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ABSTRACT
Recommender systems are often biased toward popular items. In
other words, few items are frequently recommended while the ma-
jority of items do not get proportionate attention. That leads to
low coverage of items in recommendation lists across users (i.e.
low aggregate diversity) and unfair distribution of recommended
items. In this paper, we introduce FairMatch, a general graph-based
algorithm that works as a post-processing approach after recom-
mendation generation for improving aggregate diversity. The algo-
rithm iteratively finds items that are rarely recommended yet are
high-quality and add them to the users’ final recommendation lists.
This is done by solving the maximum flow problem on the recom-
mendation bipartite graph. While we focus on aggregate diversity
and fair distribution of recommended items, the algorithm can be
adapted to other recommendation scenarios using different under-
lying definitions of fairness. A comprehensive set of experiments on
two datasets and comparison with state-of-the-art baselines show
that FairMatch, while significantly improving aggregate diversity,
provides comparable recommendation accuracy.
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1 INTRODUCTION
Recommender systems are used in a variety of different applica-
tions includingmovies, music, e-commerce, online dating, andmany
other areas where the number of options from which the user needs
to choose can be overwhelming. There are many different metrics
to evaluate the performance of the recommender systems ranging
from accuracy metrics such as precision, normalized discounted cu-
mulative gain (NDCG), and recall to non-accuracy ones like novelty
and serendipity [16]. One of the measures often used to evaluate
the effectiveness of a given recommender system is how diverse
the list of recommendations given to each user is (aka individual
list diversity) [15]. Recommending a diverse list of items is shown
to improve user satisfaction as they give a wider range of options
to the user [7].

The problem with individual list diversity is that it does not
capture the extent to which an algorithm covers a diverse set of
items across all users which is an important consideration for many
applications. Aggregate diversity [4] is a notion to measure this
characteristic of the recommender systems and several algorithms
have been proposed for that matter by other researchers [4, 5].
Note that a high individual list diversity of recommendations does
not necessarily imply high aggregate diversity. For instance, if the
system recommends to all users the same 10 items that are not
similar to each other, the recommendation list for each user is
diverse (i.e., high individual list diversity), but only 10 distinct
items are recommended to all users (i.e., resulting in low aggregate
diversity).

An algorithm with low aggregate diversity could be problematic
for several reasons. On the one hand, it concentrates on a limited
number of popular items which, in the long run, might negatively
affect users’ experience in terms of item discovery. Users already
know about popular items and recommending them would not add
any new information. On the other hand, often items belong to
different suppliers and, hence, covering fewer distinct items can
indirectly result in an unfair distribution of items across recom-
mendations from the suppliers’ perspective. Thus, a low aggregate
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diversity in recommendation results would have a negative impact
on business success and profit [6, 12].

In this paper, we introduce FairMatch, a general graph-based al-
gorithm that works as a post-processing approach after recommen-
dation generation (on top of any existing standard recommendation
algorithm) for improving the aggregate diversity. The idea is to
generate a list of recommendations with a size larger than what we
ultimately want for the final list using a standard recommendation
algorithm and then use our FairMatch algorithm to build the final
list using a subset of items in the original list. In FairMatch, the
main goal is to improve the visibility of high-quality items that
have a low visibility in the original set of recommendations. This is
done by iteratively solvingMaximum Flow problem on a recommen-
dation bipartite graph which is built using the recommendations
in the original list (left nodes are recommended items and right
nodes are the users). At each iteration, the items that can be good
candidates for the final list will be selected and removed from the
graph, and the process will continue on the remaining part of the
graph.

To show the effectiveness of our FairMatch algorithm on improv-
ing aggregate diversity and fair visibility of recommended items, we
perform a comprehensive set of experiments on recommendation
lists of different sizes generated by two standard recommendation
algorithms on two publicly available datasets. We intentionally
picked two algorithms from two different classes of algorithms
(factorization and neighborhood-based models), so our approach is
not dependent on any certain type of recommendation algorithms.

Comparison with several state-of-the-art baselines shows that
our FairMatch algorithm is able to significantly improve the perfor-
mance of recommendation results in terms of aggregate diversity
and long-tail visibility, with a negligible loss in the recommendation
accuracy in some cases.

2 RELATED WORK
The concept of aggregate diversity has been studied by many re-
searchers often under different names such as long-tail recom-
mendation [1, 25], Matthew effect [20] and, of course, aggregate
diversity [3, 17] all of which refer to the fact that the recommender
system should recommend a wider variety of items across all users.

Vargas and Castells in [23] proposed probabilistic models for
improving novelty and diversity of recommendations by taking into
account both relevance and novelty of target items when generating
recommendation lists. In another work [24], they proposed the
idea of recommending users to items for improving novelty and
aggregate diversity. They applied this idea to nearest neighbor
models as an inverted neighbor and a factorization model as a
probabilistic reformulation that isolates the popularity components.

Adomavicius and Kwon [4] proposed the idea of diversity max-
imization using a maximum flow approach. They used a specific
setting for the bipartite recommendation graph in a way that the
maximum amount of flow that can be sent from a source node to a
sink node would be equal to the maximum aggregate diversity for
those recommendation lists. In their setting, given the number of
users is𝑚, the source node can send a flow of up to𝑚 to the left
nodes, left nodes can send a flow of up to 1 to the right nodes, and
right nodes can send a flow of up to 1 to the sink node. Since the

capacity of left nodes to right nodes is set to 1, thus the maximum
possible amount of flow through that recommendation bipartite
graph would be equivalent to the maximum aggregate diversity.

