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Abstract. Finite field multiplication plays the main role determining
the efficiency of public key cryptography systems based on RSA and
elliptic curve cryptography (ECC). Most recently, quantum-safe crypto-
graphic systems are proposed based on supersingular isogenies on elliptic
curves which require large integer multiplications over extended prime
fields. In this work, we present two Montgomery multiplication archi-
tectures for special primes used in a post-quantum cryptography system
known as supersingular isogeny key encapsulation (SIKE). We optimize
two existing Montgomery multiplication algorithms and develop area-
efficient and time-efficient Montgomery multiplication architectures for
hardware implementations of post-quantum cryptography. Our proposed
time-efficient architecture is 32% to 42% faster than the leading one (de-
pending on the prime size) available in the literature which has been used
in original SIKE submission to the NIST standardization process. The
area-efficient architecture is 42% to 50% smaller than the counterparts
and is about 3% to 11% faster depending on the NIST security level.

Keywords: hardware architectures, isogeny-based cryptosystems, Mont-
gomery multiplication, post-quantum cryptography.

1 Introduction

Post-quantum cryptography (PQC) refers to the research of cryptographic prim-
itives (usually public-key cryptosystems) that are not efficiently breakable using
quantum computers. Most notably, Shor’s algorithm [1] can be efficiently imple-
mented on a quantum computer to break standard Elliptic Curve Cryptography
(ECC) and RSA cryptosystems. There exist some alternatives secure against
quantum computing threats [2], such as lattice-based cryptosystems, hash-based
signatures, code-based cryptosystems, multivariate public key cryptography, and
isogeny-based cryptography [3].

Isogeny-based cryptography or more specifically supersingular isogeny Diffie-
Hellman (SIDH) key exchange has been proposed by Jao and De Feo [4] as an
alternative to Elliptic Curve Diffie-Hellman (ECDH) resistant to Shor’s quan-
tum attack. A more secure model of SIDH a.k.a. SIKE (supersingular isogeny
key encapsulation) has been submitted to NIST standardization process [3].



SIKE computations constitute an algebraic map between supersingular elliptic
curves, which appear to be resistant to quantum attacks. Existing results on
the hardware implementations of SIKE have appeared in [5,6,7,8]. SIKE’s lower
level computations are mainly over Fp2 or extended prime fields. The prime size
which decides the security of SIKE determines the size of arithmetic unit for
lower level multiplication, addition, squaring, and inversion. Among these oper-
ations, multiplication plays the main role determining the performance of SIKE
cryptosystem. Therefore, efficient and high-performance implementations of the
multiplier is crucial. In comparison to the other post-quantum candidates, SIKE
offers smallest key size for the same security level which is more attractive for
bandwidth-constrained applications. However, SIKE is not the fastest quantum-
safe candidate, and its performance still needs to be improved as stated in NIST
submission [3].

In this paper, we focus on the optimization of arithmetic operations employed
in SIKE and propose two new hardware architectures for modular multiplication
algorithm targeting SIKE primes based on the well-known Montgomery modu-
lar multiplication algorithm [9]. Previous work on hardware implementation of
Montgomery multiplication has been proposed in [10,11] for arbitrary primes
and in [5,8] for SIKE primes. Since the primes employed in SIKE (SIKEp434,
SIKEp503, SIKEp610, and SIKEp751 for NIST level-1, -2, -3, -5, respectively)
have special forms, we developed a time-efficient implementation and an area-
efficient implementation of Montgomery multiplication to be used in future work
of SIKE. The time-efficient implementation reduces the latency and the area
usage compared to previous work, maintaining high frequency while the area-
efficient implementation significantly reduces the area.

Our contributions:

– We optimize two existing Montgomery multiplication algorithms for special
primes used in post-quantum cryptography, SIKE.

– We provide efficient hardware architecture for the proposed Montgomery
multiplication algorithms.

