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Turning Mesh Analysis Inside Out

Abstract

Elementary linear circuit analysis is a core competency for electrical and many other engineers.
Two of the standard approaches to systematic analysis of linear circuits are nodal and mesh
analysis, the latter being limited to planar circuits. Nodal and mesh analysis are related by
duality and should therefore be fully symmetrical with each other. Here, the usual textbook
approach to mesh analysis is argued to be deficient in that it obscures this fundamental duality
and symmetry, and may thereby impede the development of intuition and the understanding of
the nature of “mesh currents.” In particular, the usual distinction between “inner” and “outer”
meshes (if the latter is even recognized) is argued to be meaningless, as can be seen when
drawing a planar circuit on the surface of a sphere. A generalized definition of a mesh is
proposed that includes both inner and outer meshes on the same footing. Selection of a reference
node in nodal analysis should be paralleled by the selection of any mesh to be the reference mesh
in mesh analysis, which is always selected to be the outer mesh by default in the usual approach.
All branch currents are shown to the difference of two mesh currents, and the zero of all mesh
currents is now arbitrary just as it is for node voltages. Use of supermeshes is sometimes
obviated by the new approach, and the analysis is sometimes simplified. This new approach has
been used in two sections of a linear circuit analysis course in Fall 2019, and student survey data
is presented to show preference for the new method over the usual textbook method. An
interactive multiple-choice tutorial describing the new method has been integrated into a step-
based tutoring system for linear circuit analysis.

1. Introduction

Elementary linear circuit analysis is one of the most widely taught gateway courses in virtually
all engineering schools. For example, such a course was taught to 1364 students in 26 class
sections in Summer 2019 through Spring 2020 at the author’s institution alone. Such courses
vary in that they may sometimes include topics in electronics or signal processing, but in general
they tend to cover a well-established range of topics as outlined in many of the popular
textbooks, e.g., [1-10]. The typical approach begins with electrical fundamentals and single loop
and single node-pair circuits, which can be solved with elementary methods. For more
complicated circuits, both nodal and mesh analysis are nearly always covered (based on
systematic applications of KCL and KVL, respectively), though the former is more general in its
ability to handle non-planar circuits and to be extended to numerical analysis of circuits via
modified nodal analysis [11]. Both methods are however useful for hand calculations and to help
develop conceptual understanding. In particular, mesh analysis can yield far fewer equations
than nodal analysis when many elements are in series (at least if the concept of essential nodes is
not used), just as nodal analysis is advantageous when many elements are in parallel. In the
author’s experience, students often prefer mesh analysis for the ease with which they can
visualize loops to which KVL is applied as opposed to the closed surfaces to which KCL is
applied. The arithmetic also involves multiplication rather than division and may avoid
fractions, at least in textbook problems.

The well-known principle of duality (see, e.g., Refs. [2, 3, 12-16]) pervades the entire subject of
circuit analysis, even if it is not always discussed explicitly. This property follows from the



underlying symmetry of Maxwell’s equations. Dual sets of items include current and voltage,
meshes and nodes, resistances and conductances, inductors and capacitors, series and parallel
relationships, current sources and voltage sources, and short circuits and open circuits. Students
cannot help noticing the symmetry between the current-voltage relationships for inductors and
capacitors, the similarity of parallel and series RLC circuits, the correspondence of Thévenin and
Norton equivalent circuits, and many other such things in circuit analysis. Thomas, Rosa, and
Toussaint point out that students can use duality to help remember facts and theorems about
circuits [17]. Rigorously, it is well known that one can construct an exact dual of any given
planar circuit by replacing nodes by meshes and all of the other corresponding items listed
above, and that the resulting dual circuit will obey the exact same differential equations as its
dual [2, 3, 12-14]. Therefore, nodal and mesh analysis should be complete duals of each other
[10]. Indeed, some works have mentioned that in constructing the dual of a circuit, the reference
node should be mapped to the “outer mesh” [18], although usual definitions exclude the
periphery of a planar circuit from being called a mesh at all.

Yet the typical prescriptions for carrying out nodal and mesh analysis are not symmetric. The
steps listed for nodal analysis (including dependent sources) are typically:

1. Select a reference node, whose voltage is usually defined to be 0 V. This node can be any
one in the circuit, but should ideally be connected to many circuit elements and to as many
voltage sources as possible. Attach an (electronic) ground symbol to that node.

