{H}\}$ NMR (101 MHz, CDCl_3) δ 193.3, 160.8, 149.5, 143.7, 140.7, 131.6, 129.6, 128.6, 128.4,
58
59
60

1
2
3
4 128.2, 126.8, 126.4, 126.1, 118.8, 110.7, 62.6, 54.0, 51.5, 43.3, 34.2, 13.9. MALDI-TOF
5
6 calculated for $C_{27}H_{23}NNaO_3^+ [M+Na]^+$: 432.1570, found: 432.1570.
7
8
9

10 *DL-ethyl 2-((1R,2R)-2-(4-(tert-butyl)phenyl)-3,3-diphenylcyclobutyl)-2-oxoacetate (5ka):*
11
12 Isolated yield : 36.6 mg, 83%. 1H NMR (400 MHz, $CDCl_3$) δ 7.30 – 7.25 (m, 4H), 7.17 – 7.06 (m,
13 6H), 7.02 – 6.95 (m, 2H), 6.78 (d, J = 8.0 Hz, 2H), 4.51 (d, J = 10.5 Hz, 1H), 4.28 – 4.15 (m, 1H),
14 4.15 – 4.00 (m, 2H), 3.37 (dd, J = 11.5, 8.3 Hz, 1H), 2.68 (t, J = 11.1 Hz, 1H), 1.22 (s, 9H), 1.10 (t,
15 J = 7.1 Hz, 3H). $^{13}C\{1H\}$ NMR (101 MHz, $CDCl_3$) δ 194.3, 161.4, 150.6, 149.9, 141.4, 135.1,
16 128.7, 128.4, 127.8, 126.25, 126.23, 126.0, 124.6, 62.3, 53.8, 52.3, 44.1, 34.4, 33.6, 31.4, 13.8
17
18
19
20 MALDI-TOF calculated for $C_{30}H_{32}NaO_3^+ [M+Na]^+$: 463.2244, found: 463.2246.
21
22
23
24
25
26

27 *DL-ethyl 2-((1R,2R)-2-(naphthalen-2-yl)-3,3-diphenylcyclobutyl)-2-oxoacetate (5la):*
28
29 Isolated yield : 29.2 mg, 95%. 1H NMR (400 MHz, $CDCl_3$) δ = 7.96 – 7.83 (m, 2H), 7.77 (d, J
30 = 8.5, 1H), 7.65 (s, 1H), 7.63 – 7.56 (m, 4H), 7.53 (t, J = 7.6, 2H), 7.39 (t, J = 7.2, 1H), 7.34 – 7.24
31 (m, 5H), 7.15 (dd, J = 8.4, 1.0, 1H), 4.97 (d, J = 10.5, 1H), 4.69 – 4.56 (m, 1H), 4.39 – 4.19 (m, 2H),
32 3.70 (dd, J = 11.6, 8.2, 1H), 3.02 (t, J = 11.1, 1H), 1.28 (t, J = 7.1, 3H). $^{13}C\{1H\}$ NMR (101 MHz,
33 $CDCl_3$) δ 194.4, 161.6, 150.7, 141.6, 136.1, 133.4, 132.8, 128.9, 128.8, 128.4, 128.2, 128.1, 127.7,
34 127.5, 127.2, 126.6, 126.5, 126.4, 126.2, 126.0, 62.5, 54.2, 53.1, 44.5, 34.1, 14.0. HRMS (ESI)
35
36 calculated for $C_{30}H_{26}NaO_3^+ [M+Na]^+$: 457.1774, found: 457.1756.
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

DL-phenyl 2-oxo-2-((1R,2R)-2,3,3-triphenylcyclobutyl)acetate (5ma): Isolated yield : 28.5
mg, 66%. 1H NMR (400 MHz, $CDCl_3$) δ 7.36 – 7.26 (m, 9H), 7.21 – 7.13 (m, 6H), 7.09 – 7.04 (m,
2H), 6.95 – 6.89 (m, 2H), 6.55 (d, J = 16.3 Hz, 1H), 4.49 (d, J = 10.5 Hz, 1H), 4.00 – 3.85 (m, 1H),
3.35 (dd, J = 11.8, 8.0 Hz, 1H), 2.87 (dd, J = 11.6, 10.6 Hz, 1H). $^{13}C\{1H\}$ NMR (101 MHz,
32

