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Abstract— In this paper we propose a new analysis of a
simple geometric attitude controller, showing that it is locally
exponentially stable and almost globally asymptotically stable;
the exponential convergence region is much larger than exist-
ing non-hybrid geometric controllers (and covers almost the
entire rotation space). The controller’s stability is proved using
contraction analysis combined with optimization. The key in
this combination is that the contraction metric is a linear
matrix inequality with a special structure stemming from the
configuration manifold SO(3).

As an additional contribution, we propose a general frame-
work to automatically select controller gains by optimizing
bounds on the system’s convergence rate; while this principle
is quite general, its application is particularly straightforward
with our contraction-based analysis.

We demonstrate our results through simulations.

I. INTRODUCTION

Rigid body attitude control has many useful applications,
ranging from aerial robots, to manipulators, camera surveil-
lance systems, and spacecrafts. In particular, the control of a
multi-rotor aircraft typically relies on attitude control [1]. For
example, to steer a quadrotor, the vehicle must first rotate its
body so that it can provide thrust in the desired direction.

Traditional approaches propose controllers based on spe-
cific parameterizations of the space of rotations [2]–[4],
the most common being Euler angles and quaternions.
These controllers, however, cannot offer global convergence
guarantees, and often introduce additional complexities and
singularities that are due solely to the representation used [2].

On the other hand, geometric controllers [5]–[10] regard the
configuration space as a differential manifold (e.g., SO(3) for
rotations, SE(3) for rotations and translations, SO(3)×S2 for
a rotation plus suspended load, etc.) and use Lyapunov theory
(often using a mechanical-energy-like function) to develop
an almost globally stable controller with local exponential
convergence (for SO(3), the typical exponential convergence
region is given by a ball of radius π

2 around the origin).
The state of the art in terms of attitude controllers is

represented by hybrid approaches, such as the one of [11]
(which builds upon the work of [12], [13]) or [14]. At a
high level, these controllers work by using multiple potential
functions inspired by the previous, non-hybrid controllers,
but modified and combined in a hybrid fashion so that
undesired equilibria or regions of slow convergence are
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avoided through switching. As any hybrid controller, these
approaches are inherently more complex and computationally
more demanding than static controllers due to the logic needed
to handle the discrete part of the dynamics.

In most of the papers cited above, the conditions on the
control gains to ensure stability are provided, but these are
complex to parse (as they typically result from conditions
on the eigenvalues of matrices, and might also depend
on additional parameters that also need to be specified).
Moreover, these works do not provide any method to actually
identify suitable coefficients, let alone find a set that is optimal
in some sense (e.g., best lower bound on the convergence
rate). In all these approaches, it is standard to assume a bound
on the maximum angular speed experienced by the rigid body.

Instead of a Lyapunov approach, as in [8], in this paper
we will combine contraction analysis with optimization. A
recent work that also combines contraction analysis and
optimization is [15], where they address the converse problem
in Rn; namely, they choose a contraction metric and search
(pointwise) for a controller, whereas we choose a (simple)
controller, and find a contraction metric (over a large region).

Paper contributions. In this paper, we are interested in
seeing how far we can push the exponential convergence
results for a simple PD, non-hybrid controller (which is
the easiest to implement), and provide practitioners with an
automatic, principled, and relatively simple way to select
valid control gains (for our and other controllers). By using
contraction theory, we show that our simple PD controller
can have an exponential stability region much larger than
previously demonstrated. As a complementary contribution,
we propose a general principle to automatically select
controller gains that optimize a bound on the convergence
rate (using analytical bounds, convex optimization, bisection,
and grid search).

II. PRELIMINARIES AND NOTATION

A. Riemannian Geometry

We assume some familiarity with Riemannian geometry
(see, e.g., [16] for a more in-depth discussion). A rigid body’s
attitude in three dimensions can be uniquely represented by
a rotation matrix R ∈ SO(3), where SO(3) = {R ∈ R3×3 :
RTR = I3, det(R) = 1}. Let so(3) be the set of all 3 × 3
skew symmetric matrices, then the tangent space of SO(3) at
a rotation R is denoted by TRSO(3) = {RV : V ∈ so(3)}.
A tangent vector W ∈ TRSO(3) can be identified with a



vector ω ∈ R3 using the hat (·)∧ and vee (·)∨ operators:

ω =

ω1

ω2

ω3

 (·)∧

�
(·)∨

W = R

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 . (1)

For convenience, we denote the hat operator at the identity
R = I3 as ·̂ (i.e., without parentheses). With this notation,
the following statements represent the same tangent vector
W ∈ TRSO(3): W = (ω)∧ = Rω̂. At a rotation R ∈ SO(3),
the exponential and logarithm maps, which locally transform
tangent vectors into points on the corresponding geodesic,
and vice versa, are denoted as expR : TRSO(3) → SO(3)
and logR : UR → TRSO(3), where UR ⊂ SO(3) is the
set around R for which expR is diffeomorphic. A metric
g on SO(3) is a family of inner products g : TRSO(3) ×
TRSO(3)→ R. The covariant derivative of SO(3) for any
smooth vector fields X,Y on SO(3) is denoted as ∇XY ,
and provides a way to compute the variation of the field Y
along the flow of X . Although the choice of the connection
is not unique in general, we use the Levi-Civita connection,
which is the unique torsion-free connection compatible with
the metric g.

