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Optimized Implementation of SIKE Round 2
on 64-bit ARM Cortex-A Processors
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Abstract— In this work, we present the first highly-optimized
implementation of Supersingular Isogeny Key Encapsulation
(SIKE) submitted to NIST’s second round of post quantum
standardization process, on 64-bit ARMv8 processors. To the best
of our knowledge, this work is the first optimized implementation
of SIKE round 2 on 64-bit ARM over SIKEp434 and SIKEp610.
The proposed library is explicitly optimized for these two security
levels and provides constant-time implementation of the SIKE
mechanism on ARMv8-powered embedded devices. We adapt
different optimization techniques to reduce the total number of
underlying arithmetic operations on the field level. In particu-
lar, benchmark results on embedded processors equipped with
ARM Cortex-A55@1.766GHz and ARM Cortex-A75@2.803GHz
show that the entire SIKE round 2 Key Encapsulation Mecha-
nism (KEM) takes only 98.6 ms and 85.3ms at NIST’s security
level 1, respectively. We also evaluated the compressed version
of NIST’s security level 1, which requires 134.7 ms and 113.7 ms
for Cortex-A55 and Cortex-A75, respectively. Considering SIKE’s
extremely small key size in comparison to other post-quantum
cryptography candidates, our result implies that SIKE is one of
the promising candidates for key encapsulation mechanism on
embedded devices in the quantum era.

Index Terms— Post-quantum cryptography, isogeny-based
cryptography, ARM processors, assembly, key encapsulation
mechanism.

I. INTRODUCTION

INITIATED by the National Institute of Standards and Tech-
nology (NIST), Post-Quantum Cryptography (PQC) has

been elevated to a standardization process to solicit, evaluate,
and standardize one or more quantum-resistant public-key
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cryptographic algorithms [25]. To prepare for security con-
cerns caused by quantum computers, in 2016, NIST called for
the cryptographic algorithms which were assumed to be resis-
tance against high-scale quantum computers. These proposals
provided Key Encapsulation Mechanism (KEM) or digital sig-
nature algorithms from different arithmetic structures, result-
ing in different characteristics and parameters. Recently, NIST
announced approved candidates for round 2 which are the
most promising candidates in terms of security, performance,
and compatibility with current cryptography technology. For
the key encapsulation mechanism, only 17 candidates made it
through to the second round for being evaluated and analyzed
from different perspectives.
Different PQC candidates are constructed on hard math-

ematical problems which are assumed to be impossible to
solve even for large-scale quantum computers. These problems
can be categorized into five main categories: code-based cryp-
tography, lattice-based cryptography, hash-based cryptography,
multivariate cryptography, and supersingular isogeny-based
cryptography, see, for instance [9].
Supersingular Isogeny Key Encapsulation (SIKE) mecha-

nism is one of the PQC candidates which is constructed on
the hardness of solving isogeny maps between supersingular
elliptic curves. In fact, SIKE is the only candidate that offers
the quantum-resistance cryptographic construction over elliptic
curves, resulting in well-known structures in implementation
perspective. The proposed key encapsulation mechanism is
derived from the original Jao-De Feo’s Diffie-Hellman key-
exchange and public-key encryption algorithms [20]. However,
constructing cryptographic structures from hardness of super-
singular isogeny graphs was introduced by Charels-Lauter-
Goren [8].
The first round SIKE submission offered three differ-

ent security levels known as SIKEp503, SIKEp751, and
SIKEp964. According to the best known quantum attacks
on solving supersingular isogeny problem by that time,
the proposed security levels met NIST’s level 1, 3, and 5
requirements, respectively.
However, recent studies on the cost of solving isogeny

problem on quantum computers by Adj et al. [2] revealed
that the security assumptions for SIKE was too conservative.
In fact, a set of realistic models of quantum computation on
solving Computational Supersingular Isogeny (CSSI) problem
in [2] suggests that the Oorschot-Wiener golden collision
search is the most powerful attack on the CSSI problem,
resulting in significant improvement on the SIKE’s classical
and quantum security levels.
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Accordingly, the second round SIKE [4] offers a new set of
security levels which are more realistic and provide significant
improvement on the key encapsulation performance. In par-
ticular, decreasing the bit-length of SIKE’s primes translates
to notable performance improvement, making this scheme
suitable for many potential applications on low-end embedded
devices.
In this work, we provide a full report on the highly-

optimized implementation of SIKE on 64-bit ARM embedded
processors over all proposed security levels. In particular,
the reference optimized implementation of SIKE [4] on
64-bit ARM embedded processor only targets two security
levels, i.e., SIKEp503 and SIKEp751. Therefore, in this work,
we address this shortcoming by providing the KEM full bench-
marks on different security levels which provide a reference
for the performance analysis of this scheme for the second
round.
Our proposed library takes advantage of state-of-the-art

engineering techniques as well as low level assembly opti-
mizations. We studied different approaches for finite field
arithmetic implementation over SIKE’s new primes. Our
benchmark results offer significant improvement in perfor-
mance compared to portable implementation, suggesting the
possible integration of this scheme on mobile devices in the
future.