1
2
3
4 CDCl₃) δ 199.6, 150.9, 143.2, 142.0, 139.1, 134.6, 130.3, 129.1, 128.8, 128.7, 128.3, 128.1, 127.9,
5
6 127.8, 126.9, 126.3, 126.1, 125.8, 125.1, 53.7, 53.4, 45.9, 33.0. HRMS (ESI) calculated for
7
8 C₃₀H₂₄NaO₃⁺ [M + Na]⁺: 455.1618, Found: 455.1638.

9
10
11
12 *DL-benzyl 2-oxo-2-((1R,2R)-2,3,3-triphenylcyclobutyl)acetate (5na):* Isolated yield : 33.5 mg,
13
14 75%. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.32 (m, 3H), 7.32 – 7.24 (m, 6H), 7.21 – 7.06 (m, 7H),
15
16 7.02 – 6.96 (m, 2H), 6.90 – 6.83 (m, 2H), 5.16 (d, *J* = 12.1 Hz, 1H), 5.06 (d, *J* = 12.1 Hz, 1H),
17
18 4.57 (d, *J* = 10.4 Hz, 1H), 4.31 – 4.19 (m, 1H), 3.39 (dd, *J* = 11.7, 8.3 Hz, 1H), 2.69 (t, *J* = 11.2 Hz,
19
20 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 193.7, 161.2, 150.3, 141.3, 138.0, 134.5, 128.9, 128.7,
21
22 128.62, 128.55, 128.5, 128.4, 127.78, 127.76, 126.9, 126.22, 126.16, 126.0, 67.8, 53.8, 52.3, 43.8,
23
24 33.9. HRMS (ESI) calculated for C₃₁H₂₆NaO₃⁺ [M+Na]⁺: 469.1774, found: 469.1772.

25
26
27
28
29
30 *DL-cyclopentyl 2-oxo-2-((1R,2R)-2,3,3-triphenylcyclobutyl)acetate (5oa):* Isolated yield :
31
32 34.4 mg, 81%. ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 4.3 Hz, 4H), 7.20 – 7.03 (m, 7H), 7.02 –
33
34 6.94 (m, 2H), 6.91 – 6.82 (m, 2H), 5.17 – 5.06 (m, 1H), 4.53 (d, *J* = 10.5 Hz, 1H), 4.20 (dd, *J* =
35
36 19.1, 10.0 Hz, 1H), 3.36 (dd, *J* = 11.6, 8.3 Hz, 1H), 2.71 (t, *J* = 11.1 Hz, 1H), 1.82 – 1.69 (m, 2H),
37
38 1.67 – 1.56 (m, 2H), 1.57 – 1.44 (m, 4H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 194.6, 161.5, 150.5,
39
40 141.3, 138.1, 129.0, 128.6, 128.5, 127.90, 127.86, 127.1, 126.3, 126.2, 126.1, 79.7, 53.8, 52.6,
41
42 43.9, 33.5, 32.5, 32.4, 23.8, 23.7. MALDI-TOF calculated for C₂₉H₂₈NaO₃⁺ [M+Na]⁺: 447.1931,
43
44 49 found: 447.1930.

50
51
52
53 *DL-ethyl 2-oxo-2-((1R,2R)-2-phenyl-3,3-di-p-tolylcyclobutyl)acetate (5ab):* Isolated yield :
54
55 38.9 mg, 94%. ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.21 (m, 2H), 7.20 – 7.11 (m, 5H), 7.03 –
56
57 6.92 (m, 6H), 4.59 (d, *J* = 10.5 Hz, 1H), 4.35 – 4.26 (m, 1H), 4.25 – 4.10 (m, 2H), 3.41 (dd, *J* =
58
59 60

11.6, 8.2 Hz, 1H), 2.73 (t, J = 11.0 Hz, 1H), 2.36 (s, 3H), 2.30 (s, 3H), 1.22 (t, J = 7.1 Hz, 3H).