The dynamics of the rigid body evolve on the tangent
bundle TSO(3) = {(R,W ) : R ∈ SO(3),W ∈ TRSO(3)},
where the state variables are the rotations R and the angular
velocities ω = W∨ ∈ R3 [16]. The tangent space of
TSO(3) at a point (R,W ) is denoted as TWTRSO(3). Since
TRSO(3) is isomorphic to R3 through the vee map, its
tangent space can be identified with TRSO(3) itself. Thus,
TWTRSO(3) = {(V,U) : V,U ∈ TRSO(3)}. We represent
tangent vectors in TWTRSO(3) as vertically concatenated
matrices, e.g. [ VU ].

B. Rigid Body Dynamics

We model the rigid body rotations by using two reference
frames: an inertial frame, and a body-fixed frame with origin
at the center of mass. The equations of motion are given by

Ṙ = Rω̂,

ω̇ = Γ− J−1 (ω × Jω) ,
(2)

where R ∈ SO(3) is the rotation from the body to the inertial
frame, while ω ∈ R3 is the angular velocity, J ∈ R3×3 is
the inertia matrix, and Γ ∈ R3 is the total moment vector
(control input), all expressed in the body frame.

C. Contraction Theory

Next, we briefly review contraction theory (see [17], [18]
for details). Contraction analysis was inspired by fluid me-
chanics, where stability can be viewed as multiple trajectories
converging to some nominal motion; in other words, infinitesi-
mal displacements δx between neighboring trajectories (vector
fields, in differential geometry terminology) converge to zero.
More precisely, let ẋ = f(x, t) be a nonlinear system evolving
on Rn (where f is viewed as a vector field).

We say that the system is contracting if, at any point
x ∈ Rn, the infinitesimal displacement between neighboring
trajectories vanishes exponentially fast,

‖δx(t)‖M ≤ ‖δx(0)‖Me−βt. (3)

We then have the following result.
Proposition 1 (Adapted from [17]): The system ẋ =

f(x, t) is contracting if there exist a positive definite matrix
M such that

d

dt

(
δTxMδx

)
= δTx

(
∂f

∂x

T

M +M
∂f

∂x

)
δx < −βδTxMδx.

(4)
In general M can also be a function of the state x and time t;
however, in this paper we only consider constant matrices.
More compactly, (3) is equivalent to the matrix inequality

∂f

∂x

T

M +M
∂f

∂x
≤ −βM, (5)

where β > 0 is the minimum guaranteed convergence rate.
These results can be generalized to coordinate-free version

for Riemannian manifolds.
Proposition 2 (Adapted from [18]): A system ẋ = f(x, t)

evolving on a manifold is contracting if there exist a metric
g with Levi-Civita connection ∇ such that

g (∇δxf, δx)M ≤ −βg (δx, δx)M (6)

for any choice of the vector field δx.
If the matrix M represents the coefficients of g in some local
coordinates on the manifold, then (6) reduces to (5).

III. ATTITUDE CONTROLLER

In this section, we present a geometric attitude controller,
and develop a framework to study the closed-loop system’s
stability. Without loss of generality, we stabilize to the point
on the tangent bundle where Rd = I3 and ωd = [0, 0, 0]T .
First, we choose a cost (or potential) function Ψ(R,Rd) which
is star-convex [19] with respect to Rd in the neighborhood
URd

, bounded, and such that Ψ(Rd, Rd) = 0; for instance,
in this paper we naturally choose

Ψ(R,Rd) =
1

2
d(R,Rd)

2 =
1

2
‖ (logRRd)

∨ ‖2, (7)

which is the squared geodesic distance on SO(3) with metric

g
(
Rα̂,Rξ̂

)
=

1

2
tr
(
α̂T ξ̂

)
. (8)

We define the rotation and velocity errors as

eR = (grad(Ψ))
∨
, (9)

eω = ω − ωd = ω, (10)

where grad(·) is the gradient operator. We then arrive to an
attitude controller of the classical PD form

ΓR = J−1 (ω × Jω)− kdeR − kveω, (11)

where the feedforward term cancels the gyroscopic effects,
and kd, kv are positive feedback gains. The closed-loop
system equations using controller (11) become

Ṙ = Rω̂
.
= fR(R,ω),

ω̇ = −kdeR − kveω
.
= fω(R,ω),

(12)

where the system dynamics evolve on the tangent bundle.
We study the stability of (12) through optimization by

following four steps:
1) Derive the generalized contraction metric (6) for the

closed-loop system;



2) Diagonalize and bound the contraction metric to obtain
linear objectives and constraints;

3) Solve for the matrix M through optimization such that
(6) is satisfied for given kd, kv, β;

4) Automatically select gains kd, kv while maximizing β
through a grid-bisection search.

