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T
he superconducting proximity effect describes the processes in 
which correlations are induced in a normal metal by a super-
conducting electrode1. The microscopic origin of the proxim-

ity effect lies in the Andreev reflections that couple the electron and 
hole states at the border of a normal metal and a superconductor.  
In the past few years, interest in Andreev processes has experienced 
a renaissance, driven by the promise of producing exotic states and 
excitations, such as Majorana zero modes and chiral Majorana fer-
mions2, which may be used for topological quantum computing3,4. 
Many concrete implementations of Majorana modes have been 
proposed, relying on superconductors proximitizing materials with 
spin–orbit coupling5 or various quantum Hall systems6,7.

In this work, we directly probe chiral Andreev edge states 
(CAESs), which result from inducing superconducting correlations 
in the integer quantum Hall edge states. Semiclassically, CAESs 
result from skipping orbit trajectories, in which an electron turns 
into a hole and back into an electron upon successive Andreev 
reflections from a superconductor. Quantum mechanically, this 
combination of Andreev reflections and quantum Hall edge states 
yields fermionic modes in which the electron and hole states are 
hybridized and propagate chirally along the quantum Hall–super-
conductor interface8–10. Under certain conditions, CAESs are pre-
dicted to be self-conjugate, becoming chiral Majorana fermions11–14.

The early search for CAESs in III–V semiconductor devices 
focused on magneto-conductance oscillations in the quantum Hall 
regime15,16. Later, graphene samples in the quantum Hall regime 
were shown to have enhanced conductance between supercon-
ducting contacts17,18. Recent progress in making transparent type 
II superconducting contacts to both GaAs19 and encapsulated gra-
phene20,21 has enabled the observation of several new phenomena, 
including edge-state-mediated supercurrent22,23, crossed Andreev 
conversion24 and inter-Landau-level Andreev reflection25.

Nevertheless, despite some recent attempts26–28, direct evidence 
for CAESs remains elusive. To conclusively identify CAESs one 
must demonstrate their propagation along the superconducting 
contact. Naively, one may expect that any electrical signal spread-
ing along the contact will be shunted by the superconductor. Here,  
we demonstrate that this is not the case. The main mechanism 

allowing us to detect CAESs in this work is their interference, which 
can be described as follows: an incoming electron approaching the 
superconducting contact is decomposed into a linear combination 
of CAESs10 propagating along the quantum Hall–superconductor 
interface with different wavevectors. The accumulated phase differ-
ence between these modes can result in the original electron turn-
ing into a hole as it exits the opposite end of the interface29,30. The 
appearance of the hole can then be detected by measuring the volt-
age on a normal contact located downstream from the grounded 
superconducting contact24. We observe a beating signal, which 
proves that the CAESs are formed by a coherent superposition of 
the electron and hole amplitudes. By further analysing the interfer-
ence between the CAESs, we show that these modes are, on average, 
neutral—their electron and hole components have roughly equal 
weight. These results demonstrate that transport measurements can 
detect the presence of CAESs despite their charge neutrality. Our 
approach opens the door for detecting chiral Majorana modes in 
topological superconductors.

CAES interference
Our samples are made from graphene encapsulated in hexagonal 
boron nitride (hBN). The graphene-hBN heterostructure is depos-
ited on a doped Si wafer capped with a 280 nm SiO2 layer, which 
serves as a back gate. One-dimensional contacts are made to the 
heterostructure31 using both normal and superconducting metal 
electrodes, as shown in Fig. 1a. The superconducting electrodes 
are composed of a sputtered molybdenum-rhenium alloy (MoRe), 
a type II superconductor with an upper critical field Hc2 ≈ 10 T, a 
critical temperature of Tc ≈ 10 K and a superconducting gap of 
Δ0 ≈ 1.3 meV. We have previously demonstrated that the interface 
between MoRe and graphene is highly transparent32, as further con-
firmed in Supplementary Fig. 3. In addition to the superconducting 
electrodes, the sample has several normal contacts made of ther-
mally evaporated Cr/Au.

The lengths of the top and bottom graphene–superconductor 
interfaces, L, are 150 nm and 600 nm, respectively. We focus on 
the bottom contact (‘c’ in Fig. 1a). The L = 600 nm length is chosen 
so that it falls in the range between the induced superconducting 
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coherence length, ξs ¼ ℏv=πΔ0  160

I

 nm, and the phase coher-
ence length of quantum Hall edge states, ξφ ¼ ℏv=2πkBT

I

 (ref. 33), 
which is about 12 μm at T = 0.1 K. In this estimate, the velocity 
of the edge states, v, is taken to be equal to the Fermi velocity of 
graphene, vF = 1 × 106 m s−1. Although this is typically true only for 
sharp vacuum edges34, our simulation (Supplementary Section 6) 
suggests that the CAES velocity is probably lower but comparable 
to vF, which places L = 600 nm comfortably between ξφ and ξs. This 
condition ensures both that the propagation of the CAES along the 
contact is quantum-mechanically coherent and that the crossed 
Andreev conversion24 is suppressed.

