PHYSICAL REVIEW D 100, 066030 (2019)

Discrete remnants of orbifolding

Steffen Biermann,1 Andreas Miitter ,2 Erik Parr ,2 Michael Ratz,3 and Patrick K. S. Vaudrevange 2
'School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
2Physik Department T75, Technische Universitit Miinchen, James-Franck-Strafse,

85748 Garching, Germany
3Department of Physics and Astronomy, University of California, Irvine, California 926974575, USA

® (Received 1 July 2019; published 23 September 2019)

We revisit the residual symmetries that survive the orbifold projections, and find additional trans-
formations that have been overlooked in the past. Some of these transformations are outer automorphisms
of the downstairs continuous symmetry group. Examples of these transformations include the left-right
parity of the Pati-Salam model and its left-right symmetric subgroup.
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I. INTRODUCTION

Gauge symmetry breaking via orbifolding [1-3] is a
popular alternative to spontaneous breakdown of gauge
symmetry in four dimensions. There are many reasons for
this, including the observation that the infamous doublet-
triplet splitting problem has a simple solution [4—10]. The
low-energy continuous gauge symmetry in these models is
well studied [2,9]. The main purpose of this paper is to
point out that there are additional discrete symmetries that
have not been identified, or discussed, in this context
thus far.

This paper is organized as follows. In Sec. II we
review some basic facts on orbifolding. In Sec. III we
revisit the conditions for residual symmetries and shall
show that in the past some symmetries were missed. We
illustrate this important fact by a few examples in
Sec. 1V, ie., we give one example where a higher-
dimensional SO(10) grand unified theory (GUT) is
broken by an orbifold to Pati-Salam including left-right
parity (also known as D-parity). In addition, we present
two examples which could be of relevance for flavor
model building from orbifold GUTs. Finally, Sec. V
contains our summary. Some details are deferred to the
Appendixes.

II. ORBIFOLD GUT BREAKING

Let us collect some basic facts on orbifolding. For the
sake of definiteness we consider six-dimensional settings in
which two dimensions get compactified, but our findings
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do not depend on the number of dimensions. Consider a
six-dimensional Yang-Mills theory with upstairs gauge
group G, where we denote the generators of the Lie algebra

in the Cartan-Weyl basis H; and E,, collectively by TEW,
In a first step, this theory is compactified on a two-torus T2
defined by the lattice vectors e, and e,, see Appendix A for
more details. We can choose the torus lattice such that it
exhibits a Z, rotational symmetry 9 with 9¥ = 1, where
for N =3, 4, 6 (i.e., the allowed orders N # 2 of the
wallpaper groups in two dimensions) we set de; = e,,
while in the case N = 2 the basis vectors e¢; and e, have to
be linear independent. In order to orbifold the two-torus T2
to a T?/Z, orbifold we mod out this Z, symmetry, i.e., we
identify points y on T? which are related by a (360/N)°
rotation,

Zy
y—dy ~ y. (1)

Note that under this geometrical action our six-dimensional
fields transform as

VE(x,y) i Va(x, 971y),  and

dx) 2 e ()o@

where the y fields transform as the internal components
of a six-dimensional vector V¥ (x,y) of six-dimensional
Lorentz symmetry. Moreover, the Z, orbifold can be
extended from its pure geometric action equation (1) to
include a discrete Zp transformation from the gauge
symmetry G, i.e.,

anh.
TS pT VPl with PN =1,  (3)
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where P € G acts as a discrete gauge transformation,' see
Eq. (AS) with U = P = constant. Since we restrict our-
selves to Abelian orbifolds, we can choose the Cartan
generators H; of G such that P can be expanded as

P =exp (27iV - H), (4)
where the vector V is “quantized” such that PV = 1.