A more recent graph-based approach for improving aggregate
diversity was proposed by Antikacioglu and Ravi in [5]. They gener-
alized the idea proposed in [4] and showed that the minimum-cost
network flow method can be efficiently used for finding recom-
mendation subgraphs that optimizes the diversity. In this work,
an integer-valued constraint and an objective function are intro-
duced for discrepancy minimization. The constraint defines the
maximum number of times that each item should appear in the
recommendation lists and the objective function aims to find an
optimal subgraph that gives the minimum discrepancy from the
constraint. This work shows improvement in aggregate diversity
with a smaller accuracy loss compared to the work in [23] and
[24]. Similar to this work, our FairMatch algorithm also uses a
graph-based approach to improve aggregate diversity. However,
unlike the work in [5] which tries to minimize the discrepancy
between the distribution of the recommended items and a target
distribution, our FairMatch algorithm has more freedom in promot-
ing high-quality items with low visibility since it does not assume
any target distribution of the recommendation frequency.

3 FAIRMATCH ALGORITHM
We formulate our FairMatch algorithm as a post-processing step
after the recommendation generation. In other words, we first gen-
erate recommendation lists of larger size than what we ultimately
desire for each user using any standard recommendation algorithm
and use them to build the final recommendation lists. FairMatch
works as a batch process, similar to that proposed in [28] where
all the recommendation lists are produced at once and re-ranked
simultaneously to achieve the objective. In this formulation, we
produce a longer recommendation list of size 𝑡 for each user and
then, after identifying high-quality items (items closer to the top of
the list) with low visibility (i.e. are not recommended frequently) by
iteratively solving the maximum flow problem on recommendation
bipartite graph, we generate a shorter recommendation list of size
𝑛 (where 𝑡 >> 𝑛).

Let 𝐺 = (𝐼 ,𝑈 , 𝐸) be a bipartite graph of recommendation lists
where 𝐼 is the set of left nodes (representing items), 𝑈 is the set of
right nodes (representing users), and 𝐸 is the set of edges between
left and right nodes showing an item in the left nodes is recom-
mended to a user in the right nodes in recommendation lists of
size 𝑡 .𝐺 is initially a uniformly weighted graph, but we will update
the weights for edges as part of our algorithm. We will discuss the
initialization and our weighting method in section 3.2.

Given a weighted bipartite graph 𝐺 , the goal of our FairMatch
algorithm is to find high-quality items with low visibility and max-
imizing their visibility as much as possible without a significant
loss in accuracy of the recommendations. Visibility is characterized
by the degree of the node in the recommendation graph, while ac-
curacy is captured by the rank position of the items in the original
recommendation list. We develop our algorithm by extending the
approach introduced in [10] to improve the aggregate diversity of
the recommender systems.
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We use an iterative process to identify the subgraphs of 𝐺 that
contain the highest quality items with low visibility for each user.
After identifying a subgraph Γ at each iteration, we remove Γ from
𝐺 and continue the process of finding subgraphs on the rest of the
graph (i.e.,𝐺/Γ). We keep track of all the subgraphs as we use them
to generate the final recommendations in the last step.

Identifying Γ at each iteration is done by solving a Maximum
Flow problem (explained in section 3.3) on the graph obtained from
the previous iteration. Solving the maximum flow problem returns
the left nodes connected to the edges with lower weight (i.e., more
relevant items with low visibility) on the graph. After finding those
left nodes, we form subgraph Γ by separating identified left nodes
and their connected right nodes from 𝐺 . Finally, < 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 >

pairs in subgraphs are used to construct the final recommendation
lists of size 𝑛. We will discuss this process in detail in the following
sections.

Algorithm 1 shows the pseudocode for FairMatch. Overall, our
FairMatch algorithm consists of the following four steps: 1) Graph
preparation, 2) Weight computation, 3) Candidate selection, and 4)
Recommendation list construction.

Algorithm 1 The FairMatch Algorithm
function FairMatch(Recommendations 𝑅, TopN 𝑛, Coefficient 𝛼 )

Build graph𝐺 = (𝐼 ,𝑈 , 𝐸) from 𝑅

Initialize subgraphs to empty
repeat

𝐺=WeightComputation(𝐺 , 𝑅, 𝛼 )
𝐼𝐶 = Push-relabel(𝐺 )
Initialize 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ to empty
for each 𝑖 ∈ 𝐼𝐶 do

if 𝑙𝑎𝑏𝑒𝑙𝑖 ≥ |𝐼 | + |𝑈 | + 2 then
for each 𝑢 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑖) do

Append < 𝑖,𝑢, 𝑒𝑖𝑢 > to subgraph
end for

end if
end for
if 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ is empty then

𝑏𝑟𝑒𝑎𝑘

end if
Append 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ to 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠
𝐺=Remove 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ from𝐺

until (𝑡𝑟𝑢𝑒)
Reconstruct R of size 𝑛 based on subgraphs

end function

3.1 Graph Preparation
Given long recommendation lists of size 𝑡 generated by a standard
recommendation algorithm, we create a bipartite graph from rec-
ommendation lists in which items and users are the nodes (called,
respectively, left and right nodes) and recommendations are ex-
pressed as edges. Since our FairMatch algorithm is formulated as a
maximum flow problem, we also add two nodes, source (𝑠1) and sink
(𝑠2). The purpose of having a source and sink node in the maximum
flow problem is to have a start and endpoint for the flow going
through the graph. We connect 𝑠1 node to all left nodes and also
we connect all right nodes to 𝑠2. Figure 1 shows a sample bipartite
graph resulted in this step.