Throughout these measurements, we apply a current from the 
normal contact labelled ‘a’ while keeping the bottom superconduct-
ing contact ‘c’ grounded (Fig. 1a). The current is comprised of a vari-
able d.c. component, I, and a small a.c. excitation of 10 nA that allows 
us to measure the differential resistance. To probe CAES propagation 
along the superconducting contact, we study the longitudinal resis-
tance, ~Rxx ¼ d~Vxx=dI

I

, where ~Vxx

I

 is measured between the normal 
contact ‘d’ and the adjacent grounded superconducting contact ‘c’. 
We refer to this quantity as the ‘downstream resistance’ to reflect the 
quantum Hall intuition that the edge states propagate along the chi-
ral direction and thus contact ‘d’ is located downstream from contact 
‘c’. In conventional devices with normal contacts, ~Rxx

I

 would corre-
spond to the longitudinal resistance Rxx, which is zero on quantum 
Hall plateaux and positive between them (Supplementary Fig. 1).

We also simultaneously measure the differential Hall conduc-
tance, Gxy = dI/dVxy, where the transverse voltage is measured 

between the normal contacts ‘b’ and ‘d’ in Fig. 1a. This quantity 
remains well quantized through the relevant range of gate voltages 
and at temperatures below 3 K. This ensures that the bulk of the 
sample is gapped and that transport occurs only through the edge 
states. In the data presented, the sample is held at the base tem-
perature below 100 mK, unless otherwise specified, and the MoRe 
remains superconducting at all magnetic fields (B < 6 T) and tem-
peratures studied.

Figure 1b presents a map of Hall conductance Gxy measured  
versus B and gate voltage VG. The valley and spin degeneracies in this 
sample start to lift at B ≈ 1 T, leading to the appearance of all integer 
filling factors, ν. The broken symmetry states have smaller activa-
tion gaps than the main sequence of filling factors ν = 4(n + 1/2). 
To ensure that the bulk of the sample remains insulating when we 
vary the current bias and temperature, we focus on the robust fill-
ing factor ν = 2 (filled lowest Landau level), which has an energy 
gap on the order of tens of meV. Figure 1c plots the simultaneous 
measurement of ~Rxx

I

 and Rxy versus VG in the range corresponding 
to the Landau level filling factor ν = 2 at B = 3 T. We subtract h/2e2 
from Rxy to highlight the degree of Hall quantization on the same 
scale as the variations of ~Rxx

I

. Clearly, the Hall conductance is well 
quantized, despite the fact that the current flows through a super-
conducting drain contact. (Deviations of the plateau level from the 
quantized value for the individual curves are probably caused by the 
slow drift of our home-made amplifier.) The observed quantization 
is in agreement with the Landauer–Büttiker formula described in 
Supplementary Section 3, which shows that Rxy measured between 
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Fig. 1 | Andreev reflection in the quantum Hall regime. a, An optical image of the sample. Superconducting contacts (grey) are placed between normal 

contacts (gold). A magnetic field is applied into the plane, resulting in counterclockwise travel of electrons and holes when the graphene (blue) is n-doped. 

We use a four-terminal scheme to measure the Hall voltage Vxy simultaneously with the superconductor downstream longitudinal voltage ~Vxx

I

. The sign of 
~Vxx

I

 is carefully defined as the voltage of contact ‘d’ minus the voltage at contact ‘c’. b, Fan diagram of the zero-bias Hall conductance Gxy. Filling factors are 

labelled on the plateaux. Degeneracy of the Landau levels starts to lift around B = 1 T, suggesting the high quality of the graphene region. c, Temperature 

dependence of the zero-bias superconductor downstream longitudinal resistance ~Rxx
I

 measured for ν = 2 at B = 3 T (bottom) and the simultaneously 

measured Hall resistance Rxy (top). To highlight the Hall quantization, h/2e2 is subtracted from Rxy. The oscillations of ~Rxx
I

 on the ν = 2 plateau disappear at 

1.8 K. d, At a certain gate voltage VG, an electron injected into a pair of CAESs exits as a hole. The bottom panel shows the electron (red) and hole (blue) 

wavefunction densities from a tight-binding calculation in the lowest Landau level. Here, the unit a is the lattice parameter of graphene.
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the normal contacts ‘b’ and ‘d’ should be quantized, regardless of the 
properties of the drain contact.