II. BACKGROUND

In this section, we briefly review the SIDH protocol and
the required steps for Alice and Bob to generate a shared
secret. Furthermore, we describe the SIKE, a post-quantum
key encapsulation mechanism from isogenies of supersingular
elliptic curves which was submitted to NIST’s PQC standard-
ization competition. We refer the readers to [5], [20] for further
details.
Let E1 and E2 be elliptic curves over a finite field Fq .

An isogeny φ : E1 → E2 is a non-constant rational map
defined over Fq which is also a group homomorphism form
E1(Fq) to E2(Fq). If such a map exists we say E1 is isogenous
to E2, and two curves E1 and E2 over Fq are isogenous if
and only if #E1(Fq) = #E2(Fq).
An isogeny φ can be expressed in terms of two rational

maps f and g over Fq such that φ((x, y)) = ( f (x), y · g(x)).
We can write f (x) = p(x)/q(x) with polynomials p(x) and
q(x) over Fq that do not have a common factor, and similarly
for g(x). The degree deg(φ) of the isogeny is defined as
max{deg(p(x)), deg(q(x))}.
Given an isogeny φ : E1 → E2 we define the kernel of φ

as follows:

ker(φ) = {P ∈ E1 : φ(P) = O}.
For any finite subgroup H of E(Fq), there is a unique

isogeny φ : E → E ′ such that ker(φ) = H and deg(φ) =
|H |, where |H | denotes the cardinality of H . In this case,
we denote by E/H the curve E ′. Given a subgroup H ⊆
E(Fq), Velu formula can be used to find the isogeny φ and
isogenous curve E/H . An example of isogeny map is given
in Figure 1.

Fig. 1. An 9-degree isogeny map from elliptic curve with j = 24 to
elliptic curve with j = 17 (each circle represents the isomorphism class,
the numbers inside of the each circle are the j-invariants of that isomorphism
class, the numbers next to the arrows denote the degree of the isogeny).

A. SIDH Key Exchange

In 2011, Jao and De Feo [20] proposed the SIDH, a quantum
resistant key exchange protocol from isogenies of supersin-
gular elliptic curves. Similar to classical Diffie-Hellman key
exchange, SIDH protocol is constructed over some public
parameters which are agreed upon by communication parties
prior to key exchange.

1) Public Parameters: Fix a prime p of the form p =
�

eA
A · �

eB
B · f ± 1 where �A and �B are small primes, eA

and eB are positive integers, and f is a very small cofactor.
We define a based supersingular elliptic curve E over Fp2

with cardinality #E = (�
eA
A · �

eB
B · f ∓ 1)2, and base points

{PA, Q A} and {PB, QB} from the torsion subgroups E[�eA
A ]

and E[�eB
B ] respectively, such that 〈PA, Q A〉 = E[�eA

A ] and
〈PB , QB〉 = E[�eB

B ].
2) Key Exchange Protocol: Alice randomly chooses two

integers m A, n A ∈ Z/�eA
A Z, not both divisible by �A as her

secret key and computes an isogeny φA : E → E A using
kernel RA := 〈[m A]PA + [n A]Q A〉. Alice also computes
the image points {φA(PB), φA(QB)} ⊂ E A by applying her
secret isogeny φA to the public basis PB and QB . She sends
φA(PB), φA(QB) and E A to Bob as her public key. Bob
also selects random elements m B , nB ∈ Z/�

eB
B Z, not both

divisible by �B and computes a secret isogeny φB : E → EB

from kernel RB := 〈[m B ]PB + [nB]QB〉, along with image
points {φB(PA), φB(Q A)} ⊂ EB . He sends his public key,
i.e., φB(PA), φB(Q A) and EB to Alice.
In the second round of key exchange, Alice uses Bob’s

public key (φB(PA), φB(Q A), EB) and computes an isogeny
φ′

A : EB → E AB from kernel equal to 〈[m A]φB(PA) +
[n A]φB(Q A)〉; Similarly, Bob computes an isogeny φ′

B :
E A → EB A having kernel 〈[m B]φA(PB)+[nB]φA(QB)〉 using
Alice’s public key. Since the common j -invariant of E AB and
EB A are equal, they use this value to form a secret shared
key. The entire SIDH key exchange protocol is illustrated
in Figure 2.
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Fig. 2. SIDH key exchange protocol.

B. SIKE Mechanism

SIKE mechanism is constructed by applying a transforma-
tion of Hofheinz, Hövelmanns, and Kiltz [16] to the supersin-
gular isogeny Public Key Encryption (PKE) scheme described
in [20]. It is an actively secure key encapsulation mechanism
(IND-CCA KEM) which addresses the static key vulnerability
of SIDH due to active attacks in [14].

1) Public Parameters: Similar to SIDH, SIKE can be
defined over a prime of the form p = �eA

A ·�eB
B · f ±1. However,

for efficiency reasons, �A = 2, �B = 3, and f = 1 are fixed,
thus the SIKE prime has the form of p = 2eA · 3eB − 1. The
starting supersingular elliptic curve E0/Fp2 : y2 = x3 + x
with cardinality equal to (2eA · 3eB )2, along with base points
〈PA, Q A〉 = E0[2eA ] and 〈PB , QB〉 = E0[3eB ] are defined as
public parameters.