Figure 1: An example of a recommendation bipartite graph
of recommendation lists of size 3.

3.2 Weight Computation
Given the bipartite recommendation graph, 𝐺 = (𝐼 ,𝑈 , 𝐸), the task
of weight computation is to calculate the weight for edges between
the source node and left nodes, left nodes and right nodes, and right
nodes and sink node.

For edges between left nodes and right nodes, we define the
weights as the weighted sum of item visibility and relevance. The
visibility of each item is defined as the degree of the node corre-
sponding to that item (excluding the edge with the source node).
Item degree is the number of edges going out from that node con-
necting it to the user nodes and that shows how often it is recom-
mended to different users. Relevance is based on the rank of the
item in the original recommendation list for each user (lower rank
is more relevant).

For computing the weight between 𝑖 ∈ 𝐼 and 𝑢 ∈ 𝑈 , we use the
following equation:

𝑤𝑖𝑢 = 𝛼 × 𝑑𝑒𝑔𝑟𝑒𝑒𝑖 + (1 − 𝛼) × 𝑟𝑎𝑛𝑘𝑖𝑢 (1)

where 𝑑𝑒𝑔𝑟𝑒𝑒𝑖 is the number of edges from 𝑖 to right nodes (i.e.,
𝑢 ∈ 𝑈 ), 𝑟𝑎𝑛𝑘𝑖𝑢 is the position of item 𝑖 in the recommendation list
of size 𝑡 generated for user 𝑢, and 𝛼 is a coefficient to control the
trade-off between accuracy and diversity (or visibility).

Note that in equation 1, 𝑑𝑒𝑔𝑟𝑒𝑒 and 𝑟𝑎𝑛𝑘 have different ranges.
The range for 𝑟𝑎𝑛𝑘 is from 1 to 𝑡 (there are 𝑡 different positions in
the original list) and the range of 𝑑𝑒𝑔𝑟𝑒𝑒 depends on the frequency
of the item recommended to the users (the more frequent it is
recommended to different users the higher its degree is). Hence,
for a meaningful weighted sum, we normalize 𝑑𝑒𝑔𝑟𝑒𝑒 to be in the
same range as 𝑟𝑎𝑛𝑘 .

Given weights of the edges between 𝑖 ∈ 𝐼 and 𝑢 ∈ 𝑈 ,𝑤𝑖𝑢 , total
capacity of 𝐼 and 𝑈 would be 𝐶𝑇 =

∑
𝑖∈𝐼

∑
𝑢∈𝑈 𝑤𝑖𝑢 which simply

shows the sum of the weights of the edges connecting left nodes to
the right nodes.

For computing the weight for edges connected to the source and
sink nodes, first, we equally distribute 𝐶𝑇 to left and right nodes.
Therefore, the capacity of each left node, 𝐶𝑒𝑞 (𝐼 ), and right node,
𝐶𝑒𝑞 (𝑈 ), would be as follow:

𝐶𝑒𝑞 (𝐼 ) =
⌈
𝐶𝑇

|𝐼 |

⌉
, 𝐶𝑒𝑞 (𝑈 ) =

⌈
𝐶𝑇

|𝑈 |

⌉
(2)
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(a) Original graph (b) Residual graph (c) Pushing excess flow of u

Figure 2: Example of push and relabel operation.

where
⌈
𝑎
⌉
returns the ceil value of 𝑎. Then, based on equal capacity

assigned to each left and right nodes, we follow the method intro-
duced in [10] to compute weights for edges connected to source
and sink nodes as follow:

∀𝑖 ∈ 𝐼 ,𝑤𝑠1𝑖 =

⌈
𝑚𝑖𝑛(

𝐶𝑒𝑞 (𝐼 )
𝑔𝑐𝑑 (𝐶𝑒𝑞 (𝐼 ),𝐶𝑒𝑞 (𝑈 )) ,

𝐶𝑒𝑞 (𝑈 )
𝑔𝑐𝑑 (𝐶𝑒𝑞 (𝐼 ),𝐶𝑒𝑞 (𝑈 )) )

⌉
(3)

∀𝑢 ∈ 𝑈 ,𝑤𝑢𝑠2 =

⌈
𝐶𝑒𝑞 (𝐼 )

𝑔𝑐𝑑 (𝐶𝑒𝑞 (𝐼 ),𝐶𝑒𝑞 (𝑈 ))

⌉
(4)

where 𝑔𝑐𝑑 (𝐶𝑒𝑞 (𝐼 ),𝐶𝑒𝑞 (𝑈 )) is the Greatest Common Divisor of the
distributed capacity of left and right nodes. Assigning the same
weight to edges connected to the source and sink nodes guaranties
that all nodes in 𝐼 and𝑈 are treated equally and theweights between
them play an important role in our FairMatch algorithm.

3.3 Candidate Selection
The graph constructed in previous steps is ready to be used for
solving the maximum flow problem. In a maximum flow problem,
the main goal is to find the maximum amount of feasible flow that
can be sent from the source node to the sink node through the flow
network. Several algorithms have been proposed for solving a max-
imum flow problem. Well-known algorithms are Ford–Fulkerson
[9], Push-relabel [11], and Dinic’s algorithm [8]. In this paper, we
use Push-relabel algorithm to solve the maximum flow problem
on our bipartite recommendation graph as it is one of the efficient
algorithms for this matter.