$^{13}\text{C}\{1\text{H}\}$ NMR (101 MHz, CDCl_3) δ 194.3, 161.4, 147.8, 138.5, 138.4, 135.8, 135.5, 129.12, 129.06, 128.6, 128.5, 127.8, 127.0, 126.1, 62.4, 53.3, 52.5, 43.9, 34.0, 21.05, 20.97, 13.8.

MALDI-TOF calculated for $\text{C}_{28}\text{H}_{28}\text{NaO}_3^+ [\text{M}+\text{Na}]^+$: 435.1931, found: 435.1933.

*DL-ethyl 2-((1*R*,2*R*)-3,3-bis(4-methoxyphenyl)-2-phenylcyclobutyl)-2-oxoacetate (5ac):*

Isolated yield : 33.3 mg, 75%. ^1H NMR (400 MHz, CDCl_3) δ 7.21 (d, J = 8.4 Hz, 2H), 7.17 – 7.09 (m, 3H), 6.92 (d, J = 7.8 Hz, 4H), 6.86 (d, J = 8.4 Hz, 2H), 6.70 (d, J = 8.5 Hz, 2H), 4.51 (d, J = 10.4 Hz, 1H), 4.25 (dd, J = 18.9, 10.2 Hz, 1H), 4.20 – 4.04 (m, 2H), 3.78 (s, 3H), 3.73 (s, 3H), 3.32 (dd, J = 11.2, 8.5 Hz, 1H), 2.68 (t, J = 11.0 Hz, 1H), 1.18 (t, J = 7.1 Hz, 3H). $^{13}\text{C}\{1\text{H}\}$ NMR (101 MHz, CDCl_3) δ 194.9, 162.0, 158.6, 158.4, 143.6, 139.0, 134.5, 130.3, 129.6, 128.4, 127.8, 127.6, 114.5, 113.9, 62.9, 55.9, 55.8, 53.3, 53.2, 44.4, 34.9, 14.4. MALDI-TOF calculated for $\text{C}_{28}\text{H}_{28}\text{NaO}_5^+ [\text{M}+\text{Na}]^+$: 467.1829, found: 467.1829.

*DL-ethyl 2-((1*R*,2*R*)-3,3-bis(4-chlorophenyl)-2-phenylcyclobutyl)-2-oxoacetate (5ae):*

Isolated yield : 41.7 mg, 92%. ^1H NMR (400 MHz, CDCl_3) δ 7.33 – 7.26 (m, 2H), 7.25 – 7.19 (m, 2H), 7.18 – 7.06 (m, 5H), 6.96 – 6.86 (m, 4H), 4.54 (d, J = 10.4 Hz, 1H), 4.33 – 4.21 (m, 1H), 4.21 – 4.05 (m, 2H), 3.34 (dd, J = 11.8, 8.3 Hz, 1H), 2.69 (t, J = 11.2 Hz, 1H), 1.18 (t, J = 7.1 Hz, 3H). $^{13}\text{C}\{1\text{H}\}$ NMR (101 MHz, CDCl_3) δ 194.3, 161.8, 148.9, 140.3, 138.1, 133.2, 132.8, 130.6, 129.4, 129.4, 128.7, 128.2, 128.0, 63.0, 53.7, 53.0, 43.9, 34.5, 14.4. MALDI-TOF calculated for $\text{C}_{26}\text{H}_{22}\text{Cl}_2\text{NaO}_3^+ [\text{M}+\text{Na}]^+$: 475.0838, found: 475.0838.

*DL-ethyl 2-((1*R*,2*R*)-3,3-bis(4-bromophenyl)-2-phenylcyclobutyl)-2-oxoacetate (5af):*

Isolated yield : 43.4 mg, 80%. ^1H NMR (400 MHz, CDCl_3) δ 7.42 (t, J = 8.5 Hz, 2H), 7.26 (d, J =