2. Identify and number the remaining nodes and assign them node voltages V|, V,, etc.

3. Write voltage constraint equations relating the difference in node voltages on either side of
each voltage source to the value of that source (but the reference node voltage is just zero)

4. Write a Kirchhoff’s current law (KCL) equation for each non-reference node not
connected to a voltage source.

5. Form “supernodes” consisting of trees of voltage sources and their connecting nodes and
write a KCL equation for each “non-reference” supernode (i.e., each supernode that does
not include the reference node). (A “tree” of voltage sources includes all sources that are
pairwise connected by a common node.)

6. Write an equation for each current or voltage controlling a dependent source in terms of
node voltages.

7. Write an equation for each unknown (“sought”) voltage, current, or power that one wishes
to know about the circuit in terms of node voltages.

8. Solve the resulting system of equations for all such sought quantities.

(One could alternatively define additional unknowns for the current through each voltage source,
at the expense of a larger system of equations, instead of using supernodes. The supernode
method is however widely preferred for hand calculations.) Some books also draw a distinction
between “essential nodes,” (or “extraordinary nodes”) that connect more than two circuit
elements, and “nonessential nodes” (or “ordinary nodes”) that connect only two, and use a
variation of the above procedure [2, 6]. The author is not aware of any such distinction having
been drawn for meshes, though it could be.

For mesh analysis (including dependent sources), however, the typical steps are not symmetric
with the above:



1. Identify and number all (interior) meshes in the circuit and assign them mesh currents 7,
L, etc.

2. Write current constraint equations relating a single mesh current to the value of any
“exterior” current source (i.e., one not shared between two adjacent meshes), and relating
a difference of mesh currents to the value of any “interior” current source (i.e., one shared
between two meshes).

3. Write a Kirchhoff’s voltage law (KVL) equation for each mesh that does not include a
current source.

4. Form “supermeshes” consisting of “trees” of current sources and their connected meshes
and write a KVL equation for the periphery of each such supermesh. (A “tree” of current
sources includes all sources that are pairwise connected by a common interior mesh.)

5. Write an equation for each current or voltage controlling a dependent source in terms of
mesh currents.

6. Write an equation for each unknown (“sought”) voltage, current, or power that one
wishes to know about the circuit in terms of mesh currents.

7. Solve the resulting system of equations for all such sought quantities.

The lack of symmetry of these two approaches is apparent. The procedure for mesh analysis is
missing the first step of nodal analysis entirely, and there does not appear to be any such thing as
a reference mesh. Further, there is a distinction between “interior” and “exterior’” current sources
in step 2, and interior meshes and the outer mesh are in general treated very differently.

(We acknowledge that a small number of textbooks advocate generalized loop analysis as an
alternative to the much more commonly used mesh analysis [1]. For planar circuits, however,
this method has the distinct disadvantage that there are no longer exactly one or two loop
currents in every element in opposite directions as there are in mesh analysis, and the equations
are much less systematic in structure. It is therefore much easier to make mistakes.)

Symmetry is a crucial underlying principle in physics in general and is arguably fundamental to
logical views of the world. It is pervasive in nature and often thought to be associated with
notions of beauty as well. In the following, we discuss a modified approach to mesh analysis
that seeks to highlight and preserve the beautiful symmetry and duality inherent in circuit
analysis, rather than to obscure them, as we believe is the case in the conventional approach.
The practical advantages of the more flexible symmetric method are pointed out, and the results
of surveys of students who have been exposed to the new approach are presented.

2. What is the Proper Definition of a Mesh?

Typically, a mesh is defined in modern literature as a loop in a circuit that does not enclose any
smaller loop [19] (though older references may use the words mesh and loop interchangeably to
mean what are now called loops [15]). By this definition, the periphery of a planar circuit does
not constitute a mesh, though some works refer to it as the “outer mesh” [9, 18, 20]. This
distinction does not however appear to be logical. If a planar circuit is drawn on the surface of
asphere, which Whitney proved is always possible [13], there is no meaningful distinction
between “inner” and “outer” meshes [16]. The originally outer mesh now encloses a region of
the surface just as the originally inner ones do. In fact, as Whitney also proved [13], a circuit
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Fig. 1. The same circuit drawn with four of the six meshes chosen to be the outer mesh.
Corresponding meshes are numbered the same on each diagram for clarity. Similar drawings
can be done with the other two meshes as the outer mesh (not shown).