In push-relabel algorithm, each node will be assigned two at-
tributes: label and excess flow. The label attribute is an integer value
that is used to identify the neighbors to which the current node can
send flow. A node can only send flow to neighbors that have lower
label than the current node. Excess flow is the remaining flow of a
node that can still be sent to the neighbors. When all nodes of the
graph have excess flow equals to zero, the algorithm will terminate.

The push-relabel algorithm combines 𝑝𝑢𝑠ℎ operations that send
a specific amount of flow to a neighbor, and 𝑟𝑒𝑙𝑎𝑏𝑒𝑙 operations that
change the label of a node under a certain condition (when the
node has excess flow greater than zero and there is no neighbor
with label lower than the label of this node).

Here is how the push-relabel algorithm works: Figure 2 shows
a typical graph in the maximum flow problem and an example
of push and relabel operations. In Figure 2a, 𝑓 and 𝑤 are current
flow and weight of the given edge, respectively. In Push-relabel

algorithm, a residual graph, 𝐺
′
, will be also created from graph 𝐺 .

As graph 𝐺 shows the flow of forward edges, graph 𝐺
′
shows the

flow of backward edges calculated as 𝑓𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = 𝑤 − 𝑓 . Figure
2b shows residual graph of graph 𝐺 in Figure 2a. Now, we want to
perform a push operation on node 𝑢 and send its excess flow to its
neighbors.

Given 𝑥𝑢 as excess flow of node 𝑢, 𝑝𝑢𝑠ℎ(𝑢, 𝑣) operation will
send a flow of amount Δ = 𝑚𝑖𝑛(𝑥𝑢 , 𝑓𝑢𝑣) from node 𝑢 to node 𝑣
and then will decrease excess flow of 𝑢 by Δ (i.e., 𝑥𝑢 = 𝑥𝑢 − Δ)
and will increase excess flow of 𝑣 by Δ (i.e., 𝑥𝑣 = 𝑥𝑣 + Δ). After
𝑝𝑢𝑠ℎ(𝑢, 𝑣) operation, node 𝑣 will be put in a queue of active nodes
to be considered by the push-relabel algorithm in the next iterations
and residual graph would be updated. Figure 2c shows the result
of 𝑝𝑢𝑠ℎ(𝑢, 𝑣) and 𝑝𝑢𝑠ℎ(𝑢, 𝑘) on the graph shown in Figure 2b. In
𝑝𝑢𝑠ℎ(𝑢, 𝑣), for instance, since 𝑢 and all of its neighbors have the
same label value, in order to perform push operation, first we need
to perform relabel operation on node 𝑢 to increase the label of 𝑢 by
one unit more than the minimum label of its neighbors to guaranty
that there is at least one neighbor with lower label for performing
push operation. After that, node 𝑢 can send flow to its neighbors.

Given 𝑥𝑢 = 15, 𝑓𝑢𝑣 = 8, and 𝑓𝑢𝑘 = 4 in Figure 2b, after performing
relabel operation, we can only send the flow of amount 8 from 𝑢

to 𝑣 and the flow of amount 4 from 𝑢 to 𝑘 . After these operations,
residual graph (backward flow from 𝑣 and 𝑘 to 𝑢) will be updated.

The push-relabel algorithm starts with a "preflow" operation
to initialize the variables and then it iteratively performs push
or relabel operations until no active node exists for performing
operations. Assuming L𝑣 as the label of node 𝑣 , in preflow step, we
initialize all nodes as follow:L𝑠1 = |𝐼 | + |𝑈 | +2,L𝑖∈𝐼 = 2,L𝑢∈𝑈 = 1,
and L𝑠2 = 0. This way, we will be able to send the flow from 𝑠1 to
𝑠2 as the left nodes have higher label than the right nodes. Also, we
will push the flow of amount 𝑤𝑠1𝑖 (where 𝑖 ∈ 𝐼 ) from 𝑠1 to all the
left nodes.

After preflow, all of the left nodes 𝑖 ∈ 𝐼 will be in the queue, Q,
as active nodes because all those nodes now have positive excess
flow. The main part of the algorithm will now start by dequeuing
an active node 𝑣 from Q and performing either push or relabel
operations on 𝑣 as explained above. This process will continue until
Q is empty. At the end, each node will have specific label value and
the sum of all the coming flows to node 𝑠2 would be the maximum
flow of graph 𝐺 . For more details see [11]

An important question is: how does the Push-relabel algorithm
can find high-quality nodes (items) with low degree (visibility)?
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We answer this question by referring to the example in Figure
2c. In this figure, assume that 𝑢 has a backward edge to 𝑠1. Since 𝑢
has excess flow greater than zero, it should send it to its neighbors.
However, as you can see in the figure, 𝑢 does not have any forward
edge to 𝑣 or 𝑘 nodes. Therefore, it has to send its excess flow back
to 𝑠1 as 𝑠1 is the only reachable neighbor for 𝑢. Since 𝑠1 has the
highest label in our setting, in order for 𝑢 to push all its excess flow
back to 𝑠1, it should go through a relabel operation so that its label
becomes larger than that of 𝑠1. Therefore, the label of 𝑢 will be set
to L𝑠1 + 1 for an admissible push.