A. Orbifold conditions

Next, in addition to the torus boundary conditions (A4),
we impose orbifold boundary conditions

VH(x,8y) = PV¥(x,y)P~!, (5a)
xxom) =exp () Px)p 0

Using
PH,P' =H;, and PE,P~!=exp(2ziV-w)E,, (6)

where w denotes the root vector of E,,, we obtain

Vi(x, 9y) = Vi(x,), (7a)
Vie(x, 8y) = exp 27V - w)Viu(x, y), (7b)
x1(x,9y) = x1(x,5), (7¢c)

Zu(x.8y) = exp (2;;1 <v wt %) ) rw(xy).  (7d)

III. RESIDUAL GAUGE SYMMETRIES

We consider the possibility of unbroken discrete sym-
metries from G. In this case, a symmetry transformation
from G remains unbroken if it commutes with the orbifold
boundary condition (5), i.e.,

Ve, ) TEW @ V(9 y) PTEY Pt

lo

Vi, 9~ y) U PTCY) p-1p—1 (8)

Vi) UTEV U O Ve, 9t y) PUTEV U P

for a global, unbroken transformation U € G, see Eq. (A5).
Consequently, we obtain the condition

Tp-'u-'pU) = (P'U- ' POTEV.  (9)

Due to Schur’s lemma, it follows that there is a constant
¢ € C such that

P'U'PU=:[P, U] = c1, (10)

where we use the definition of the (group-theoretical)
commutator of two group elements (as opposed to
Lie algebra elements), [A,B] = A~'B~'AB [11]. Using
[AB,C] = B7'|A, C|B[B, C] we find for ¢ > 1

'"We ignore the possibility to choose an outer automorphism of
G as gauge action [9]. Furthermore, the order of P can in general
differ from the order of 9.

[P?,U] =[PP, U] = P[P, UIP- [P, U]
N——"

=cl

= c[P71, V). (11)
Consequently, [P?, U] = ¢“1 and for # = N we obtain
1=[PY, U] =M1, (12)

using that P is of order N (i.e., PV = 1), hence, ¢¥ = 1. In
summary, our main condition for unbroken symmetries
after orbifolding reads

P'UTPU =[P, U] = o*1

for k€ {0,1,...,N — 1},

(13)

where @ = e*. Since P, U € G also [P, U] must be from G.
Moreover, [P, U] « 1. Thus, [P, U] must be from the center
of G, i.e.,

o*1 € Z(G)

for some ke{0,1,....N—1}. (14)
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This constrains the allowed values of k. For example, the
center of SU(M) is Z,;, while o is of order N. That is, these
additional residual symmetries require the order of the
orbifold twist and the dimension of the group center to not
be coprime.

A. Unbroken continuous gauge symmetries

There are two related ways to identify the unbroken
gauge symmetries after orbifolding.

First, as is well known, the unbroken gauge interactions
are mediated by the zero modes of the gauge bosons. These
are the modes with trivial boundary conditions, Eq. (7).
Thus, the gauge bosons V#(x,y) and Vi,(x,y), which are
associated to the Cartan generators H; and to those roots w
for which V - w € Z, have trivial boundary conditions and
hence massless modes in four dimensions.

Second, we can use our main condition (13) to identify
the unbroken continuous symmetries [9]. The unbroken
continuous symmetries are continuously connected to the
identity U = 1. Hence, we have to set k = 0 in Eq. (13) and
expand U = exp (iaaTE,CW)) ~1+ iaaTgCW). In this way,
Eq. (13) yields the condition for a generator of the
unbroken gauge symmetry

PN (a, TP = (a, TV, (15)

Since the boundary condition P is expanded in terms of the
Cartan generators H;, Eq. (4), we can use Eq. (6) to confirm
that the Cartan generators H; and the generators E,, with
V-w € Z satisfy Eq. (15), i.e., they remain unbroken after
orbifolding.

B. Unbroken discrete gauge symmetries

In addition to the unbroken continuous gauge sym-
metries, our main condition (13) can have additional
solutions which then lead to further discrete remnants from
the higher-dimensional gauge symmetry G. Importantly,
these discrete symmetries can originate from our main
condition (13) either for k =0 (see the example in
Sec. IVA) or for k # O (see the examples in Sec. IV B).

Altogether, we confirm that the gauge symmetry break-
ing pattern of orbifold GUTs discussed in [9] yields the
correct unbroken continuous gauge symmetry. However, in
order to obtain the full picture of continuous and discrete
remnants from orbifolding the discussion needs to be
extended. By doing so, we obtain additional symmetries,
which have, to our knowledge, not been discussed in the
literature. In what follows, we detail this in a few explicit
examples.

IV. EXAMPLES AND APPLICATIONS

In this section, we illustrate our general findings in a few
examples.