1
2
3
4 8.5 Hz, 2H), 7.21 – 7.07 (m, 5H), 6.94 – 6.87 (m, 2H), 6.84 (d, J = 8.6 Hz, 2H), 4.52 (d, J = 10.5
5 Hz, 1H), 4.30 – 4.20 (m, 1H), 4.20 – 4.09 (m, 2H), 3.32 (dd, J = 11.8, 8.3 Hz, 1H), 2.67 (t, J =
6 11.1 Hz, 1H), 1.18 (t, J = 7.1 Hz, 3H). $^{13}\text{C}\{\text{H}\}$ NMR (101 MHz, CDCl_3) δ 194.3, 161.7, 149.3,
7 140.7, 138.0, 132.4, 131.7, 131.0, 129.4, 128.7, 128.6, 128.0, 121.3, 120.9, 63.1, 53.8, 52.9, 43.9,
8 34.4, 14.4. MALDI-TOF calculated for $\text{C}_{26}\text{H}_{22}\text{Br}_2\text{NaO}_3^+ [\text{M}+\text{Na}]^+$: 564.9807, found: 564.9808.
9
10
11
12
13
14
15
16
17
18 *DL-ethyl 2-((1R,2R,3S)-2,3-diphenylcyclobutyl)-2-oxoacetate (5ag)*: Isolated yield : 25.3 mg,
19
20 82%, d.r.=2:1. ^1H NMR (400 MHz, CDCl_3 , major product as standard) δ 7.26 – 7.08 (m, 6.72H),
21
22 7.06 – 6.91 (m, 2.04H), 6.90 – 6.85 (m, 0.66H), 6.84 – 6.78 (m, 0.68H), 4.25 (dd, J = 16.9, 8.6 Hz,
23 0.34H), 4.21 – 4.05 (m, 2.29H), 3.90 – 3.81 (m, 1.02H), 3.77 (t, J = 9.6 Hz, 0.66H), 3.58 (dd, J =
24 18.4, 9.7 Hz, 0.66H), 2.74 – 2.58 (m, 1.31H), 2.29 (dd, J = 20.5, 10.2 Hz, 0.67H), 1.20 – 1.12 (m,
25 3.00H),. $^{13}\text{C}\{\text{H}\}$ NMR (101 MHz, CDCl_3) δ 194.4, 194.1, 161.2, 161.1, 142.8, 141.6, 139.9,
26
27 138.7, 128.6, 128.5, 128.02, 127.97, 127.9, 127.8, 127.0, 126.9, 126.7, 126.3, 126.1, 62.5, 62.4,
28
29 50.0, 46.8, 46.0, 44.8, 43.3, 41.6, 29.4, 26.2, 13.93, 13.90. HRMS (ESI) calculated for
30
31 $\text{C}_{20}\text{H}_{20}\text{NaO}_3^+ [\text{M}+\text{Na}]^+$: 331.1305, found: 331.1299.
32
33
34
35
36
37
38
39
40
41
42 *DL-ethyl 2-oxo-2-((1S,2R)-1-phenylspiro[3.4]octan-2-yl)acetate (5ah)*: Isolated yield : 16.3
43
44 mg, 57%. ^1H NMR (400 MHz, CDCl_3) δ 7.22 (t, J = 7.3 Hz, 2H), 7.17 – 7.09 (m, 3H), 4.18 – 4.10
45 (m, 2H), 4.06 (dd, J = 18.8, 9.3 Hz, 1H), 3.63 (d, J = 9.9 Hz, 1H), 2.11 – 1.94 (m, 2H), 1.67 – 1.58
46 (m, 2H), 1.48 – 1.29 (m, 4H), 1.26 – 1.12 (m, 5H). $^{13}\text{C}\{\text{H}\}$ NMR (101 MHz, CDCl_3) δ 194.6,
47 161.5, 139.0, 128.2, 127.6, 126.6, 62.3, 50.4, 48.7, 41.4, 39.8, 35.7, 33.6, 23.5, 23.4, 13.9.
48
49
50
51
52
53
54
55 MALDI-TOF calculated for $\text{C}_{18}\text{H}_{22}\text{NaO}_3^+ [\text{M}+\text{Na}]^+$: 309.1461, found: 309.1466.
56
57
58
59
60
ASSOCIATED CONTENT

Supporting information

Condition optimization table, crystal structural data of **3ha** (Compound 3ha. cif), ^1H - ^1H COSY spectrum, HMBC spectrum and H-D exchange spectra of **5aa**, Spectroscopic and electrochemical data, DFT calculation, ^1H and ^{13}C NMR spectra of all products.

