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Turning Mesh Analysis Inside Out 

Abstract   

Elementary linear circuit analysis is a core competency for electrical and many other engineers.  
Two of the standard approaches to systematic analysis of linear circuits are nodal and mesh 
analysis, the latter being limited to planar circuits.  Nodal and mesh analysis are related by 
duality and should therefore be fully symmetrical with each other.  Here, the usual textbook 
approach to mesh analysis is argued to be deficient in that it obscures this fundamental duality 
and symmetry, and may thereby impede the development of intuition and the understanding of 
the nature of “mesh currents.”  In particular, the usual distinction between “inner” and “outer” 
meshes (if the latter is even recognized) is argued to be meaningless, as can be seen when 
drawing a planar circuit on the surface of a sphere.  A generalized definition of a mesh is 
proposed that includes both inner and outer meshes on the same footing.  Selection of a reference 
node in nodal analysis should be paralleled by the selection of any mesh to be the reference mesh 
in mesh analysis, which is always selected to be the outer mesh by default in the usual approach.  
All branch currents are shown to the difference of two mesh currents, and the zero of all mesh 
currents is now arbitrary just as it is for node voltages.  Use of supermeshes is sometimes 
obviated by the new approach, and the analysis is sometimes simplified.  This new approach has 
been used in two sections of a linear circuit analysis course in Fall 2019, and student survey data 
is presented to show preference for the new method over the usual textbook method.  An 
interactive multiple-choice tutorial describing the new method has been integrated into a step-
based tutoring system for linear circuit analysis. 

1. Introduction  

Elementary linear circuit analysis is one of the most widely taught gateway courses in virtually 
all engineering schools.  For example, such a course was taught to 1364 students in 26 class 
sections in Summer 2019 through Spring 2020 at the author’s institution alone.  Such courses 
vary in that they may sometimes include topics in electronics or signal processing, but in general 
they tend to cover a well-established range of topics as outlined in many of the popular 
textbooks, e.g., [1-10].  The typical approach begins with electrical fundamentals and single loop 
and single node-pair circuits, which can be solved with elementary methods.  For more 
complicated circuits, both nodal and mesh analysis are nearly always covered (based on 
systematic applications of KCL and KVL, respectively), though the former is more general in its 
ability to handle non-planar circuits and to be extended to numerical analysis of circuits via 
modified nodal analysis [11].  Both methods are however useful for hand calculations and to help 
develop conceptual understanding.  In particular, mesh analysis can yield far fewer equations 
than nodal analysis when many elements are in series (at least if the concept of essential nodes is 
not used), just as nodal analysis is advantageous when many elements are in parallel.  In the 
author’s experience, students often prefer mesh analysis for the ease with which they can 
visualize loops to which KVL is applied as opposed to the closed surfaces to which KCL is 
applied.  The arithmetic also involves multiplication rather than division and may avoid 
fractions, at least in textbook problems. 

The well-known principle of duality (see, e.g., Refs. [2, 3, 12-16]) pervades the entire subject of 
circuit analysis, even if it is not always discussed explicitly.  This property follows from the 



underlying symmetry of Maxwell’s equations.  Dual sets of items include current and voltage, 
meshes and nodes, resistances and conductances, inductors and capacitors, series and parallel 
relationships, current sources and voltage sources, and short circuits and open circuits.  Students 
cannot help noticing the symmetry between the current-voltage relationships for inductors and 
capacitors, the similarity of parallel and series RLC circuits, the correspondence of Thévenin and 
Norton equivalent circuits, and many other such things in circuit analysis.  Thomas, Rosa, and 
Toussaint point out that students can use duality to help remember facts and theorems about 
circuits [17].  Rigorously, it is well known that one can construct an exact dual of any given 
planar circuit by replacing nodes by meshes and all of the other corresponding items listed 
above, and that the resulting dual circuit will obey the exact same differential equations as its 
dual [2, 3, 12-14].  Therefore, nodal and mesh analysis should be complete duals of each other 
[10].  Indeed, some works have mentioned that in constructing the dual of a circuit, the reference 
node should be mapped to the “outer mesh” [18], although usual definitions exclude the 
periphery of a planar circuit from being called a mesh at all.   