1) Closed-Loop System and Contraction: The system
(fR, fω) defines a vector field on the tangent bundle TSO(3).
To apply (6), we have to first define the covariant derivative
on the tangent bundle. In general, finding a closed-form
expression for the covariant derivative is difficult; however, it
is available for SO(3) [20]. In addition, based on the work of
[21] and [22], the covariant derivative and metric on SO(3)
can be used to induce their counterparts on the tangent bundle
TSO(3); we use (8) as our base metric and define an induced
metric g̃ on TSO(3) as

g̃

([
Rζ̂
Rη̂

]
,

[
Rα̂

Rξ̂

])
=

1

2
tr

([
ζ̂
η̂

]T (
M ⊗ I3

)[α̂
ξ̂

])
(13)

where R ∈ SO(3), α, ξ, η, ζ ∈ R3 represent tangent vectors,

M =

[
m1 m2

m2 m3

]
, (14)

and ⊗ is the Kronecker product. The induced metric g̃ is a
metric on TSO(3) if M is positive definite, and a closed
form expression for the covariant derivative ∇̃ can be found
(see [23] for a detailed derivation). Using ∇̃, and letting
δx =

[
Rζ̂
Rη̂

]
for ζ, η ∈ R3, the contraction condition (6) for

the closed-loop system (12) becomes[
ζ
η

]T
M
[
ζ
η

]
≤ 0 (15)

where M is composed of four block matrices given below:

M1,1 =
m2

4
ω̂2 −m2kdDeR +m1βI3, (16)

M2,1 =
m3kv −m2

4
ω̂ +

m3

8
ω̂2 +

m3kd
4

êR

− m3kd
2

DeR +

(
βm2 +

m1 −m2kv
2

)
I3, (17)

M1,2 =MT
2,1, (18)

M2,2 = (m3β +m2 −m3kv)I3, (19)

and DeR is the differential of the rotation error (9).
If the matrixM is negative semidefinite, then (15) (and (6))

is satisfied. By contraction analysis, the closed-loop system is
exponentially converging at the current state with a minimum
rate of β. However, this condition needs to be satisfied for
all states R in a neighborhood URd

of Rd and ω ∈ R3 in
order to guarantee local convergence. The challenge now is to
choose parameters m1,m2,m3 for given parameters kd, kv, β
such that M≤ 0 for all states in the neighborhood of Rd.

2) Matrix Decomposition: We pose the problem of finding
m1,m2,m3 satisfying (15) given kd, kv, β as a semidefinite
programming problem. Minimizing the LHS of (15) is
equivalent to minimizing the maximum eigenvalue of M.
Unfortunately, we have to consider (15) for all possible
(R,ω), resulting in an infinite number of constraints. However,
although the analytical equations for all eigenvalues of M

are non-convex with respect to m1,m2,m3, the elements of
M are all linear in the same variables. We therefore propose
the following strategy:

1) decompose the matrixM in two matrices, one dependent
on R and one dependent on ω,

2) perform a state-dependent similarity transformation such
that (15) does not depend directly on (R,ω) but on the
eigenvalues of DeR, and the maximum norm of ω, and

3) relax the constraints using Gershgorin discs so that (15)
can be bounded by linear constraints.

In the first step, we take the symmetric part of the matrix
M and decompose it as the sum of two symmetric matrices
Ω, P . The matrix Ω is composed of four blocks:

Ω1,1 =
m2

4
ω̂2, (20)

Ω2,1 =
m3kv −m2

4
ω̂ +

m3

8
ω̂2, (21)

Ω1,2 = ΩT2,1, (22)

Ω2,2 = 03. (23)

The P matrix is also composed of four blocks:

P1,1 = −m2kd
2

(
DeR +DeTR

)
+m1βI3, (24)

P2,1 =
m3kd

4
êR −

m3kd
2

DeR +
(
βm2 +

m1 −m2kv
2

)
I3,

(25)

P1,2 = PT2,1, (26)

P2,2 =M2,2 = (m3β +m2 −m3kv)I3. (27)

The motivation for this decomposition is that the matrices
may be independently diagonalized, which allows us to
remove the explicit dependency on (R,ω) while extracting
bounds on the eigenvalues. Since ω̂ and ω̂2 share the same
eigenvectors, the matrix Ω can be diagonalized as