– We evaluate time and area performance of the proposed hardware architec-
ture benchmarked on FPGA and compare with counterparts.

The organization of the paper is as follows. In Section 2, we discuss the Mont-
gomery modular multiplication algorithm and two algorithms: Coarsely Inte-
grated Operand Scanning (CIOS) and Finely Integrated Operand Scanning (FIOS)
algorithms that perform Montgomery multiplication word-by-word. In Section
3, we provide optimization techniques for the CIOS and FIOS Montgomery mul-
tiplication algorithms. In Section 4, we propose efficient hardware architectures
of the proposed Montgomery multiplier algorithms. In Section 5, we implement
the proposed hardware architectures on FPGA, provide area and timing results,
and compare with counterparts available in the literature. Finally, in Section 6,
we give our final thoughts and discuss future work.
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Algorithm 1: Montgomery Multiplication [9]
Input : p < 2K , R = 2K , p′ = −p−1mod R, a, b < p
Output: a · b ·R−1mod p

1 T ← a · b
2 m← T · p′ mod R
3 T ← (T +m · p)/R
4 if T > m then return T − p
5 return T

2 Preliminaries: Montgomery multiplication

Modular multiplication (i.e. a× b mod p) of large integers (especially the ones
used in SIKE) can be efficiently implemented using Montgomery multiplication.
Montgomery multiplication [9] avoids the division operation which is difficult
to implement in an efficient way in hardware. Montgomery multiplication has
been used in recent hardware implementations of isogeny-based cryptography
including SIDH [5,6,7] and SIKE [12].

2.1 Montgomery Multiplication Algorithm

Montgomery multiplication performs modular multiplication by transforming
the division by p into division by a power of 2, which is a simple shift. The over-
head cost of Montgomery multiplication is the need to convert the inputs into
the Montgomery domain, then perform all arithmetic operations in the Mont-
gomery domain, and finally convert back to the ordinary domain. For simple
applications with few modular multiplications, this conversion would be expen-
sive. However, in SIKE, this is extremely useful because of its high dependence
on a large number of modular multiplications.

Montgomery multiplication algorithm (MontMult) takes two inputs a and b
with the remaining inputs constants and produces a single output MontMult(a, b) =
a · b ·R−1 mod p where R and p are co-prime. By taking R as a power of 2, the
division becomes a simple shifting. Algorithm 1 shows the original Montgomery
multiplication algorithm. The first part (line 1) performs the multiplication step
while the second part (lines 2-4) performs the reduction step. Note that the
same algorithm can be used to convert between the ordinary and Montgomery
domain [9]. The conversion into the Montgomery domain can be done using
MontMult(a,R2 mod p) where a is the input in the ordinary domain and the
conversion into the ordinary domain can be done using MontMult(a, 1) where a
is the input in the Montgomery domain.

The final subtraction step (line 4) can be removed from the algorithm and
performed once at the very end after converting to the ordinary domain. How-
ever, in this case, the output from MontMult, which is going to be the input for
subsequent MontMult, is < 2p−1 instead of < p. Therefore, the algorithm needs
to work for any input < 2p− 1. The condition (T +m · p)/R < 2p− 1 needs to
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Table 1. SIKE primes for post-quantum cryptography based on NIST standardization
process [3]

Prime Form Classical/Quantum Public Key
Security Size (Bytes)

p434 = 22163137 − 1 NIST level 1 330
p503 = 22503159 − 1 NIST level 2 378
p610 = 23053192 − 1 NIST level 3 462
p751 = 23723239 − 1 NIST level 5 564

be satisfied so that the output from line 3 is < 2p− 1. If R is taken such that it
is 2 bits larger than the size of p, then this condition is satisfied.

Hardware implementations of MontMult for public key cryptography have
been studied in [5,10,11,13,14,15,16,17,18,19,20,21].