Yet the typical prescriptions for carrying out nodal and mesh analysis are not symmetric.  The 
steps listed for nodal analysis (including dependent sources) are typically: 

1. Select a reference node, whose voltage is usually defined to be 0 V.  This node can be any 
one in the circuit, but should ideally be connected to many circuit elements and to as many 
voltage sources as possible.  Attach an (electronic) ground symbol to that node. 

2. Identify and number the remaining nodes and assign them node voltages V1, V2, etc. 
3. Write voltage constraint equations relating the difference in node voltages on either side of 

each voltage source to the value of that source (but the reference node voltage is just zero) 
4. Write a Kirchhoff’s current law (KCL) equation for each non-reference node not 

connected to a voltage source. 
5. Form “supernodes” consisting of trees of voltage sources and their connecting nodes and 

write a KCL equation for each “non-reference” supernode (i.e., each supernode that does 
not include the reference node).  (A “tree” of voltage sources includes all sources that are 
pairwise connected by a common node.) 

6. Write an equation for each current or voltage controlling a dependent source in terms of 
node voltages. 

7. Write an equation for each unknown (“sought”) voltage, current, or power that one wishes 
to know about the circuit in terms of node voltages. 

8. Solve the resulting system of equations for all such sought quantities. 

(One could alternatively define additional unknowns for the current through each voltage source, 
at the expense of a larger system of equations, instead of using supernodes.  The supernode 
method is however widely preferred for hand calculations.)  Some books also draw a distinction 
between “essential nodes,” (or “extraordinary nodes”) that connect more than two circuit 
elements, and “nonessential nodes” (or “ordinary nodes”) that connect only two, and use a 
variation of the above procedure [2, 6].  The author is not aware of any such distinction having 
been drawn for meshes, though it could be. 

For mesh analysis (including dependent sources), however, the typical steps are not symmetric 
with the above: 



1. Identify and number all (interior) meshes in the circuit and assign them mesh currents I1, 
I2, etc. 

2. Write current constraint equations relating a single mesh current to the value of any 
“exterior” current source (i.e., one not shared between two adjacent meshes), and relating 
a difference of mesh currents to the value of any “interior” current source (i.e., one shared 
between two meshes). 

3. Write a Kirchhoff’s voltage law (KVL) equation for each mesh that does not include a 
current source. 

4. Form “supermeshes” consisting of “trees” of current sources and their connected meshes 
and write a KVL equation for the periphery of each such supermesh.  (A “tree” of current 
sources includes all sources that are pairwise connected by a common interior mesh.) 

5. Write an equation for each current or voltage controlling a dependent source in terms of 
mesh currents. 

6. Write an equation for each unknown (“sought”) voltage, current, or power that one 
wishes to know about the circuit in terms of mesh currents. 

7. Solve the resulting system of equations for all such sought quantities. 

The lack of symmetry of these two approaches is apparent.  The procedure for mesh analysis is 
missing the first step of nodal analysis entirely, and there does not appear to be any such thing as 
a reference mesh.  Further, there is a distinction between “interior” and “exterior” current sources 
in step 2, and interior meshes and the outer mesh are in general treated very differently. 

(We acknowledge that a small number of textbooks advocate generalized loop analysis as an 
alternative to the much more commonly used mesh analysis [1].  For planar circuits, however, 
this method has the distinct disadvantage that there are no longer exactly one or two loop 
currents in every element in opposite directions as there are in mesh analysis, and the equations 
are much less systematic in structure.  It is therefore much easier to make mistakes.) 