(graph) can be re-drawn on a plane having any of the originally interior meshes become the outer
mesh, as illustrated for one circuit in Fig. 1. This re-drawing can be accomplished by imagining
that we “snip out” the interior of the mesh that is to become the outer one when it is drawn on a
sphere, and then stretch out the remainder of the spherical surface to lie flat on a plane inside the
cut we made. Alternatively, we can go directly from any of the drawings in Fig. 1 to any other
by “stretching out” or enlarging a particular mesh that we want to become the outer mesh, then
“folding™ all other circuit elements underneath to fit inside that mesh, without breaking or
changing any connections (i.e., turning the circuit “inside out.”) It does not seem particularly
logical to distinguish between meshes based on how the circuit has been drawn, given that this
choice is arbitrary. We therefore propose the following new definition of the word mesh to place
them all on an equal footing: (We assume that any loops of shorts have been removed from a
circuit before applying this definition, as they can produce false meshes.)



A mesh is a loop that does not enclose any smaller loops, or that is not enclosed by or a
portion of any larger loop in a planar circuit.

(As usual, we define a loop to be a closed path in a circuit that passes through at least one circuit
element.) With this new definition, the smallest complete circuit has two meshes rather than one
(its one interior and one exterior mesh). This observation yields a pleasing symmetry between
single node-pair and single mesh-pair circuits, which was previously lacking.

The distinction between loops and meshes still remains somewhat arbitrary, however [21]. In the
circuit at upper left in Fig. 1 (with outer mesh 0), for example, the 8 Q and 9 A circuit elements
are in parallel and could be switched with each other without changing the circuit or any
electrical quantities therein. Yet the original mesh 5 involving the 3 Q, 4 Q, and 9 A elements
would then become a loop, and the original loop around the combination of meshes 4 and 5,
involving the 3 Q, 4 Q, and 8 Q elements, would become a mesh. Meshes are therefore not
generally invariants of a circuit with respect to the way it is drawn in the way that nodes are, at
least when they contain elements in parallel sets. In nodal analysis there is no such ambiguity.
However, switching the order of elements in a series set is the dual of switching elements in
parallel, and does interchange the elements connected to any given node.

3. Revising the Mesh Analysis Procedure

Having defined the outer mesh to be a mesh like any other, it should be assigned a mesh current
as well. If the interior mesh currents are all chosen to be clockwise, as is often done, the outer
mesh current must be counterclockwise to be consistent [18, 20] (as is more obvious when
looking at the circuit on a spherical surface). An example is shown in Fig. 2 for what is now
denoted a three-mesh circuit. It is now evident that unlike the usual approach, a// branch
currents (labeled 7 , 1,, etc. in the figure) are now given by a difference of mesh currents, not just

the “interior” ones. For example, I, = I, — I, etc. This situation is now exactly analogous to that
in nodal analysis, where all branch voltages are the difference of exactly two node voltages.

As branch voltages and currents are the only physically meaningful quantities, it is now evident
that mesh currents have no real physical significance any more than node voltages do. One can
add the same constant to all mesh
currents without affecting any branch
current, just as is well known for
node voltages. The only reason that
node voltages or mesh currents are
even defined is to reduce the number
of equations required to analyze a
circuit compared to doing so using
only branch voltages and branch
currents. As is well known, the very
act of defining unique node voltages
guarantees that KVL is satisfied
throughout the circuit, just as the
very act of defining mesh currents
guarantees that KCL is satisfied [2,

6V

Fig. 2. A three mesh circuit with both inner and outer
mesh currents defined with consistent directions.



22]. The conventional approach however suggests that mesh currents, being sometimes equal to
the current in an external branch that conventionally is thought to have only one mesh current,
have an absolute physical significance. A circuits handbook even suggests that a mesh current
through an exterior branch can be uniquely measured with an ammeter [19], but in fact only
differences in mesh currents (i.e., branch currents) can be measured, just as a voltmeter can only
measure differences in node voltages. Whereas it is true that physical (branch) currents are
absolute in a sense that physical node voltages are not, it becomes clearer in the new approach
that neither node voltages nor mesh currents have any true physical significance at all and are
purely fictitious quantities. (It is not only mesh currents in purely interior meshes that are
fictitious, as asserted in Ref. [19].) This fact may help students to achieve a better understanding
of what mesh currents really are.

