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Breaking of scaling symmetry by massless
scalar on de Sitter
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ABSTRACT

We study the response of a classical massless minimally coupled scalar to
a static point scalar charge on de Sitter. By considering explicit solutions of
the problem we conclude that – even though the dynamics formally admits
dilatation (scaling) symmetry – the physical scalar field profile necessarily
breaks the symmetry. This is an instance of symmetry breaking in classical
physics due to large infrared effects. The gravitational backreaction, on the
other hand, does respect dilatation symmetry, making this an example of
symmetry non-inheritance phenomenon.
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Point particle and scaling solution. In this note we investigate the
system of a massless minimally coupled scalar (MMCS) field Φ in de Sitter
space coupled to a scalar point charge. The action for the MMCS in an
arbitrary curved space is given by,

S0[Φ] =

∫

d4x
√
−g

[

−1

2
gµν(∂µΦ) (∂νΦ)

]

, (1)

where gµν is the inverse of the metric tensor gµν , g = det[gµν ], the metric
signature is (−,+,+,+) and its coupling to the point particle χµ=χµ(τ) is
modeled by the action,

Sint[χ,Φ] = −
∫

dτ
√

−gµν χ̇µ(τ)χ̇ν(τ) λΦ(χ(τ)) , (2)

where τ is an affine parameter, λ is a dimensionless coupling, and χ̇µ(τ) =
dχµ(τ)/dτ . We assume that the point particle is at rest, sitting at the origin
of the coordinate system on flat spatial slices of the Poincaré patch, χµ(τ)=
(τ, 0, 0, 0). The equation of motion for the MMCS descends from variation
of the action (1) and (2),

Φ(x) = − 1

a2

(

∂2

0 + 2aH∂0 −∇2

)

Φ(x) = λ
δ3(~x)

a3
, (3)

where a(η)=−1/(Hη) is the scale factor of de Sitter space with η confrormal
time, H = (∂0a)/a

2 the (constant) Hubble rate, ∂0 = ∂/∂η and ∇2 is the
Laplacian. While the sourceless equation would respect all of the isometries
of de Sitter, the point source (3) breaks spatial special conformal transforma-
tions and spatial translations, leaving us with only four isometries, namely
spatial rotations and dilatations, xµ→eαxµ with α ∈ R.

It is most natural to assume that the solution of (3) satisfies the back-
ground isometries, and that it depends only on the rotation-invariant and
dilatation-invariant combination of coordinates X = aHr, r = ‖~x‖, i.e.
Φ(η, ~x) → Φ(X), also known as the scaling solution, upon which the equation
of motion (3) away from the origin turns into an ordinary one,

[

(1−X2)
d

dX
+

2

X
(1−2X2)

]

d

dX
Φ(X) = 0 . (4)

This equation is integrated straightforwardly, and its general solution is

Φ(X) = − λH

4πX
− λH

8π
ln

(

1−X

1+X

)

+ Φ0 . (5)
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One integration constant is completely fixed by the δ-function source term
by means of the Green’s integral theorem, while the remaining trivial con-
stant Φ0 remains undetermined.

A closer examination of the solution in (5) reveals some worrisome fea-
tures. Most notably, the solution exhibits a logarithmic singularity at the
horizon! At a first glance there seems to be nothing wrong with our assump-
tions. Perhaps it is that strong infrared effects that are known to exist for
MMCS in de Sitter conspire to create, in a manner of speaking, a classical
wall of fire – a barrier at which the geodesic equation for a test particle
becomes singular.

That (5) cannot be a physical solution can be seen by considering the
energy-momentum tensor, Tµν = ∂µΦ∂νΦ − 1

2
gµνg

αβ∂αΦ∂βΦ, accompanying
the solution (5), which in spherical coordinates reads,

T µ
ν = H2









−1

2
(1+X2) −X 0 0
X 1

2
(1+X2) 0 0

0 0 −1

2
(1−X2) 0

0 0 0 −1

2
(1−X2)









( ∂Φ

∂X

)2

. (6)

Near the horizon it diverges quadratically, as can be easily seen from,

( ∂Φ

∂X

)2
X→1∼ λ2H2

64π2

1

(1−X)2
. (7)

This divergence of the diagonal terms would generate a large classical back-
reaction onto the background space-time. In particular, there is a positive
radial energy density flux T r

0, which also diverges quadratically at the hori-
zon. While the divergence at the origin ∝ 1/(ar)4 is the usual divergence
generated by a point charge that is dealt with in the usual way, the divergence
at the Hubble horizon cannot be a part of the physical solution. In order
to shed light on the origin of the problem, in the next section we consider
the equivalent problem for a massive scalar and construct a solution that is
regular everywhere except at the origin.