The reason that 𝑢 receives high label value is the fact that it
initially receives high flow from 𝑠1, but it does not have enough
capacity (the sum of weights between 𝑢 and its neighbors is smaller
than its excess flow. i.e. 8+4<15) to send all that flow to them. In
FairMatch, in step 3 (i.e. section 3.3), left nodes without sufficient
capacity on their edges will be returned as part of the outputs from
push-relabel algorithm and are considered for constructing the final
recommendation list in step 4 (i.e. section 3.4). These nodes are the
ones that their edges received low weights by equation 1 in step
2 (i.e. section 3.2) because of their low degree (low visibility) and
rank (high relevance) on the graph. Therefore, FairMatch aims at
promoting those high relevance items with low visibility.

3.4 Recommendation List Construction
In this step, the goal is to construct a recommendation list of size 𝑛
by the < 𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚 > pairs identified in previous step.

Given a recommendation list of size 𝑛 for user𝑢, 𝑅𝑢 , sorted based
on the scores generated by a standard recommendation algorithm,
candidate items identified by FairMatch connected to 𝑢 as I𝐶 , and
visibility of each item, 𝑖 , in recommendation lists of size 𝑛 as 𝑉𝑖 ,
we use the following process for generating recommendation list
for 𝑢. First, we sort recommended items in 𝑅𝑢 based on their 𝑉𝑖 in
ascending order. Then, we remove𝑚𝑖𝑛(𝑛, |I𝐶 |) from the bottom of
sorted 𝑅𝑢 and add𝑚𝑖𝑛(𝑛, |I𝐶 |) items from 𝐼𝐶 to the end of 𝑅𝑢 .

This process will ensure that extracted items in the previous
step will replace the frequently recommended items meaning that
it decreases the visibility of the frequently recommended items and
increases the visibility of rarely recommended items to generate a
fair distribution on recommended items.

4 EXPERIMENTS
We performed a comprehensive evaluation of the effectiveness of
FairMatch in improving aggregate diversity of recommender sys-
tems. Our evaluation on two standard recommendation algorithms
and comparison to various diversification methods to increase ag-
gregate diversity as baselines on two datasets shows that FairMatch
significantly improves item visibility with a negligible loss in the
accuracy of recommendations.

4.1 Experimental Setup
Experiments are performed on two publicly available datasets: Epin-
ions and MovieLens. The Epinions dataset was collected from Epin-
ions web site which is an item reviewing system. It is a subset
extracted from Epinions dataset in which each user has rated at
least 15 items and each item is rated by at least 15 users (i.e core-
15). The MovieLens dataset [14] is movie ratings data and was

Table 1: Statistical properties of datasets

Dataset #users #items #ratings density

Epinions 5,531 4,287 186,995 0.789%
ML1M 6,040 3,706 1,000,209 4.468%

collected by the GroupLens research group. The characteristics of
the datasets are summarized in Table 1.

The initial longer recommendation lists of size 𝑡 are generated
by two well-known recommendation algorithms: list-wise matrix
factorization (ListRank) [22] and user-based collaborative filter-
ing (UserKNN) [21]. As mentioned earlier, we chose these two al-
gorithms to cover different approaches in recommender systems:
matrix factorization and neighborhood models. We performed grid-
search1 on hyperprameters for each algorithm and selected the
results with the highest precision value for our next analysis.

To show the effectiveness of the FairMatch algorithm in improv-
ing the aggregate diversity, we compare its performance with two
state-of-the-art algorithms and also two simple baselines.

(1) FA*IR. This is the method introduced in [26] and was men-
tioned in our related work section. The method was origi-
nally used for improving group fairness in job recommenda-
tion. However, we use this method for improving aggregate
diversity in item recommendation. We define protected and
unprotected groups as long-tail and short-head items, respec-
tively. For separating short-head from long-tail items, we
consider those top items which cumulatively take up K% of
the ratings as the short-head and the rest as long-tail items.
For experiments in this paper, we have tried different values
of 𝐾 ∈ {10, 20, 30, 50}. Also, we set the other two hyperpa-
rameters, proportion of protected candidates in the top 𝑛
items2 and significance level3, to {0.25, 0.5, 0.75, 0.95} and
{0.05, 0.1, 0.15}, respectively.

(2) Discrepancy Minimization (DM). This is the method in-
troduced in [5] andwas explained in our relatedwork section.
For hyperparameter tuning, we followed the experimental
settings suggested by the original paper for our experiments.
We set the target degree distribution to {1, 5, 10} and relative
weight of the relevance term to {0.01, 0.5, 1}.

(3) Reverse. Given a recommendation list of size 𝑡 for each user
generated by standard recommendation algorithm, in this
method, instead of picking the 𝑛 items from the top, we pick
them from the bottom of the list. In this approach, we expect
to see an increase in aggregate diversity as we are giving
higher priority to the items with lower scores to be picked
first. However, the accuracy of the recommendations will
decrease as we give higher priority to lower quality items.