Experimental details and the spectral characterization of catalytic reaction are available free of charge via the Internet at <http://pubs.acs.org>.

AUTHOR INFORMATION

Corresponding Author

***lzwu@mail.ipc.ac.cn**

Author Contributions

Δ These authors contributed equally.

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENTS

Financial support from the Ministry of Science and Technology of China (2017YFA0206903), the National Natural Science Foundation of China (21861132004 and 21473227), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17000000), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (QYZDY-SSW-JSC029) and K. C. Wong Education Foundation is gratefully acknowledged. V. Ramamurthy acknowledges the Chinese Academy of Sciences for a fellowship and the U.S. National Science Foundation (CHE-1807729) for the research support.

REFERENCES

(1) (a) Dembitsky, V. M. Bioactive cyclobutane-containing alkaloids. *J. Nat. Med.* **2008**, *62*, 1-33.
(b) Namyslo, J. C.; Kaufmann, D. E. The Application of Cyclobutane Derivatives in Organic Synthesis. *Chem. Rev.* **2003**, *103*, 1485-1538. (c) Seiser, T.; Saget, T.; Tran, D. N.; Cramer, N. Cyclobutanes in Catalysis. *Angew. Chem. Int. Ed.* **2011**, *50*, 7740-7752.

(2) (a) Bach, T.; Hehn, J. P. Photochemical Reactions as Key Steps in Natural Product Synthesis. *Angew. Chem. Int. Ed.* **2011**, *50*, 1000-1045. (b) Poplata, S.; Tröster, A.; Zou, Y.-Q.; Bach, T. Recent Advances in the Synthesis of Cyclobutanes by Olefin [2+2] Photocycloaddition Reactions. *Chem. Rev.* **2016**, *116*, 9748-9815. (c) Kärkäs, M. D.; Porco, J. A.; Stephenson, C. R. J. Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis. *Chem. Rev.* **2016**, *116*, 9683-9747.

(3) (a) Yoon, T. P. Visible Light Photocatalysis: The Development of Photocatalytic Radical Ion Cycloadditions. *ACS Catal.* **2013**, *3*, 895-902. (b) Schultz, D. M.; Yoon, T. P. Solar Synthesis: Prospects in Visible Light Photocatalysis. *Science* **2014**, *343*, 1239176. (c) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. Photoredox Catalysis in Organic Chemistry. *J. Org. Chem.* **2016**, *81*, 6898-6926, and the cited references therein.

(4) (a) Turro, N. J. *Modern Molecular Photochemistry*, Benjamin/Cummings Pub. C, 1978. (b) Turro, N. J.; Ramamurthy, V.; Scaiano, J. C.: *Modern Molecular Photochemistry of Organic Molecules*; University Science Books, Sausalito, CA, 2010. pp. 705-845.

(5) For pioneering work on intramolecular [2+2] cycloaddition of olefins and enones via visible light induced electron transfer pathway: (a) Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P., Efficient Visible Light Photocatalysis of [2+2] Enone Cycloadditions. *J. Am. Chem. Soc.* **2008**,

1
2
3
4 130, 12886-12887. (b) Ischay, M. A.; Lu, Z.; Yoon, T. P., [2+2] Cycloadditions by Oxidative
5
6 Visible Light Photocatalysis. *J. Am. Chem. Soc.* **2010**, *132*, 8572-8574.
7
8