Massive scalar on de Sitter. A massive scalar field satisfies the equation
of motion,

(

−m2

)

Φ(x) = λ
δ3(~x)

a3
. (8)

2



This equation still possesses dilatation symmetry, and thus admits a scaling
solution that away from the origin satisfies a homogeneous equation,

[

(1−X2)
d2

dX2
+

2

X
(1−2X2)

d

dX
− m2

H2

]

Φ(X) = 0 . (9)

The general solution can be written in terms of two hypergeometric functions,

Φ(X) = − λH

4πX
× 2F1

({

1

4
+
ν

2
,
1

4
− ν

2

}

,

{

1

2

}

, X2

)

+
λH

2π
× Γ

(

3

4
+ ν

2

)

Γ
(

3

4
− ν

2

)

Γ
(

1

4
+ ν

2

)

Γ
(

1

4
− ν

2

) × 2F1

({

3

4
+
ν

2
,
3

4
− ν

2

}

,

{

3

2

}

, X2

)

, (10)

where,

ν =

√

9

4
−m2

H2
. (11)

The constant in front of the first hypergeometric function is fixed by the
source in (8), while the second one is fixed by the requirement of regularity
at the horizon. Moreover, the behaviour of the solution for X→∞ is regular.
One can add to (10) a homogeneous solution that breaks scaling symmetry,
but such contributions tend to be subdominant at late times.

Examining the result (10) in the small mass limit is instructive for un-
derstanding the issues involved in the massless scaling solution (5),

Φ(X)
m→0∼ − λH

4πX
− λH

8π
ln

(

1−X

1+X

)

−λH

2π

[

3H2

2m2
+ ln(2)− 7

6

]

+
λH

8π
ln
(

1−X2
)

, (12)

The first line in this expansion comes from the first line of the full solu-
tion (10), and reproduces the massless solution (5) up to a constant. The sec-
ond line above comes from the small mass expansion of the second line in (10).
It is clear there is no singularity at the horizon even in this limit. However,
it is also clear that this limit is singular due to the constant term ∼ 1/m2.
One might try to employ the observation that the massless solution (5) is
defined up to a constant in order to remove the divergent term above. This
though does not work, as (12) with the divergent constant removed simply
does not satisfy the massless equation of motion (4). The proper conclusion
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is that the scaling solution of our problem is singular in the massless limit,
and (5) does not represent a valid physical solution. In other words, there is
no scaling solution for the massless case that is regular away from the origin.

The physical interpretation of this behavior is clear: the point source
generates a large amount of classical infrared scalar modes such that it breaks
scaling (dilatation) symmetry in the limit of small mass. This is the reason
behind why the nâıve scaling solution (5) we found in the massless case has
a pathological behavior at the horizon. The small mass behavior in (12) is
reminiscent of the well understood massless limit of the MMCS propagator
in de Sitter space, which we briefly recap in the following.

Scalar propagator in de Sitter. The small mass behavior in (12) is
reminiscent of the better known example in linear quantum physics in de
Sitter space. There exists a de Sitter invariant two-point Wightman function
for a massive scalar in de Sitter [1],

〈

φ̂(x)φ̂(x′)
〉

=
H2 Γ

(

3

2
+ν

)

Γ
(

3

2
−ν

)

(4π)2
×2F1

({

3

2
+ν,

3

2
−ν

}

,

{

2

}

, 1−y

4

)

, (13)

where ν is again the one from (11), and y is the de Sitter invariant function
of the coordinates,

y(x; x′) = a(η)a(η′)H2

[

‖~x−~x ′‖2 −
(

η−η′−iε
)2
]

. (14)

The small mass expansion of this expression is,

〈

φ̂(x)φ̂(x′)
〉 m→0∼ H2

(2π)2

[

1

y
− 1

2
ln(y) +

3H2

2m2
+ ln(2)− 11

12

]

, (15)

which tells us there is no physical and finite de Sitter invariant solution for the
massless scalar field due to strong infrared effects. However, demanding that
the state respects only spatial homogeneity and isotropy yields a perfectly
physical behavior [2, 3, 4, 5, 6, 7, 8, 9],

〈

φ̂(x)φ̂(x′)
〉

=
H2

(2π)2

[

1

y
− 1

2
ln(y) +

1

2
ln(aa′) + 1− γE

]

, (16)

where the (non-universal) constant is fixed by taking the D = 4 limit of the
massless scalar propagator from [10]. This lesson prompts us to look for a
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physical solution in the case at hand which does not respect the background
isometries to resolve the conundrum.