We focus next on the range of gate voltages (5 V < VG < 5.7 V)  
in which Rxy remains well quantized at h/2e2, even at higher  
temperature (T < 3 K), ruling out any possible contribution from 
the bulk. Remarkably, in this range, the downstream resistance  
~Rxx

I

 shows clear deviations from the zero signal usually expected  
in the quantum Hall regime (Supplementary Section 1). As the  
temperature is increased, ~Rxx

I

 gradually flattens and approaches  
zero, and eventually a conventional quantum Hall behaviour of 
zero longitudinal resistance is recovered around 2 K. Note that this 
temperature is still very small compared to the quantum Hall gap 
and indeed Gxy remains well quantized. We further verified that a 
non-zero ~Rxx

I

 signal is observed only when the grounded contact 
is superconducting; the resistance measured downstream from a 
normal contact is strictly zero (Supplementary Figs. 1 and 2). We 
conclude that the deviation of ~Rxx

I

 from zero observed for grounded 
contact ‘c’ is due to superconductivity, the influence of which is 
suppressed by raising the temperature. Incidentally, the vanish-
ing of ~Rxx

I

 observed around 2 K suggests that contact ‘c’ would be 
fully transparent in its normal state (see Supplementary Fig. 3 for a 
discussion of contact transparency in terms of Blonder–Tinkham–
Klapwijk theory).

Notably, ~Rxx

I

 becomes negative at some gate voltages, suggesting 
that contact ‘d’ acquires a chemical potential lower than the chemi-
cal potential of the grounded contact ‘c’. We attribute this behaviour 
to the following process: an electron approaching the superconduc-
tor turns into a linear combination of CAESs. For each electron 
state, a pair of CAESs is formed when the proximity effect couples 
the electron edge state with the hole edge state at the same energy10 
(Supplementary Sections 2 and 6). Because their wavevectors are 

different, the two CAESs acquire a phase difference while propa-
gating along the superconducting interface, resulting in a beating 
pattern between the electron and hole components of the wavefunc-
tion30. If the CAES interference produces a hole at the end of the 
graphene–superconductor interface, the hole will flow to contact 
‘d’ and lower its chemical potential. Note that, in contrast to ref. 24, 
which studies crossed Andreev conversion across the superconduc-
tor, the negative signal observed here is due to the interference of 
CAES propagating along the contact. As a result, ~Rxx

I

 is sensitive to 
the phase accumulated along the interface, which makes it depen-
dent on the gate voltage.

In the following, we support our interpretation by conducting 
tight-binding simulations that illustrate how the CAESs propagate 
along the superconducting contacts, resulting in oscillations of the 
electron and hole probability along the interface. We then provide 
further experimental evidence that confirms this picture by show-
ing that the downstream signal is sensitive to the configuration of 
vortices in the superconducting contacts, and that the measured 
fluctuations average to zero when sampled over a wide range of 
magnetic fields.

Tight-binding simulations
We conducted detailed tight-binding calculations for a quantum 
Hall–superconductor interface (Supplementary Section 6). The 
superconducting contacts are modelled by a square lattice; this 
breaks the valley symmetry at the interface, which would otherwise 
determine the result of the Andreev reflections through valley iso-
spin conservation35. We expect the square lattice to provide a generic 
representation of the rough graphene–MoRe interface. Qualitatively 
similar results were obtained for a superconductor modelled by a 
disordered honeycomb lattice.
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Fig. 2 | The interference of CAESs on various quantum Hall plateaux and its magnetic field dependence. a, Zero-bias ~Rxx
I

 plotted versus gate voltage VG 

at B = 3 T together with the simultaneously measured Gxy. ~Rxx
I

 oscillates around zero on the well quantized plateaux of ν = 2, 3, 5, 6 and 7 (shaded regions). 

b, Zero-bias ~Rxx
I

 plotted versus gate voltage VG and magnetic field B. Filling factors are labelled based on the Gxy fan diagram in Fig. 1b, with the boundaries 

for ν = 2 and 6 drawn as black lines. The oscillations in the well-quantized region gradually die out with increasing magnetic field. c, Peak values of ~Rxx
I

. The 

maximum and minimum of ~RxxðVGÞ
I

 on the ν = 2 plateau are plotted versus B. On average, ~Rxx
I

 varies around zero, indicating that the CAESs are roughly 

equal superpositions of electrons and holes.
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Figure 1d shows the results of our simulation describing an 
electron injected in a quantum Hall edge state towards an interface 
with a superconductor. Note the clear beating pattern between the 
electron and hole probabilities. The value of the chemical potential 
was chosen such that the outgoing state was almost purely a hole. 
We can alternatively obtain an outgoing electron, or any superpo-
sition of electron and hole, by changing the chemical potential in 
our simulation, which corresponds to varying the gate voltage in the 
experiment. As a result, the calculated probabilities of the outgoing 
state being an electron (Pe) or a hole (Ph) show pronounced oscilla-
tions (Supplementary Fig. 12).