2.2 SIKE Primes

In SIKE submission for post-quantum cryptography [12], the primes employed
have a special form where Montgomery multiplication can be optimized. These
primes are given in Table 1. The main advantage of the primes used in SIKE is
that the least significant bits of the prime are all 1s. This form can be utilized in
Montgomery multiplication algorithm variants that perform word by word com-
putation such as the Separated Operand Scanning (SOS), Coarsely Integrated
Operand Scanning (CIOS) or Finely Integrated Operand Scanning (FIOS) algo-
rithms [22]. In these word-by-word variants, p′0 = p′ mod 2w = −p−1 mod 2w,
where w is the number of bits in a word, can be used instead of p′ [23]. When
more than 2 words are used for SIKE primes, p′0 = 1 and m = T ·p′0 mod R = T
mod R in line 2 becomes a simple copy register.

2.3 Coarsely Integrated Operand Scanning (CIOS) Montgomery
Multiplication

The CIOS Montgomery multiplication algorithm [22] is a method that performs
word-by-word Montgomery multiplication by alternating between the multipli-
cation and reduction steps. The inputs a and b and prime p are split into s words
of w-bit wide each. CIOS is shown in Algorithm 2. As seen, lines 4-9 perform
the multiplication step while lines 11-18 perform the reduction step. Hardware
implementations of CIOS have been carried out in [10] by Mrabet et al. and in
[13] by McIvor et al.

2.4 Finely Integrated Operand Scanning (FIOS) Montgomery
Multiplication

The FIOS Montgomery multiplication algorithm [22] is a method that performs
word-by-word Montgomery multiplication by performing the multiplication and
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Algorithm 2: CIOS Montgomery Multiplication Algorithm [22]
Input : p < 2K , R = 2K , w, s, K = w · s, p′ = −p−1mod 2w, a, b < p
Output: MontMult(a, b)

1 T ← 0
2 for i← 0 to s− 1 do
3 C ← 0
4 for j ← 0 to s− 1 do
5 (C, S)← T [j] + a[i] · b[j] + C
6 T [j]← S

7 (C, S)← T [s] + C
8 T [s]← S
9 T [s+ 1]← C

10
11 m← T [0] · p′ mod 2w

12 (C, S)← T [0] +m · p[0]
13 for j ← 1 to s− 1 do
14 (C, S)← T [j] +m · p[j] + C
15 T [j − 1]← S

16 (C, S)← T [s] + C
17 T [s− 1]← S
18 T [s]← T [s+ 1] + C

19 return T

reduction steps in the same loop. Similar to CIOS, the inputs a,b and prime p
are split into s words of w-bit each. FIOS is shown in Algorithm 3. In FIOS, the
first multiplication and m must be computed (lines 3-6) before performing the
remaining multiplication and reduction steps (lines 7-15). The main difference
between FIOS and CIOS is that in FIOS, the multiplication and reduction can
be parallelized while in CIOS, the reduction has to wait for the multiplication
step.

Hardware implementation of FIOS has been conducted by McIvor et al. in
[13]. It has been shown that FIOS performed slower than CIOS. The main reason
for this is the need for carry propagation units (lines 4 and 9). To address, we will
show in this paper that the carry propagation can be eliminated for 1-bit larger
registers which adds minimal cost in hardware implementations and improves
the critical path delay.

3 Proposed Finite Field Multiplier Algorithms

In this section, based on the information provided in the previous section, we
propose an optimized CIOS and FIOS Montgomery multiplication algorithms
for primes employed in SIKE.
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Algorithm 3: FIOS Montgomery Multiplication Algorithm [22]
Input : p < 2K , R = 2K , w, s, K = w · s, p′ = −p−1mod 2w, a, b < p
Output: MontMult(a, b)

1 T ← 0
2 for i← 0 to s− 1 do
3 (C, S)← T [0] + a[i] · b[0]
4 ADD(t(1), C)
5 m← S · p′ mod 2w

6 (C, S)← S +m · p[0]
7 for j ← 1 to s− 1 do
8 (C, S)← T [j] + a[i] · b[j] + C
9 ADD(T [j + 1], C)