Breaking of dilatation symmetry. Here we derive the solution of (3)
by using the Green’s function method. Let us assume that the scalar point
charge starts acting on the scalar field at some initial moment of time η0. We
use the method of Green’s function to determine the reaction of the scalar
field to this charge. The retarded Green’s functions for a massless scalar field
on de Sitter space can be straightforwardly obtained from (16),

GR(x; x
′) = −θ(∆η)

2π

[

δ
(

∆η2−‖∆~x‖2
)

a(η) a(η′)
+

H2

2
θ
(

∆η−‖∆~x‖
)

]

, (17)

where ∆η = η−η′, and ∆~x= ~x−~x ′. The scalar potential that solves (3) is
now obtained by integrating the retarded Green’s function against the point
source,

Φ(η, r) =

∫

0

η0

dη′
∫

d3x′ a4(η′)GR(x; x
′) × λ

δ3(~x′)

a3(η′)
, (18)

which evaluates to,

Φ(η, r) = θ
(

η−η0−r
)

[

− λH

4πX
− λH

4π
ln

(

a

1+X

)]

, (19)

where η0 = −1/H such that a(η0) = 1. The step function in front of the
solution accounts for causality, restricting the effect of the interaction to
within the forward light cone of the source. Of course, Green’s second identity
includes surface integrations of the Green’s function (and its derivative) times
the solution (and its derivative) on the initial value surface. Eq. (19) has
implicitly assumed that the solution and its first time derivative vanish at
η = η0. It is more natural to take the initial values from the term inside the
square brackets, in which case the solution becomes,

Φ(η, r) = − λH

4πX
− λH

4π
ln

(

a

1+X

)

. (20)

From the point of view of a local observer on de Sitter, Eq. (20) is valid on the
entire manifold. The solution (20) is the principal result of this letter. It can
be obtained by adding to (5) a homogeneous solution, Φh = λH

8π
ln[(1−X2)/a2],

resulting in a solution that is regular everywhere except at the origin. How-
ever, the scaling symmetry is broken by the term ∝ ln(a). It should be noted
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that at late times and at large radial separations the dominant contribution
is time-independent and grows logarithmically with the comoving distance,

Φ(η, r)
r→∞∼ λH

4π
ln
(

Hr
)

. (21)

The energy-momentum tensor for (20) reads,

T µ
ν=

λ2H4

32π2









−Θ2−Ψ2 −2ΘΨ 0 0
2ΘΨ Θ2+Ψ2 0 0
0 0 Θ2−Ψ2 0
0 0 0 Θ2−Ψ2









, (22)

with Ψ= 1

X2+
1

1+X
,Θ=XΨ−1. It is regular everywhere away from the origin

and decays as ∼ 1/X2 for large radial distances. Remarkably, the energy-
momentum tensor in (22) respects dilatation symmetry, even though the field
profile in (20) does not. This is a cosmological example of the phenomenon
of (perturbative) symmetry non-inheritance, which has attracted significant
attention in recent literature [11, 12, 13, 14, 15].

Summary and discussion. We investigate the classical response of a mass-
less scalar field to a static point-like scalar charge on de Sitter. The point
charge breaks spatial special conformal isometries, as well as spatial transla-
tions of de Sitter space. The resulting equation (3) possesses only four isome-
tries, namely spatial rotations and dilatations, also known as global scaling
transformations. We show that any solution that respects all four isometries
exhibits a logarithmic singularity at the Hubble horizon, making this nâıve
solution (5) unphysical. Inspired by the quantum case of a massless scalar
propagator on de Sitter, we then show that the classical physical solution (20)
necessarily breaks scaling symmetry and it is regular everywhere except at the
point charge location. Remarkably, the energy-momentum tensor associated
with this solution does respect dilatation symmetry. Therefore, our solu-
tion provides an example of the phenomenon of symmetry non-inheritance
in gravitational systems [11, 12, 13, 14, 15]. Our analysis can be generalized
to D space-time dimensions, in which case the nâıve scaling solution also
exhibits a logarithmic singularity at the horizon, 1 and therefore the physical
solution must break scaling symmetry in arbitrary number of dimensions.

1The scaling solution which generalizes (5) to D dimensions is,

Φ(X) = −λHD−3Γ
(

D−3

2

)

4π
D−1

2 XD−3

×2F1

({

1,
3−D

2

}

,

{

5−D

2

}

, X2

)

+Φ0 ,
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It would be of interest to study physical consequences of such a classical
breaking of scaling symmetry, and in particular whether there are observ-
able late time effects of this symmetry breaking. For example, our solution
can be helpful for improving our understanding of how point charges in in-
flation affect temperature fluctuations in the cosmic microwave background
radiation [16, 17].

After the completion of this work it came to our attention that some of
our results, including equation (20), but not the breakdown of the dilatation
invariant solution (5), were previously obtained by Akhmedov, Roura and
Sadofyev [18].
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