Experimentally, the beating pattern between the two CAESs is 
likely to be affected by multiple parameters, such as the interface 
roughness, disorder potential, electron density profile near the con-
tact and even positions of vortices in the superconducting contact 
(Supplementary Figs. 5 and 6). As a result, the downstream resis-
tance measured as a function of the gate voltage acquires a pattern 
of random but highly reproducible fluctuations (Fig. 1c), in which 
the signal is positive or negative depending on whether the super-
conductor emits predominantly an electron or a hole. We next pro-
vide further experimental evidence that supports our interpretation 
of the non-zero downstream resistance.

Dependence of ~Rxx

I

 on magnetic field
The behaviour observed in Fig. 1c is generic. In Fig. 2a, we plot 
~Rxx

I

 and Gxy at 3 T for a wider range of gate voltages. Clearly, ~Rxx

I

 
oscillates around zero as a function of the gate voltage for a range 
of integer filling factors. We could also expect mesoscopic fluctua-
tions in the downstream resistance to be induced by changing the 
magnetic field, B, which changes the magnetic length. Indeed, our 
simulations indicate that Pe − Ph oscillates with the magnetic field 
(Supplementary Fig. 13).

To explore this dependence experimentally, we plot ~Rxx

I

 as a func-
tion of both B and VG in Fig. 2b. The overall pattern is reminiscent 
of the traditional Landau fan diagram of longitudinal resistance, 
with the exception that the downstream resistance ~Rxx

I

 is not equal 
to zero on the plateaux. Mesoscopic fluctuations that deviate from 
zero resistance (white) appear inside the quantum Hall plateaux 

as blue (negative) and red (positive) pockets. A prominent feature 
of the data is the frequent abrupt changes of the ~RxxðVGÞ

I

 pattern 
while sweeping the magnetic field. Although the field sweeps are 
stable and reproducible in a very small range of B, changing the field 
by several mT completely changes the curves (see Supplementary  
Fig. 5b for more details). This stochastic switching complicates 
analysis of the map.

We note that when switching of the ~RxxðVGÞ
I

 curve occurs, Gxy 
stays unchanged (compare Figs. 1b and 2b). This can also be noticed 
in Supplementary Fig. 5a in the regions slightly outside the quan-
tized plateau, where Gxy develops a recognizable mesoscopic pat-
tern. This observation indicates that the switching events do not 
involve the normal contacts ‘b’ and ‘d’ between which Gxy is mea-
sured, nor the bulk of the sample. Instead, they must originate in the 
superconducting contact ‘c’. We surmise that switching of the ~Rxx

I

 
pattern is caused by the rearrangement of vortices inside the type 
II superconducting contact. Indeed, we have routinely observed 
similar switching events in the interference pattern of supercur-
rent in Josephson junctions fabricated with similar contacts. In 
Supplementary Section 4, we show that we can hysteretically switch 
between two distinct patterns of ~Rxx

I

 multiple times, indicating  
that the vortices can be controllably added to and removed from  
the superconductor.

To explain the observed sensitivity of ~Rxx

I

 to the vortex configu-
ration, we note that adding a vortex close to the interface should 
change the phase of the order parameter along the quantum Hall–
superconductor interface, θ(x). As a result of this change, a pure elec-
tron or pure hole state would only acquire an overall phase, which 
would not change ~Rxx

I

. However, the change of θ(x) is expected to 
change the relative phase shift between the two interfering CAESs. 
The presence of the vortices is typically neglected in theoretical 
studies, but we find that they have a dramatic effect on the beating 
pattern of the CAESs—in Supplementary Fig. 12 we show that the 
Pe-Ph curve is completely scrambled by adding just a single vortex, 
modeled as a kink in θ(x).