A. Gauge origin of D-parity and left-right parity

The Pati-Salam model [12] can have, in addition to the
continuous gauge group

Gps = SU(4) x SU(2), x SU(2)g. (16)

a Z, symmetry D that exchanges the SU(2) factors and
acts on SU(4) representations as complex conjugation.
This symmetry is part of the SO(10) supergroup containing
Gps, and can be preserved in four-dimensional (4D) models
of grand unification if one breaks SO(10) by giving a
vacuum expectation value to a 54-plet [13,14]. At the level
of the left-right symmetric subgroup of Gpg, Gir =
SU(3)c x SU(2);, x SU(2)g x U(1)p_,, this Z, is the
well-known left-right parity [15]. That is, the symmetries
of these settings are

[SU(4) x SU(2), x SU(2)g] x Z, or

[SUB3)e x SU2), x SUR)g x U(1)g_, ] xZ,.  (17)
The purpose of the following discussion is to show that this
Z, factor is a residual symmetry of the corresponding
orbifold GUT, which to our knowledge has not been
pointed out before.

To this end, consider a theory with SO(10) symmetry in
higher dimensions compactified on a Z, orbifold such as

S'/Z, or T?/Z,. We choose the GUT breaking boundary
condition

Ppg = diag(—Ts; 14). (18)
As is well known, the continuous low-energy gauge
symmetry is Gpg [10]. However, there is an additional
Z, symmetry.
In more detail, our main condition (13) yields

[Pps, U] = (=11 for ke {0,1},  (19)

and we search for the unbroken elements U ;) € SO(10).
For k = 0 condition (19) reads

PpsU ) = U () Pps. (20)

The most general SO(10) matrix satisfying this condition
reads

Ug) = <006 ;)4> € SO(10). (1)

Consequently, we find the conditions

OgO6 = Tl6 and 0104 = T]4 and
det Og = det O, = +1. (22)
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Hence, U ) with det Og = det O, = +1 yields

O € SO(6) ~SU(4) and
0, € SO(4) ~ SU(2), x SU(2)g. (23)

while U ) with det O = det O, = —1 can be generated by

O¢ = diag(1,1,1,1,1,-1)0; and

for Oy € SO(6) ~SU(4) and 0O} € SO(4) ~SU(2), x
SU(2)g.” Let us remark that setting k = 1 in our main
condition (19) does not yield further unbroken symmetries.

Consequently, the Z, orbifold boundary condition Ppg
breaks SO(10) down to

Gps = (SU(4) x SU(2), x SU(2)g) % Z,.  (25)

where the generator of the additional Z, remnant symmetry
can be chosen to be

D =diag(-1,1,1,1,1,1;1,=1,—=1,=1).  (26)

Here, we write D in this suggestive way because this will
make it very obvious how this Z, acts. We could have
represented it by any diagonal matrix with entries 41
subject to the condition that the number of —1’s on either
side of the semicolon is odd.

How does this Z, act on representations? Consider first
the SO(4) subblock. There, the transformation D can be
understood by analogy to parity acting on spinors (%2,0) @
(0,%) of SU(2) x SU(2) in 4D Euclidean space-time:
parity interchanges the SU(2) representations. Translated
to Pati-Salam, D acts on (r,rg) of SU(2), x SU(2)g as

(re.mR) 'i’ (re,7L), (27)

see also Appendix B for an explicit computation showing
how D acts on SU(2); x SU(2)g. Similarly, D acts on
the SO(6) ~ SU(4) subgroup in analogy to (a Euclidean
version of) time reversal, so for any SU(4) representation r,

D

ry— ’_'4. (28)
Altogether a representation (ry,ri,rg) of SU(4) x
SU(2); x SU(2)g transforms under D as
D _
(ra.r.rR) — (Faorg, 1) (29)

So this Z, exchanges (4,2,1) and (ZI, 1,2), i.e., the left-
and right-handed fermions of the standard model. That is,

Note that “~” means “up to Z, factors,” but these Z,’s are
different from the one we are going to discuss next.

this simple orbifold GUT gives rise to the well-known left-
right parity [15], where it originates from SO(10) and is
hence clearly a discrete gauge symmetry. Ironically, the
representation of its generator (26) supports the naming in
[15], where this transformation has been called parity. Even
though it is not the ordinary space-time transformation that
gets broken spontaneously there, as the left-right symmetric
model is chiral and even in its unbroken phase does not
preserve parity, this transformation does act on the SO(6) =~
SU(4) and SO(4) ~ SU(2), x SU(2)g representations in
an analogous way as space-time parity does.