Ω = T−1
Ω ΩDTΩ; (28)

where ΩD contains four diagonal blocks:

ΩD1,1 =
m2

4
‖ω‖2

0 0 0
0 −1 0
0 0 −1

 , (29)

ΩD2,1 =
m3

8
‖ω‖2

0 0 0
0 −1 0
0 0 −1

+ α

0 0 0
0 i 0
0 0 −i

 ,
(30)

ΩD1,2 = ΩD2,1, (31)
ΩD2,2 = 03, (32)

with the transformation matrix

TΩ =

[
Vω 03

03 Vω

]
, (33)

such that Vω is the similarity transformation matrix that
diagonalizes ω̂, i =

√
−1 is the unit imaginary number, and

α = ‖ω‖m3kv −m2

4
. (34)

Remark 1: The eigenvalues (and Gershgorin discs) of Ω
scale with ‖ω‖. It might not be possible to find parameters



m1,m2,m3 such that M ≤ 0 for all possible ω ∈ R3.
Therefore, as it is standard in the literature, we assume that
there is a bound on the maximum speed ‖ω‖max.

We can perform a similar decomposition for the matrix
P , with the difference that the two matrices êR and DeR, in
general, might not have the same eigenvectors. Nonetheless,
we can arrive at the decomposition

P = T−1
P PDTP (35)

where PD is composed of four block matrices as follows:

PD1,1 = −m2kd
2

(
Λ + ΛT

)
+m1βI3, (36)

PD2,1 = −m3kd
2

Λ +
2βm2 +m1 −m2kv

2
I3 +

m3kd
4

eRP ,

(37)

PD1,2 = PD2,1, (38)
PD2,2 = (m3β +m2 −m3kv)I3, (39)

where eRP = V −1
P êRVP , with the transformation matrix

TP =

[
VP 03

03 VP

]
, (40)

such that VP is the similarity transformation matrix that
diagonalizes DeR, and Λ is the diagonal matrix containing
the eigenvalues of DeR.

Since similar matrices have the same eigenvalues, we focus
on constraining ΩD and PD, which in turn constrain the
original M matrix. The transformation matrices TΩ and TP
have been chosen such that many of the off-diagonal elements
of ΩD and PD are zero. This fact is useful for obtaining
possibly tighter bounds on the Gershgorin discs since the
radii will be composed of fewer absolute value terms. Up to
this point, the derivations do not depend on the choice of the
cost Ψ; we later show that for our choice of cost function
(7), the dependency of the constraints will be limited to the
minimum and maximum values of the eigenvalues of DeR
and ‖ω‖, which can be, respectively, either precomputed or
known; as a result, the constraints on M will only depend
on m1,m2,m3.

3) Optimization Problem: Now that we have exploited
the structure of the matrix M, we use it to formulate an
optimization problem using Gershgorin discs (see [24]). First,
recall that, by the interlacing theorem,

λmax(A+B) ≤ λmax(A) + λmax(B) (41)

which implies

λmax(A+B) ≤ Dmax(A) +Dmax(B) (42)

where λmax is the largest eigenvalue and Dmax is the largest
real number encompassed by any Gershgorin discs. The
inequality (42) effectively allows us to relax the constraints
for M in two parts, some for ΩD and some for PD. Using
this fact, we propose the feasibility problem in Proposition 3
below to find suitable parameters m1,m2,m3. The goal of
the feasibility problem is to push the Gershgorin discs of ΩD
and PD as far towards negative infinity as possible. The idea
being that we want the sum Dmax(ΩD) + Dmax(PD) ≤ 0,
so that λmax(M) ≤ 0, thus satisfying (15).

Proposition 3: The system given in (2) with the controller
in (11) is locally exponentially stable with minimum con-
vergence rate β > 0 for all R in a neighborhood URd

of
Rd and ‖ω‖ ≤ ‖ω‖max < 4, if there exist m1,m2,m3 > 0
satisfying

Dmax(PD) +
m3

8
‖ω‖2max + ‖ω‖max

m3kv −m2

4
≤ 0 (43)[

m1 m2

m2 m3

]
> 0 (44)

PDi,i ≤ 0, i = {1, ..., 6} (45)
for given kd, kv, β, ‖ω‖max, and all R ∈ URd

.
Note that (44) is necessary to validate the metric on the
tangent bundle.