(4) Random. Given a recommendation list of size 𝑡 for each
user generated by standard recommendation algorithm, we
randomly choose 𝑛 items from that list and create a final
recommendation list for that user. Note that this is different

1For ListRankMF, we set all regularizers ∈ {0.0001, 0.001, 0.01}, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ∈
{30, 50, 100}, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 ∈ {0.0001, 0.001, 0.005, 0.01}, and 𝑓 𝑎𝑐𝑡𝑜𝑟𝑠 ∈
{50, 100, 150, 200}. For UserKNN, we set 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ∈ {10, 20, 30, 50, 100}.
2Based on suggestion from the released code, the range should be in [0.02, 0.98]
3Based on suggestion from the released code, the range should be in [0.01, 0.15]
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Table 2: Comparison of different post-processing techniques on Epinions dataset for recommendation list of size 10.

algorithms baselines 𝑡 = 20 𝑡 = 50 𝑡 = 100
P@10 C@10 G@10 E@10 P@10 C@10 G@10 E@10 P@10 C@10 G@10 E@10

ListRankMF

Standard 0.015 24.4% 0.937 4.35 0.015 24.4% 0.937 4.35 0.015 24.4% 0.937 4.35
Random 0.010 33.1% 0.882 5.23 0.006 45.0% 0.869 5.97 0.004 53.5% 0.856 6.39
Reverse 0.005 37.3% 0.839 5.69 0.003 51.9% 0.867 5.58 0.002 60.7% 0.814 6.70
FA*IR 0.013 28.8% 0.917 4.56 0.009 30.4% 0.934 5.01 0.008 33.8% 0.945 5.01
DM 0.014 36.9% 0.907 4.45 0.011 56.6% 0.748 5.69 0.010 69.1% 0.680 6.07
FairMatch 0.014 38.0% 0.884 4.72 0.010 61.4% 0.789 5.96 0.008 77.7% 0.720 6.53

UserKNN

Standard 0.045 46.4% 0.925 5.19 0.045 46.4% 0.925 5.19 0.045 46.4% 0.925 5.19
Random 0.035 53.6% 0.896 5.63 0.023 65.7% 0.875 6.26 0.016 75.6% 0.831 6.73
Reverse 0.025 58.2% 0.870 5.96 0.013 73.3% 0.825 6.70 0.008 83.1% 0.753 7.20
FA*IR 0.044 61.1% 0.868 5.62 0.038 65.0% 0.865 6.22 0.030 65.4% 0.867 6.41
DM 0.044 64.1% 0.850 5.65 0.041 84.3% 0.732 6.40 0.037 95.4% 0.529 7.18
FairMatch 0.044 67.0% 0.853 5.72 0.038 90.8% 0.732 6.67 0.029 98.1% 0.580 7.41

Table 3: Comparison of different post-processing techniques on MovieLens dataset for recommendation list of size 10.

algorithms baselines 𝑡 = 20 𝑡 = 50 𝑡 = 100
P@10 C@10 G@10 E@10 P@10 C@10 G@10 E@10 P@10 C@10 G@10 E@10

ListRankMF

Standard 0.152 14.0% 0.916 4.13 0.152 14.0% 0.916 4.13 0.152 14.0% 0.916 4.13
Random 0.124 17.5% 0.861 4.76 0.089 24.6% 0.834 5.48 0.066 32.2% 0.809 5.97
Reverse 0.097 19.0% 0.831 4.97 0.055 28.4% 0.786 5.73 0.037 37.9% 0.757 6.20
FA*IR 0.143 14.2% 0.907 4.26 0.136 14.3% 0.937 4.34 0.128 16.5% 0.949 4.41
DM 0.148 18.7% 0.850 4.41 0.138 28.4% 0.801 4.76 0.130 38.1% 0.764 5.02
FairMatch 0.149 19.4% 0.870 4.40 0.138 30.0% 0.836 4.90 0.130 40.2% 0.834 5.10

UserKNN

Standard 0.196 10.7% 0.884 4.37 0.196 10.7% 0.884 4.37 0.196 10.7% 0.884 4.37
Random 0.163 12.3% 0.836 4.73 0.120 15.9% 0.805 5.29 0.094 19.4% 0.780 5.71
Reverse 0.130 13.4% 0.791 4.99 0.082 17.7% 0.726 5.63 0.058 22.2% 0.703 6.01
FA*IR 0.192 11.3% 0.855 4.60 0.181 12.3% 0.869 4.88 0.168 18.0% 0.858 5.19
DM 0.192 13.8% 0.835 4.63 0.184 19.2% 0.800 4.98 0.180 25.0% 0.780 5.21
FairMatch 0.193 13.9% 0.863 4.48 0.184 18.6% 0.872 4.69 0.170 23.6% 0.850 5.05

from randomly choosing items from all catalog to recom-
mend to users. The reason we randomly choose the items
from the original recommended list of items (size 𝑡 ) is to
compare other post-processing and re-ranking techniques
with a simple random re-ranking.

FairMatch algorithm only involves one hyperparameter, 𝛼 , to
control the balance between the node degree and relevance. For
our experiments we try 𝛼 ∈ {0, 0.25, 0.5, 0.75, 1}. A lower value
for 𝛼 indicates more focus on maintaining the accuracy of the
recommendations, while a higher value for 𝛼 indicates more focus
on improving aggregate diversity. We also perform a sensitivity
analysis to show how 𝛼 can play an important role in the accuracy-
diversity trade-off.

For evaluation, we use the following metrics to measure the
effectiveness of each method:

(1) Precision (𝑃@𝑛): The fraction of the recommended items
shown to the users that are part of the users’ profile in the
test set.

(2) Coverage (𝐶@𝑛): The percentage of items which appear at
least once in the recommendation lists.