10 (C, S)← S +m · p[j]
11 T [j − 1]← S

12 (C, S)← T [s] + C
13 T [s− 1]← S
14 T [s]← T [s+ 1] + C
15 T [s+ 1]← 0

16 return T

3.1 Optimized CIOS (O-CIOS) Montgomery Multiplication
Algorithm

We propose a new optimized coarsely integrated operand scanning multiplier
(O-CIOS) for SIKE which requires less hardware units as shown in Algorithm
4. We show that by taking R 3 bits larger than the size of the prime p, we only
require s+ 1 registers. First, lines 11-12 in the original algorithm (Algorithm 2)
are replaced by lines 9-10 for s > 2 since p′ = 1 (as shown in Subsection 2.2)
and p[0] = 2w − 1. Proposition 1 shows how lines 7-9 and 16-18 can be replaced
by lines 7 and 14, respectively, for w > 2.

Proposition 1. In Algorithm 2, lines 7-9 and 16-18 can be can be replaced by
lines 7 and 14 in Algorithm 4, respectively, for w > 2.

Proof. For i = 0, iteration j = s − 1 in line 5 has output ≤ (2w − 1)(2w−2 −
1) + (2w − 1) = 2w−2(2w − 1) ≤ 22w−2 − 1 which implies C ≤ 2w−2 − 1 ≤
2w−1− 1. Therefore, T [s] ≤ 2w−1− 1 and T [s+1] = 0 in lines 8 and 9. Iteration
j = s − 1 in line 5 has output ≤ (2w − 1) + (2w − 1)(2w−3 − 1) + (2w − 1) =
(2w−3 + 1)(2w − 1) ≤ 2w−2(2w − 1) ≤ 22w−1 − 1 for w > 2 which implies
C ≤ 2w−1 − 1. Therefore, T [s − 1] ≤ 2w−1 − 1 and T [s] = 0 in lines 17 and 18.
Now, proving for iteration i = k where k > 0, iteration j = s − 1 in line 5 has
output ≤ (2w − 1) + (2w − 1)(2w−2 − 1) + (2w − 1) = (2w−2 + 1)(2w − 1) ≤
2w−1(2w − 1) ≤ 22w−1 − 1 for w > 1 which implies C ≤ 2w−1 − 1. Therefore,
T [s] ≤ 2w−1 − 1 and T [s + 1] = 0 in lines 8 and 9. Iteration j = s − 1 in line 5
has output ≤ (2w − 1) + (2w − 1)(2w−3 − 1) + (2w − 1) = (2w−3 + 1)(2w − 1) ≤

6



Algorithm 4: Optimized CIOS Montgomery Multiplication Algorithm
for SIKE primes

Input : p < 2K−3, R = 2K , w > 2, s > 2, K = w · s, a, b < 2p− 1
Output: MontMult(a, b)

1 T ← 0
2 for i← 0 to s− 1 do
3 C ← 0
4 for j ← 0 to s− 1 do
5 (C, S)← T [j] + a[i] · b[j] + C
6 T [j]← S

7 T [s]← C
8
9 m← T [0]

10 C ← T [0]
11 for j ← 1 to s− 1 do
12 (C, S)← T [j] +m · p[j] + C
13 T [j − 1]← S

14 T [s− 1]← T [s] + C

15 return T

2w−2(2w − 1) ≤ 22w−1 − 1 for w > 2 which implies C ≤ 2w−1 − 1. Therefore,
T [s− 1] ≤ 2w−1 − 1 and T [s] = 0 in lines 17 and 18. This complete the proof.