Symmetry is a crucial underlying principle in physics in general and is arguably fundamental to 
logical views of the world.  It is pervasive in nature and often thought to be associated with 
notions of beauty as well.  In the following, we discuss a modified approach to mesh analysis 
that seeks to highlight and preserve the beautiful symmetry and duality inherent in circuit 
analysis, rather than to obscure them, as we believe is the case in the conventional approach.  
The practical advantages of the more flexible symmetric method are pointed out, and the results 
of surveys of students who have been exposed to the new approach are presented. 

2.  What is the Proper Definition of a Mesh? 

Typically, a mesh is defined in modern literature as a loop in a circuit that does not enclose any 
smaller loop [19] (though older references may use the words mesh and loop interchangeably to 
mean what are now called loops [15]).  By this definition, the periphery of a planar circuit does 
not constitute a mesh, though some works refer to it as the “outer mesh” [9, 18, 20].  This 
distinction does not however appear to be logical.  If a planar circuit is drawn on the surface of 
asphere, which Whitney proved is always possible [13], there is no meaningful distinction 
between “inner” and “outer” meshes [16].  The originally outer mesh now encloses a region of 
the surface just as the originally inner ones do.  In fact, as Whitney also proved [13], a circuit 



 

Fig. 1.  The same circuit drawn with four of the six meshes chosen to be the outer mesh.  
Corresponding meshes are numbered the same on each diagram for clarity.  Similar drawings 
can be done with the other two meshes as the outer mesh (not shown). 

(graph) can be re-drawn on a plane having any of the originally interior meshes become the outer 
mesh, as illustrated for one circuit in Fig. 1.  This re-drawing can be accomplished by imagining 
that we “snip out” the interior of the mesh that is to become the outer one when it is drawn on a 
sphere, and then stretch out the remainder of the spherical surface to lie flat on a plane inside the 
cut we made.  Alternatively, we can go directly from any of the drawings in Fig. 1 to any other 
by “stretching out” or enlarging a particular mesh that we want to become the outer mesh, then 
“folding” all other circuit elements underneath to fit inside that mesh, without breaking or 
changing any connections (i.e., turning the circuit “inside out.”)  It does not seem particularly 
logical to distinguish between meshes based on how the circuit has been drawn, given that this 
choice is arbitrary.  We therefore propose the following new definition of the word mesh to place 
them all on an equal footing:  (We assume that any loops of shorts have been removed from a 
circuit before applying this definition, as they can produce false meshes.) 



A mesh is a loop that does not enclose any smaller loops, or that is not enclosed by or a 
portion of any larger loop in a planar circuit. 

(As usual, we define a loop to be a closed path in a circuit that passes through at least one circuit 
element.)  With this new definition, the smallest complete circuit has two meshes rather than one 
(its one interior and one exterior mesh).  This observation yields a pleasing symmetry between 
single node-pair and single mesh-pair circuits, which was previously lacking.   
 
The distinction between loops and meshes still remains somewhat arbitrary, however [21].  In the 
circuit at upper left in Fig. 1 (with outer mesh 0), for example, the 8 Ω and 9 A circuit elements 
are in parallel and could be switched with each other without changing the circuit or any 
electrical quantities therein.  Yet the original mesh 5 involving the 3 Ω, 4 Ω, and 9 A elements 
would then become a loop, and the original loop around the combination of meshes 4 and 5, 
involving the 3 Ω, 4 Ω, and 8 Ω elements, would become a mesh.  Meshes are therefore not 
generally invariants of a circuit with respect to the way it is drawn in the way that nodes are, at 
least when they contain elements in parallel sets.  In nodal analysis there is no such ambiguity.  
However, switching the order of elements in a series set is the dual of switching elements in 
parallel, and does interchange the elements connected to any given node. 