2) Key Encapsulation Mechanism: The key encapsulation
mechanism can be divided into three main operations: Alice’s
key generation, Bob’s key encapsulation, and Alice’s key
decapsulation. We describe each operation in the following.
Figure 3 presents the entire key encapsulation mechanism in
a nutshell.

a) Key generation: Alice randomly chooses an inte-
ger skA ∈ Z/2eA Z and by applying an isogeny φA :
E0 → E A with kernel RA := 〈PA + [skA]Q A〉 to the
base points {PB , QB}, computes her public key pkA =
[E A, φA(PB), φA(QB)]. Moreover, she generates a t-bit1 ran-
dom sequence s ∈R {0, 1}t .

b) Encapsulation: Bob generates an t-bit random mes-
sage m ∈R {0, 1}t , concatenates it with Alice’s public key
pkA and computes an (eB log2 3)-bit hash value r using
cSHAKE256 hash function H1, taking m ‖ pkA as the
input. Using r , he applies a secret isogeny φB : E0 → EB

1The value of t is defined by the implementation parameters.

to the base points {PA, Q A} and forms his public key
pkB(r) = [EB, φB(PA), φB(Q A)]. Bob also computes the
common j -invariant of curve EB A by applying another
isogeny φ′

B : E A → EB A using Alice’s public key. Bob forms
a ciphertext c = (c0, c1), such that:

c = (c0, c1) = (pkB(r), H2( j (EB A)) ⊕ m),

where H2 is a cSHAKE256 hash with a custom length output
and a defined initialization parameter. Finally, Bob computes
the shared secret as K = H3(m ‖ c) and sends c to Alice.

c) Decapsulation: Upon receipt of c, Alice computes the
common j -invariant of E AB by applying her secret isogeny
to EB . She computes m′ = c1 ⊕ H2( j (E AB)) and r ′ = H1
(m ‖ pkA). Finally, she validates Bob’s public key by com-
puting pkB(r ′) and comparing it with c0. She generates the
same shared secret K = H3(m′ ‖ c) if the public key is valid,
otherwise she outputs a random value K = H3(s ‖ c) to be
resistant against active attacks.

C. Key Compression

Compared to other PQC candidates, SIKE provides the
smallest public key size which makes this scheme a suitable
candidate for the applications with limited bandwidth/memory.
Furthermore, the standard representation of SIKE’s public
keys can be further compressed using the key-compression
technique proposed in the SIKE round 2 proposal with a
slight but not negligible overhead in overall performance.
First key compression is proposed by Azarderakhsh et al.
in [6] and then it is improved in [11] for SIDH. Recently a
compressed key for SIKE is appeared in SIKE round 2 in [4].
The key compression efficiency on SIKE has been improved
by dual isogenies method. In particular, recent optimization
in pairing computations and basis generation, in addition
to fast and compact x-only formulas for dual isogenies of
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Fig. 3. SIKE mechanism.

degree 2 and 3 in [22], improved the SIKE’s key compression
overhead significantly compared to the previous works, while
the public-key and ciphertext size are reduced by 59%.
SIKE’s key compression feature offers a flexibility in pro-

tocol design for key encapsulation mechanism in different
environments: the required bandwidth can be shrunk down
almost in half if the performance is not a bottleneck.
Recall from SIDH key exchange that Alice’s public key

is {E A, φA(PB), φA(QB)} and similarly Bob’s public key is
{E A, φA(PB), φA(QB)}. We can shortly represent those public
keys {E, φ(P), φ(Q)}. That is, the public key consists of an
elliptic curve over Fp2 and two points over Fp2 on this curve.
However, as the public keys are similar in SIKE mechanism,
they are encoded by x-coordinates of three points (see [4] for
details):

{Xφ(P), Xφ(Q), Xφ(P−Q)}
of size 6 log p in total. Note that this encoding can be
deterministically converted to original public key.
It is further improved by Azarderakhsh et al. [6], by sending

in the form

{ j (E) ∈ Fp2 and a1, a2, b1, b2 ∈ Z3n },

so that φ(P) = a1 R1 + a2 R2 and φ(Q) = b1 R1 + b2 R2
for some pre-shared canonical basis 〈R1, R2〉 = 3n . In that
case, it reduces 4 log p total key size bits but 10 times slower
compression/decompression. Moreover, Costello et al. [11]
reduces the total key size 3.5 log p bits but 2.4 times slower
compression/decompression by sending in the form

{ j (E) ∈ Fp2 and α, β, γ ∈ Z3n },
so that α = b1 a−1

1 , β = a2 a−1
1 , γ = b2 a−1

1 . This
compression methods are also given in Figure 4. Together with
the works of Zanon et al. [26] and Naehrig and Renes [22],
compression/decompression running time is reduced signifi-
cantly. The running times for actual operation required for
key compression can be seen in Table 2 of [22]. In this paper,
we used the latest library SIDHv3.2 which includes the latest
improvement by [22].