9 (6) For pioneering work on intramolecular [2+2] cycloaddition of olefins and enons via visible
10
11 light induced energy transfer pathway: (a) Lu, Z.; Yoon, T. P., Visible Light Photocatalysis of
12
13 [2+2] Styrene Cycloadditions by Energy Transfer. *Angew. Chem. Int. Ed.* **2012**, *51* (41),
14
15 10329-10332. (b) Alonso, R.; Bach, T. A Chiral Thioxanthone as An Organocatalyst for
16
17 Enantioselective [2+2] Photocycloaddition Reactions Induced by Visible Light. *Angew. Chem. Int.*
18
19 *Ed.* **2014**, *53*, 4368-71. (c) Hurtley, A. E.; Lu, Z.; Yoon, T. P. [2+2] Cycloaddition of 1,3-Dienes by
20
21 Visible Light Photocatalysis. *Angew. Chem. Int. Ed.* **2014**, *53*, 8991-8994. (d) Moj, V.;
22
23 Svobodova, E.; Strakova, K.; Nevesely, T.; Chudoba, J.; Dvorakova, H.; Cibulka, R. Tailoring
24
25 Flavins for Visible Light Photocatalysis: Organocatalytic [2+2] Cycloadditions Mediated by A
26
27 Flavin Derivative and Visible Light. *Chem. Commun.* **2015**, *51*, 12036-12039. (e) Zhao, J.;
28
29 Brosmer, J. L.; Tang, Q.; Yang, Z.; Houk, K. N.; Diaconescu, P. L.; Kwon, O. Intramolecular
30
31 Crossed [2+2] Photocycloaddition through Visible Light-Induced Energy Transfer. *J. Am. Chem.*
32
33 *Soc.* **2017**, *139*, 9807-9810. (f) James, M. J.; Schwarz, J. L.; Strieth-Kalthoff, F.; Wibbeling, B.;
34
35 Glorius, F., Dearomative Cascade Photocatalysis: Divergent Synthesis through Catalyst Selective
36
37 Energy Transfer. *J. Am. Chem. Soc.* **2018**, *140*, 8624-8628.

38 (7) For pioneering work on intermolecular [2+2] cycloaddition of olefins and enons via visible
39
40 light induced electron transfer pathway: (a) Du, J.; Yoon, T. P. Crossed Intermolecular [2+2]
41
42 Cycloadditions of Acyclic Enones via Visible Light Photocatalysis. *J. Am. Chem. Soc.* **2009**, *131*,
43
44 14604-14605. (b) Ischay, M. A.; Ament, M. S.; Yoon, T. P. Crossed Intermolecular [2+2]
45
46 Cycloaddition of Styrenes by Visible Light Photocatalysis. *Chem. Sci.* **2012**, *3*, 2807-2811. (c)
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4 Riener, M.; Nicewicz, D. A. Synthesis of Cyclobutane Lignans via An Organic Single Electron
5
6 Oxidant-Electron Relay System. *Chem. Sci.* **2013**, *4*, 2625-2629. (d) Du, J.; Skubi, K. L.; Schultz,
7
8 D. M.; Yoon, T. P. A Dual-Catalysis Approach to Enantioselective [2+2] Photocycloadditions
9
10 Using Visible Light. *Science* **2014**, *344*, 392-396.
11
12

13
14 (8) For pioneering work on intermolecular [2+2] cycloaddition of olefins and enons via visible
15
16 light induced energy transfer pathway: (a) Miller, Z. D.; Lee, B. J.; Yoon, T. P. Enantioselective
17
18 Crossed Photocycloadditions of Styrenic Olefins by Lewis Acid Catalyzed Triplet Sensitization.
19
20 *Angew. Chem. Int. Ed.* **2017**, *56*, 11891-11895. (b) Lei, T.; Zhou, C.; Huang, M.-Y.; Zhao, L.-M.;
21
22 Yang, B.; Ye, C.; Xiao, H.; Meng, Q.-Y.; Ramamurthy, V.; Tung, C.-H.; Wu, L.-Z. General and
23
24 Efficient Intermolecular [2+2] Photodimerization of Chalcones and Cinnamic Acid Derivatives in
25
26 Solution through Visible-Light Catalysis. *Angew. Chem. Int. Ed.* **2017**, *56*, 15407-15410. (c)
27
28 Huang, X.; Quinn, T. R.; Harms, K.; Webster, R. D.; Zhang, L.; Wiest, O.; Meggers, E. Direct
29
30 Visible-Light-Excited Asymmetric Lewis Acid Catalysis of Intermolecular [2+2]
31
32 Photocycloadditions. *J. Am. Chem. Soc.* **2017**, *139*, 9120-9123, and the cited references therein.
33
34
35