Altogether we have found that the breaking pattern of the
SO(10) orbifold GUT is

S0(10) 228 SU4) x SU(2), x SU(2)g] % Z,  (30)

where Z, corresponds to the left-right parity and is in
particular a nontrivial outer automorphism of Gpg. It is
amusing to see that the same mechanism that breaks the
gauge symmetry and provides us with a solution to the
doublet-triplet splitting problem automatically leads to this
symmetry.

This parity has a simple geometric interpretation in terms
of root lattices, which already can be obtained from a
lower-dimensional example. Consider the breaking of
SO(5) to SO(4) with a twist Ps =diag(1,—1,—1,—-1,-1)€&
SO(5). This breaking removes a simple root from the root
lattice (see Fig. 1), and the simple roots of 3u(2), @
8u(2)g span a sublattice of the original 8o(5) lattice.

However, the Weyl reflection with respect to the plane

orthogonal to the “broken” root af’;)(s) is a symmetry of the

8u(2); @ 8u(2)y sublattice, and exchanges (the genera-
tors of) the 3u(2) algebras.

The analogous statement holds in the full Pati-Salam
example, but depicting the transformation D as a Weyl
reflection is more difficult since the rank of 80(10) is 5. As
we shall see, the residual transformations in the examples in
Sec. IV B can also be related to elements of the Weyl group.

Discussing the phenomenological implications of this
symmetry is beyond the scope of this work, we only note
the revived interest in this transformation in [16] and
references therein.

B. Non-Abelian residual symmetries

In what follows, we present two examples in which the
higher-dimensional gauge group gets broken by the orbi-
fold to a semidirect product of an Abelian gauge symmetry
with a discrete Zp factor. Such symmetries naturally
contain non-Abelian discrete groups that can be used as
flavor symmetries.

1. T?/7, Orbifold GUT

We choose a six-dimensional gauge symmetry G =
SU(2) and |e;| = |e,| with e, - e, = 0. This lattice has a
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Root lattices of 80(5) and its 80(4) = 3u(2); @ 8u(2)y subalgebra. The roots of the respective algebras are depicted by filled

500) exchanges the

generators of the two 81 (2) algebras. Hence, the outer automorphism D of 3u(2); @ 8u(2)y is generated by the Weyl reflection at the

broken root a?;)(s) of 80(5).

Z, rotational symmetry J that we divide out in order to
construct a T?/Z, orbifold. The associated gauge embed-
ding P is chosen as

i 0
Pz(o >€SU(2) where P*=1. (31)
—i

Then, the unbroken symmetry is given by those U €
SU(2) that satisfy

2k
[P,U(k)]:exp<ﬂTl)1] where k€ {0,1,2,3}. (32)

Since P, U € SU(2), the right-hand side of Eq. (32) has
to be an element of SU(2), too. Moreover [P, U(k)] x 1,

thus, it has to be from the center Z(SU(2)) = Z,.
Consequently, Eq. (32) can only have solutions for
k e {0,2}.

To find all solutions of Eq. (32) we parametrize a general
element U € SU(2) using p,q € C as

Ug = < P q) e Su(2)
-2 P

where det(Uy) = |p[* + |q]* =1. (33)

Then, Eq. (32) reads

pl>—1al>  2pq )!exp <2mk>ﬂ
-2pg  [pP-|qP 4 )"

(34)

[P,Up) = <

which is equivalent to

! 2mik o
P = laPLexn () wa pato. (3)

Now, since |p|* — |g|> € R we see explicitly that Eq. (34)
has no solutions for k € {1, 3}.