III. TARGET ARCHITECTURE

ARMv8 Cortex-A, or simply ARMv8, is the latest genera-
tion of ARM architectures targeted at the “application” profile.
It includes the typical 32-bit architecture, called “AArch32”,
and advanced 64-bit architecture named “AArch64” with its
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Fig. 4. Key compression.

TABLE I

COMPARISON OF PUBLIC KEY SIZE BETWEEN STANDARD
AND COMPRESSED VERSIONS

TABLE II

COMPARISON OF MULTIPLICATIONMETHODS, IN TERMS OF THE NUMBER
OF ADDITION OPERATIONS DEPENDING ON THE NUMBER OF WORD

associated instruction set “A64” [3]. AArch32 preserves back-
wards compatibility with ARMv7 and supports the so-called
“A32” and “T2” instructions sets, which correspond to the
traditional 32-bit and Thumb instruction sets, respectively.
AArch64 comes equipped with 31 general purpose 64-bit
registers (i.e. X0∼X30) and one zero register (i.e. XZR), and
an instruction set supporting 32-bit and 64-bit operations. The
significant register expansion means that with AArch64 the
maximum register capacity is expanded to 1,984 bits (i.e.
31× 64, a 4x increase with respect to ARMv7.).
ARMv8 processors started to dominate the smartphone

market soon after their first release in 2011, and nowadays
they are widely used in various high-end smartphones (e.g.
Apple iPhone, Huawei Mate and Samsung Galaxy series).
Since this architecture is used primarily in embedded systems
and smartphones, efficient and compact implementations are
of special interest.
ARMv8 processor supports powerful 64-bit wise unsigned

integer multiplication instructions. Our implementation of
modular multiplication uses the AArch64 architecture and
makes extensive use of the following multiply instructions:

• MUL (unsigned multiplication, low part):
MUL X0, X1, X2 computes X0 ← (X1 × X2)
mod 264.

• UMULH (unsigned multiplication, high part):
UMULH X0, X1, X2 computes X0 ← (X1 ×
X2)/264.

The two instructions above are required to compute a full
64-bit multiplication of the form 128-bit ← 64 × 64-bit,
namely, the MUL instruction computes the lower 64-bit half
of the product, while UMULH computes the higher 64-bit half.
For addition and subtraction operations, ADDS and SUBS

instructions ensure 64-bit wise results, respectively. Detailed
descriptions are as follows:

• ADDS (unsigned addition):
ADDS X0, X1, X2 computes {CARRY,X0} ←
(X1 + X2).

• SUB (unsigned subtraction):
SUBS X0, X1, X2 computes {BORROW,X0} ←
(X1 − X2).

IV. OPTIMIZED FIELD ARITHMETIC IMPLEMENTATION

There are a number of works in the literature that study
the ARMv8 instructions to implement multi-precision mul-
tiplication or the full Montgomery multiplication for “SIDH
friendly” modulus [18], [19], [24]. In [18], Jalali et al. imple-
mented 751-bit and 964-bit finite field multiplication. They
utilized the Comba method (i.e. column-wise multiplication)
for both cases [10]. In particular, they used 2-level Karatsuba
for 964-bit finite field multiplication, which shows 23.9%
performance enhancements than conventional Comba method.
In [24], Seo et al. optimized the 503-bit finite field multi-
plication for SIKEp503. They also used the Comba method
with 2-level Karatsuba method to enhance the performance of
multiplication. Furthermore, they optimized the MAC (Mul-
tiplication ACcumulation) routines to avoid pipeline stalls.
In [17], Jalali et al. presented the optimized Montgomery
multiplication by mixing AArch64 and ASIMD instructions.
This approach shows the better performance than Comba
method, when the operand size is long enough, such as
SIKEp751 and SIKEp964.
Recently, two novel SIKE protocols (i.e. SIKEp434 and

SIKEp610) for NIST Post Quantum Cryptography compe-
tition round 2 were suggested, which meet NIST security
level 1 and 3, respectively [4]. However, previous works do not
show the optimized results for both protocols. In this paper,
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we show the first practical implementations of SIKEp434 and
SIKEp610 protocols on 64-bit ARMv8-A processors. In order
to achieve high performance, the arithmetic for SIKEp434 and
SIKEp610 is optimized to utilize the ARMv8-A ability fully.
Furthermore, we also include the performance of compressed
SIKEp434 and compressed SIKEp610. To describe the multi-
precision arithmetic, we used following notations. Let A and B
be operands of length m bits each. Each operand is written as
A = (A[n−1], . . . , A[1], A[0]) and B = (B[n−1], . . . , B[1],
B[0]), where n = �m/w� is the number of words to repre-
sent operands, m is operand length, and w is the computer
word size (i.e. 64-bit). The addition result (C = A + B)
is represented as C = (C[n − 1], . . . , C[1], C[0]). For the
multiplication (C = A × B), the result is represented as
C = (C[2n − 1], . . . , C[1], C[0]).