(3) Gini index (𝐺@𝑛): The measure of fair distribution of rec-
ommended items. It takes into account how uniformly items
appear in recommendation lists. Uniform distribution will
have Gini index equal to zero which is the ideal case (lower

Gini index is better). Given all the recommendation lists
for users, 𝐿, and 𝑝 (𝑖𝑘 |𝐿) as the probability of the 𝑘-th least
recommended item being drawn from 𝐿 calculated as [24]:

𝑝 (𝑖 |𝐿) =
∑
𝑢∈𝑈 1𝑖∈𝐿𝑢∑

𝑢∈𝑈
∑

𝑗 ∈𝐼 1𝑗 ∈𝐿𝑢
(5)

where 𝐿𝑢 is the recommendation list for user 𝑢. Now, Gini
index of 𝐿 can be computed as:

𝐺𝑖𝑛𝑖 (𝐿) = 1
|𝐼 | − 1

|𝐼 |∑
𝑘=1

(2𝑘 − |𝐼 | − 1)𝑝 (𝑖𝑘 |𝐿) (6)

(4) Entropy (𝐸@𝑛): Given the distribution of recommended
items, entropy measures the uniformity of that distribution.
Uniform distribution has the highest entropy or information
gain, thus higher entropy is more desired when the goal is
increasing diversity.

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐿) = −
∑
𝑖∈𝐼

𝑝 (𝑖 |𝐿) log 𝑝 (𝑖 |𝐿) (7)

where 𝑝 (𝑖 |𝐿) is the observed probability value of item 𝑖 in
recommendation lists 𝐿.

We performed 5-fold cross validation in our experiments, and
we generated recommendation lists of size 10, 20, 50, and 100 for
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each user by each recommendation algorithm. Recommendation
lists of size 10 are used for evaluating standard recommendation
algorithms and longer recommendation lists of size 20, 50, and
100 are used as input for diversification techniques to generate
recommendation lists of size 10 as output. Recommendation lists of
size 10 generated by each diversification technique are evaluated
by aforementioned metrics and their effectiveness is compared. We
used librec-auto and LibRec 2.0 for running experiments [13, 19].

4.2 Comparative Evaluation
Table 2 and 3 summarize the performance of FairMatch and other
baselines on Epinions and MovieLens datasets, respectively. For
each metric (ignoring Random and Reverse techniques), the bolded
values show the best results and a statistically significant change
from the second best baseline with 𝑝 < 0.01.

As mentioned earlier, extensive experiments are performed by
each diversification technique with multiple hyperparameter values
and for the purpose of comparison, from each of three diversifica-
tion algorithms (DM, FA*IR, and our FairMatch) the configuration
which yields, more of less, the same precision loss is reported. These
results enable us to better compare the performance of each tech-
nique on improving aggregate diversity while maintaining the same
level of accuracy.

Based on experiments on Epinions dataset shown in table 2, Fair-
Match significantly outperforms all the baselines on various sizes
of initial recommendation lists generated by both recommendation
algorithms in terms of coverage (𝐶@10). The coverage of FairMatch
is even higher than the Random and Reverse techniques without
losing much accuracy which is indicative of its power in finding
high-quality items with minimum visibility. Again, the 𝑅𝑎𝑛𝑑𝑜𝑚
algorithm used here is randomly picking 𝑛 items from the original
list and put them in the final list, so it is still possible that many
popular items could end up being in the final list. In terms of fair
distribution, the same improvement is also consistently observed
on entropy. Entropy of FairMatch technique is significantly higher
than other techniques in all cases showing that the recommenda-
tions generated by FairMatch are fairer and closer to a uniform
distribution. However, in terms of Gini index, FairMatch generated
comparable results to DM.

Table 3 shows the experimental results in MovieLens dataset.
Based on these results, except for UserKNN with 𝑡 = 50 and 𝑡 = 100,
FairMatch provides higher coverage in all cases which is consistent
with the results from Epinions dataset. In terms of entropy and Gini
index, FairMatch was outperformed by DM in most of the cases.

It is worth noting that the Gini can be a misleading measure if it
is looked at in isolation. For instance, if an algorithm recommends
only a few items (low coverage) but does so by recommending each
item exactly in an equal proportion, then it will achieve a perfect
Gini. However, having a low coverage is not desired and therefore
it is more reasonable to look at the coverage and Gini together.

4.3 Accuracy-Diversity Trade-Off
We also investigated the precision and diversity trade-off in our
FairMatch algorithm under various settings. Figure 3 shows the
experimental results on Epinions (Figure 3a) and MovieLens (Figure
3b) datasets. In these plots, x-axis shows the precision and y-axis

(a) Epinions dataset

(b) MovieLens dataset

Figure 3: Precision and entropy trade-off in the Fair-
Match algorithm on Epinions andMovieLens datasets using
ListRankMF and UserKNN. The black cross shows the perfor-
mance of original recommendation lists at size 10.

shows the entropy of the recommendation results at size 10. Similar
results are also observed when Gini index or coverage metrics are
used as diversity measures. Each point on the plot corresponds to
a specific 𝛼 value and the black cross shows the performance of
original recommendation lists at size 10.

Results in Figure 3 show that 𝛼 plays an important role in con-
trolling the precision-diversity trade-off. As we increase the 𝛼 value,
precision increases, while diversity decreases. According to equa-
tion 1, for a higher 𝛼 value, FairMatch will concentrate more on
improving the accuracy of the recommendations, while for lower 𝛼
value, it will have a higher concentration on improving the diversity
of the recommendations.