Proof: The objective is to find m1,m2,m3 such that
Dmax(PD) + Dmax(ΩD) ≤ 0 is true for all R ∈ URd

and ‖ω‖ ≤ ‖ω‖max. By inspection of the ΩD matrix (29)-
(32), there are three unique Gershgorin discs bounding the
eigenvalues given below,

DΩD1 = 0, (46)

DΩD2 = −m2

4
‖ω‖2 +

∣∣∣αi− m3

8
‖ω‖2

∣∣∣ , (47)

DΩD3 =
∣∣∣αi− m3

8
‖ω‖2

∣∣∣ , (48)

where α is defined in (34). The discs above state that
Dmax(ΩD) ≥ 0, therefore Dmax(PD) ≤ 0. To achieve
Dmax(PD) ≤ 0, the centroids of the PD matrix must be
nonpositive, thus the constraint (45) is necessary. Together,
constraints (44) and (45) imply that m1,m2,m3 > 0.

Next, DΩD3 is the maximum bound on the eigenvalues
of ΩD since it is always greater than or equal to zero, and
is greater than or equal to DΩD2 due to the negative term.
Furthermore, DΩD3 can be bounded from above as follows

DΩD3 =

√(m3

8
‖ω‖2

)2

+

(
‖ω‖m3kv −m2

4

)2

≤ m3

8
‖ω‖2 + ‖ω‖m3kv −m2

4
. (49)

The second line is obtained in two steps: 1) relaxing the first
line using the subadditive property of the square root function
[25], and 2) by observing that the centroids of PD2,2 ≤ 0,
thus m3kv ≥ m2 and the absolute value sign can be dropped.
Then letting

Dmax(ΩD) =
m3

8
‖ω‖2 + ‖ω‖m3kv −m2

4
, (50)

Dmax(ΩD) is maximized when ‖ω‖ = ‖ω‖max since this
is a quadratic function in ‖ω‖ with positive coefficients. In
addition, if ‖ω‖max ≥ 4, then the problem is infeasible since
the maximum bound on the Gershgorin discs centered at
PD2,2 summed with Dmax(ΩD) is always greater than zero.
However, this limitation can be removed by relaxing (50) (as
discussed in Remark 2 below).

Finally if the problem is feasible for given
kd, kv, β, ‖ω‖max < 4, and all R ∈ URd

, then

0 ≥ Dmax(PD) +
m3

8
‖ω‖2max + ‖ω‖max

m3kv −m2

4
≥ λmax(PD) + λmax(ΩD) ≥ λmax(M), (51)



and, by contraction theory, the system is locally exponentially
stable for all R ∈ URd

, ‖ω‖ ≤ ‖ω‖max, and with minimum
convergence rate β.

Remark 2: The constraint ‖ω‖max < 4 is not an intrinsic
limitation of the system. Instead, it is a consequence of the
relaxations used to obtain (50). If the application requires
‖ω‖max ≥ 4, equation (50) can be relaxed in the following
way, with p, q ∈ R>0,

Dmax(ΩD) ≤ qm3

8
‖ω‖2max +

1

p
‖ω‖max

m3kv −m2

4
, (52)

where p ≥ 1 is chosen such that ‖ω‖max < 4p and

q =
2

‖ω‖max

(
1− 1

p

)
kv + 1

≥ 2

‖ω‖max

(
1− 1

p

)(
kv −

m2

m3

)
+ 1. (53)

The second line is the q required to achieve equality in (52),
which can be relaxed to the value in the first line (where all
parameters are known), because m2,m3 > 0. For simplicity,
in this paper we simply assume ‖w‖max < 4 and p = q = 1.
Notwithstanding, we show in the simulations of Section IV
that the controller remains stable for ‖ω‖ � 4.

Remark 3: Since (15) is homogeneous in M , if a particular
solution M∗ is found, then any scaling of M∗ will also give
a valid solution. Therefore, to improve the numerical stability
of the solver, we add the constraint m1 = 1.

Remark 4: In general, Dmax(PD) depends on R ∈ SO(3)
and the eigenvalues of the differential DeR, resulting in a
potentially infinite number of constraints for the Gershgorin
discs. In our case, using the fact that the cost function (7)
is symmetric with respect to the identity, we can bound the
eigenvalues, for any R, using ‖ω‖max alone.

The next step is to determine when Proposition 3 is feasible
for our cost function (7). To begin, the gradient of Ψ is given
by [26, Prop. 2.2.1] as

grad(Ψ) = − logR I3 = R logI3 R. (54)

Since the eigenvectors of logI3 R and its differential
D
(
logI3 R

)
are the same [26], all block matrices of the P

matrix (35) can be simultaneously diagonalized by choosing
VP to be the matrix that diagonalizes logI3 R. The resulting
PD matrix is given by:

PD1,1 = −m2kdRe(Λ) +m1βI3, (55)

PD2,1 = −m3kd
2

Re(Λ) +

(
m2β +

m1 −m2kv
2

)
I3,

(56)
PD1,2 = PD2,1, (57)
PD2,2 = (m3β +m2 −m3kv)I3, (58)

where

eRP =

0 0 0
0 θi 0
0 0 −θi

 , (59)

the diagonal matrix Λ is given in [26, Prop. E.2.1]