Setting £k = 0 in Eq. (35) we find the unbroken gauge
symmetry given by |p|?> = 1 (hence, p = ¢€%) and ¢ = 0,
ie.,

ia 0
© 7 ) esuR),  (36)
0 e—l(l

Uiy = Ugpy(a) = <
where « € [0,27). This yields an unbroken U(1) gauge
symmetry. On the other hand, setting k =2 in Eq. (35)
yields p = 0 and |g|*> = 1 (thus, ¢ = ie'%, where the addi-
tional factor “i” has been introduced for later convenience),
ie.,

U _( 0 ie"‘)_(ei“ 0 ><O
@ \iewe 0 )" \o eie/\i

where a € [0, 27).
Consequently, the unbroken symmetry of SU(2) is
generated by a U(1) and a Z4, i.e.,

e 0 0 i
U(O)(a): 0 e-ia and U(z): L0 s (38)

where (Uy))? = =1 = U()(x) € U(1). The Z, transfor-
mation U, acts on the gauge bosons as Z,, i.e.,

(1)> e SU(2),

(37)

VA T s Vi, ) U TV U7

@ (39
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see the diagram (8). By explicitly choosing the Cartan-
Weyl basis H = %63 and E. = § (o) £ i0y), one verifies
that U ) in Eq. (39) can be understood as the action of the
unbroken element w of the Weyl group of 3u(2), i.e.,

H -H
wi| E, | — | E_ |. (40)
E E,

In summary, the six-dimensional SU(2) gauge symmetry is
broken by this Z, orbifold according to

orb.
Z4

SUQ2) = (U(1) % Z4)/2Zs. (41)

Let us remark that this unbroken symmetry after orbifold-
ing contains, for example, the binary dihedral groups Qy
with N = even as subgroups [17], including the quaternion
group for N = 4.

2. T?/Z Orbifold GUT

Next, we choose a six-dimensional gauge symmetry G =
SU(3) and |e;| = |e,| with e| - e; = —|e;|>/2. This lattice
has a Z; rotational symmetry 9 that we divide out in order
to construct a T2/Z, orbifold. The associated gauge
embedding P is chosen as

o 0 0
P=|0 o 0| €eSUB) where PP=1, (42)
0 0 1

where @ = exp 2xi/3. Then, the unbroken symmetry is
given by those U € SU(3) that satisfy

27ik
[P,U(k)]:exp<§l)1] where ke {0,1,2}.  (43)

Since P, U € SU(3), the right-hand side of Eq. (43) has
to be an element of SU(3), too. Moreover, [P, U(k)] x 1,
thus, it has to be from the center Z(SU(3)) = Zs.
Consequently, Eq. (43) can have solutions for all
cases k € {0, 1,2}.

The unbroken symmetry can be generated by two U(1)
factors

ei(a+/}) 0 0
U = 0 é&l@hH o | eSuB) (44)
0 0 e—Zia

and two discrete transformations

e SuU(3),

e SU@3). (45)

- o O O = O
S O = = O O
S = O O O =

where U 5y = (U(;))?. Since (U(y))* = 1, U(;) generates an
unbroken Z5. Consequently, the six-dimensional SU(3)
gauge symmetry is broken by the Z; orbifold according to
(see also [18,19])

orb.
Z}

SUG3) = [U(1) x U(1)] % Zs. (46)

Again, the Z5 can be understood as a remnant of the Weyl
group: if we denote the Weyl reflection with respect to the
root a by w,, conjugating with U ;) has the same action on
the generators as the Weyl transformation Wa Wagy» where
a7, I =1, 2, denote the simple roots of SU(3). The U(1)
factors emerge from the standard gauge symmetry breaking
by orbifold boundary conditions to the commuting sub-
group, see, e.g., Eq. (6) in [9]. However, to our knowledge,
there is no systematic way in the previous literature how to
derive the (noncommuting) Z; factor. We also note that if
one breaks the U(1) factors down to Z; symmetries, this
leaves us with (Z3 x Z3) x Z5, which is known as A(27)
and has been proposed as a flavor symmetry.

V. SUMMARY

We discussed how gauged discrete symmetries emerge
from orbifolds. Although we used the field-theoretic
constructions the discussion is purely group theoretical
and applies to string-derived orbifolds as well. We iden-
tified residual discrete symmetries. These included the
so-called left-right parity of the Pati-Salam model or its
left-right symmetric subgroup, which, to the best of our
knowledge, have been overlooked in the literature so far.
These symmetries are inner automorphisms of the upstairs
symmetry group but outer automorphisms of the orbifolded
setup. Notably, we found that these symmetries do not have
to commute with the orbifold twist. Rather, the trans-
formations U have to fulfill the weaker condition

P-IU-'PU = o*1 € Z(G), (47)

where P is the orbifold twist and Z(G) the center of the
group G. In accordance with the usual expectations, all
these symmetries are gauged, i.e., local.
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APPENDIX A: TORUS COMPACTIFICATION
AND SYMMETRIES