Also, it can be observed from Figure 3 that for longer initial rec-
ommendation lists (i.e., higher values for 𝑡 ), although the diversity
of the recommendations increases, the precision decreases. These
parameters allow system designers to better control the precision-
diversity trade-off.

4.4 Long-tail Coverage Analysis
Recommending more items by a given recommendation algorithm
is a desired characteristic. However, it is important to check if
the increase in item coverage comes from recommending more
long-tail items or it is just covering more popular items. Figure 4
shows the long-tail coverage for different algorithms on Epinions
(Figure 4a) andMovieLens (Figure 4b) datasets for different original
recommendations sizes 𝑡 . For these experiments, we specified long-
tail items using the technique introduced in [27]. Except for the
UserKNN on MovieLens dataset which our FairMatch algorithm
covers fewer long-tail items than the DM algorithm, in all other
cases, the FairMatch algorithm outperforms all other algorithms
on both datasets. In fact, on MovieLens, the FairMatch algorithm
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(a) Epinions dataset

(b) MovieLens dataset

Figure 4: Long-tail coverage of diversification methods on
Epinions and MovieLens datasets using ListRankMF and
UserKNN.

also beats DM algorithm with a slight margin when the size of the
original recommendation is 20. In other words, when the time and
space complexity become an issue (larger values for 𝑡 ) and a smaller
𝑡 is desired then the FairMatch algorithm outperforms every other
algorithm in this experiment on both datasets.

4.5 Complexity Analysis
Solving the maximum flow problem is the core computation part of
the FairMatch algorithm. We used Push-relabel algorithm as one of
the efficient algorithms for solving themaximumflow problem. This
algorithm has a polynomial time complexity as𝑂 (𝑉 2𝐸) where𝑉 is
the number of nodes and 𝐸 is the number of edges in bipartite graph.
For other parts of the FairMatch algorithm, the time complexity
would be in the order of the number of edges as it mainly iterates
over the edges in the bipartite graph.

Since FairMatch is an iterative process, unlike other maximum
flow based techniques [4, 5], it requires solving maximum flow
problem on the graphmultiple times and this could be one limitation
of our work. However, except for the first iteration that FairMatch
executes on the original graph, at the next iterations, the graph
will be shrunk as FairMatch removes some parts of the graph at
each iteration. Regardless, the upper-bound for the complexity of
FairMatch will be 𝑂 (𝑉 3𝐸) assuming in each iteration we still have
the entire graph (which is not the case). Therefore, the complexity
of FairMatch is certainly less than𝑂 (𝑉 3𝐸) which is still polynomial.

5 DISCUSSION AND FUTURE WORK
In this section, we discuss the advantages that FairMatch provides
on improving the performance of recommender systems. Also, we
will discuss possible future work that can be considered for further
improvement in FairMatch.

Generalization. In this paper, we studied the ability of Fair-
Match for improving aggregate diversity and one special case of
supplier fairness under the assumption of each item belongs to
one supplier (i.e., fair distribution on recommended items). How-
ever, FairMatch can be generalized to other definitions of fairness
including supplier-side fairness. In this scenario, we can create rec-
ommendation bipartite graph between users and suppliers (based
on recommended items), and then assign weights to edges based
on suppliers’ information (e.g., the probability of their items being
shown in recommendation results and the quality of their items).
At the third step, we can solve the maximum flow problem on
this graph to extract high-quality suppliers with unfair visibility in
recommendation lists. Finally, we can reconstruct the final recom-
mendation lists by adding high-quality items from those suppliers
according to each user’s preferences.

Similar settings can also be considered on FairMatch for improv-
ing user fairness [18]. Considering the job recommendation domain
where the task is recommending jobs to users, FairMatch can be
formulated to fairly distribute "good" jobs (e.g. highly-paying jobs)
to each group of users based on sensitive attributes (e.g. men and
women). We consider these scenarios in our future work.

Flexibility. Another potential interesting improvement on Fair-
Match is taking into account the item ranking in final recommen-
dation lists. In this paper, we aimed at creating final recommenda-
tion lists to include high-quality items with low visibility and we
measured it in terms of precision. However, FairMatch allows to
consider creating fair ranked lists by modifying the last step (rec-
ommendation construction). To do this, given extracted items from
step 3 and top 𝑛 recommendation lists from standard recommen-
dation algorithm, the goal is to find the fair position for extracted
items in the top 𝑛 recommendation.

Finally, weight computation at step 2 also provides flexibility in
optimizing FairMatch to capture some other aspects. For instance,
considering the popularity of items for computing weights of edges
on recommendation bipartite graph may help to further control
popularity bias in recommender systems.

6 CONCLUSION
In this paper, we proposed a graph-based approach, FairMatch, for
improving the aggregate diversity of recommender systems. Fair-
Match is a post-processing technique that works on the top of any
recommendation algorithm. In other words, it re-ranks the output
from the standard recommendation algorithm such that it improves
the aggregate diversity of final recommendation lists, while it main-
tains the accuracy of recommendations. Experimental results on
two publicly available datasets showed that the FairMatch algo-
rithm outperforms several state-of-the-art methods in improving
aggregate diversity. One of the limitations of our work is that our
algorithm does not leverage the information about the popularity
of items in rating data. We believe this information could play an
important role in further improving aggregate diversity of the final
recommendation lists because usually algorithms are biased toward
popular items [2] and tackling this bias could increase the number
of distinct recommended items, hence higher aggregate diversity.
We intend to investigate this limitation in future work.
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