A. Finite Field Addition and Subtraction

Finite field addition and subtraction operations firstly need
to perform addition and subtraction operations, respectively
(See Section 2.2.1 of [15] for details). Afterward, inter-
mediate results are reduced through the reduction routine,
when the carry or borrow bit is detected. In order to avoid
the timing attack, the reduction routine is performed without
conditional statements (i.e. constant timing). To achieve this
property, we used the masked modular reduction approach,
which always perform regular routines, regardless of the carry
or borrow bit (See Section 4.4 of [23] for details). When the
carry or borrow bit is detected, the mask value in word is set
to 264 − 1. Otherwise, the mask value is set to 0. With the
mask value, the modulus is determined, whether it is modulus
value or 0.
For the 434-bit addition or subtraction operation, we uti-

lized 14 general purpose registers to store the operands
(i.e. 2 × �434/64�) since each operand requires 7 registers.
In particular, two words of 434-bit modulus are 264 − 1
(i.e. 0xFFFFFFFFFFFFFFFF). We only set one word to
264−1 and use this twice for computations, which reduces one
operand setting overheads. For 610-bit addition or subtraction
operation, we utilized 20 general purpose registers to retain
all operands (i.e. 2 × �610/64�) since each operand requires
10 registers. Similarly, three words of 610-bit modulus are set
to 264− 1 (i.e. 0xFFFFFFFFFFFFFFFF). This word is used
three times with only one memory access, which reduces two
operand setting overheads.

B. Multiplication

In previous works, they used the Comba method
(i.e. column-wise method) to improve the multi-precision mul-
tiplication. The Comba method performs the partial products
in column-wise, which ensures small number of registers for
maintaining the intermediate results. In Figure 5, the part
of Multiplication ACculmuation (MAC) routine in column-
wise method for 64-bit ARMv8 processors is described. The
example performs the three partial products (A[i ] × B[ j ],
A[i +1]× B[ j −1], and A[i +2]× B[ j −2]) and accumulates
them to intermediate results. In each MAC routine, two
multiplication (MUL_LOW and MUL_HIGH) and three addition

Fig. 5. Part of column-wise multiplication for ARMv8, where L , H , and
ACC represent lower multiplication, higher multiplication, and accumulation,
respectively.

Fig. 6. Part of row-wise multiplication for ARMv8, where L , H , and
ACC represent lower multiplication, higher multiplication, and accumulation,
respectively.

operations (ACC0, ACC1, and ACC2) are required. For one
word multiplication, we need three addition operations. For
that reason, n-word multiplication requires 3 × n2 addition
operations.
In this work, we target the relatively shorter modulus

(i.e. 434-bit) than previous works (i.e. 751-bit or 964-bit).
We decide to use the row-wise multiplication, which requires
2n + 2 registers (n + 1 for operands and n + 1 for inter-
mediate results), where n, m, and w are �m/w�, operand
length, and word size, respectively. Under the 64-bit processor
setting, the n is set to 7 for 434-bit (�434/64�). Consider-
ing that ARMv8 supports 31 64-bit registers, the required
number of registers for 434-bit can be retained in registers.
In Figure 6, the part of MAC routine in row-wise method for
64-bit ARMv8 processors is described. The example performs
three partial products (A[i ] × B[ j ], A[i ] × B[ j + 1], and
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A[i ]× B[ j+2]) and accumulates them to intermediate results.
The number of addition for three partial products in Figure 6
are 8 (i.e. 2 × (n + 1) where n is 3.). For the n-word
multiplication, it requires 2× n × (n + 1) addition operations.
The comparison of multiplication methods in terms of the
number of addition operations depending on the number of
word are given in Table II. Compared with the column-
wise method (i.e. product-scanning), the row-wise method
(i.e. operand-scanning) requires less number of addition
operations for accumulation routines. For the 7-word case
(i.e. 434-bit), the row-wise method reduces the number of
addition operations by 35 times than the column-wise method.
The multiplication is performed in original row-wise multi-
plication rather than row-wise multiplication with Karatsuba
method. The Karatsuba method is also working for 7-word
case but it generates a number of sub-routines to perform the
computation and store the intermediate results, which requires
additional operations and memory accesses [21].
For the 610-bit multiplication, the operands A =

(A[9], . . . , A[0]) and B = (B[9], . . . , B[0]) need 20 64-bit
registers. Except operands, we also need registers for inter-
mediate results and temporal storage. Due to limited number
of registers, we only maintain half number of operands in
registers and load remaining operands on demand.
Karatsuba’s method reduces a multiplication of two m-bit

operands to three m
2 -bit multiplications with some addition or

subtraction operations. There are two approaches to perform
Karatsuba multiplication, including additive Karatsuba and
subtractive Karatsuba. Taking the multiplication of n-word
operand A and B as an example, operands are represented as
A = AH ·2 n

2 + AL and B = BH ·2 n
2 + BL . The multiplication

P = A · B can be computed according to the following
equation by using additive Karatsuba’s method:

AH · BH · 2n + [(AH + AL)(BH + BL) − AH

·BH − AL · BL] · 2 n
2 + AL · BL (1)

or subtractive Karatsuba’s method:

AH · BH · 2n + [AH · BH + AL · BL − |AH − AL |
·|BH − BL | ] · 2 n

2 + AL · BL (2)