3.2 Optimized FIOS (O-FIOS) Montgomery Multiplication
Algorithm

We also propose an optimized FIOS algorithm for Montgomery multiplication
as shown in Algorithm 5. Similar to CIOS, lines 5 and 6 can be modified since
p′ = 1 and p[0] = 2w − 1 for s > 2. As for the carry propagation in lines 4
and 9, they can be directly integrated inside the other carry C in lines 6 and
10. However, the carry C must use a register of size w+ 1 bits to accommodate
the extra accumulated bits. The changes are shown in lines 4-5 and line 7 in
the optimized algorithm. We notice that the two multiplications in line 7 can
be performed in the same cycle in parallel and without the need to propagate
the result of the first multiplication which will decrease architecture complexity
and routing delays. Proposition 2 shows how lines 12-15 can be replaced by 9
for w > 2.

Proposition 2. In Algorithm 3, lines 12-15 can be replaced by line 9 in Algo-
rithm 5 for w > 2.

Proof. For i = 0, iteration j = s − 1 in line 7 in new algorithm has output
(≤ (2w−1)(2w−1−1)+(2w−1)(2w−2−1)+(2w−1) = (2w−1+2w−2+1)(2w−1) ≤
2w(2w − 1) = 22w − 1 for w > 1 which implies C ≤ 2w − 1. Therefore, T [s− 1] ≤
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Algorithm 5: Optimized FIOS Montgomery Multiplication Algorithm
for SIKE primes

Input : p < 2K−2, R = 2K , w > 2, s > 2, K = w · s, a, b < 2p− 1
Output: MontMult(a, b)

1 T ← 0
2 for i← 0 to s− 1 do
3 (C, S)← T [0] + a[i] · b[0]
4 m← S
5 C ← C + S
6 for j ← 1 to s− 1 do
7 (C, S)← T [j] + a[i] · b[j] +m · p[j] + C
8 T [j − 1]← S

9 T [s− 1]← LSW(C)

10 return T

2w − 1 and T [s] = 0. Now, proving for iteration i = k where k > 0, iteration
j = s−1 in line 7 in new algorithm has output (≤ (2w−1)+(2w−1)(2w−1−1)+
(2w−1)(2w−2−1)+(2w−1) = (2w−1+2w−2+2)(2w−1) ≤ 2w(2w−1) = 22w−1
for w > 2 which implies C ≤ 2w − 1. Therefore, T [s− 1] ≤ 2w − 1 and T [s] = 0.
This complete the proof.

4 Proposed Efficient Architecture for O-CIOS and
O-FIOS Montgomery Multiplication Algorithms

In this section, we propose a hardware architecture design for each of the new
optimized algorithms O-CIOS and O-FIOS discussed in the previous section. The
O-CIOS design focuses on minimizing area usage while the design for O-FIOS
focuses on maximizing the frequency and minimizing the total multiplication
time.

4.1 Proposed O-CIOS Architecture

The proposed O-CIOS architecture is illustrated in Fig. 1 which mainly im-
proves the area usage in comparison to the ones adopted before for hardware
implementations. The architecture is composed of several processing elements
(PEs) cascaded to perform the multiplication and reduction steps as can be seen
in Fig. 1(a). Each PE performs a multiplication and an addition in parallel fol-
lowed by an addition corresponding to lines 5 and 12 in Algorithm 4 as shown in
Fig. 1(b). Notice that unlike Mrabet’s design [10], no final PEs for multiplication
and reduction are required since lines 7 and 14 are respectively similar to lines 5
and 12 with some registers set to 0. In addition, line 10 can be integrated in the
reduction PE (line 12) since T [0] +m · p[0] = T [0] · 2w which implies C = T [0]
before performing the first iteration.
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Each odd PE performs the entire first inner loop (lines 4-6) and line 7 (multi-
plication step) of one outer iteration while each even PE performs entire second
inner loop (lines 11-13) and line 14 (reduction step) of one outer iteration. There
is one fan-out needed in the output of the multiplication PE to store m for the
reduction PE.