3.  Revising the Mesh Analysis Procedure 

Having defined the outer mesh to be a mesh like any other, it should be assigned a mesh current 
as well.  If the interior mesh currents are all chosen to be clockwise, as is often done, the outer 
mesh current must be counterclockwise to be consistent  [18, 20] (as is more obvious when 
looking at the circuit on a spherical surface).  An example is shown in Fig. 2 for what is now 
denoted a three-mesh circuit.  It is now evident that unlike the usual approach, all branch 
currents (labeled Ia, Ib, etc. in the figure) are now given by a difference of mesh currents, not just 
the “interior” ones.  For example, Ia = I1 – I0, etc.  This situation is now exactly analogous to that 
in nodal analysis, where all branch voltages are the difference of exactly two node voltages. 

As branch voltages and currents are the only physically meaningful quantities, it is now evident 
that mesh currents have no real physical significance any more than node voltages do.  One can 
add the same constant to all mesh 
currents without affecting any branch 
current, just as is well known for 
node voltages.  The only reason that 
node voltages or mesh currents are 
even defined is to reduce the number 
of equations required to analyze a 
circuit compared to doing so using 
only branch voltages and branch 
currents.  As is well known, the very 
act of defining unique node voltages 
guarantees that KVL is satisfied 
throughout the circuit, just as the 
very act of defining mesh currents 
guarantees that KCL is satisfied [2, 

 
Fig. 2.  A three mesh circuit with both inner and outer 
mesh currents defined with consistent directions. 



22].  The conventional approach however suggests that mesh currents, being sometimes equal to 
the current in an external branch that conventionally is thought to have only one mesh current, 
have an absolute physical significance.  A circuits handbook even suggests that a mesh current 
through an exterior branch can be uniquely measured with an ammeter [19], but in fact only 
differences in mesh currents (i.e., branch currents) can be measured, just as a voltmeter can only 
measure differences in node voltages.  Whereas it is true that physical (branch) currents are 
absolute in a sense that physical node voltages are not, it becomes clearer in the new approach 
that neither node voltages nor mesh currents have any true physical significance at all and are 
purely fictitious quantities.  (It is not only mesh currents in purely interior meshes that are 
fictitious, as asserted in Ref. [19].)  This fact may help students to achieve a better understanding 
of what mesh currents really are. 

Given that mesh current is now clearly relative rather than absolute, it becomes more apparent 
that a reference mesh needs to be selected in the same fashion that a reference node is selected in 
nodal analysis [16, 22].  The usual approach always (but usually without mentioning that it does 
so) takes the outer mesh to be the reference mesh by default, and conventionally its current is 
defined to be zero.  (In principle it could equally well be defined to be any other constant value, 
but equations are obviously simplified by choosing that constant to be zero, just as the voltage of 
the reference node or ground is conventionally chosen to be zero, even though it could be chosen 
to be any other fixed value.)  Once that definition is made, there is no need to show the current of 
the reference mesh, which explains why it is never shown in conventional mesh analysis.  Yet, 
the outer mesh need not be the one we choose as the reference mesh.  Any mesh can be so 
chosen, and the circuit does not need to be redrawn using that mesh as the outer mesh (which is 
often challenging to do in practice).  If we choose one that is not the outer mesh, the outer mesh 
current must be shown and included in all calculations, but one of the inner meshes will lack a 
mesh current.  In nodal analysis, a ground symbol is used to label the reference node.  No such 
symbol now exists for a reference mesh.  We therefore propose a new symbol called a “halt” 
symbol, consisting of a circle with an X inscribed in it, to denote that the mesh current of a 
particular mesh has been “halted” and set to zero.  The halt symbol defines the zero of mesh 
current, just as the ground symbol defines the zero of node voltage.  (This concept does not 
appear to be widely known.  For example, a well-known circuits handbook asserts that 
“furthermore, no global reference 
exists for mesh currents as it does for 
node voltages.” [19], p. 19-28)  This 
symbol is placed in the interior of a 
mesh (or outside the circuit if the 
outer mesh is the reference mesh) and 
is not attached to any node.  If mesh 2 
in Fig. 2 is selected as the reference 
mesh, for example, the circuit would 
now appear as shown in Fig. 3. 