36
37 (9) (a) Fujiwara, T.; Nanba, N.; Hamada, K.; Toda, F.; Tanaka, K. Enantioselective Photoreactions
38
39 of Cycloocta-2,4,6-trien-1-one and Cycloocta-2,4-dien-1-one in Their Inclusion Complexes with
40
41 (R,R)-(-)-1,6-Bis(o-chlorophenyl)-1,6-diphenylhexa-2,4-diyne-1,6-diol: Mechanistic Study Based
42
43 on X-ray Crystal Structure Analyses. *J. Org. Chem.* **1990**, *55*, 4532-4537. b) Kulyk, S.; Dougherty,
44
45 W. G.; Kassel, W. S.; Fleming, S. A.; Sieburth, S. M. Enyne [4 + 4] Photocycloaddition: Bridged
46
47 1,2,5-Cyclooctatrienes. *Org. Lett.* **2010**, *12*, 3296-3299. c) Cho, D. W.; Lee, C. W.; Park, J. G.; Oh,
48
49 S. W.; Sung, N. K.; Park, H. J.; Kim, K. M.; Mariano, P. S.; Yoon, U. C. Exploration of
50
51 Photochemical Reactions of N-trimethylsilylmethyl-substituted Uracil, Pyridone, and Pyrrolidone
52
53
54
55
56
57
58
59
60

1
2
3
4 Derivatives. *Photochem. Photobio. Sci.* **2011**, *10*, 1169-1180.
5
6

7 (10) (a) Paterno, E.; Chieffi, G. Sintesi in Chimica Organica Rer Mezzo Della Lute. Nota II.
8
9 Composti Degli Idrocarburi Non Saturi Con Aldeidi e Chetoni. *Gazz. Chim. Ital.* **1909**, *39*,
10
11 341-361. (b) Büchi, G.; Inman, C. G.; Lipinsky, E. S. Light-catalyzed Organic Reactions. I. The
12
13 Reaction of Carbonyl Compounds with 2-Methyl-2-butene in the Presence of Ultraviolet Light. *J.*
14
15 *Am. Chem. Soc.* **1954**, *76*, 4327-4331. (c) Koch, H.; Rumsink, J.; Scharft, H. D. Investigation of
16
17 Chiral Induction in Photochemical Oxetane Formation. *Tetrahedron Lett.* **1983**, *24*, 3217-3220. (d)
18
19 Nehrings, A.; Scharf, H. D.; Rumsink, J. Photochemical Synthesis of an L - Erythrose Building
20
21 Block and Its use in the Preparation of Methyl 2,3,O - Isopropylidene - β - L - apio - L -
22
23 furanoside. *Angew. Chem. Int. Ed.* **1985**, *24*, 877-878. (e) Buschmann, H.; Scharf, H.-D.;
24
25 Hoffmann, N.; Esser, P. The Isoinversion Principle—a General Model of Chemical Selectivity.
26
27 *Angew. Chem. Int. Ed.* **1991**, *30*, 477-515. (f) Xue, J.; Zhang, Y.; Wu, T.; Fun, H.-K.; Xu, J.-H.
28
29 Photoinduced [2+2] Cycloadditions (the Paterno-Buchi Reaction) of 1H-1-Acetylindole-2,3-dione
30
31 with Alkenes. *J. Chem. Soc., Perkin Trans. I* **2001**, 183-191. (g) D'Auria, M.; Emanuele, L.;
32
33 Racioppi, R. On the Paterno-Buchi Reaction of Chiral Phenylglyoxylate Esters with Furan
34
35 Derivatives. *Photoch. Photobio. Sci.* **2003**, *2*, 904-913. (h) Nagasaki, K.; Inoue, Y.; Mori, T.
36
37 Entropy - Driven Diastereoselectivity Improvement in the Paternò-Büchi Reaction of 1 -
38
39 Naphthyl Aryl Ethenes with a Chiral Cyanobenzoate through Remote Alkylation. *Angew. Chem.*
40
41 *Int. Ed.* **2018**, *57*, 4880-4885.
42
43