For the 610-bit multiplication, 1-level subtractive Karatsuba
multiplication is used, which consists of 3 320-bit multiplica-
tion operations with some addition or subtraction operations.
In the beginning, we compute the lower 320-bit multiplica-

tion RL ← A[4 ∼ 0] · B[4 ∼ 0]) using the row-wise method
that requires 25 MUL, 25 UMULH and 52 addition instructions
for accumulating the partial products. Second, we compute the
higher 310-bit multiplication RH ← A[9 ∼ 5] · B[9 ∼ 5],
similarly. Third, we compute the subtractions and absolute
values |A[4 ∼ 0] − A[9 ∼ 5]| and |B[4 ∼ 0] − B[9 ∼ 5]|
and proceed to the last 310-bit multiplication RM ← |A[4 ∼
0] − A[9 ∼ 5]| · |B[4 ∼ 0] − B[9 ∼ 5]|. Finally, we obtain the
result by performing the accumulation step RH · 2610+ (RL +
RH −RM )·2310+RL . Since the multiplication uses all available
registers, 12 callee-saved registers (X19 ∼ X30) are stored
into the stack. The multiplication is also designed to reduce
the pipeline stalls. The multiplication and addition/subtraction

operations use different instruction group. They can hide each
others costs. Based on the above observation, we engineer a
multi-precision multiplication to hide the addition costs into
the multiplication. At the lowest level, we implement multi-
precision multiplication using the row-wise method based on
the following multiplication/addition instruction sequence:

...

MUL X7,X6,X2

ADCS X18,X18,X13

MUL X8,X6,X3

ADCS X19,X19,X14

MUL X9,X6,X4

ADCS X20,X20,X15

MUL X10,X6,X5

ADCS X21,X21,X16
...

We ensure that the destination of MUL instruction is not used
for the source of following ADCS instructions. This approach
avoids the pipeline stalls. Second, MUL and ADCS instructions
are performed one by one to hide the each cost.

C. Reduction

In this section, we adapt techniques described in previ-
ous sections to implement modular multiplication for SIKE.
Specifically, we target parameter sets based on SIKEp434 and
SIKEp610 [4].
Multi-precision modular multiplication is the most expen-

sive operation for the implementation of SIKE [12], [20].
In particular, Montgomery multiplication for SIKE can be
efficiently exploited and further simplified by taking advantage
of so-called “Montgomery-friendly” modulus. The advan-
tage of using Montgomery multiplication for “SIDH-friendly”
primes was recently confirmed by Bos and Friedberger [7],
who studied and compared different approaches, including
Barrett reduction. Recent works by Seo et al also utilized the
Montgomery multiplication for SIKEp503 protocols [24].
Based on the observation above, we choose the Montgomery

multiplication to implement SIDH-friendly modular arithmetic
for SIKEp434 and SIKEp610 protocols. The approach reduces
almost half of partial products since the lower part of modulus
is set to 0. To reduce memory accesses, we keep as many
results as possible in registers. Since Montgomery multipli-
cation performs partial products with modulus and quotient
(The quotient is intermediate results multiplied by constant
m ′), we maintained all quotients in registers and used them,
directly. The technique reduces the 2 × (n + 1) number of
memory accesses for n + 1 load and n + 1 store operations,
where n-word computation. For instance, 16 and 22 memory
accesses for SIKEp434 and SIKEp610 are optimized.

1) Interleaved Montgomery Multiplication: The
Algorithm 1 describes Montgomery multiplication. The Mont-
gomery multiplication firstly performs the operand multiplica
tion. Second, the quotient (Q) is generated by multiplying the
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Fig. 7. Part of interleaved Montgomery multiplication for SIKEp434, where L , H , and ACC represent lower multiplication, higher multiplication, and
accumulation, respectively.

intermediate result (T ) and modulus inverse constant (M ′)
Third, the quotient (Q) is multiplied by the modulus (M) and
the result is added to the intermediate result (T ).
The separated Montgomery multiplication performs the

multiplication (Step 1) and reduction (Step 2 and Step 3) in
separated way. The alternative way to implement the Mont-
gomery multiplication is interleaved way. The part of multi-
plication is performed and the intermediate result is directly
reduced. Compared with the separated approach, this method
optimizes the number of memory accesses for intermediate

result loading and storing. Total 2n memory accesses are
optimized (n for memory loading and n for memory storing).
We utilized the interleaved Montgomery multiplication for
SIKEp434, since all operands and intermediate results are
well retained in general purpose registers. ARMv8 proces-
sors support 31 general purpose registers and we utilized
30 registers. In particular, 4, 1, 7, 10, and 8 registers are allo-
cated for modulus, operand A, operand B , intermediate result,
and temporal storage, respectively. The part of interleaved
Montgomery multiplication for SIKEp434 is given in Figure 7.
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TABLE III

COMPARISON OF IMPLEMENTATIONS OF THE SIKEP434 AND SIKEP610 ARITHMETIC ON ARMV8 RMV8 CORTEX-A55@1.766GHz
AND CORTEX-A75@2.803GHz BASED PROCESSOR. TIMINGS ARE REPORTED IN TERMS OF CLOCK CYCLES

Algorithm 1 Calculation of the Montgomery Multiplication
Require: An odd m-bit modulus M , Montgomery radix