Given that mesh current is now clearly relative rather than absolute, it becomes more apparent
that a reference mesh needs to be selected in the same fashion that a reference node is selected in
nodal analysis [16, 22]. The usual approach always (but usually without mentioning that it does
so) takes the outer mesh to be the reference mesh by default, and conventionally its current is
defined to be zero. (In principle it could equally well be defined to be any other constant value,
but equations are obviously simplified by choosing that constant to be zero, just as the voltage of
the reference node or ground is conventionally chosen to be zero, even though it could be chosen
to be any other fixed value.) Once that definition is made, there is no need to show the current of
the reference mesh, which explains why it is never shown in conventional mesh analysis. Yet,
the outer mesh need not be the one we choose as the reference mesh. Any mesh can be so

chosen, and the circuit does not need to be redrawn using that mesh as the outer mesh (which is
often challenging to do in practice). If we choose one that is not the outer mesh, the outer mesh
current must be shown and included in all calculations, but one of the inner meshes will lack a
mesh current. In nodal analysis, a ground symbol is used to label the reference node. No such
symbol now exists for a reference mesh. We therefore propose a new symbol called a “halt”
symbol, consisting of a circle with an X inscribed in it, to denote that the mesh current of a
particular mesh has been “halted” and set to zero. The halt symbol defines the zero of mesh
current, just as the ground symbol defines the zero of node voltage. (This concept does not
appear to be widely known. For example, a well-known circuits handbook asserts that
“furthermore, no global reference

exists for mesh currents as it does for 7V

node voltages.” [19], p. 19-28) This
symbol is placed in the interior of a
mesh (or outside the circuit if the
outer mesh is the reference mesh) and
is not attached to any node. If mesh 2
in Fig. 2 is selected as the reference
mesh, for example, the circuit would
now appear as shown in Fig. 3.

It should be noted in Fig. 3 that some
branch currents now appear to be

determined by a single mesh current. Fig. 3. The circuit of Fig. 2 after selecting its mesh 2
For example, I, =I,. Yet in reality, as the reference mesh (and then renumbering the

they are still differences in mesh meshes). The outer mesh current is maintained.
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one or more voltage sources reference mesh could considerably simplify the
sometimes eliminates the need to resulting mesh equations.

define a supernode, which may be

confusing to beginning students. It also simplifies the form of the corresponding voltage
constraint equations. A similar principle applies in choosing a reference mesh. It should be
chosen to be one containing many elements, and if possible one or more current sources to
minimize or eliminate the need for supermeshes. One does not normally write a KVL equation
for the “reference supermesh” (a supermesh that includes the reference mesh) or reference mesh
in mesh analysis, just as no KCL equation is normally written for the reference supernode or
node in nodal analysis.

For example, for the circuit in Fig. 4, it would be clearly advantageous to choose either mesh 2
or 5 as the reference mesh rather than the outer mesh. If the outer mesh is chosen by default as
the reference mesh, one will need to form a supermesh consisting of meshes 1, 2, and 5, yielding
a KVL equation with nine terms, in addition to KVL equations for meshes 3 and 4. Further,
neither of the current constraint equations directly yields a mesh current. Choosing mesh 2 as
the reference mesh however eliminates its nine-term KVL equation entirely and only one term is
added to the KVL equation for mesh 3 (and none for mesh 4). Further, simple equations now
directly give both /1 and /s directly as current source values, eliminating two more equation
terms. The algebraic solution process will be greatly simplified. These advantages do not of
course obtain in every problem, but the outer mesh can still be selected as the reference mesh
whenever it is simplest to do so. Choosing a different reference mesh shifts the values of all
mesh currents in the circuit by the mesh current of what will be the new reference mesh with
respect to the old reference mesh (just as choosing a different ground in nodal analysis shifts all
node voltages by the node voltage of what will be the new reference node with respect to the old
reference node).

A step-based tutoring system known as Circuit Tutor now incorporates an introductory tutorial
for students on this new approach to mesh analysis [21]. Unfortunately, the randomly generated
examples and exercises in that system do not yet support using this method, as the relevant parts
of the software were written prior to conceiving of the new approach and considerable changes



will be required. It is planned to add support for it in the future. The entire tutorial system is
freely available (via the first author) to instructors who wish to use it.