Once the PE is finished with processing one iteration, it processes another
iteration, which can be seen by the loop-back after the last PE. There is a delay of
3 cycles between two consecutive multiplication or reduction PEs corresponding
to one multiplication, one reduction, and computing m cycles. Therefore, to
minimize the number of cycles, the number of PEs used is b(s+ 1)/3c. This
means that each PE performs 2 or 3 iterations. Thus, each PE uses 2 or 3
different words of input a as can be seen in Fig. 1(c). Words from inputs b and
p rotate across each PE as shown in Fig. 1(d). The number of cycles required
for this architecture to compute Montgomery multiplication is 4s cycles. For
instance, for p434, O-CIOS requires 112 clock cycles.

4.2 O-FIOS Architecture

The proposed O-FIOS architecture is illustrated in Figs. 2 and 3. As one can
see, Fig. 2(a) illustrates the proposed systolic architecture based on PEs. This
architecture focuses on improving timing results by parallelizing the multiplica-
tion and reduction steps. The initial PE (Fig. 2(b)) computes m and the first
carry for each iteration (lines 3-5 in Algorithm 5). The remaining PEs (Fig. 3(c))
perform two consecutive iterations of the inner loop (lines 7-8). Therefore, each
PE processes two words of input b and prime p following Fig. 3(d) and outputs
the two words of the output following Fig. 3(e). Words for input a are pushed
serially using a shift register (Fig. 3(f)) into the initial PE and propagated to the
next PE after two cycles corresponding to the two consecutive iterations men-
tioned earlier. Similarly, m is propagated through each PE after being evaluated
in the initial PE.

For the last line 9 of the algorithm, we tried feeding back the carry output of
the last PE into its sum input. However, this has caused a routing delay in the
FPGA we are using outweighing the cycle saved in the process. Therefore, we
have decided that for even s, the last PE can process the last line by grounding
the second bin, second pin, and Sin while in odd s, a simple register is used to
store the result before fed-back into Sin of the last PE. The number of cycles
required for this architecture to compute Montgomery multiplication is 3s cycles.
For example, in p434, O-FIOS requires 84 cycles.

4.3 Time Complexity Analysis

Table 2 provides a time complexity comparison between our O-CIOS and O-FIOS
implementations and different Montgomery multiplication implementations. For
a fair comparison, we have optimized Mrabet et al.’s implementation [13] for
SIKE primes by changing the β-cell into a simple register since p−1 = 1. As
for Koziel et al.’s implementation [5,11], we used a non-interleaved version of
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Table 2. Time complexity comparison of 448-bit Montgomery multipliers for SIKEp434.
T16× indicates the critical path of a 16-bit×16-bit multiplication. T32+ indicates the
critical path of a 32-bit addition.

Work Critical Latency (cc)Path Delay
Mrabet et al. [10] (w = 16) T16× + T32+ 114

McIvor/Koziel et al. [11,5] (w = 16) T16× + 2T32+ 87
This work O-CIOS (w = 16) T16× + T32+ 112
This work O-FIOS (w = 16) T16× + 2T32+ 84

the multiplier. Our proposed O-CIOS uses less number of clock cycles while
maintaining the same critical path delay of Mrabet’s CIOS. Our proposed O-
FIOS uses the least number of clock cycles of any design while maintaining the
same critical path delay of Koziel’s implementation. However, in the next section,
our results show that O-FIOS perform at the same frequency of Mrabet’s CIOS
mainly because our design has minimal routing delays. Furthermore, our designs
require less area which we will show in the next section after implementing in
hardware.