It should be noted in Fig. 3 that some 
branch currents now appear to be 
determined by a single mesh current.  
For example, Ie = I2.  Yet in reality, 
they are still differences in mesh 

 
Fig. 3.  The circuit of Fig. 2 after selecting its mesh 2 
as the reference mesh (and then renumbering the 
meshes).  The outer mesh current is maintained. 



currents; it is just that one of those 
mesh currents has been set to zero.  
An exactly analogous situation 
applies to branch voltages in nodal 
analysis. 

There is no obvious advantage in Fig. 
2 to selecting mesh 2 as the reference 
mesh.  Yet, we know in nodal 
analysis that we can often simplify 
the resulting node equations if we 
choose a reference node that is 
connected to a large number of circuit 
elements.  Moreover, choosing a 
reference node that is connected to a 
one or more voltage sources 
sometimes eliminates the need to 
define a supernode, which may be 
confusing to beginning students.  It also simplifies the form of the corresponding voltage 
constraint equations.  A similar principle applies in choosing a reference mesh.  It should be 
chosen to be one containing many elements, and if possible one or more current sources to 
minimize or eliminate the need for supermeshes.  One does not normally write a KVL equation 
for the “reference supermesh” (a supermesh that includes the reference mesh) or reference mesh 
in mesh analysis, just as no KCL equation is normally written for the reference supernode or 
node in nodal analysis. 

For example, for the circuit in Fig. 4, it would be clearly advantageous to choose either mesh 2 
or 5 as the reference mesh rather than the outer mesh.  If the outer mesh is chosen by default as 
the reference mesh, one will need to form a supermesh consisting of meshes 1, 2, and 5, yielding 
a KVL equation with nine terms, in addition to KVL equations for meshes 3 and 4.  Further, 
neither of the current constraint equations directly yields a mesh current.  Choosing mesh 2 as 
the reference mesh however eliminates its nine-term KVL equation entirely and only one term is 
added to the KVL equation for mesh 3 (and none for mesh 4).  Further, simple equations now 
directly give both I1 and I5 directly as current source values, eliminating two more equation 
terms.  The algebraic solution process will be greatly simplified.  These advantages do not of 
course obtain in every problem, but the outer mesh can still be selected as the reference mesh 
whenever it is simplest to do so.  Choosing a different reference mesh shifts the values of all 
mesh currents in the circuit by the mesh current of what will be the new reference mesh with 
respect to the old reference mesh (just as choosing a different ground in nodal analysis shifts all 
node voltages by the node voltage of what will be the new reference node with respect to the old 
reference node). 

A step-based tutoring system known as Circuit Tutor now incorporates an introductory tutorial 
for students on this new approach to mesh analysis [21].  Unfortunately, the randomly generated 
examples and exercises in that system do not yet support using this method, as the relevant parts 
of the software were written prior to conceiving of the new approach and considerable changes 

 
Fig. 4.  A circuit in which choosing meshes 2 or 5 as the 
reference mesh could considerably simplify the 
resulting mesh equations. 



will be required.  It is planned to add support for it in the future.  The entire tutorial system is 
freely available (via the first author) to instructors who wish to use it. 

The revamped approach to mesh analysis can now be summarized as follows: 

1. Select a reference mesh, whose mesh current is usually defined to be 0 A.  This mesh can 
be any mesh in the circuit, including the outer mesh, but should ideally include as many 
circuit elements and as many current sources as possible.  Place a halt symbol within that 
mesh. 

2. Identify and number all remaining meshes in the circuit (possibly including the outer 
mesh) and assign them mesh currents I1, I2, etc.  If used, the outer mesh current should 
point counter-clockwise (opposite to the interior mesh currents). 

3. Write current constraint equations relating a difference of mesh currents to the value of 
each current source (but the reference mesh current is just zero). 

4. Write a Kirchhoff’s voltage law (KVL) equation for each non-reference mesh that does 
not contain a current source. 

5. Form “supermeshes” consisting of “trees” of current sources and their connected meshes 
and write a KVL equation for the periphery of each such supermesh.  (A “tree” of current 
sources includes all sources that are pairwise connected by a common mesh, whether 
interior or exterior.) 