The revamped approach to mesh analysis can now be summarized as follows:

1. Select a reference mesh, whose mesh current is usually defined to be 0 A. This mesh can
be any mesh in the circuit, including the outer mesh, but should ideally include as many
circuit elements and as many current sources as possible. Place a halt symbol within that
mesh.

2. Identify and number all remaining meshes in the circuit (possibly including the outer
mesh) and assign them mesh currents /7, 1,, etc. If used, the outer mesh current should

point counter-clockwise (opposite to the interior mesh currents).

3. Write current constraint equations relating a difference of mesh currents to the value of
each current source (but the reference mesh current is just zero).

4. Write a Kirchhoff’s voltage law (KVL) equation for each non-reference mesh that does
not contain a current source.

5. Form “supermeshes” consisting of “trees” of current sources and their connected meshes
and write a KVL equation for the periphery of each such supermesh. (A “tree” of current
sources includes all sources that are pairwise connected by a common mesh, whether
interior or exterior.)

6. Write an equation for each current or voltage controlling a dependent source in terms of
mesh currents.

7. Write an equation for each unknown (“sought”) voltage, current, or power that one
wishes to know about the circuit in terms of mesh currents.

8. Solve the resulting system of equations for all such sought quantities.

Note that the above procedure is now fully symmetrical with and dual to that for nodal analysis,
as it should be.

4. Experience in Using the New Approach

The first author used this method for the first time in two sections of a linear circuits class in Fall
2019 with ~60 students in each. He assigned the interactive tutorial in Circuit Tutor mentioned
above and explained the new method in detail in lecture. Students generally appeared to be quite
receptive to it. An anonymous survey was carried out by an independent evaluation team to
assess student opinions regarding this method. The results of two survey questions are shown in
Fig. 5. A majority of students (85%) reported the new approach was somewhat or much better
than the traditional approach of using their textbooks to solve problems. Moreover, 60% stated
that they would recommend future students learn the subject using the new approach.

The students were also asked to share comments about the new approach to teach mesh analysis.
Evaluating the open-ended comments made by students, 14 were classified as favorable towards
the new method, 3 as unfavorable, 5 as neutral, 3 as “no opinion,” and 2 as irrelevant. Some
illustrative favorable comments included:

e Tying mesh and nodal analysis together helped my comprehension and made retention
easier
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Fig. 5. Combined results of a student survey for two sections of a linear circuit

course in Fall 2019.

o [t's useful in cases in which there are current sources within the circuit but not on the outer

mesh, which can make the problems easier to solve in avoiding using supermeshes

e The more similar the steps are to nodal analysis, the harder they will be to mess up.
Teaching mesh analysis in this way has been extremely beneficial due to how similar they

look through the techniques learned in class.
e [ felt it was easier to understand than the traditional method.

Of the three students who reported unfavorable comments, it was stated that the program was confusing.

1

For example, as one student said, “Having a reference mesh was a bit confusing to me.’



One limitation reported that could be linked to unfavorable comments about clarity, was that
exercises in any format need additional support. As stated by one student,

o As long as practice opportunities are provided on how to determine where to put the
reference mesh, the new method will work well. The lack of practice discouraged me from
picking a reference mesh that wasn't the outer loop due to my worries of if [ am abiding by
passive Sign convention or not.

A limitation was that neither the textbook nor the homework (Circuit Tutor) exercises supported
the new method. Having such support would be helpful while students become more
accustomed to using it. Some students were observed using this method on mesh analysis
problems on exams. The method is being used again in Spring 2020, and more detailed
evaluation is planned. One planned improvement suggested by student comments is to use
concrete examples such as Fig. 4 to better illustrate the value of the method in some problems for
reducing the number and complexity of the mesh equations. A seminar is also planned at the
author’s institution to introduce other instructors to the new approach and hopefully stimulate its
adoption.

5. Conclusions

A new procedure for mesh analysis has been developed that greatly enhances and emphasizes the
symmetry and duality of nodal and mesh analysis. It is shown that any mesh in a circuit can be
selected as a reference mesh, increasing the flexibility of the analysis and its similarity to nodal
analysis. It is hoped and believed that this method will improve student intuition with regards to
electrical circuits, though quantitative assessment of that outcome will be difficult. The new
method can reduce the complexity of the equations in mesh analysis in a significant fraction of
cases. Student survey responses were generally quite supportive of teaching this subject using
this new approach, with 85% finding it superior to the traditional one.
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