R = 2m , an operand T where operands (A and B in
the range [0, m − 1]), and pre-computed constant M ′ =
−M−1 mod R

Ensure: Montgomery product Z = MonMul(A, B, R) =
(A × B) · R−1 mod M

1: T ← A · B
2: Q ← T · M ′ mod R
3: Z ← (T + Q · M)/R
4: return Z

The first word of operand A is multiplied by all operand B
(B[0] ∼ B[6]) and the intermediate result is accumulated.
Second, the first word of quotient Q is multiplied by modulus
and the intermediate result is accumulated. With this approach,
we can optimize the memory access to the intermediate result.
For SIKEp610 implementation, we used the separated

Montgomery multiplication since the required number of reg-
isters is over available registers, which introduces a number
of memory accesses.

2) Shifted Modulus: The execution timing of modular
reduction is relied on the number of partial products. For this
reason, reducing the number of partial products can lead to
the performance enhancements. The general form of modulus
for SIKEp610 is as follows.

Normal representation

M[4] 0x6E02000000000000

M[5] 0xB1784DE8AA5AB02E

M[6] 0x9AE7BF45048FF9AB

M[7] 0xB255B2FA10C4252A

M[8] 0x819010C251E7D88C

M[9] 0x000000027BF6A768

This requires 6 registers to retain all modulus. The num-
ber of required registers can be optimized with the shifted
representation. The least significant word of modulus (M[4])
only utilize the 15-bit out of 64-bit and the most significant
word of modulus (M[9]) has 30-bit empty space. We shifted
the modulus by 16-bit to the left and the representation is

re-written as follows.

Shifted representation

M[4] 0x4DE8AA5AB02E6E02

M[5] 0xBF45048FF9ABB178

M[6] 0xB2FA10C4252A9AE7

M[7] 0x10C251E7D88CB255

M[8] 0x00027BF6A7688190

The shifted representation only requires 5 registers for
SIKEp610 modulus. This optimized the number of partial
products by 10 (60 → 50). The shifted computation uti-
lizes the shifted representation. The result is obtained in
two steps. First, the ordinary multiplication is performed.
Second, the intermediate result is shifted. For SIKEp610,
we shifted 16-bit to the left and the result should be reordered
after computations. The reorder computation is described as
follows.

...

LSL X7,X22, #48

ORR X7,X7,X21,LSR#16
...

The higher word (X22) is shifted to the left by 48-bit and the
lower word (X21) is shifted to the right by 16-bit. To optimize
the shift and addition operation, we utilized the barrel-shifter
module, which can perform the shift operation on the second
operand without additional costs.
For the SIKEp434 case, the modulus (p +1) is divided into

4-word. The shifted modulus needs to ensure that the summa-
tion of remaining bits of the least significant word and the most
significant word is over 64-bit. However, the SIKEp434 case
only has 39-bit (14-bit from the most significant word and
25-bit from the least significant word). The following is the
modulus of SIKEp434.

M[3] 0xFDC1767AE3000000

M[4] 0x7BC65C783158AEA3

M[5] 0x6CFC5FD681C52056

M[6] 0x0002341F27177344
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TABLE IV

COMPARISON OF IMPLEMENTATIONS OF THE SIKE PROTOCOLS ON ARMV8 CORTEX-A55@1.766GHz AND CORTEX-A75@2.803GHz BASED
PROCESSORS. TIMINGS ARE REPORTED IN TERMS OF MILLISECONDS AND CLOCK CYCLES. m : MIXED APPROACH

V. PERFORMANCE RESULT
In this section, we evaluate the performance of proposed

implementations for 64-bit ARMv8-A processors. All our
finite field arithmetic implementations were written in assem-
bly language and complied with optimization level -O3.
We implemented the multi-precision multiplication algo-

rithm described in Section IV-B and Montgomery reduction in
Section IV-C. We integrated our implementation of the Mont-
gomery multiplication for ARMv8-A into the SIKE round 2
library [4].
Table III summarizes results of different software imple-

mentations of the SIKEp434 and SIKEp610 arithmetic on

ARMv8-A processor: a 1.536GHz ARM Cortex-A53 proces-
sor. Since this is first work for SIKEp434 and SIKEp610 on
ARMv8-A based processors, we compare results with the
SIKE round 2 reference code [13]. The unoptimized ref-
erence implementation is written in C using the SIKE
round 2 library [4]. In this case, proposed arithmetic
implementations show much higher performance than ref-
erence work. Finite field addition for SIKEp434 and
SIKEp610 shows performance enhancements by 2.67x/8.77x
and 2.39x/4.66x on Cortex-A55/Cortex-A75, respectively.
Finite field subtraction for SIKEp434 and SIKEp610 shows
performance enhancements by 2.28x/8.08x and 1.93x/3.94x
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Fig. 8. Comparison of implementations of the SIKE protocols on ARMv8 Cortex-A55@1.766GHz based processors. Timings are reported in terms of
milliseconds. ∗: standard version, †: compressed version, TW: this work.