44 (11) Wang, L.; Lv, J.; Li, S.; Luo, S. Divergent Coupling of β,γ -Unsaturated α -Ketoesters with
45
46 Simple Olefins: Vinylation and [2 + 2] Cycloaddition. *Org. Lett.* **2017**, *19*, 3366-3369.
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4 (12) Huang, X.; Oh, W.; Zhou, J. S. Palladium-Catalyzed Enantioselective Arylation of Racemic
5
6 Ketones to Form Bridged Bicycles via Dynamic Kinetic Resolution. *Angew. Chem. Int. Ed.* **2018**,
7
8 57, 7673-7677.
9
10

11
12 (13) (a) Crosby, G. A.; Perkins, W. G.; Klassen, D. M. Luminescence from Transition-Metal
13
14 Complexes: Tris(2,2'-bipyridine)- and Tris(1,10-phenanthroline)Ruthenium(II). *J. Chem. Phys.*
15
16 **1965**, 43, 1498-1503. (b) Demas, J. N.; Addington, J. W. Luminescence quenching of the
17
18 tris(2,2'-bipyridine)ruthenium(II) and tris(1,10-phenanthroline)ruthenium(II) cations. *J. Am.*
19
20 *Chem. Soc.* **1976**, 98, 5800-5806. (c) Zhao, J.; Ji, S.; Wu, W.; Wu, W.; Guo, H.; Sun, J.; Sun, H.;
21
22 Liu, Y.; Li, Q.; Huang, L. Transition Metal Complexes with Strong Absorption of Visible Light
23
24 and Long-lived Triplet Excited States: from Molecular Design to Applications. *RSC Adv.* **2012**, 2,
25
26 1712-1728.
27
28
29

30
31 (14) Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M. T.: *Handbook of Photochemistry*; Taylor &
32
33 Francis: Boca Raton, 2006.
34
35

36
37 (15) Jiao, M.; Ju, Y.-w.; Chen, B.-Z., Energy Transfer or Electron Transfer?—DFT Study on the
38
39 Mechanism of [2+2] Cycloadditions Induced by Visible Light Photocatalysts. *Tetrahedron Lett.*
40
41 **2018**, 59 1651-1660.
42
43

44
45 (16) Yang, X.-Y.; Tay, W. S.; Li, Y.; Pullarkat, S. A.; Leung, P.-H. Asymmetric 1,4-Conjugate
46
47 Addition of Diarylphosphines to $\alpha,\beta,\gamma,\delta$ -Unsaturated Ketones Catalyzed by Transition-Metal
48
49 Pincer Complexes. *Organometallics* **2015**, 34, 5196-5201.
50
51

52
53 (17). (a) Chen, S.; Li, X.; Zhao, H.; Li, B. CuBr-Promoted Formal Hydroacylation of 1-Alkynes
54
55 with Glyoxal Derivatives: An Unexpected Synthesis of 1,2-Dicarbonyl-3-enes. *J. Org. Chem.*
56
57 **2014**, 79, 4137-4141. (b) Gremaud, L.; Alexakis, A. Enantioselective Copper-Catalyzed Conjugate
58
59
60

1
2
3
4 Addition of Trimethylaluminium to β,γ -Unsaturated α -Ketoesters. *Angew. Chem. Int. Ed.* **2012**, *51*,
5
6 794-797.
7
8

9 (18) (a) Ischay, M. A.; Lu, Z.; Yoon, T. P. [2+2] Cycloadditions by Oxidative Visible Light
10
11 Photocatalysis. *J. Am. Chem. Soc.* **2010**, *132*, 8572-8574. (b) Ashraf, S.; Akhtar, J.; Siddiqi, H. M.;
12
13 El-Shafei, A. Thiocyanate-free Ruthenium(ii) Sensitizers with A Bi-imidazole Ligand in
14
15 Dye-sensitized Solar Cells (DSSCs). *New J. Chem.* **2017**, *41*, 6272-6277. (c) Tsai, K. Y.-D.; Chang,
16
17 I. J. Oxidation of Bromide to Bromine by Ruthenium(II) Bipyridine-Type Complexes Using the
18
19 Flash-Quench Technique. *Inorg. Chem.* **2017**, *56*, 8497-8503.
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60