5 Implementation Results

In this section, we are going to provide implementation results for the proposed
Montgomery multiplication architectures, O-CIOS and O-FIOS, discussed in the
previous sections. The implementations are performed in Xilinx Vivado 2018.2
for Xilinx Virtex-7 FPGA xc7vx690tffg1157-3. Table 2 reports area and timing
results for O-CIOS and O-FIOS. As one can see, for NIST level-1, our proposed
O-CIOS architecture operates in 233.5 MHz and occupies 770 Flip-flops, 1869
LUTs, 40 DSPs and 447 slices. The total time to perform one Montgomery
multiplication is 480 ns in O-CIOS. On the other hand, O-FIOS operates at
271.4 MHz and occupies 1119 FFs, 1905 LUTs, 43 DSPs and 607 slices for NIST
level-1. The total time to perform one Montgomery multiplication is 310 ns in
O-FIOS.

5.1 Comparison and Discussion

Table 2 compares our results with two different implementations; Mrabet et al.
[10] and non-interleaved Koziel et al. [5,11]. Our O-FIOS is 22% to 31% faster
than Mrabet’s implementation and 32% to 42% faster than Koziel’s implemen-
tation (a non-interleaved version of the one used in SIKE). In addition, the
O-FIOS architecture uses less area compared to other implementations (other
than O-CIOS). Our O-CIOS focuses on minimizing the area usage while main-
taining high frequency and low total time. For example, in p434, the number of
slices used in O-CIOS is 447 which is 2× smaller than Koziel’s implementation
at 895 slices and 6.5× smaller than Mrabet’s implementation at 2959 slices. This
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Table 3. Implementation results and comparison of proposed O-FIOS and O-
CIOS Montgomery multiplication architectures on a Xilinx Virtex-7 FPGA device,
xc7vx690tffg1157-3

NIST Area Time Area×Time
Prime Level # # # # Freq. Latency Total (×1000)

FFs LUTs DSPs Slices (MHz) (cc) time (ns)

This work O-CIOS (w = 16)
p434 1 770 1869 40 447 233.481 112 479.696 214.424
p503 2 851 2094 44 519 216.685 128 590.720 306.584
p610 3 1075 2609 56 646 217.297 156 717.912 463.771
p751 5 1309 3188 68 761 219.635 192 874.176 665.248

This work O-FIOS (w = 16)
p434 1 1119 1905 43 607 271.370 84 309.540 187.891
p503 2 1290 2219 49 554 267.380 96 359.040 198.908
p610 3 1568 2704 61 835 267.380 117 437.580 365.379
p751 5 1794 3308 73 967 232.829 144 618.480 598.070

Mrabet et al. [10] ∗(w = 16)
p434 1 3492 3737 40 2959 273.973 114 416.100 1,231.240
p503 2 3884 4240 44 3334 251.130 129 513.678 1,486.911
p610 3 4741 5148 54 4041 247.158 159 643.314 1,831.187
p751 5 5814 6288 66 4970 245.459 195 794.430 2,267.751

McIvor/Koziel et al. [11,5]∗(w = 16)
p434 1 687 3177 84 895 160.694 87 541.401 484.554
p503 2 784 3641 96 1044 162.470 99 609.345 636.156
p610 3 952 4040 117 1315 162.101 120 740.280 973.468
p751 5 1168 4193 144 1310 159.974 147 918.897 1,203.755
∗ Note that the original paper does not have the results for these primes. The numbers
are based on our implementations using this work.

implementation of O-CIOS is slightly slower (9% to 13%) than Mrabet’s CIOS
and slightly faster (3% to 11%) than Koziel’s implementation.

6 Conclusion

In this paper, we discussed two optimized Montgomery multiplication algorithms
O-CIOS and O-FIOS for SIKE primes. We then developed an architecture for
each algorithm. The O-CIOS architecture focuses on minimizing the area usage
while the O-FIOS architecture focuses on minimizing the total time. For perfor-
mance evaluation and comparison, we implemented our proposed architectures
in FPGA and showed area and timing results.

The Montgomery multiplication architectures developed in this paper show
great potential in increasing the performance of SIKE. Our future work is to de-
velop an optimized version of SIKE and employ the two Montgomery multiplier
architectures developed in this paper.
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