Fig. 9. Comparison of implementations of the SIKE protocols on ARMv8 Cortex-A75@2.803GHz based processors. Timings are reported in terms of
milliseconds. ∗: standard version, †: compressed version, TW: this work.

on Cortex-A55/Cortex-A75, respectively. Finite field mul-
tiplication for SIKEp434 and SIKEp610 shows perfor-
mance enhancements by 5.01x/8.41x and 4.76x/5.45x on
Cortex-A55/Cortex-A75, respectively. Finite field inversion for
SIKEp434 and SIKEp610 shows performance enhancements
by 4.66x/8.07x and 4.70x/5.36x on Cortex-A55/Cortex-A75,
respectively.
As described above, performance enhancements are

observed in both ARMv8 processors but Cortex-A75 shows
the better performance improvements than Cortex-A55. This
difference comes from their different computer architec-
tures. Cortex-A55 supports 2-wide decode in-order super-
scalar pipeline while Cortex-A75 supports 3-wide decode
out-of-order superscalar pipeline. The assembly code is
optimized further through out-of-order superscalar pipeline of
Cortex-A75. Between SIKEp434 and SIKEp610, SIKEp434 is

optimized further than SIKEp610 since the implementation of
SIKEp434 can take advantage of the optimal register usage
due to the short operand.
Table IV summarizes results of different software imple-

mentations of the SIKEp434 and SIKEp610 protocols on
ARMv8 Cortex-A55 and Cortex-A75 processors. For standard
SIKE protocols, proposed implementations of SIKEp434 and
SIKEp610 outperform previous works by 3.76x/4.04x and
3.98x/4.57x for Cortex-A55/Cortex-A75 processors, respec-
tively. Considering that target processors are working at
1.766GHZ and 2.803GHz, SIKEp434 and SIKEp610 require
only 0.055/0.030 and 0.168/0.086 seconds for Cortex-A55/
Cortex-A75 processors, respectively. Compared with other
SIKE protocols, the SIKEp434 shows the highest perfor-
mance and the SIKEp751 shows the lowest performance.
We also evaluated the key compressed SIKE protocols.
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For compressed SIKE protocols, proposed implementations
of SIKEp434 and SIKEp610 outperform previous works
by 4.07x/4.45x and 4.18x/5.08x for Cortex-A55/Cortex-A75
processors, respectively. Key compressed SIKEp434 and
SIKEp610 require only 0.076/0.040 and 0.218/0.105 seconds
for Cortex-A55@1.766GHz/Cortex-A75@2.803GHz proces-
sors, respectively. Compressed versions require more timing
than standard SIKE protocols but the execution timing is
reasonably fast enough for real world applications.
The performance comparison is given in Figure 8 and 9

for Cortex-A55 and Cortex-A75, respectively. The fastest
performance of standard version is obtained from proposed
implementation of SIKEp434. For the compressed version,
proposed SIKEp434 implementation also achieved the fastest
performance.
Overall, the proposed assembly implementation achieved

significant performance improvements. The assembly imple-
mentation has several advantages over C based implemen-
tation. First, the customized register utilization is available.
By carefully designing variable assignments, many variables
are kept in registers, which reduces the number of memory
accesses. Second, the assembly implementation can handle
status registers. This avoids a number of carry handling rou-
tines in C language. Third, C implementation is mainly relied
on compiler’s capability. If the compiler selects inefficient
instructions, this leads to slow performance.

VI. CONCLUSION

This paper presented high-speed implementation of SIKE
round 2 on high-end 64-bit ARMv8 Cortex-A55 and
Cortex-A75 processors. A combination of several optimization
methods yields very efficient modular multiplications for
SIKEp434 and SIKEp610 protocols that are shown, for exam-
ple, to be approximately 5.01x/8.41x and 4.76x/5.45x faster
than the normal modular multiplication implementations for
“SIDH-friendly” modulus on a 64-bit ARMv8 Cortex-A55/
Cortex-A75 processors. The optimized implementations which
push further the performance of post-quantum supersingular
isogeny-based protocols, are 3.98x/4.57 faster than the previ-
ous implementations of SIKEp610, targeting the Cortex-A55/
Cortex-A75 processors. Furthermore, we integrated our
fast modular arithmetic implementations, compact prime
SIKEp434, and optimal strategy for isogeny computations
into Microsoft’s SIDH library. A 128-bit full key-exchange
execution over optimal prime SIKEp434 is performed in about
0.055/0.030 seconds on a ARMv8 Cortex-A55@1.766GHz/
Cortex-A75@2.803GHz processors, which show the practical-
ity of isogeny based post-quantum cryptography over mobile
devices. The key compressed versions are also evaluated and
SIKEp434 is performed in about 0.076/0.040 seconds on
a ARMv8 Cortex-A55@1.766GHz/Cortex-A75@2.803GHz
processors.
Inspired by recent IETF draft [1] on SIKE integration

into Amazon’s AWS services, supporting hybrid post-quantum
KEM on one of the largest cloud providers in industry, this
work improves the overall performance of the key encap-
sulation mechanism significantly and provides guidelines for

industry practitioners to enhance SIKE’s performance on the
high-performance ARM Cortex-A processors which are used
vastly in the new generation of cellphones.
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