To extract information otherwise buried in the stochastic switch-
ing, we analyse the impact of B on the gate-dependent oscillations 
on the ν = 2 plateau (more statistical analysis can be found in 
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I and gate voltage VG on a well-quantized ν = 2 plateau at B = 3 T. Gate-dependent oscillations centred at zero bias are observed, indicating interference 

of the CAESs. b–d, Bias-dependent oscillations of ~Rxx
I

 at gate voltages VG = 5.08 (b), 5.19 (c) and 5.29 V (d) (see arrows in a). Oscillations die out with 

increasing temperature. e, The dispersion relation of a pair of CAESs at a quantum Hall–superconductor interface calculated from the tight-binding 

simulation. The momentum difference between the two modes varies with energy, causing oscillations of ~Rxx
I

 in bias.
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Supplementary Section 7). The plateau region used for this analy-
sis is selected such that Gxy is within 1% off the quantized values, 
as indicated by the black lines in Fig. 2b. We then find the mini-
mum and maximum ~RxxðVGÞ

I

 for a given field and plot the resulting 
min~RxxðVGÞ

I

 and max ~RxxðVGÞ
I

 as a function of B in Fig. 2c. First, we 
find that the amplitude of the fluctuations decreases with B. This sup-
pression is most probably explained by the CAESs being absorbed by 
the contact, thereby creating quasiparticle excitations in the super-
conductor. (These excitations are possibly absorbed by the normal 
cores of the vortices.) Evidently, this process becomes more effective 
at higher B. Second, the typical amplitudes of the positive and nega-
tive signals are very close. We argue that this observation indicates 
that CAESs are, on average, neutral (Supplementary Sections 2 and 
6). Indeed, if the two CAESs ψ1;2

I

 had predominantly electron-like 
and hole-like characters, respectively, the incoming electron would 
couple primarily to state ψ1

I

. This would, in turn, result in a greater 
likelihood of electrons being emitted downstream, and ~Rxx

I

 would 
mostly stay positive, that is, max ~RxxðVGÞ> min ~RxxðVGÞ

�

�

�

�

I

, contrary 
to our observations.

Our numerical simulations support this argument: the eigen-
modes ψ1;2

I

 are given by coherent superpositions of electron and 
hole amplitudes, which have distinct patterns in space. Nevertheless, 
the integral of the probability of the electron and hole components 
is close to 1/2 (Supplementary Fig. 11), resulting in the overall 
approximately neutral character of the CAES. Due to particle–hole 
symmetry of the model, ψ2

I

 at zero energy is the charge conjugate 
partner of ψ1

I

, meaning that the pattern of the electron and hole 
amplitudes is interchanged.

Dispersion of CAESs
Finally, we address the nonlinearity of the CAES energy–momen-
tum dispersion. In Fig. 3a, we plot the ~Rxx

I

 map measured as a 
function of I and VG. The data correspond to the range nominally 
identical to Fig. 1c, but it was measured following a sweep of mag-
netic field, so the individual mesoscopic features have changed. The 
dependence of this map on temperature and additional maps for 
ν = 6 are provided in Supplementary Section 5.

Most notably, we find that ~Rxx

I

 in Fig. 3a oscillates not only with the 
gate voltage, but also as a function of the d.c. current bias. These oscil-
lations are revealed in the vertical cross-sections of the map, taken 
at VG = 5.08, 5.19 and 5.29 V and plotted in Fig. 3b–d. Quite unusu-
ally, the signal can even oscillate several times as a function of bias, 
as shown in Fig. 3c. To interpret these oscillations, we note that the 
applied current tunes the energy of the injected electrons with respect 
to the grounded superconducting contact, E = eI/Gxy. The wavevec-
tor difference δk between the two CAESs depends on their energy, 
as demonstrated in our model calculations in Fig. 3e (Supplementary 
Section 6). The phase difference accumulated by the CAESs along 
the interface, δkL, thus produces the observed bias oscillations of 
~Rxx

I

. Eventually, ~Rxx

I

 goes to zero when the applied voltage becomes 
comparable to the superconducting gap, I/Gxy ≈ Δ/e. At that point, the 
incoming electrons have high probability to enter the superconductor 
as quasiparticles, and no downstream signal is expected.

Outlook
We have demonstrated robust coupling of the quantum Hall edge 
states to a superconductor via Andreev reflections, resulting in the 
formation of chiral Andreev edge states—coherent superpositions of 
electrons and holes. Further study of CAESs may focus on increas-
ing the strength of the downstream signal and making the oscillation 
pattern more regular, both of which could be achieved by shorten-
ing the superconducting interface and reducing the magnetic field. 
Such developments could in turn lead to realization of novel quan-
tum effects and devices, possible examples being Bogoliubov qua-
siparticle annihilation36, a superconducting flux capacitor37 and a 
phase-coherent heat circulator38. Finally, the non-local downstream 

voltage measurement implemented here could also be applied to 
samples in which the quantum Hall effect is replaced by the quantum 
anomalous Hall effect. In this case, the neutral interfacial modes are 
predicted to be chiral Majorana fermions30.
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