In six dimensions we assume a Yang-Mills theory with
upstairs gauge group G. Then, the standard Lagrangian for
the associated gauge bosons V¥ (x,y), M =0,...,5, reads

1
L= —Etr(FMNFMN), (Al)
where Fy denotes the field strength tensor. We expand
VM(x,y) in terms of the generators of the Lie algebra of G
in the Cartan-Weyl basis, i.e.,

VM(x,y) =Y Vi) H + Y Vi(x.y)E,

weWw

= VT, (A2)

where the index / runs over all Cartan generators H;, W
denotes the set of nontrivial roots of G and we denote all

Cartan-Weyl generators collectively by Técw).

An orbifold compactification of this model can be
thought of as two steps: first we compactify two dimen-
sions on a two-torus T2 with coordinates y = (y;, y,)” and
then (as described in Sec. II) on a T?/Z, orbifold. To do so,
we split the gauge fields VM (x,y) into components with
index M = p in Minkowski space-time and with index
M =4, 5 in the internal two-torus. From a four-dimen-
sional perspective, the fields

1
VE and y =——(V*+iV?)

V2

give rise to the gauge bosons of G and complex scalars,
respectively, both transforming in the adjoint of G.

(A3)

1. Torus compactification

We impose boundary conditions on the fields V4 (x, y)
and y,(x,y) compactified on a two-torus T2. To do so, we
choose two linearly independent lattice vectors e; and e,
that span the torus lattice. Depending on the orbifold, we
will choose different torus metrics G;; = e¢; - ¢;. We take a
general, integral linear combination n;e; for n; € Z, where
summation over i = 1, 2 is implied. Torus periodicity
implies that for all n; € Z

VZ(-xvy + niei) = VZ(-X’ y)7 (A4a)

Xa(X.y +nie;) = ya(x,y). (Adb)

This choice of boundary conditions corresponds to the
case of a torus with trivial gauge background fields (i.e.,
without Wilson lines). Since they are periodic in y, the
usual Kaluza-Klein reduction yields massless modes for
both V%(x,y) and y,(x, y) from the four-dimensional point
of view. Consequently, the upstairs gauge symmetry G
remains unbroken after torus compactification, i.e.,

i

ve s gveut - Loroyu, (A5a)
g

2+ UyU™, (A5b)
with U = U(x) in the fundamental representation of G and
g denoting the associated gauge coupling.

APPENDIX B: D-PARITY IN PATI-SALAM
FROM ORBIFOLDING

In this Appendix, we give an explicit example how one
can compute the action of a residual symmetry trans-
formation on the unbroken gauge symmetry. To do so, we
consider D-parity from the Pati-Salam example in
Sec. IVA and work out the consequences of this Z, on
SO(4). The 30(4) algebra is generated by six antisymmetric
matrices that fulfill

[M”Mj} :ieijkMk’ [Nan] :igijkMk’

[M;,N;] = ig;xNy. (B1)
An explicit representation can be chosen as
00 0 O 0 0 i O
M, = 0 -i 0 , M, = O- 0 0 O 7
01 0 O -1 0 0 0
00 0 O 0 0 0 0
0 -1 0 0
i 0 0 0
M=10 0 00 (B22)
0 0 0 0
0 0 0 —i 00 0 O
0 0 0 O 0 0 0 —i
N, = , N, = ,
0 0 0 O 0 0 0 O
i 00 O 0 i 0 O
0 0 0 O
0 0 0 O
M=10 00 4 (B2b)
0 0 i O
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These generators can be “disentangled” by making a
basis change Wi := % (M; £ N;), for i =1, 2, 3, such that
we arrive at the relations
[Wj_, Wj—] = igijkW]-:’
(Wi, w;]=0.

(Wi, Wi] = ie; We,
(B3)

Hence, we have separated the 80(4) into 8u(2); @ 311(2)g.
Now, we take U, =diag(l,1,1,—1), see Eq. (24).

Following the diagram (8), an explicit calculation reveals
that a discrete gauge transformation with Uz, acts as

Wi r— UZZW;FUZ =Wy,
W7 — UZzWi_UZ =Ww;.

1

(B4)

Hence, we see explicitly that Uz, interchanges 8u(2);
and 8u(2)g.
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