Λ =

1 0 0
0 θ

2 cot θ2 + θ
2 i 0

0 0 θ
2 cot θ2 −

θ
2 i

 , (60)

cot is the cotangent function, Re(·) is the real part of a
complex matrix, and

θ =
∥∥∥(logI3 R

)∨∥∥∥ . (61)

The θ parameter represents the geodesic distance between
any two rotations on SO(3) with respect to the metric (8),
and is bounded between 0 and π [26]. Thus, the real part of
the eigenvalue θ

2 cot θ2 ∈ (0, 1) is continuous for θ ∈ [π, 0].
Since θ is symmetric, the PD matrix can be parameterized
by some fixed θmax < π, instead of R, which covers all R
within θmax distance of I3.

By inspection, there are four unique Gershgorin discs
bounding the eigenvalues of the PD matrix above:

DPD1 = −m2kd +m1β +

∣∣∣∣−m3kd
2

+ γ

∣∣∣∣ (62)

DPD2 = −m2kdΘ +m1β +

∣∣∣∣−m3kd
2

Θ + γ

∣∣∣∣ (63)

DPD3 = m3β +m2 −m3kv +

∣∣∣∣−m3kd
2

+ γ

∣∣∣∣ (64)

DPD4 = m3β +m2 −m3kv +

∣∣∣∣−m3kd
2

Θ + γ

∣∣∣∣ , (65)

where

γ = m2β +
m1 −m2kv

2
, Θ =

θ

2
cot

θ

2
. (66)

The maximum bound on the PD matrix can be summed with
(50) and used as the objective function of an optimization
problem to find suitable m1,m2,m3 that satisfies Proposi-
tion 3. The optimization problem is posed in Proposition 4.

Proposition 4: The system in (2) with controller (11),
cost function (7), and given parameters kd, kv, β > 0,
0 ≤ ‖ω‖max < 4, and 0 < θmax < π is locally exponentially
stable with minimum convergence rate β for all R within
θmax distance of I3 and ‖ω‖ ≤ ‖ω‖max if the optimization
problem:

minimize
m1,m2,m3

max (N ) +Dmax(ΩD)

subject to
[
m1 m2

m2 m3

]
> 0

PDi,i ≤ 0 i = {1, ..., 6}

(67)

where Dmax(ΩD) is defined in (50) and

N = {DPD1,DPD2,DPD3,DPD4}, (68)

is feasible such that: max(N ) +Dmax(ΩD) ≤ 0.
Proof: The proof follows directly from Proposition 3.

Remark 5: Note that as θ → 0,Θ→ 1, then (63) and (65)
are redundant. Therefore, we only have to consider the case
when θ = θmax.

4) Automated Gain Selection: In Section III-.3, an opti-
mization (more precisely, feasibility) problem was proposed to
find parameters m1,m2,m3 such that the contraction matrix
M ≤ 0 for given kd, kv, β, ‖ω‖max, and θmax. However,
the optimization problem might be infeasible for the given
parameters, and even if it is feasible, it might not provide the
best convergence guarantees. In this section, we introduce
a grid-bisection search algorithm to automatically select the



best gains kd, kv with the largest minimum convergence rate
β for given ‖ω‖max and θmax. The algorithm is given in
Algorithm 1 where β is bounded between 0 and βmax > 0.

Algorithm 1 Grid-bisection search algorithm to find kd, kv
with largest minimum convergence rate β that satisfies
Proposition 4. The system input parameters are the maximum
angular speed ‖ω‖max, maximum distance error θmax, list
of rotation error gains kdList, list of angular velocity error
gains kvList, and maximum convergence rate bound βmax.

Require: kdList, kvList, ‖ω‖max, θmax, βmax

for kd = kdList do
for kv = kvList do
β′,m′i = bisectionSearch(kd, kv, ‖ω‖max, θmax)
{Solve optimization problem in Proposition 4}

grid← kd, kv, β
′,m′i

end for
end for
return k∗d, k

∗
v , β
∗,m∗i = findMaxBeta(grid)

Remark 6: The algorithm can be improved by skipping
the bisection search for any combination of kd and kv that
does not meet the requirements of Theorem 1.
The goal of Algorithm 1 is to solve the following problem.
Given a set of possible rotation error gains kdList and
angular velocity error gains kvList, a maximum angular
speed ‖ω‖max, and a maximum distance error θmax, find the
combination of gains that produces the largest β satisfying
Proposition 4. To solve this, the algorithm first pairs each
rotation error gain with each angular velocity error gain. Then
for each combination, it maximizes the convergence rate using
a bisection search with upper and lower bounds defined by
βmax and 0, respectively. Within the bisection search, the
algorithm solves the optimization problem in Proposition 4
using the assigned gains and system parameters. Finally, the
algorithm selects the combination of gains with the largest
rate β.