6. Write an equation for each current or voltage controlling a dependent source in terms of 
mesh currents. 

7. Write an equation for each unknown (“sought”) voltage, current, or power that one 
wishes to know about the circuit in terms of mesh currents. 

8. Solve the resulting system of equations for all such sought quantities. 

Note that the above procedure is now fully symmetrical with and dual to that for nodal analysis, 
as it should be. 

4. Experience in Using the New Approach 

The first author used this method for the first time in two sections of a linear circuits class in Fall 
2019 with ~60 students in each.  He assigned the interactive tutorial in Circuit Tutor mentioned 
above and explained the new method in detail in lecture.  Students generally appeared to be quite 
receptive to it.  An anonymous survey was carried out by an independent evaluation team to 
assess student opinions regarding this method.  The results of two survey questions are shown in 
Fig. 5.  A majority of students (85%) reported the new approach was somewhat or much better 
than the traditional approach of using their textbooks to solve problems.  Moreover, 60% stated 
that they would recommend future students learn the subject using the new approach. 

The students were also asked to share comments about the new approach to teach mesh analysis. 
Evaluating the open-ended comments made by students, 14 were classified as favorable towards 
the new method, 3 as unfavorable, 5 as neutral, 3 as “no opinion,” and 2 as irrelevant.  Some 
illustrative favorable comments included: 

• Tying mesh and nodal analysis together helped my comprehension and made retention 
easier 



• It's useful in cases in which there are current sources within the circuit but not on the outer 
mesh, which can make the problems easier to solve in avoiding using supermeshes 

• The more similar the steps are to nodal analysis, the harder they will be to mess up. 
Teaching mesh analysis in this way has been extremely beneficial due to how similar they 
look through the techniques learned in class. 

• I felt it was easier to understand than the traditional method. 
 

Of the three students who reported unfavorable comments, it was stated that the program was confusing. 
For example, as one student said, “Having a reference mesh was a bit confusing to me.”  
 

 

 
Fig. 5.  Combined results of a student survey for two sections of a linear circuit 
course in Fall 2019. 
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Using the traditional approach.

It doesn't much matter which
way they learn it.

Using the new approach.

For students who have not yet studied mesh 
analysis, I would recommend they learn it:



One limitation reported that could be linked to unfavorable comments about clarity, was that 
exercises in any format need additional support. As stated by one student,  
 
• As long as practice opportunities are provided on how to determine where to put the 

reference mesh, the new method will work well. The lack of practice discouraged me from 
picking a reference mesh that wasn't the outer loop due to my worries of if I am abiding by 
passive sign convention or not.  

 
A limitation was that neither the textbook nor the homework (Circuit Tutor) exercises supported 
the new method.  Having such support would be helpful while students become more 
accustomed to using it.  Some students were observed using this method on mesh analysis 
problems on exams.  The method is being used again in Spring 2020, and more detailed 
evaluation is planned.  One planned improvement suggested by student comments is to use 
concrete examples such as Fig. 4 to better illustrate the value of the method in some problems for 
reducing the number and complexity of the mesh equations.  A seminar is also planned at the 
author’s institution to introduce other instructors to the new approach and hopefully stimulate its 
adoption. 

5.  Conclusions 

A new procedure for mesh analysis has been developed that greatly enhances and emphasizes the 
symmetry and duality of nodal and mesh analysis.  It is shown that any mesh in a circuit can be 
selected as a reference mesh, increasing the flexibility of the analysis and its similarity to nodal 
analysis.  It is hoped and believed that this method will improve student intuition with regards to 
electrical circuits, though quantitative assessment of that outcome will be difficult.  The new 
method can reduce the complexity of the equations in mesh analysis in a significant fraction of 
cases.  Student survey responses were generally quite supportive of teaching this subject using 
this new approach, with 85% finding it superior to the traditional one. 
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