Remark 7: In principle, a similar strategy could be used to
select gains for any controller for which an explicit bound on
the convergence rate can be computed (such as, for instance,
the one from [8]). However, our results based on convex
optimization greatly simplify the implementation.

Next, for given kd, β, ‖ω‖max, and θmax, we wish to better
characterize the set of kv’s such that the optimization problem
may be feasible. The results are stated in the theorem below.

Theorem 1: Given any kd, β > 0, 0 ≤ ‖ω‖max < 4, and
0 < θmax < π, then a necessary condition for Proposition 4
to be satisfied is

kv ≥ −
(kdΘmax + 1)(‖ω‖2max + 2kd − 2kdΘmax)

2kdΘmax(‖ω‖max − 4)
, (69)

where
Θmax =

θmax

2
cot

θmax

2
∈ (0, 1). (70)

Proof: Parts of the proof are omitted due to page limit.
The requirement max(N ) +Dmax(ΩD) ≤ 0 represents eight
constraints. To find the limiting kv , let β = 0. By inspection

and permutations, we found that the four limiting (basic)
constraints are

m2

(
−kdΘmax −

kv
2
− ‖ω‖max

4

)
+

1

2

m3

(
−kdΘmax

2
+
‖ω‖2max

8
+
kv‖ω‖max

4

)
≤ 0 (71)

m2

(
1− kv

2
− ‖ω‖max

4

)
+

1

2

m3

(
−kv −

kdΘmax

2
+
‖ω‖2max

8
+
kv‖ω‖max

4

)
≤ 0 (72)

m2

(
1 +

kv
2
− ‖ω‖max

4

)
− 1

2

m3

(
−kv +

kd
2

+
‖ω‖2max

8
+
kv‖ω‖max

4

)
≤ 0 (73)

m3 > m2
2 (74)

where we have set m1 = 1 (see Remark 3). Each one of the
first three constraints bounds a half-plane in m2,m3 for any
fixed kv . If there is an overlapping region such that m3 > m2

2,
then the constraints are satisfied. Consider the worst case
when the boundary of the first three constraints meet at a
point. In other words when equations (71), (72), and (73) all
equal zero. Solving this system of equations for m2,m3, and
kv yields

kv = − (kdΘmax + 1)(‖ω‖2max + 2kd − 2kdΘmax)

2kdΘmax(‖ω‖max − 4)
(75)

m2 =
2kdΘmax(‖ω‖max − 4)(‖ω‖2max + 2kd − 2kdΘmax)

−A
(76)

m3 =
4k2
dΘ2

max(‖ω‖max − 4)2

A
(77)

where

A = k3
dΘmax[Θ2

max(2‖ω‖2max − 16‖ω‖max + 36)

+ Θmax(2‖ω‖2max − 16‖ω‖max + 24) + 4]

+ k2
d[Θ2

max(4− 4‖ω‖2max) + Θmax(4‖ω‖2max − 8) + 4]

+ kd‖ω‖2max[Θmax(‖ω‖2max − 4) + 4] + ‖ω‖4max. (78)

It is straightforward to show that m3 − m2
2 > 0 and

that m2,m3, kv > 0 under the assumptions on the given
parameters. This result indicates that there is always a feasible
solution for the constraints given sufficiently high kv and
β = 0. To validate that (71)-(74) are indeed the limiting
(non-redundant) constraints, we back substitute the solutions
into the original eight constraints, and verify that they are all
satisfied.

Next, we show that for β > 0, kv must be greater than or
equal to the value in (75). By performing the same analysis
as before, we obtain new solutions for m2,m3, and kv that
depends on β. It can be shown, by inspection, that the new
kv obtained in this way must be greater than or equal to (75).

Remark 8: In general, the four limiting constraints (71)-
(74) may not be the limiting constraints for all β > 0.



However, if the optimization problem is not feasible for
β = 0 or β > 0 but small, then it cannot be feasible for any
arbitrary β > 0.

Remark 9: Note that θmax = π causes the Re(Λ) matrix to
become singular, rendering the problem infeasible, hence we
cannot achieve global exponential stability, as expected [27].
However, for any angle θmax < π, (69) provides a value
of kv that guarantees exponential convergence in the set of
rotations within θmax distance of Rd. Therefore, this simple
PD controller can achieve quasi-global exponential stability,
which is much larger than what was reported in previous
results in the literature.

Remark 10: Simple almost-global asymptotic convergence
can be proven by using Lyapunov theory with the energy-like
function V (R,ω) = Ψ(R,Rd) + 1

kd
‖ω‖2 (see, e.g., [5]).

IV. RESULTS AND SIMULATION

In this section, we validate the controller and theory
presented in Section III with a simulation. Recall that we
are stabilizing to the point Rd = I3 and ωd = [0, 0, 0]T . The
system and Algorithm 1 parameters are reproduced in Table
I, and the initial attitude R0 has been randomly selected to
be θmax distance away from the identity I3. The algorithm
results are shown in Table II where we solved the optimization
problem in Proposition 4 as a semidefinite program using the
CVX modeling system and SDPT3 solver [28]. The algorithm
selected the best kd, kv such that suitable m1,m2,m3 are
found to guaranteed minimum convergence rate β = 0.0292,
although the actual rate is in fact much faster (see Figure 2).
The looseness of the bound could be due to several reasons,
such as the splitting of the M matrix into the Ω and P
matrices, the use of the Gershgorin discs, and the fact
that the bound needs to hold in a large convergence basin
(large θmax). Note that we have utilized Remark 3 and
constrained m1 = 1.000 for the optimization problem. The
optimal β for each pair of kd and kv gains are shown in
Figure 1. As predicated by Theorem 1, for any particular kd
there is a minimum kv such that a nonzero β can be found
to satisfy Proposition 4.

To confirm the results of our algorithm, we simulate the
closed-loop dynamics in Matlab R2018b using ’ode45’ and
verify that the contraction metric (15) holds throughout the
trajectory. The simulation results with the tracking errors are
shown in Fig. 2. From the first two plots, it can be concluded
that the system with angular speed much greater than
‖ω‖max = 2 converges, seemingly with an exponential rate.

TABLE I: System and Algorithm 1 Parameters

Parameter Value Description

J diag(5,2,1) Diagonal matrix with values 5,2,1

kdList [0.1:1.0091:100] Array from 0.1 to 100, stepsize 1.0091

kvList [0.1:1.0091:100] Array from 0.1 to 100, stepsize 1.0091

‖ω‖max 2 Max angular speed

θmax π − 0.05 Max distance

βmax 10 Max convergence rate

Nmax 100 Max bisection iterations

ω0 10[1, 1, 1]T Initial angular velocity

Fig. 1: A surface plot showing the optimal β for each pair
of gains kd, kv . For a fixed kd, a minimum kv is required to
find a nonzero β.

We can verify exponential convergence by analyzing the
contraction matrix M. The largest eigenvalue of the matrix
M using contraction parameters found in Table II is shown
in Fig. 2c. As expected, the largest eigenvalue is always
nonpositive thus confirming the exponential convergence by
contraction theory. The simulation results suggest that we
may be able to find tighter bounds on the actual limiting
‖ω‖max by reanalyzing the ΩD matrix using the parameters
found by Algorithm 1 (this will be explored in future work).

In addition, notice that the largest eigenvalue occurs at the
beginning of the trajectory where the rotation and velocity
errors are maximum, implying that we can obtain tighter
bounds on the minimum convergence rate β with smaller
θmax and ‖ω‖max. This is confirmed in Table III, last column,
where the minimum convergence rate β increases as we
restrict the system closer to the identity. In addition, one can
potentially obtain better convergence rates (Table III, fourth
column), by performing gain scheduling with respect to the
distance to the equilibrium, and using optimal gains for each
region (Table III, second and third columns).

V. CONCLUSION

We have shown that a simple geometric PD controller can
have a large exponential convergence region, and we proposed
a way to automatically choose controller gains based on a
lower bound of the system’s exponential convergence rate. The

TABLE II: Algorithm 1 Results

Parameter Value Description

β 0.0292 Fastest convergence rate

kd 100 Rotation error gain

kv 89.9091 Angular velocity error gain

m1 1.0000 Metric g̃ gain

m2 0.0110 Metric g̃ gain

m3 0.0003 Metric g̃ gain



(a) Rotation error

(b) Velocity error

(c) Max Eigenvalue of Contraction matrix

Fig. 2: Simulation results using parameters from Table II.
The maximum eigenvalue of the contraction metric in 2c
is always nonpositive, therefore the system is exponentially
converging.

TABLE III: Convergence Rate and Max Distance

θmax k∗d k∗v β∗ β(kv = 89.9091)

π − 0.05 100 89.9091 0.0292 0.0292

3π/4 100 38.4455 1.0453 0.5372

π/2 100 26.3364 2.5162 0.8775

π/4 100 21.2909 4.0287 1.0648

underlying concept is the idea of contraction on manifolds,
and the fact that the contraction metric can be formulated
as a linear matrix inequality. We showed that for rigid
body three-dimensional rotations, the contraction metric
has a particular form that can be exploited to give linear
optimization objectives and constraints. We also showed that
for a particular choice of cost function, we can find a quasi-
global exponentially stable geometric attitude controller.

In future work, we plan to investigate other potential
functions Ψ, and to apply our framework to the manifold of
three-dimensional rigid poses SE(3).
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